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Abstract—While both Internet Service Providers (ISPs) and
third-party Security Service Providers (SSPs) offer Distributed
Denial-of-Service (DDoS) mitigation services through cloud-based
scrubbing centers, it is often beneficial for ISPs to outsource part
of the traffic scrubbing to SSPs to achieve less economic cost
and better network performance. To explore this potential, we
design an online auction mechanism, featured by the challenge
of the switching cost of using different winning bids over time.
Formulating the social cost minimization as a nonconvex integer
program, we firstly relax it and design an online algorithm that
breaks it into a series of modified single-shot problems and solves
each of them in polynomial time, without requiring knowledge of
future inputs; then, we design a randomized rounding algorithm
to convert the fractional decisions into integers without violating
any constraints; and finally, we design the payment for each bid
based on its winning probability. We rigorously prove that our
mechanism achieves a parameterized-constant competitive ratio
for the long-term social cost, with truthfulness and individual
rationality in expectation. We also exhibit its superior practical
performance via evaluations driven by real-world data traces.

I. INTRODUCTION

Internet Service Providers (ISPs) (e.g., AT&T [1]) nowadays

provide cloud-based Distributed Denial-of-Service (DDoS)

mitigation services. They build and operate Scrubbing Centers

(SCs) [2] and divert the suspicious traffic to such centers,

where the DDoS traffic is filtered out and the clean traffic

is then re-injected into the network. Meanwhile, some third-

party providers (e.g., Cloudflare [3]), which we refer to as

Security Service Providers (SSPs), also offer similar services

through their own distributed scrubbing centers. This is shown

in Fig. 1, where the solid arrows indicate the suspicious traffic

and the dashed arrows indicate the clean traffic.

To scrub large-scale traffic in ISP networks, it is often

beneficial for an ISP to outsource some scrubbing to external

SSPs. ISPs can leverage the often wider geographical distribu-

tion of the SSPs’ scrubbing centers to achieve better network

footprint and overall performance [4]. For instance, scrubbing

a flow closer to its source incurs a lower DDoS footprint.

Moreover, through market competition, ISPs can achieve lower

total economic cost for traffic scrubbing via outsourcing [5].

External scrubbing centers can be complementary to an ISP’s

own ones. An ISP can resort to external scrubbing centers only

when the total cost is lower, while still using its own facilities

to ensure that all the target flows are scrubbed.

This motivates the need of setting up an appropriate market

mechanism to enable ISPs to procure scrubbing services from
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Fig. 1: An ISP network with internal SCs and external SSPs

SSPs. Letting SSPs “price” their services sounds straight-

forward, but can be actually tricky and hard to achieve the

overall market efficiency, due to probable over-/under-pricing

when the demand-supply varies (e.g., DDoS traffic dynamics,

resource cost changes) [6]. Therefore, in this paper, we focus

on mechanisms based on “auctions” [7]–[10]. Auctions enable

market efficiency and agility with direct pricing based on the

real-time supply-demand; it also reduces the chance of mis-

pricing, better matches services to buyers that value them most,

and increases the seller profit and the market social welfare.

Due to inherent market dynamics, auctions need to be

conducted in multiple rounds in an online manner, where the

auctioneer (i.e., the ISP) has to incur the “operation cost” to

use the winning bids in each round after procuring them from

the bidders (i.e., the SSPs), and incur the “switching cost”

when switching from using the winning bids in one round

of the auction to using possibly different winning bids in the

next round. This is because, after purchasing the bids, the

ISP needs to divert the traffic to the corresponding scrubbing

centers to actually scrub them. Such traffic diversion is often

achieved by establishing dedicated Border Gateway Protocol

(BGP) and/or Open Shortest Path First (OSPF) routes in the

networks [11], which occupy the router space and incur eco-

nomic expense [12]; as the target traffic and the winning bids

vary over time, the routes also need to be dynamically installed

and removed, causing propagation traffic and convergence

delay [13] that impact the network performance. While the

traffic diversion may also be achieved by domain name system

redirection sometimes, we consider a more general case in this

paper that does not necessarily rely on the domain names.

This cost structure poses two fundamental and unique chal-

lenges to designing online auction mechanisms. First, mini-

mizing the market social cost is hampered by the unpredictable

inputs, including DDoS traffic to scrub, bids to collect from the

bidders, and resources used to implement the scrubbing. It is

challenging to balance the ISP’s operation cost and switching



cost on the fly without any future knowledge of such inputs,

because determining and using the winning bids in one auction

will impact the switching cost between the current auction and

the next auction that is yet to come. Second, the existence of

the switching cost also escalates the difficulty for designing

proper payment schemes for the winning bids that ensure the

desired guarantees of “truthfulness” (i.e., each bidder needs

to bid its true cost in order to maximize its own utility) and

“individual rationality” (i.e., each bid always brings profit to its

bidder if it wins the auction). The well-known Vickrey-Clarke-

Groves (VCG) mechanism that guarantees truthful bidding

requires to optimally solve each auction, but doing so would

indicate neglecting the switching cost across auctions, which

could lead to excessive social cost in the long run. To the best

of the authors’ knowledge, there is no known approach which

can readily overcome these two challenges simultaneously.

This paper is the first to study the cloud scrubbing market

mechanism. Existing research about cloud scrubbing [4], [11],

[14]–[16] has never studied the interactions between ISPs and

SSPs, nor from an auction perspective. Substantial efforts have

been made on online auctions for the cloud(s); however, the

vast majority of them have never incorporated the auctioneer’s

switching cost [7]–[10], [17], not to mention the corresponding

payment schemes. The only auction works known to the

authors involving the switching cost [18], [19] adopt primal-

dual-based algorithms while embedding payment calculations

but are technically insufficient for the problem that we study

in this paper. See Section VI for more discussions.

We model and formulate the online social cost optimization

problem of minimizing the ISP’s operation cost and switching

cost, plus the SSPs’ bidding cost, while ensuring every flow

is scrubbed over time. We make zero assumption about the

heterogeneity and the dynamism of all the inputs. Our problem

turns out to be an NP-hard Nonconvex Integer Program (NIP).

This is another reason for which we rule out the VCG method

for payment calculation; we have to also exclude its fractional

version [7] due to the existence of the switching cost.

We design a group of algorithms that work together to solve

our problem in an online manner to determine the winning

bids, divert the traffic flows, and calculate the payment. Firstly,

given the significant challenge of the NIP, we relax our prob-

lem to its fractional version and transform it by replacing the

nonconvex switching cost with carefully-designed logarithmic

terms [20]. This way, we decouple the modified problem into a

series of single-round convex problems which are polynomial-

time-solvable in each corresponding time slot by only taking

the inputs to that time slot and the solution from the previous

time slot. Then, we design a randomized rounding algorithm to

convert our fractional decisions into integers in each auction,

which rounds two fractions to compensate each other in every

iteration to violate no constraint of our problem after rounding

[21], and uses the fractional solution before rounding as the

winning probability of each bid. Finally, for each single-round

auction, we use the winning probability of each bid to calculate

a dedicated marginal cost and add it to the original bidding

price to compose the payment, so that each auction aligns with

the monotone allocation and finite payment rules [22] and can

be provably truthful and individually rational in expectation.

We also prove a constant competitive ratio for the long-term

social cost as a function of the key parameters of our problem.

We conduct extensive numerical evaluations with real-world

data traces. We utilize dynamic Amazon EC2 virtual machine

prices [23], BGP routing cost [12], and Chicago electricity

prices [24] to simulate the operation cost and the switching

cost, and scrub dynamic traffic flows with a varying number of

SSPs for a time horizon of 200 hours. Our approach achieves

up to 35% and 32% less total cost compared to the industrial

practice of using the Gurobi [25] solver and the state-of-the-

art Lazy Capacity Provisioning [26] algorithm, respectively,

and only incurs about 11% more total cost compared to the

offline optimum. Our payment design induces truthful bidding

and attains individual rationality successfully, and preserves

frugality for the ISP. Our algorithm executes efficiently, and

responds promptly to traffic flow variations in practice.

II. MODEL AND PROBLEM FORMULATION

A. System Modeling

ISP, SSPs, and Traffic. We consider an ISP that owns and

operates a network, with a set of distributed scrubbing centers

that are represented by L. We also consider a set of SSPs,

represented by I, which offer scrubbing services via their own

distributed scrubbing centers connected to this ISP’s network.

Each SSP may manage one or multiple scrubbing centers,

which is transparent to the ISP. We study the dynamic problem

over a horizon of a series of time slots T = {1, 2, ..., |T |}.

There are a set of suspicious traffic flows to be scrubbed,

represented by K, which travel through this ISP’s network.

Such traffic can appear and disappear arbitrarily over time: we

use a binary indicator λkt to show whether the flow k ∈ K
appears in the ISP’s network at the time slot t ∈ T (i.e.,

λkt = 1) or not (i.e., λkt = 0).

Auction Model. At every time slot t, after observing the

current traffic flows, the ISP provides such information to the

SSPs and solicits bids. Then, each SSP i∈I submits a bid to

the ISP in the form of {cit, {fikt|∀k∈K}}. The list {fikt|∀k∈
K} indicates the set of flows, where it has fikt = 1 if the SSP

i is willing to scrub the flow k and has fikt = 0 otherwise,

and cit indicates the bidding price, i.e., the price that the SSP

i wants to charge. Afterwards, the ISP decides which bids win

by solving the social cost minimization problem in an online

manner, and for each winning bid, calculates the payment ρit
and pays it to the corresponding SSP i. We do not restrict the

number of bids that can be procured, but we only allow each

SSP to issue one bid; the case where each SSP issues multiple

bids for potentially different set of flows with different prices

can be inherently captured by our model via regarding each

different bid as from a different “virtual” SSP. The auction

model is shown in Fig. 2.

Decision Variables. The ISP needs to make the following

binary decisions, as we study in this paper: xit ∈ {1, 0}, which

implies whether or not the ISP purchases the SSP i’s bid at

time t; yikt ∈ {1, 0}, which implies whether or not the ISP
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Fig. 2: Our auction mechanism in a single time slot

redirects the flow k to the corresponding scrubbing center as

required by the SSP i’s bid at time t; and zlkt ∈ {1, 0}, which

implies whether or not the ISP redirects the flow k to its own

scrubbing center l to do the scrubbing at time t.
Cost of SSPs. The cost of the SSP i has two components

at t. The first is the cost for scrubbing the flows as specified

in its bid, i.e., xitcit. This may include the cost of the virtual

machines, the scrubbing software, the electricity consumption

and so on incurred in the SSP’s scrubbing center(s). Note this

cost may be different from the bidding price; however, as we

will show in this paper, our auction mechanism will guarantee

to be truthful, and thus they will be the same and we will use

the same notation cit. The second component is the payment

received from the ISP, i.e., −ρit, where we take the negation

to count it as cost. Note ρit ≥ xitcit, as we will show the

individual rationality of our auction mechanism.

Operation Cost of ISP. The ISP redirects each flow to one

SSP scrubbing center, or to one of its own scrubbing centers,

at each t. We denote the redirection cost in the ISP network

for redirecting the flow k to the SSP i’s scrubbing center as

aiktyikt; accordingly, we denote the sum of the redirection

cost in the ISP network for redirecting the flow k to its

own scrubbing center l and the scrubbing cost for scrubbing

that flow as dlktzlkt. The redirection cost can correspond

to the expense incurred by maintaining the Border Gateway

Protocol (BGP) routes in the network. The scrubbing cost,

as described above, can refer to multiple types of cost in the

scrubbing center. Furthermore, the operation cost also includes

the payment that the ISP pays, corresponding to each winning

bid i, i.e., ρit (where ρit
def
= 0 for those bids that lose).

Switching Cost of ISP. In this paper, we take into account

the switching cost incurred by changing the decisions of redi-

recting and scrubbing the flows from one time slot to the next.

This also characterizes the effect of switching from using one

set of winning bids in one round of auction to using another

set in the next round. Specifically, for the ISP’s network, it

can capture the performance impact incurred by dynamically

installing/removing the BGP routes—for example, installing

BGP routes takes time before the network enters a consistent

status and causes the propagation traffic to spread the routes

across routers; for the ISP’s scrubbing centers, it also can

capture the performance impact incurred by resource “recon-

figuration”, such as virtual machine booting/leading, software

initialization, and server wear-and-tear. We use bik to generally

denote the unit BGP installation cost associated to changing

the redirection of the flow k to the SSP i’s scrubbing center;

we use elk to denote the unit BGP installation cost and the

unit resource reconfiguration cost associated to changing the

redirection and the scrubbing of the flow k to/at the ISP’s own

scrubbing center l. The corresponding switching cost of the

ISP is thus written as bik(yikt−yikt−1)
++elk(zlkt−zlkt−1)

+,

where we have (·)+
def
= max{·, 0}.

B. Social Cost Minimization Problem

Social Cost. In order to obtain the entire system’s total

cost over time, i.e., the social cost over time, we sum up the

cost of the SSPs, i.e.,
∑

t

∑

i citxit−
∑

t

∑

i ρit, and the cost

of the ISP, i.e.,
∑

t

∑

i

∑

k aiktyikt +
∑

t

∑

l

∑

k dlktzlkt +
∑

t

∑

i

∑

k bik(yikt − yikt−1)
+ +

∑

t

∑

l

∑

k elk(zlkt −
zlkt−1)

++
∑

t

∑

i ρit. Note that the payment components of

the SSPs and the ISP will cancel each other. We highlight it

here, and we will design the payment calculation later.

Problem Formulation. We formulate the social cost mini-

mization problem as below:

min P =
∑

t

∑

i citxit

+
∑

t

∑

i

∑

k aiktyikt +
∑

t

∑

i

∑

k bik(yikt −yikt−1)
+

+
∑

t

∑

l

∑

k dlktzlkt +
∑

t

∑

l

∑

k elk(zlkt −zlkt−1)
+

s.t. fiktxit ≥ yikt, ∀i, ∀k, ∀t, (1a)
∑

i yikt +
∑

l zlkt ≥ λkt, ∀k, ∀t, (1b)
∑

i yikt +
∑

l zlkt ≤ 1, ∀k, ∀t, (1c)

xit ∈ {0, 1}, yikt ∈ {0, 1}, zlkt ∈ {0, 1},

∀i, ∀k, ∀l, ∀t. (1d)

Constraint (1a) ensures that a flow is redirected to an SSP’s

scrubbing center only if the ISP procures the bid from that SSP

and the bid claims to scrub that flow in its list. Constraints

(1b) and (1c) ensure that every flow is handled, and must

be handled by either an SSP’s or the ISP’s own scrubbing

service, but not both, which captures the fact that one BGP

route directs the flow to only one destination. Constraint (1d)

ensures that all the decisions to be made are binary. There can

exist different weights associated to each term in the objective;

we omit such weights for the ease of presentation.

III. ONLINE SOCIAL COST OPTIMIZATION

In this section, we design online algorithms to determine the

winning bids and the traffic diversion to optimize the social

cost with a provable competitive ratio. Solving our problem

is challenging due to its online nature and intractability. To

address these challenges, we propose (i) an online algorithm

to obtain the fractional solutions for the relaxed problem and

(ii) an online randomized rounding algorithm to convert such

fractions to integers. We prove the overall competitive ratio

of our approach as r = r1r2, where r1 is the competitive

ratio associated to our online fractional algorithm and r2 is the

multiplicative integrality gap associated to our online rounding

algorithm. In each of the two subsections, we elaborate the key

challenge, present our algorithm, and perform the competitive-

ness analysis and the integrality gap analysis, respectively.

We also introduce some additional notations used through-

out the rest of this paper: P is our original problem; P’ is the

relaxed problem of P; Pt is the one-shot problem at t of P’;



and P̃t is the “regularized” problem corresponding to Pt. Also,

we use P , P ′, Pt, and P̃t to refer to the objective functions of

these problems, respectively. xt, yt, and zt represent xit, yikt,
and zlkt, ∀i, ∀l, ∀k, ∀t. x̃t, ỹt, and z̃t are the online fractional

solutions; x̄t, ȳt, and z̄t are the online integral solutions.

A. Regularization-based Online Fractional Algorithm

Algorithmic Challenge. After relaxing Constraint (1d) to

allow fractional decisions, we still face the challenge of solv-

ing the problem online. The reason is that when determining

{xt−1,yt−1,zt−1} at t − 1, {xt,yt,zt} have not been deter-

mined, as they will only be determined at t; that is, without

knowing {xt,yt,zt}, it is hard to decide {xt−1,yt−1,zt−1}
to minimize (yt − yt−1)

+ and (zt − zt−1)
+ at t− 1.

Algorithm Design. Our idea of overcoming this challenge

is replacing the switching cost in the objective function by

carefully-designed “regularization” terms—logarithmic terms

in our case—so that we actually change the problem, solve the

changed problem at each single time slot, and use its solution

as the solution to the problem before such changes [20]. Our

intuition is that, at every time slot, without knowing what the

inputs and our decision will be at the next time slot, we try

to regularize our current decision in a controlled manner: if

the workload increases (i.e., a flow appears) currently, there

is no other choice because we must increase our decision to

scrub the workload; if the workload decreases (i.e., a flow

disappears) currently, then we reduce our decision conserva-

tively rather than drastically, in order to prevent the excessive

switching cost that could be incurred by the potential workload

increase in the future.

Algorithm 1: Online Fractional Algorithm, ∀t

Solve the problem P̃t below and get the solution {x̃t,ỹt,z̃t}:

min P̃t =
∑

i
citxit +

∑

i

∑

k
aiktyikt +

∑

l

∑

k
dlktzlkt

+
∑

i

∑

k

bik
σ

(

(yikt + ε) ln yikt+ε

ỹikt−1+ε
− yikt

)

+
∑

l

∑

k

elk
σ

(

(zlkt + ε) ln zlkt+ε

z̃lkt−1+ε
− zlkt

)

s. t. (1a) ∼ (1c), without “∀t”,
xit ≤ 1, yikt ≥ 0, zlkt ≥ 0, ∀i, ∀k, ∀l,

where ε > 0 and σ = ln
(

1 + 1

ε

)

are parameters.

Analysis of Competitiveness. We prove the competitive ratio

associated to our Algorithm 1. That is, we exhibit the constant

r1 which satisfies

P ′({x̃t, ỹt, z̃t, ∀t}) ≤ r1D({π(x̃t, ỹt, z̃t), ∀t}) ≤ r1P
OPT ,

where POPT refers to the offline optimal value of the original

problem P, D refers to the objective function of the Lagrange

dual problem D of the relaxed problem P’, and π refers

to a mapping that can map our online fractional solutions

{x̃t, ỹt, z̃t, ∀t} to a feasible solution to the Lagrange dual

problem. We note that D({π(x̃t, ỹt, z̃t), ∀t}) ≤ POPT holds

naturally, due to weak duality and relaxation. Consequently,

our job here can actually proceed with the following three

steps: (i) deriving the Lagrange dual problem for the problem

P’, (ii) constructing the mapping π, and (iii) finding out r1
and proving P ′({x̃t, ỹt, z̃t, ∀t}) ≤ r1D({π(x̃t, ỹt, z̃t), ∀t}).

Step 1: Deriving the Lagrange Dual Problem. We firstly

present the relaxed problem P’:

min P ′ =
∑

t Pt =
∑

t

∑

i citxit

+
∑

t

∑

i

∑

k aiktyikt +
∑

t

∑

l

∑

k dlktzlkt
+
∑

t

∑

i

∑

k bikwikt +
∑

t

∑

l

∑

k elkvlkt
s.t. (1a) ∼ (1c),

yikt − yikt−1 ≤ wikt, ∀i, ∀k, ∀t,

zlkt − zlkt−1 ≤ vlkt, ∀l, ∀k, ∀t,

xit ≤ 1, yikt ≥ 0, zlkt ≥ 0, ∀i, ∀k, ∀l, ∀t,

where we introduce the auxiliary variables wikt and vlkt and

change the problem to an equivalent linear program.

Then, following the definition of the Lagrange dual prob-

lem, we derive the dual problem for P’, denoted as D, where

αkt, βikt, µkt, γit, φikt, and τlkt are the dual variables [27]:

max D =
∑

t

∑

k αktλkt +
∑

t

∑

k(
∑

k λkt − 1)µkt

+
∑

t

∑

i(
∑

k λkt − 1)γit
s.t. cit −

∑

k fiktβikt + γit −
∑

i

∑

k fiktγit ≥ 0, ∀i, ∀t,

aikt −αkt + βikt + µkt −
∑

k µkt + φikt − φikt+1≥0,

∀i, ∀k, ∀t,

dlkt −αkt + µkt −
∑

k µkt −
∑

i γit + τlkt − τlkt+1≥0,

∀l, ∀k, ∀t,

bik − φikt ≥ 0, ∀i, ∀k, ∀t,

elk − τlkt ≥ 0, ∀l, ∀k, ∀t,

all dual variables ≥ 0.

Step 2: Constructing the Mapping. We present the mapping

π that maps our online fractional solutions, i.e., the optimal

solution to P̃t, ∀t, together with the dual solution to P̃t, ∀t
to a feasible solution of D. It can be easily verified that the

mapped solutions satisfy all of D’s constraints.

αkt = αk, ∀k;βikt = βik, ∀i, ∀k;µkt = µk, ∀k; γit = γi, ∀i;

φikt =
bik
σ

ln 1+ε
ỹikt−1+ε

, ∀i, ∀k; τlkt =
elk
σ

ln 1+ε
z̃lkt−1+ε

, ∀l, ∀k.

Step 3: Finding out r1 and Upper-Bounding P ′. We place

our online fractional solutions {x̃t, ỹt, z̃t, ∀t} into P ′, and

then leverage a chain of inequalities to connect it to D with

{π(x̃t, ỹt, z̃t), ∀t} while finding out the constant r1. We use

the Karush-Kuhn-Tucker (KKT) conditions of the problem P̃t

to derive this chain of inequalities. We bound the operation

cost and the switching cost of P ′, respectively, in Lemmas 1

and 2, based on which we further have Theorem 1. We move

all the proof details into our appendices.

Lemma 1. The operation cost in P ′ satisfies
∑

t

∑

i citx̃it +
∑

t

∑

i

∑

k aiktỹikt +
∑

t

∑

l

∑

k dlktz̃lkt ≤ D.

Proof. See Appendix A.

Lemma 2. For the switching cost in P ′, we have the follow-

ing:
∑

t

∑

i

∑

k bik(ỹikt − ỹikt−1)
+ +

∑

t

∑

l

∑

k elk(z̃lkt −
z̃lkt−1)

+ ≤ 2(1 + ε) ln(1 + 1
ε
)|K|D.



Proof. See Appendix B.

Theorem 1. P ′({x̃t, ỹt, z̃t, ∀t}) ≤ r1D({π(x̃t, ỹt, z̃t), ∀t}),
where r1 = 1 + 2(1 + ε) ln(1 + 1

ε
)|K|.

Proof. The proof is by joining Lemmas 1 and 2.

B. Progressive Randomized Rounding Algorithm

Algorithmic Challenge. The challenge for rounding the

fractional solution {x̃t, ỹt, z̃t} to integers at each t is how

to ensure the problem’s constraints, i.e., (1a) ∼ (1c), are still

satisfied after rounding. There is no guarantee to keep such sat-

isfaction if the each single variable is rounded independently.

Algorithm Design. Our idea is two-fold. First, we round our

fractional solutions progressively. We round the fractional x̃t

to the integral x̄t, place such x̄t into the problem (while keep-

ing the problem feasible), re-solve the problem to obtain the

new fractional {y∗
t
, z∗

t
}, and then round them to the integral

{ȳt, z̄t}. This ensures Constraint (1a) is satisfied. Second, we

round both x̃t and y∗
t
, z∗

t
in a pair-by-pair manner. In every

iteration, we always round a pair of fractions altogether, so that

one or both of them can become integral while compensating

each other and keeping their weighted sum constant before

and after rounding [21], [28]. This ensures (1b) and (1c) are

satisfied. We design Algorithm 2 based on this idea.

The rounding procedure of Algorithm 2 is mainly Line 7

through 20. Consider rounding x̃t, for example. Every iteration

in the loop of Line 9 through 19 ensures the following: (i)

either x̃i1t, or x̃i2t, or both are rounded into integer(s); (ii)

we have Ui1θ
′
i1t

+ Ui2θ
′
i2t

= Ui1θi1t + Ui2θi2t, no matter we

choose Line 13 or 14; (iii) the expectation of the integral

x̄it equals to the fractional x̃it, i.e., E(x̄it) = x̃it, ∀i ∈ I \
I ′
t—for example, if x̃i2t becomes integral, then E(x̄i2t) =
ω2

ω1+ω2

(x̃i2t −
Ui1

Ui2

ω1) +
ω1

ω1+ω2

(x̃i2t +
Ui1

Ui2

ω2) = x̃i2t. This

equation will be utilized for the integrality gap analysis and

for the payment design later, which also motivates us to design

a randomized rather than a deterministic rounding algorithm.

Analysis of Integrality Gap. We analyze the integrality gap

incurred by our Algorithm 2. That said, we demonstrate the

constant r2 which satisfies

E(P ′({x̄t, ȳt, z̄t, ∀t})) ≤ r2P
′({x̃t, ỹt, z̃t, ∀t}).

We follow two steps: (i) upper-bounding
∑

t

∑

i

∑

k fiktx̄it

by a constant times P ′({x̃t, ỹt, z̃t, ∀t}); (ii) based on (i),

upper-bounding each of the terms in E(P ′({x̄t, ȳt, z̄t, ∀t})),
respectively, and deriving the constant r2. We choose to start

with
∑

t

∑

i

∑

k fiktx̄it, because it is that weighted sum that is

tried to be maintained unchanged in Algorithm 2. As a matter

of fact, corresponding to the two steps, we show the following

Lemma 3, based on which we further show Theorem 2.

Lemma 3. For every value the random variable x̄it, ∀i, ∀t
takes, we have

∑

t

∑

i

∑

k fiktx̄it ≤ r′2P
′({x̃t, ỹt, z̃t, ∀t}),

where r′2 = maxt,i,k
2fikt

cit
+maxt,k,l

1
dlkt

.

Proof. See Appendix C.

Algorithm 2: Progressive Rounding Algorithm, ∀t

⊲ First, round x̃t.
1 Denote x̄it as ūit, x̃it as ûit, and

∑

k
fikt as Ui, ∀i;

2 Execute Line 7 through 20, and continue with Line 3;
⊲ Then, based on x̄t, obtain and round y∗

t and z∗t .
3 Fix x̄t, solve Pt and get its solution {x̄t,y

∗

t , z
∗

t};
4 Denote I ∪ L as the new I, and execute Lines 5 and 6 for

all k;
5 Denote ȳikt, z̄lkt as ūit, y

∗

ikt, z
∗

lkt as ûit, and 1 as Ui;
6 Execute Line 7 through 20;
⊲ Round the given fractions in a randomized manner.

7 θit
def
= ûit, ∀i;

8 I′

t
def
= I \ {i|θit ∈ {0, 1}};

9 while |I′

t| > 1 do

10 Select i1, i2 ∈ I′

t, where i1 6= i2;

11 ω1

def
= min{1− θi1t,

Ui2

Ui1

θi2t};

12 ω2

def
= min{θi1t,

Ui2

Ui1

(1− θi2t)};

13 With the probability ω2

ω1+ω2
,

Set θ′i1t = θi1t + ω1, θ
′

i2t
= θi2t −

Ui1

Ui2

ω1;

14 With the probability ω1

ω1+ω2
,

Set θ′i1t = θi1t − ω2, θ
′

i2t
= θi2t +

Ui1

Ui2

ω2;

15 if θ′i1t ∈ {0, 1} then Set ūi1t = θ′i1t, I
′

t = I′

t \ {i1};
16 else Set θi1t = θ′i1t;
17 if θ′i2t ∈ {0, 1} then Set ūi2t = θ′i2t, I

′

t = I′

t \ {i2};
18 else Set θi2t = θ′i2t;
19 end

20 if |I′

t| = 1 then Set ūit = 1 for the only i ∈ I′

t ;

Theorem 2. With Lemma 3, we have E(P ′({x̄t, ȳt, z̄t, ∀t}))≤
r2P

′({x̃t, ỹt, z̃t, ∀t}), where r2 = δx + δyz + δwv ,

δx = r′2 max
t,i

cit∑
k
fikt

,

δyz = 2|K|(max
t,i,k

aikt +max
t,l,k

dlkt)(max
t,i,k

1
aikt

+max
t,l,k

1
dlkt

),

δwv = 2|K|(max
i,k

bik +max
l,k

elk)(max
i,k

1
bik

+max
l,k

1
elk

).

Proof. See Appendix D.

IV. RANDOMIZED ONLINE AUCTION MECHANISM

In this section, we design the payment for each bid, present

the entire online auction mechanism, and prove the desired

properties of “truthfulness” and “individual rationality”.

Algorithm 3: Online Randomized Auction Mechanism, ∀t

⊲ First, determine winning bids and traffic diversion.
1 Invoke Algorithm 1 to obtain {x̃t, ỹt, z̃t};
2 With x̃t as input, invoke Algorithm 2 to obtain {x̄t, ȳt, z̄t};
⊲ Then, determine the payment for each winning bid.

3 With x̃t and x̄t as inputs,
for i ∈ I

4 if x̄it = 0 then Set ρit = 0;

5 else Set ρit = citx̃it(cit, c−it) +
∫ ζit
cit

x̃it(c, c−it)dc,

where ζit =
∑

l

∑

k
fikt(dlkt + elk).

6 end

Payment and Auction Mechanism Design. Our online auc-

tion mechanism in Algorithm 3 is a randomized mechanism,

because Algorithm 2 introduces randomization into rounding.

In Algorithm 3, ρit is the payment the auctioneer pays in order



to buy the bid i in the auction at t, c−it refers to the prices of

all the bids except for the bid i, i.e., {cjt|∀j ∈ I, j 6= i}, and

x̃it(cit, c−it), written as a function of cit and c−it, refers to

the fractional solution returned by Algorithm 2 when the bid i
bids the price of cit and other bids bid the prices of c−it. We

note E(x̄it) = x̃it, ∀i ∈ I \ I ′
t, as shown previously. We also

note ζ =
∑

l

∑

k fikt(dlkt + elk), which serves as an upper

bound for the integral, and captures the extreme case where

the SSPs’ scrubbing center i would lose in the auction for

sure if i’s bidding price is higher than the cost of scrubbing

the same traffic by the ISP’s scrubbing centers.

Analysis of Truthfulness and Individual Rationality. In our

randomized auction mechanism, for each bid (or bidder, as a

bidder issues only one bid) i that has the true cost cit, the

expected utility is

ui(bit,b−it)
def
= ρi(bit,b−it)− citE(x̄it(bit,b−it)),

where bit denotes the bidding price of the bid i, b−it denotes

the bidding prices of other bids except i, and ρit is the payment

received from the auctioneer. Because our auction mechanism

is truthful as shown next, we assume everyone bids its true

cost by default, and thus we have been using cit, rather than

bit, to denote the bidding price; but we need to differentiate

them when defining utility. We have the following definitions:

Definition 1. Truthfulness. A randomized auction is truthful

in expectation if every bidder i maximizes its expected utility

by bidding its truth cost, i.e., ui(cit,b−it) ≥ ui(bit,b−it),
∀ bit 6= cit, ∀b−it.

Definition 2. Individual Rationality. A randomized auction

is individually rational in expectation if every bidder i always

has a nonnegative expected utility, i.e., ui(bit,b−it)≥0, ∀ bit,
∀b−it.

A randomized auction needs to satisfy the sufficient and

necessary conditions [22] in order to be both truthful and indi-

vidually rational in expectation. These conditions are centered

around the “monotone allocation rule”, i.e., the higher price

a bid bids, the less “workload” (i.e., E(x̄it) in our scenario)

it receives from the auctioneer, and the “finite payment rule”,

i.e., the payment is always a finite value. This motivates us

to derive a randomized rather than a deterministic auction

mechanism, as we can exploit the fractional solution x̃t that

satisfies such a monotone allocation rule; in contrast, it may

be hard for a deterministic rounding algorithm to achieve such

monotonicity. In Theorem 3, we demonstrate the sufficient and

necessary conditions, with the fact that our randomized auction

in each time slot satisfies these conditions indeed:

Theorem 3. The online randomized auction mechanism of

Algorithm 3 achieves truthful bidding and individual rational-

ity in expectation, by satisfying the following conditions: (i)

E(x̄it) is monotonically nonincreasing in terms of c, ∀i; (ii)
∫∞

0
E(x̄it)dc < ∞, ∀i; (iii) the payment is in the form of

ρi = citE(x̄it(cit, c−it)) +
∫∞

cit
E(x̄it(c, c−it))dc, ∀i.

Proof. See Appendix E.

V. NUMERICAL EVALUATION

A. Evaluation Setup

ISP, SSPs, and Traffic: We simulate the scenario where

an ISP purchases scrubbing services from multiple SSPs. We

assume that the ISP owns 10 internal scrubbing centers in its

network, and vary the number of SSPs as |I| = 5, 10, 15, 20,

25, 30, respectively. We treat one hour as one time slot, and

consider a 200-hour horizon. The maximum number of traffic

flows is set as |K| = 1000, 2000 and 3000, respectively. We

randomly generate λkt within the ranges to reflect the variation

of the number of flows over time. We set ε as 0.001.

Prices: We adopt Amazon EC2’s c3.2xlarge [23] virtual

machine (VM) price for Linux/UNIX as the SSPs’ bidding

price cit ≃ $0.0645/hour, and set the BGP routing cost as

aikt ≃ $0.913242/hour [12], varying with time. We choose

the dynamic hourly electricity price in the Chicago area to

be the unit operational cost of the internal scrubbing centers

dlkt, which follows a Gaussian distribution with a mean of

$40.6/MWh and a standard deviation of $26.9/MWh [24].

Switching Cost: We synthesize the switching cost bik and

elk as the VM price times a weight which we vary as 1, 10
and 100 to reveal how the switching cost impacts the results.

Algorithms: We use Python and A Mathematical Program-

ming Language (AMPL) [29] to implement our algorithms,

and invoke the interior-point-based IPOPT [30] solver to solve

the underlying fractional problems. We run Algorithm 1 to

obtain the fractional solutions. Then, we upload such results

to Algorithm 2 to obtain the integer solutions and determine

the winning bids. Finally, we prompt Algorithm 3 to calculate

the payments to the winning bids.

For the social cost comparison, we implement the following

algorithms: (1) the approach that uses the Gurobi [25] solver

to solve each one-shot integer program separately (which

essentially ignores the switching cost), (2) the state-of-the-

art Lazy Capacity Provisioning [26] algorithm for solving

online optimization problems with the switching cost, and (3)

the offline optimum, which knows all the inputs in advance

and uses Gurobi to solve the integer program over the entire

time horizon. We refer to them as “Gurobi”, “Lcp”, and

“Offline”, respectively. We run our evaluations on a laptop

with an Intel Core i7 2.7-GHz CPU and 16-GB memory.

B. Evaluation Results

Social Cost of Our Algorithm: The normalized social cost

over the entire time horizon is given in Fig. 3. The top figure

focuses on the influence of the different number of SSPs. The

social cost mostly decreases as the number of SSPs grows.

That is, when an ISP has more purchase options to choose

from, the whole market becomes more competitive, and thus

it is more likely for the ISP to purchase the services at a lower

price, i.e., the social cost decreases. The bottom figure shows

that the heavier the weight on the switching cost is, the less

likely the ISP switches services across scrubbing centers from

time to time. As a result, the social cost also reduces.

Social Cost Comparison: We compare the social cost of

different algorithms over 200 hours with different numbers of
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SSPs in Fig. 4. Our approach has up to 35.47% and 31.97%
less total cost than Gurobi and Lcp, respectively, and only

incurs 11.06% more total cost than Offline. Considering

the influence of the number of SSPs, this result matches the

top figure in Fig. 3, indicating the more choices the ISP has,

the more economically efficient the whole system becomes.

Truthfulness: We randomly choose two SSPs and calculate

their utilities when varying their bidding prices in Fig 5. It is

clear that only when SSPs are bidding their true costs, they

receive the maximum utilities. If SSPs are bidding prices other

than the true cost, the utilities are always lower. Our payment

design successfully induces SSPs to bid truthfully.

Individual Rationality: We randomly choose 20 consecutive

hours and two SSPs and depict their received payments in

Fig. 6. It shows that the payments can vary as time goes, and

that an SSP may not win in every auction (and actually all

SSPs may lose in an auction, as the ISP’s internal scrubbing

centers may take charge). We note that the payment is always

no less than the expected total cost (TC), i.e., our payment

design ensures the individual rationality.

Payment Frugality: In Fig 7, we check whether the pay-

ments in our auctions are “frugal”, compared to the true cost of

the bids. We observe the following for two randomly-chosen

SSPs: as the bidding price goes up, the payment does not keep

growing along with the bidding price but gradually converges

to a constant value at some point. This shows that our payment

function avoids large over-payments compared to the true cost.

Thus, we can claim that our proposed payment design for the

online auction mechanism preserves frugality.

Algorithm Running Time: We study our algorithm’s run-

ning time in Fig. 8. The scattered line shows the overall

approach’s running time. The stacked bars show the running

time of each algorithmic component. As the number of traffic

flows is up to 2000 and the number of SSPs is up to 30, our

approach only takes less than 5 minutes to finish each round

of the auction. With more powerful servers or data centers, our

algorithm’s running time can be further reduced in practice.

VI. RELATED WORK

Cloud Scrubbing for DDoS Mitigation. Zilberman et. al. [4]

study the scrubbing center deployment strategies and their

impact on network footprint, load, and latency. Dietzel et.

al. [11] implement fine-grained blackholing using hardware

filters and signaling mechanisms for traffic scrubbing that can

jointly work with scrubbing centers. Jiao et. al. [14] schedule

traffic flows into different scrubbing centers to minimize the

total network footprint of unknown malicious traffic. Liu et.

al. [15] design a multi-layer defense approach easily deploy-

able for ISPs while preserving customers’ privacy. Jin et.

al. [16] discover customers’ potential IP address leakage when

they use domain name system based scrubbing center services,

and propose corresponding countermeasures.

Online Auctions for Cloud Management. Substantial re-

search efforts adopt online auctions for cloud resource provi-

sioning. Shi et. al. [7] focus on tenants’ long-term budget and

the cloud’s dynamic resource availability in the auction design.

Zhu et. al. [8] sublet tenants’ underutilized virtual machines

to others via auctions. Zhang et. al. [9] incorporate tenants’

desired occupation duration and cloud servers’ operation cost

in the auctions. Zhou et. al. [10] bid cloud resources for job

execution while considering job deadline violation and server

operation cost. Another branch of research concentrates on

demand response, and manages cloud resource usage by in-

centivizing tenants to reduce grid energy consumption through

reducing workload and/or shutting down servers [17]–[19].

Our research differs from all the aforementioned existing

works. Unlike [4], [11], [14]–[16] that often focus on the ser-

vice operator’s perspective only, we investigate the interactions

between ISPs and SSPs, and the intersection between the cloud

scrubbing operation and the online auction markets. While

the primal-dual-based online algorithms are predominantly

exploited in the auction papers mentioned above to optimize

the social cost or welfare, it remains unclear how to adapt

such algorithms to address the auctioneer’s switching cost, as

featured in our problem. For payment design, [17] uses the

VCG mechanism. To overcome the inapplicability of VCG,

[7] resorts to its fractional version, plus randomized auctions;

[8]–[10] switch to the posted price mechanisms; and [18],

[19] relate to Myerson’s monotone allocation rules. None of

them are readily applicable to our case. The most promising



ones may be [18], [19] which also have the switching cost;

however, the former relies on accurate predictions of future

inputs, which are unavailable in our settings, and the latter

produces a less satisfactory competitive ratio depending on

the solution (unknown before solving the problem) instead of

input parameters. Our approach, with no prediction, attains a

constant competitive ratio relying merely on the input param-

eters, and preserves truthfulness and individual rationality.

VII. CONCLUSION

In this paper, we propose an online auction mechanism to

enable ISPs to procure traffic scrubbing services from external

SSPs to scrub the dynamic, unpredictable traffic. We devise an

online fractional algorithm and a randomized rounding algo-

rithm to determine the winning bids and the traffic diversion in

each single-round auction, with a provable competitive ratio

for the long-term social cost. We also design the payment

calculation based on each bid’s winning probability to ensure

truthfulness and individual rationality. Finally, we conduct

evaluations using real-world data to validate the theoretical

properties and the practical efficacy of our mechanism.
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APPENDIX

A. Proof of Lemma 1

The proofs to Lemmas 1 and 2 exploit the KKT conditions

for the problem P̃t. To derive these KKT conditions, we firstly

transform P̃t to the following equivalent form [27]:

min P̃t =
∑

i citxit +
∑

i

∑

k aiktyikt +
∑

l

∑

k dlktzlkt
+
∑

i

∑

k
bik
σ
((yikt + ε) ln yikt+ε

yikt−1+ε
− yikt)

+
∑

l

∑

k
elk
σ
((zlkt + ε) ln zlkt+ε

zlkt−1+ε
− zlkt)

s.t. (1a) ∼ (1b), without “∀t”,
∑

k

∑

i yikt +
∑

k

∑

l zlkt −
∑

i yikt −
∑

l zlkt
≥

∑

k λkt − 1, ∀k,
∑

k

∑

i fiktxit +
∑

k

∑

l zlkt − xit

≥
∑

k λkt − 1, ∀i, ∀j.

For this new form of P̃t, we write the KKT conditions that

characterize the optimal solution of P̃t:

cit −
∑

k fiktβik + γi −
∑

i

∑

k fiktγi = 0, ∀i, (2a)

aikt +
bik
σ

ln ỹikt+ε
ỹikt−1+ε

− αk + βik + µk −
∑

k µk = 0,

∀i, ∀k, (2b)

dlkt +
elk
σ

ln z̃lkt+ε
z̃lkt−1+ε

− αk + µk −
∑

k µk −
∑

i γi = 0,

∀l, ∀k, (2c)

αk(λkt −
∑

i ỹikt −
∑

l z̃lkt) = 0, ∀k, (2d)

βik(ỹikt − fiktx̃it) = 0, ∀i, ∀k, (2e)

µk(
∑

k

∑

i ỹikt +
∑

k

∑

l z̃lkt −
∑

i ỹikt −
∑

l z̃lkt

−(
∑

k λkt − 1)) = 0, ∀k, (2f)

γi(
∑

k

∑

i fiktx̃it +
∑

k

∑

l z̃lkt − x̃it

−(
∑

k λkt − 1)) = 0, ∀i, (2g)

primal and dual solutions ≥ 0. (2h)

Now, we bound the operation cost in P ′:
∑

t

∑

i citx̃it +
∑

t

∑

i

∑

k aiktỹikt +
∑

t

∑

l

∑

k dlktz̃lkt
=
∑

t

∑

i(
∑

k fiktβikt − γit +
∑

i

∑

k fiktγit)x̃it

+
∑

t

∑

i

∑

k(αkt − βikt − µkt +
∑

k µkt −
bik
σ

ln ỹikt+ε
ỹikt−1+ε

)ỹikt

+
∑

t

∑

l

∑

k(αkt − µkt +
∑

k µkt +
∑

i γit
− elk

σ
ln z̃lkt+ε

z̃ikt−1+ε
)z̃lkt (3a)

≤
∑

t

∑

i(
∑

i

∑

k fiktγit − γit)x̃it

+
∑

t

∑

i

∑

k(αkt − µkt +
∑

k µkt)ỹikt
+
∑

t

∑

l

∑

k(αkt − µkt +
∑

k µkt +
∑

i γit)z̃lkt (3b)

=
∑

t

∑

i γit(
∑

i

∑

k fiktx̃it − x̃it +
∑

l

∑

k z̃lkt)

+
∑

t

∑

k αkt(
∑

i ỹikt +
∑

l z̃lkt)

+
∑

t

∑

k µkt(
∑

k

∑

i ỹikt −
∑

i ỹikt +
∑

k

∑

l z̃lkt −
∑

l z̃lkt)
(3c)

=
∑

t

∑

k αktλkt +
∑

t

∑

k µkt(
∑

k λkt − 1)

+
∑

t

∑

i γit(
∑

k λkt − 1) (3d)

=D.

(3a) holds because of (2a) ∼ (2c). (3b) holds, due to the two

inequalities
∑

t ỹikt ln
ỹikt+ε

ỹikt−1+ε
≥ 0 and

∑

t z̃lkt ln
z̃lkt+ε

z̃lkt−1+ε
≥

0. Here, we only prove the former inequality as an example;

the latter can be proved analogously. We equip ourselves with

the following two inequalities first: ∀p, ∀q > 0,

(
∑

n pn) ln
∑

n
pn∑

n
qn

≤
∑

n pn ln
pn

qn
, p− q ≤ p ln p

q
.

Then, based on the above, we have the following, ∀i, ∀k:
∑

t ỹikt ln
ỹikt+ε

ỹikt−1+ε

=
∑

t(ỹikt + ε) ln ỹikt+ε
ỹikt−1+ε

−
∑

t ε ln
ỹikt+ε

ỹikt−1+ε

≥(
∑

t(ỹikt + ε)) ln
∑

t
(ỹikt+ε)

∑
t
(ỹikt−1+ε) + (ỹik0 + ε) ln ỹik0+ε

ỹikT+ε

≥
∑

t(ỹikt + ε)−
∑

t(ỹikt−1 + ε) + ỹik0 − ỹikT
=0.

We continue with (3c). (3c) holds due to (2d), (2f) and (2g).

(3d) holds due to the definition of D.

B. Proof of Lemma 2

We bound the switching cost in P ′. Here, we define η =
(1 + ε)σ, I ′ = {i|ỹikt > ỹikt−1}, and L′ = {l|z̃lkt > z̃lkt−1}.

Then, we have
∑

t

∑

i

∑

k bik(ỹikt − ỹikt−1)
+

+
∑

t

∑

l

∑

k elk(z̃lkt − z̃lkt−1)
+

=
∑

t

∑

k

∑

i∈I′ bik(ỹikt − ỹikt−1)

+
∑

t

∑

k

∑

l∈L′ elk(z̃lkt − z̃lkt−1) (4a)

≤
∑

t

∑

k

∑

i∈I′ bik(ỹikt + ε) ln ỹikt+ε
ỹikt−1+ε

+
∑

t

∑

k

∑

l∈L′ elk(z̃lkt + ε) ln z̃lkt+ε
z̃lkt−1+ε

(4b)

≤η
∑

t

∑

k(
∑

i∈I′

bik
σ

ln ỹikt+ε
ỹikt−1+ε

+
∑

l∈L′

elk
σ

ln z̃lkt+ε
z̃lkt−1+ε

)

(4c)

=η
∑

t

∑

k(
∑

i∈I′(αkt − βikt − µkt +
∑

k µkt − aikt)



+
∑

l∈L′(αkt − µkt +
∑

k µkt +
∑

i γit − dlkt)) (4d)

≤η
∑

t

∑

k(
∑

i∈I′(αkt +
∑

k µkt)

+
∑

l∈L′(αkt +
∑

k µkt +
∑

i γit)) (4e)

≤2η
∑

t

∑

k(αkt +
∑

k µkt +
∑

i rit) (4f)

≤2η|K|(
∑

t

∑

k αktλkt +
∑

t

∑

k µkt(
∑

k λkt − 1)

+
∑

t

∑

i γit(
∑

k λkt − 1)) (4g)

≤2η|K|D. (4h)

(4a) is given by the definition of I ′ and L′. (4b) holds due to

the facts shown in the poof of Lemma 1. (4c) holds because of

ỹikt, z̃lkt ≤ 1. (4d) follows from the KKT conditions (2b) and

(2c). And (4e) holds by removing the negative terms. (4g) and

(4h) hold since
∑

k λkt ≥ 1 and
∑

k λkt−1 ≥ 1. Additionally,

these two inequalities hold because λkt, ∀k, ∀t is binary. The

sum of λkt over all k must be no less than 1; also, note that if
∑

k λkt − 1 ≤ 0 is the case, D changes correspondingly, and

(4g) and (4h) still hold for the new D.

C. Proof of Lemma 3

∑

t

∑

i

∑

k fiktx̄it

≤
∑

t(
∑

i∈I\I′

t

∑

k fiktx̃it +
∑

i∈I′

t

∑

k fikt) (5a)

≤
∑

t(
∑

i∈I

∑

k fiktx̃it +maxi∈I

∑

k fikt) (5b)

≤
∑

t(
∑

i

∑

k fiktx̃it +
∑

k λkt) (5c)

≤
∑

t(
∑

i

∑

k fiktx̃it +
∑

k(
∑

i ỹikt +
∑

l z̃lkt)) (5d)

≤
∑

t(
∑

i

∑

k fiktx̃it +
∑

k(
∑

i fiktx̃it +
∑

l z̃lkt)) (5e)

=
∑

t

∑

i

∑

k
2fikt

cit
citx̃it +

∑

t

∑

k

∑

l
1

dlkt

dlktz̃lkt (5f)

≤
(

maxt,i,k
2fikt

cit
+maxt,k,l

1
dlkt

)

P ′({x̃t, ỹt, z̃t, ∀t}). (5g)

(5a) follows from Algorithm 2. After executing Algorithm 2

to round x̄t, if I ′
t = ∅, we can still reach (5g); if I ′

t 6= ∅,

we reach (5b), as |I ′
t| = 1. Next, we reach (5c) because the

number of flows covered by any bid cannot exceed the total

number of flows in the system. We continue with (5d) due to

Constraint (1b), and further with (5e) due to Constraint (1a).

(5f) is by some simple algebra, and (5g) is by the definition

of the objective function P ′.

D. Proof of Theorem 2

There are five terms summed up in E(P ′({x̄t, ȳt, z̄t, ∀t})).
In the following, we treat them separately. Firstly, let us start

with
∑

t

∑

i citx̄it:

∑

t

∑

i citx̄it

=
∑

t

∑

i

∑

k fiktx̄it
cit∑
k
fikt

(6a)

≤maxt,i
cit∑
k
fikt

∑

t

∑

i

∑

k fiktx̄it (6b)

≤δxP
′({x̃t, ỹt, z̃t, ∀t}). (6c)

(6a) and (6b) follow from some simple transformation; (6c)

is by Lemma 3. The above applies to any possible value x̄it

takes, the expectation of the left-hand side is thus no greater

than the right-hand side: E(
∑

t

∑

i citx̄it) ≤ δxP
′.

Then, as y∗
t

and z∗
t

are rounded together, let us consider
∑

t

∑

i

∑

k aiktȳikt +
∑

t

∑

l

∑

k dlktz̄lkt:

E (
∑

t

∑

i

∑

k aiktȳikt +
∑

t

∑

l

∑

k dlktz̄lkt)

≤δ′yz
∑

t

∑

k E(
∑

i ȳikt +
∑

l z̄lkt) (7a)

=δ′yz
∑

t

∑

k

(

∑

i∈I\I′

t

y∗ikt +
∑

l∈I\I′

t

z∗lkt +
∑

i∈I′

t

1
)

(7b)

≤2δ′yz|K|
∑

t

∑

k λk (7c)

≤2δ′yz|K|
∑

t

∑

k(
∑

i ỹikt +
∑

l z̃lkt) (7d)

=2δ′yz|K|
∑

t

∑

k(
∑

i
1

aikt

aiktỹikt +
∑

l
1

dlkt

dlktz̃lkt) (7e)

≤δyzP
′({x̃t, ỹt, z̃t, ∀t}), (7f)

where δ′yz = maxt,i,k aikt+maxt,l,k dlkt. (7a) takes the coef-

ficients out of the summations. (7b) follows from Algorithm

2 if I ′
t 6= ∅. If I ′

t = ∅, we can still reach (7f). We now use I
to denote I ∪ L. (7c) and (7d) use Constraints (1c) and (1b),

respectively. (7e) and (7f) make rearrangments.

Finally, we briefly exhibit the results for the switching cost:

E
(

∑

t

∑

i

∑

k bik(ȳikt − ȳikt−1)
+

+
∑

t

∑

l

∑

k elk(z̄lkt − z̄lkt−1)
+
)

≤E(
∑

t

∑

i

∑

k bikȳikt +
∑

t

∑

l

∑

k elkz̄lkt) (8a)

≤δwvP
′({x̃t, ỹt, z̃t, ∀t}). (8b)

(8a) uses the definition of the function (·)+. (8b) follows from

an analogous process as (7a) through (7f).

E. Proof of Theorem 3

Firstly, we prove that E(x̄it) is monotonically nonincreasing

in cit, ∀i ∈ I. For any t, let C(x̃, ci, c−i) denote the objective

function value of P̃t with bidding prices {ci, c−i} of all the

bids and the optimal fractional solution x̃. We fix c−i. We let

x̃ and x̃′ denote the optimal fractional solution when the bid

i bids the price of ci and c′i. We assume ci ≥ c′i, and have

C(x̃, ci, c−i) ≤ C(x̃′, ci, c−i), C(x̃
′, c′i, c−i) ≤ C(x̃, c′i, c−i).

Adding them together and rearranging the terms leads to

C(x̃, ci, c−i) + C(x̃′, c′i, c−i) ≤ C(x̃′, ci, c−i) + C(x̃, c′i, c−i),

C(x̃, ci, c−i)− C(x̃, c′i, c−i) ≤ C(x̃′, ci, c−i)− C(x̃′, c′i, c−i),

which actually means x̃it(ci−c′i) ≤ x̃′
it(ci−c′i), following the

definition of P̃t. Based on ci ≥ c′i, removing ci−c′i, we finally

have x̃it ≤ x̃′
it, i.e., E(x̄it) ≤ E(x̄′

it), ∀i ∈ I \ I ′
t. If i ∈ I ′

t,

we still have E(x̄it) ≤ E(x̄′
it), since E(x̄it) = E(x̄′

it) = 1.

Secondly, as ζ works as the upper bound of the integral of
∫∞

0
E(x̄it(c, c−it))dc, we have the following, ∀i ∈ I \ I ′

t:
∫∞

0
E(x̄it(c, c−it))dc =

∫ ζ

0
E(x̄it(c, c−it))dc

=
∫

∑
l

∑
k
fikt(dlkt+elk)

0
x̃it(c, c−it)dc

≤
∑

l

∑

k fikt(dlkt + elk)

< ∞.

We have a similar conclusion if i ∈ I ′
t.

Thirdly, we note that our payment already has form of ρi =
citE(x̄it(cit, c−it)) +

∫∞

cit
E(x̄it(c, c−it))dc, ∀i ∈ I.

Finally, we prove the individual rationality in expectation.

Using the payment ρi, we have the expected utility of

ui = ρi − citE(x̄it(cit, c−it)) =
∫∞

cit
E(x̄it(c, c−it))dc ≥ 0,

if the bid i wins in the auction. If the bid i loses, by definition

we have ui = 0. Joining the two cases, we always have ui ≥ 0.
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