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Abstract Deep neural networks (DNNs) have had many successes, but suffer from
two major issues: (1) a vulnerability to adversarial examples and (2) a tendency to
elude human interpretation. Interestingly, recent empirical and theoretical evidence
suggest these two seemingly disparate issues are actually connected. In particular,
robust models tend to provide more interpretable gradients than non-robust models.
However, whether this relationship works in the opposite direction remains obscure.
With this paper, we seek empirical answers to the following question: can models
acquire adversarial robustness when they are trained to have interpretable gradients?
We introduce a theoretically inspired technique called Interpretation Regularization
(IR), which encourages a model’s gradients to (1) match the direction of interpretable
target salience maps and (2) have small magnitude. To assess model performance and
tease apart factors that contribute to adversarial robustness, we conduct extensive ex-
periments on MNIST and CIFAR-10 with both `2 and `∞ attacks. We demonstrate
that networks trained to have interpretable gradients are more robust to adversarial
perturbations. Applying the network interpretation technique SmoothGrad [57] yields
additional performance gains, especially in cross-norm attacks and under heavy per-
turbation. The results indicate that the interpretability of the model gradients is a
crucial factor for adversarial robustness.
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1 Introduction

Over the past decade, deep neural networks (DNNs) have produced unprecedented
results across a wide range of tasks. However, their impressive performance has been
clouded by two weaknesses: (1) susceptibility to adversarial perturbations and (2)
difficulty in interpreting how they reach their decisions. These weaknesses can erode
users’ trust in DNNs and limit DNN adoption in security-critical applications, yet our
understanding of these two weaknesses is still limited. With this paper, we explore
the potential connection between the two phenomena.

Adversarial perturbations are small, almost imperceptible changes to an input that
cause a machine learning model to make erroneous predictions [62]. Many attacks
that can efficiently find such perturbations have been developed recently, including
the fast gradient sign method (FGSM) [23], projected gradient descent (PGD) [38],
the Carlini-Wagner attack [10], and many others [45,6,42,13]. In response, many
defense techniques have been proposed [23,47,49,17,44,29,37]. Despite the large
volume of published work in this area, to date the best defenses remain imperfect,
and the cause for the existence of adversarial perturbations continues to be a debated
topic [21,52,7,43,28].

A second weakness of DNNs is their opaqueness; even human experts struggle
to explain the underlying rationales for DNNs’ decisions. The black-box nature of
DNNs is especially undesirable in domains such as medicine and law where the rea-
soning process used to arrive at a decision is often just as important as the decision
itself. This need for DNN interpretability has led to the development of interpreta-
tion techniques that identify features used by a network to make its prediction [57,
55,2], to visualize the network weights [70,71,5,19], or to calculate training data’s
influence on the decision [32]. These techniques contribute to the unmasking of the
complex mechanisms that underlie DNN behaviors, but by and large DNNs remain
incomprehensible black boxes.

https://github.com/a1noack/interp_regularization
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Adversarial vulnerability and model opaqueness were previously assumed to be
unrelated. However, recent results suggest that the two issues may be connected;
specifically, several works have demonstrated, mostly qualitatively, that robust DNNs
tend to be interpretable. Tsipras et al. [65] found that the loss gradient with respect
to the input of adversarially trained networks visually align with human intuition
for salient features. Similarly, it has been noticed that gradient regularization [49]
and Lipschitz constraints [3], both of which improve adversarial robustness, lead to
qualitatively interpretable gradient maps. Etmann et al. [18] theoretically showed
that, for linear models, Lipschitz regularization causes the gradients to align with
the input images. These results constitute a converging collection of evidence that
optimizing a network for robustness could result in some degree of interpretability.

With this paper, we explore the other direction of the causality and seek answers
to the converse question: if a network is trained to have interpretable gradients, will
it be robust against adversarial attacks? In the following, we offer some justifica-
tion for an affirmative answer. At a high level, in order to achieve good adversarial
performance, we must maintain high predictive accuracy and curtail the performance
degradation caused by adversarial samples at the same time. These two considerations
place different requirements on the singular values of the Jacobian. We postulate that
an interpretable Jacobian may strike the right balance.

For a given input x0 ∈ RD and its one-hot encoded label y0 ∈ RK , we adopt a
neural network f(·) with ReLU activation, from which the final prediction is ŷ0 =
F (x0) = softmax(f(x0)). It is worth noting that the function f(x) in the neighbor-
hood of x can be written as a sequence of matrix multiplications and is completely
linear because ReLU can be understood as zeroing out matrix rows depending on x.
The Jacobian of the whole network is denoted by J(x0) = ∂ŷ0/∂x0. During an `2
adversarial attack, the adversary seeks a small perturbation δ to the input x0 such
that the prediction will change significantly and ‖δ‖2 is smaller than a predefined
threshold. Let ρ(x) be a lower bound on the change in the confidence norm neces-
sary to flip the prediction of F (x). For the attack to be successful, we must have
‖F (x0 + δ)− F (x0)‖2 > ρ(x0). First-order Taylor expansion yields

‖J(x0)δ‖2 > ρ(x0) (1)

Under the singular value decomposition, J(x0) = UΣV>. We let s be the vector of
singular values on the diagonal such that Σ = diag(s) and derive1∥∥∥s>V>δ

∥∥∥
2
= ‖s‖2 ‖δ‖2 | cos(s,V

>δ)| > ρ(x0) (2)

where cos(·, ·) is the cosine of the angle between the two vectors. Since the per-
turbation δ is chosen by the adversary, to defend we need to minimize ‖s‖2 and
maxδ | cos(s,V>δ)|. Jacobian regularization minimizes ‖J(x0)‖F , which is equiv-
alent to ‖s‖2. In order to minimize maxδ | cos(s, δ)|, we should make s as uniform
as possible.

1 Here we assume K = D for simplicity. The common case K < D is very similar but involves more
complex notations for matrix truncation.
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Nevertheless, minimizing the difference ‖F (x0 + δ)− F (x0)‖2 can only mini-
mize the damage caused by adversarial examples. Adversarial performance may still
be poor if the network is equally mistaken on normal and adversarial examples. In
fact, some analysis show that the prioritization dynamics of the Jacobian’s singular
values allows gradual acquisition of hierarchical concepts [51] and plays crucial roles
in the generalization of neural networks [34]. Making s completely uniform would
eliminate such benefits and hurt adversarial performance. If s is not uniform, then
it necessarily amplifies certain dimensions of V>x0 while attenuating others, which
is a form of feature selection. Ilyas et al. [28] have noticed the issue of feature se-
lection and argue that DNNs are brittle because they use non-robust features, which
are correlated to the class label but incomprehensible for humans. Intuitively, selec-
tively spending the limited budget of ‖s‖2 on features that are invariant to adversarial
perturbations and comprehensible to humans should improve adversarial accuracy.
Therefore, we offer the conjecture that interpretable gradients may strike the right
balance between high predictive performance and low adversarial degradation.

We propose to train models to match interpretable gradients, which we call In-
terpretation Regularization (IR). In order to obtain interpretable gradients, we extract
gradient-based interpretations from adversarially trained robust models, which pro-
vide more human-like interpretations than non-robust models, and use them as targets
during training. We demonstrate that IR improves model robustness and outperforms
Jacobian regularization, despite the fact that our method only acts on one column of
the input-output Jacobian rather than the entire Jacobian matrix [29,58,26]. Most im-
portantly, target interpretations extracted by SmoothGrad [57], which are smoother
and more interpretable than simple gradients, lead to further robustness gains, espe-
cially in difficult cases like cross-norm attacks and large perturbations. This indicates
that Interpretation Regularization is more than just distilling existing robust models.

It is worth emphasizing that the paper’s contribution is in highlighting the connec-
tion between interpretability and adversarial robustness. Interpretation Regularization
does not and is not intended to provide a practical adversarial defense because it re-
quires an adversarially trained robust model to supply a target interpretation. More
specifically, our contributions are:

– We empirically investigate if networks optimized to have interpretable gradients
are robust to adversarial attacks. We find that simply requiring the model to match
interpretations extracted from a robust model can improve robustness. Applying
the network interpretation technique SmoothGrad further reinforces robustness.

– To explain the experimental results, we analyze the connection between Jaco-
bian regularization and Interpretation Regularization. We identify two factors—
the suppression of the gradient and the selective use of features guided by high-
quality interpretations—that contribute to the effectiveness of Interpretation Reg-
ularization and explain model behaviors.

2 Related Work

In this section, we provide a brief review of the vast literature on DNN interpretation,
adversarial attacks, and adversarial defenses.
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2.1 Interpretation of DNNs

Numerous methods have been proposed to interpret and understand different aspects
of DNNs. For example, the representations learned in the network layers can be
probed and visualized [70,71,5,19]. The influence of training data on the model’s
prediction can be estimated [32]. In this paper, we are mostly concerned with in-
terpretations in the form of features’ contribution to the model’s prediction. When
the input is an image, the measure of feature contribution is often referred to as an
importance map or a salience map.

The gradient of the network output with respect to the input provides a simple yet
effective method for generating salience maps [4]. The following Taylor expansion
approximates the model behavior f(x) around x.

f(x+ ε) = f(x) +
∂f(x)

∂x

>
ε+ o(ε>ε) (3)

where ε represents a small change to x. The relative importance of the feature xi can
then be captured by the absolute value |∂f(x)∂xi

|, which measures how f(x) changes
when a small change is applied to xi. While such interpretations highlight salient
features of an image, the simple gradient often exhibits a large degree of visual noise
and does not always correspond to human intuition regarding feature contribution.
This has motivated the development of more elaborate salience map generation tech-
niques in order to induce more structured and visually meaningful interpretations.
These include Gradient × Input [55], Integrated Gradients [61], Deep Taylor De-
composition [40], DeepLIFT [55], Guided Backprop [59], and GradCAM / Guided
GradCAM [53]. SmoothGrad [57] and VarGrad [1] compute Monte Carlo expecta-
tions of the first and second moments of the gradient when noise is added to the input
image. Contrastive explanations [15] identify how absent components contribute to
the prediction.

Evaluation of the generated salience maps is an important and challenging topic.
[31] analyzes behaviors of interpretation methods acting on simple linear models. [1]
proposes that salience methods should satisfy include sensitivity towards model and
label perturbation. [30] argues they should be invariant with respect to uniform mean
shifts of the input. Several popular methods (Integrated Gradients, Guided Backprop,
Guided GradCAM, etc) do not satisfy these apparently reasonable requirements.

2.2 Adversarial Attacks

The threat model [8] describes the attacker’s goals, knowledge, and capabilities. In
terms of goals, untargeted attacks do not care about the model’s exact predictions as
long as they are incorrect, whereas targeted attacks aim to force a particular erroneous
prediction. In terms of knowledge, white-box attacks have access to the model’s loss
gradients, whereas black-box attacks do not. The attacker’s capabilities may be mod-
eled as the amount of perturbation they are allowed to make, usually measured using
the `0, `2, or `∞ metric.
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Among white-box attacks, FGSM [23] provided a proof-of-concept by adding an
ε-scaled sign vector of the loss gradient to the input image. Projected gradient descent
(PGD) [38] provides a more powerful iterated optimization approach. Whenever the
perturbation magnitude exceeds the attacker’s budget, the perturbed input is projected
back to the allowed range. The Jacobian-based Saliency Map Attack (JSMA) [46]
modifies pixels that have large gradients. DeepFool [41] applies a local linear ap-
proximation in iterated optimization. Carlini and Wagner [10] used constrained opti-
mization and reparameterization to effectively search for adversarial samples.

Effective attacks can be built even when gradient information is not available. [45]
builds a dataset by querying the target model and use the dataset to train a substitute
network from which gradient can be obtained for the attack. Carefully constructed
adversarial examples can be transferred across models [36,68] and across images
[42]. In addition, gradient-free attacks [13,67,27] do not rely on gradient informa-
tion. Brendel et al. [6] proposed a hard-label attack, which starts from an adversarial
point and iteratively reduces the distance to the natural image. [9] demonstrates that
methods detecting adversarial examples can be defeated as well.

2.3 Adversarial Defenses

Adversarial training [62,23] is one of the first proposed defenses and remain the most
effective. Madry et al. [38] show that if the adversary is able to effectively solve the
inner maximization problem, the DNN can adjust its parameters to withstand worst-
case perturbations. Extensions of adversarial training have been proposed [64,66,54].
[60] builds robustness by applying label smoothing to `∞ adversarial training. [33]
helps to mitigate its negative effect on standard accuracy [65]. Others [22,24,39,50]
attempt to detect adversarial examples before feeding them to the network.

As adversaries often exploit noisy and extreme gradients [56], a class of tech-
niques regularize the gradients of the network in order to gain robustness. Ross et
al. [49] propose a variation of double backpropagation [17], and show that regulariz-
ing the loss gradient is an effective defense against FGSM, JSMA, and the targeted
gradient sign method. Similarly, Jakubovitz et al. [29] propose to regularize the input-
logits Jacobian matrix. Furthermore, Parseval Networks [14] constrain the Lipschitz
constant of each layer. Cross-Lipschitz regularization [25] forces the differences be-
tween gradients of each class score function to be small.

2.4 Relationship Between Adversarial Robustness and Interpretability

Recently, it has been observed that robust networks tend to be more interpretable. Anil
et al. [3] remark that networks trained with Lipschitz constraints have gradients that
appear more interpretable. Similarly, Ross et al. [49] find that gradient regularized
networks have qualitatively more interpretable gradient maps. Others [65,11] note
that the simple gradient salience maps generated from adversarially trained models
are more interpretable than those generated from non-robust models. Tsipras et al.
[65] provide the hypothesis that models that can withstand adversarial examples have
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necessarily learned to rely on features invariant to adversarial perturbations. Because
humans are naturally invariant to these perturbations, robust models tend to function
more similarly to the human vision system than non-robust models. Etmann et al.
[18] provide theoretical justification that robust linear tend to have gradients that are
co-linear with the input images, which is related to interpretability.

A couple of works explored the relation between model robustness and inter-
pretability from different perspectives than ours. [16] explain the role of individual
neurons with adversarial examples. [20] show that interpretations of neural networks
are not immune from adversarial attacks.

Using an approach similar to Generative Adversarial Networks, Chan et al. [12]
force the Jacobian of the network to contain information needed to reconstruct a nat-
ural image. The resulting network becomes robust to certain `∞ PGD attacks, espe-
cially when some adversarial training has been added. However, it remains obscure
if the complex training procedure yields interpretable networks. To the best of our
knowledge, no work has demonstrated that forcing a model’s gradients to be inter-
pretable improves the model’s robustness.

3 Approach

The objective of our experiments is to determine if it is possible to make a model
robust to adversarial perturbations by optimizing the model to have interpretable gra-
dients. To this end, we supplement the standard cross-entropy loss function with two
regularization terms that together encourage the simple gradient salience map for
each data point to agree with an interpretable target interpretation.

We introduce the following notations. A data point, drawn from the data dis-
tribution D, consists of an input x ∈ RD and a label y ∈ RK . Here y is a K-
dimensional one-hot vector that contains a single 1 at the correct class yc and zeros
at the other K − 1 positions. The neural network fθ(·) has parameters θ ∈ RM
and outputs the logits before the final softmax operation, so that the model predic-
tion for x can be written as ŷ = softmax(fθ(x)). Additionally, the input-logits
Jacobian matrix J (x) ∈ RK×D is computed as J (x) = ∂fθ(x)/∂x.2 Of partic-
ular interest is the slice of the Jacobian matrix corresponding to the correct label,
Jc(x) = 〈∂fθ(x)/∂x〉[c,:], also known as the simple gradient salience map [4].

With standard supervised training, the optimal parameters θ∗ are found by mini-
mizing the cross-entropy loss.

LXE(x,y,θ) =
∑
i

yi log ŷi = yc log ŷc (4)

Assuming the availability of target interpretations I(x) for each x (covered in Sec-
tion 3.1), we can add two regularization terms to the standard loss in order to (1)
encourage the network to align its gradients with the target interpretations and (2)

2 J (x) is distinct from the input-output Jacobian matrix J(x). They are related by J(x) = (diag(ŷ)−
ŷŷ>)J (x).
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restrict the magnitude of its simple gradient salience maps.

L(θ) = E
(x,y)∼D

[LXE(x,y,θ)− λd cos(Jc(x), I(x)) + λm‖Jc(x)‖F ] (5)

In the above, cos(Jc(x), I(x)) is the cosine of the angle between the vectorized target
interpretation I(x) and the vectorized simple gradient Jc(x). The coefficients λd
and λm control the regularization strengths. Given interpretable target interpretations,
these terms encourage the gradients of the model to be interpretable.

3.1 Generating Target Interpretations

Using the SmoothGrad method [57], we extract target salience maps for each data
point from a pretrained neural network (details in Section 3.2). We choose Smooth-
Grad over other interpretation methods for two reasons. First, it satisfies the basic
sensitivity and invariance properties [1,30] discussed in Section 2.1, which assert
that the interpretation is properly sensitive to the model and data distributions. Sec-
ond, SmoothGrad can be understood as a method for canceling out the influence of
small perturbations on the interpretation, which has the effect of drawing the inter-
pretation closer to what humans find meaningful [57].

The SmoothGrad method first samples N points around a given input x from
the standard Gaussian distribution and takes the mean of the simple gradient salience
maps generated for each sample. Formally, having drawnN independent ei ∼ N (0, σ2),
the interpretation ISmG(x) is computed as the Monte Carlo expectation.

ISmG(x) =
1

N

N∑
i=1

Jc(x+ ei) (6)

In order to filter out small values that are usually ignored by a human observer,
we further threshold the target salience map with its standard deviation. For each
interpretation ISmG(x), we compute the pixel-level standard deviation σS and mean
µS. Any value in ISmG(x) falling within the range [µS−φσS, µS+φσS] is set to zero. φ
is a hyperparameter that determines the filtering strength. Figure 1 contains examples
of generated target interpretations. It can be observed that the thresholding operation
erases the noisy components but retains the important parts of the interpretation.

3.2 Adversarial Training

We create a robust neural network using adversarial training, one of the earliest and
still most reliable defenses. The purpose of this model is to supply the target inter-
pretations and serve as the upper bound for robustness in the experiments.

We adopt a PGD adversary that iteratively adds perturbations to an input sample
to fool a model. Formally, we let xt denote the input after t iterations of transforma-
tion and x0 = x. After each perturbation is added, the data point is projected to the
nearest point within an `2 hypersphere with the radius ε around x0. This operation
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Fig. 1: MNIST (left half) and CIFAR-10 (right half) salience maps from adversarially
trained networks (R) and networks with standard training (NR). “simp” and “SmG”
denote target interpretations generated using simple gradient and SmoothGrad, re-
spectively. The threshold φ is set to 1.

is denoted by the function clipx0,ε
(·). The sign(z) function maps the vector z to the

element-wise sign {−1, 1}. The iterative optimization can be characterized as

xt+1 = clipx0,ε
(xt + ε sign(LXE(xt,y,θ))), (7)

clipx0,ε
(x′) =

{
x0 +

x′−x0

‖x′−x0‖2 ε if ‖x′ − x0‖2 > ε

x′ otherwise.
(8)

After the adversarial examples are created, they are given the original labels and used
in place of the original samples for the training of a robust model.

3.3 Jacobian Regularization

Jacobian regularization [29] is another defense technique, which supplements the
original cross entropy loss with a regularization term.

L(θ) = E
(x,y)∼D

[LXE(x,y,θ) + λJ‖J (x)‖F ] (9)

where ‖ · ‖F is the Frobenius norm and λJ is a hyperparameter determining the
strength of the regularization. Contrasting Eq. 9 with Eq. 5, the regularization term
in Jacobian Regularization suppresses all entries in the Jacobian matrix, whereas In-
terpretation Regularization is only concerned with one slice of the Jacobian that cor-
responds to the correct label.



10 Adam Noack et al.

Hoffman et al. [26] demonstrate that the Frobenius norm of the Jacobian can be
approximated using random projections.

‖J (x)‖F ≈

√√√√ 1

nproj

nproj∑
µ=1

[
∂(vµ · fθ(x))

∂x

]2
(10)

Here the random projection vector vµ is drawn from the (K − 1)-dimensional unit
sphere for every training iteration. In practice, Hoffman et al. show that even a single
random projection vector is effective at suppressing the Jacobian norm.

4 Experiments

In this section, we present three experiments. In the first two experiments, we com-
pare Interpretation Regularization with adversarial training, Jacobian regularization,
and ablated variants on MNIST and CIFAR-10. After that, we further explore the
role of the target interpretation by using target interpretations permuted to different
degrees. Finally, we discuss the results and their implications.

4.1 General Setup

We first describe some general setup that applies to all experiments. The pixel values
for each image were normalized to the range [0, 1]. We used `2 adversarial training
(AT) throughout, as preliminary results showed Interpretation Regularization works
better with interpretation targets from `2 AT than `∞ AT. Note that, on MNIST, `2
PGD adversaries tend to be less effective than `∞ adversaries and provide weaker
defenses [38,35]. We attack all networks using both `2 and `∞ attacks.

The target interpretations are generated in the following manner. We followed
the original recommendation for SmoothGrad [57] and set the noise level at σ =
0.15 and number of samples N to 50. The filtering threshold was set to φ = 1 (See
Section 3.1 for details). We extract simple gradient and SmoothGrad saliency maps
from `2 adversarially trained networks as well as non-robust networks that are trained
only on natural images. In addition, we also create a complete random permutation
(permutation probability at 1.0) of the robust SmoothGrad interpretation. For each
dataset, we create baselines using adversarial training and Jacobian regularization. In
order to facilitate meaningful comparisons, all networks were trained to have roughly
the same validation loss on natural images.

Due to space limitations, we use some shorthands in tables and figures to de-
note these configurations. “R” and “NR” denote target interpretations generated from
robust and non-robust or standard trained networks, respectively. Simple gradient
and SmoothGrad are denoted by “simp” and “SmG”, respectively. “perm” means
that each target interpretation was completely randomly permuted. “IR” indicates In-
terpretation Regularization, “AT” indicates adversarial training, and “JR” stands for
Jacobian regularization [26].
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4.2 MNIST

The MNIST experiments are set up in the following ways. The convolutional neural
network (CNN), taken from [63], has two convolutional layers of 32 and 64 filters of
size 5 × 5 and stride 1. Each convolutional layer is followed by max-pooling with a
2×2 kernel and a stride of 2. The last pooling layer feeds into a dense layer with 1024
neurons. Dropout with p = 0.5 is applied before the final dense layer of 10 neurons
and the softmax operation. All layers except the last employ the ReLU activation
function. All experiments employ SGD with momentum at 0.9, an initial learning
rate of 0.01 that decayed to zero using the cosine schedule, a batch size of 50, and the
maximum number of epochs was 100.

Following [65], we extract robust interpretations from an adversarially trained
CNN with a randomly initialized PGD adversary using an `2 radius of 1.5 and 40
iterations of PGD. Tspiras et al. [65] qualitatively showed that training against this
adversary produced networks that had interpretable simple gradient salience maps.
This network, along with a second network trained with a PGD adversary with an `2
radius of 2.5 and 40 iterations of PGD, serve as baselines.

Using the robust network’s simple gradient maps as the target interpretations (R,
simp), we performed a grid search to find the best combination of λd (which controls
the strength of the gradient alignment with I(x)) and λm (which controls the magni-
tude of ‖Jc(x)(x)‖F ). λd at 3.0 and λm at 0.15 produced the best results. The other
four sets of target interpretations simply reused these values and did not employ any
additional tuning. For baselines, we created adversarially trained networks with radii
of 1.5 and 2.5. For Jacobian regularization, we performed a search across λJ and
found 0.32 to produce good results.

4.3 CIFAR-10

For all experiments with the CIFAR-10 dataset, the Wide ResNet (WRN) 28×10
architecture [69], a large network with 36.5 million parameters, was used. We adopted
weight decay of 5e−4, dropout rate of 0.3, SGD with Nesterov momentum at 0.9, an
initial learning rate of 0.1 decaying to zero under the cosine schedule, batch size of
128, and 200 training epochs. As data augmentation, the input images were randomly
cropped and horizontally flipped during training, and each target interpretation was
transformed in the same way as its corresponding input image.

We obtain robust networks using adversarial training with PGD, two different `2
radii of 80/255 and 320/255, and 7 PGD iterations. Again, this is the same setup
which showed qualitatively interpretable gradients in [65]. For Jacobian regulariza-
tion, we adopt the approximation from [26] with nproj = 1 to save computation and
do a search across λJ , finding λJ = 0.1 and 0.03 to produce good results. For the
simple gradient map of the robust network (R, simp), λd at 0.75 and λm at 0.005
or 0.02 were found by a grid search to produce good results and validation losses
on natural images that were comparable with the two adversarially trained networks.
These hyperparameters were used across the other four Interpretation Regularization
experiments with no further tuning.
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Training
Technique

Standard
Accuracy

Adversarial Accuracy

PGD40,
`2 norm

PGD40, `∞ norm

ε = 1.50 0.10 0.20 0.25 0.30

Standard Training 99.50 78.41 78.91 9.32 3.57 1.71
AT (PGD40, `2, ε=1.5) 99.39 89.88 96.60 73.01 32.07 5.46
AT (PGD40, `2, ε=2.5) 98.29 88.06 94.23 76.39 49.98 10.94
JR 98.12 82.64 91.15 60.58 29.41 6.54
IR (R, perm, SmG) 97.28 78.75 88.11 54.36 26.26 7.58
IR (NR, simp) 98.05 79.57 87.82 50.20 23.71 2.29
IR (NR, SmG) 98.04 81.22 90.39 55.98 28.70 4.98
IR (R, simp) 98.12 84.24 91.60 64.03 *37.90 *10.86
IR (R, SmG) 98.18 *85.25 *92.35 *66.92 41.22 11.52

Table 1: Mean MNIST adversarial accuracies on the test set averaged over 3 ran-
dom restarts of the attacks. The first, second, and third highest accuracies for each
adversary are bolded, underlined, and asterisked, respectively.

4.4 MNIST Permuted Interpretation

To further investigate the effects of the target interpretation, we conduct an addi-
tional experiment with new sets of permuted target interpretations. We first extract the
SmoothGrad interpretation from the robust network, which was adversarially trained
on the MNIST dataset as in Section 4.2. After that, we randomly permute from 10% to
100% of pixels in each interpretation to obtain ten new sets of interpretations. Each
of these sets is then used as target interpretations for Interpretation Regularization.
Figure 3 shows some example target interpretations from each of the ten sets. In this
way, the mean and standard deviations of the pixel values in each target interpretation
is held constant, but the semantic patterns in the target interpretations are disrupted
to varying extents.

The optimal λd and λm from Section 4.2 were used without any changes. In
other words, the only hyperparameter changing across networks being trained in this
experiment was the permutation probability for the target interpretations. The results
for this experiment can be found in Fig. 2.

4.5 Results

Tables 1 and 2 report the standard and adversarial accuracies under different `2 and
`∞ norm constraints on MNIST and CIFAR-10. Since all adversarial training was
performed with an `2 adversary and the target interpretations extracted accordingly,
the attacks from `∞ adversaries create challenging defense transfer scenarios for the
defense methods.

With unperturbed data, standard training achieves the highest accuracy and all
defense techniques degrade the performance. The adversarial attacks prove effective,
resulting in substantial performance degradation of the standard model. Three of the
four attacks on CIFAR-10 brought the standard model’s accuracy to below 1%. For
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Fig. 2: Three SmoothGrad target interpretations with varying degrees of permutation.
The original images (with labels of 9, 3, and 2, from top to bottom) are in the leftmost
column.

Fig. 3: Adversarial accuracy under differently permuted target interpretations. On the
y-axis: PGD-40 `∞ (ε = .2) adversarial accuracy, gradient magnitudes ‖Jc(x)‖F ,
and average cosine similarity between target interpretations and the gradients. The
x-axis represents the permutation probability for the target interpretations. 95% con-
fidence interval shading over n = 3 independently trained networks.

Fig. 4: Mean Frobenius norms of the Jacobians for the label logit, ‖Jc(x)‖F , and
non-label logits ‖J 6=c(x)‖F for MNIST (left) and CIFAR-10 (right).
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Training Technique Standard
Accuracy

Adversarial Accuracy

PGD40, `2 norm PGD40, `∞ norm

ε = 80/255 320/255 4/255 8/255

Standard Training 95.00 11.84 0.00 0.74 0.01

AT (PGD7, `2, ε=320/255) 76.04 67.57 58.29 59.05 38.4
JR 78.93 61.41 8.35 42.22 11.23
IR (R, simp) 78.68 63.74 12.56 47.18 16.28
IR (R, SmG) 78.97 62.64 12.42 48.17 18.78

AT (PGD7, `2, ε=80/255) 90.34 75.14 20.44 59.43 25.37
JR 85.41 58.96 3.32 32.27 2.51
IR (NR, simp) 81.43 45.04 0.18 16.69 0.40
IR (NR, SmG) 84.39 53.84 0.56 28.00 1.84
IR (R, perm, SmG) 85.70 58.20 1.91 29.19 1.87
IR (R, simp) 85.39 62.45 5.35 39.93 8.2
IR (R, SmG) 85.69 63.71 7.98 46.64 14.25

Table 2: Mean CIFAR-10 adversarial accuracies on test set averaged over 3 random
restarts of the attacks. Within each group of models, the highest and second highest
accuracies for each adversary are bolded and underlined, respectively.

most attacks, adversarial training yields the highest adversarial performance and In-
terpretation Regularization is the second best. However, in the two highest difficulty
setting on MNIST (`∞ norms 0.25 and 0.30), IR begins to surpass AT and becomes
the most robust network under 0.30. In addition, IR outperforms JR on all attacks.
The performance differences between the two methods range from 1.2% to 11.81%
on MNIST and from 2.34% to 14.37% on CIFAR-10.

The best IR performance is achieved, in almost all cases, by IR(R, SmG), which
uses interpretations from SmoothGrad and the AT network. The performance of
IR(R,simp) and IR(R, SmG) diverge the most, by 6.67% and 6.05%, when the in-
terpretations are derived from `2 AT with a low ε = 80/255 and attacked by the `∞
adversary. That is, when the adversarial training and attack have the most mismatch.
On the other hand, IR(R,simp) have a slight edge of 1.1% or less over IR(R, SmG)
when the adversarial training use an `2 adversaries with a large ε = 320/255 and the
attacks come from `2 adversaries. Finally, interpretations from non-robust models
offer some robustness over standard training, but they compare unfavorably with JR
or permuted interpretations.

Figure 3 shows the effects of random permutation on the interpretation. The over-
all trend is quite clear: greater permutation causes lower adversarial accuracy. Fur-
thermore, as the permutation increases, the network becomes less and less able to
align its gradients with the target interpretations. Not included in the graph are the
standard accuracies of the networks; these accuracies trend monotonically down-
ward as well, beginning at with an average of 98.13% and ending with an average
of 97.37%, and the Pearson correlation coefficient between permutation probability
and standard accuracy is −0.93.
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4.6 Discussion

Disentangling the effects of Jacobian norms and target interpretations. In the in-
troduction, we show that in order to defend against an arbitrary perturbation δ, we
could suppress the Jacobian’s singular values ‖s‖2, which is equivalent to the Jaco-
bian’s Frobenius norm. This gives us Jacobian regularization. To verify that the sup-
pression has happened, we plot the Frobenius norm of the input-logits Jacobians in
Figure 4. We separate the Jacobian slices that correspond to the correct class, Jc(x),
and those of the incorrect classes J6=c(x). The results are averaged over all training
samples. For the incorrect class slices, the results are also averaged over all output
logits that differ from the ground truth.

We find that almost all defense methods reduce the norms of Jacobians compared
to standard training. Previously, we also observed that IR with permuted target in-
terpretations can provide some adversarial robustness, even though it performs worse
than JR. We attribute this effect to the fact that, even with a completely uninformative
target interpretation, IR still decreases the Frobenius norm of Jacobians, which can
improve robustness. In addition, the results show that for most models, the correct-
class Jacobian norm was much larger than wrong-class Jacobian norms. This explains
why IR is effective when it only constrains the correct-class Jacobian norm whereas
JR constrains all slices of the Jacobian.

However, it is also worth noting that lower norms do not always lead to better
adversarial performance. In both MNIST and CIFAR-10 experiments, JR produces
lower Jacobian norms than IR, but is consistently outperformed across all attacks.
This indicates there are other factors at play.

To further disentangle the effects of Jacobian norms and the interpretability of the
Jacobians, we examine how degrees of random permutation affect adversarial robust-
ness in IR (shown in Figure 3). As the proportion of permuted pixels increases, the
network gradually becomes less capable of withstanding `∞ attacks. Nevertheless,
the reduction in robustness happens while the gradient magnitude (Jacobian’s norm)
decreases. This behavior cannot be explained from the perspective of Jacobian regu-
larization or the minimization of ‖s‖2. With the other hyperparameters and training
losses kept equal, we attribute the decrease in performance to the decline in quality
of target interpretations.

The quality of the interpretation matters. We now examine how the inter-
pretability of the Jacobian contribute to adversarial robustness. In the analysis in
the introduction, we inferred that it is important to allocate the available budget of
‖s‖2 carefully in order to maximize predictive performance. Inspired by [28], we
conjecture that an interpretable Jacobian, which selects features that humans regard
as important to the prediction, should provide adversarial robustness.

Empirical evidences from the MNIST and CIFAR-10 experiments strongly cor-
roborate this argument. First, models trained with target interpretations from robust
models consistently outperform target interpretations from non-robust models. Sec-
ond, random permutation of the interpretations causes significant performance drop.
The final and the most compelling observation is that, in most cases, SmoothGrad
interpretations perform better than simple gradient maps from both robust and non-
robust models. This is especially pronounced when the attack uses a large `∞ pertur-
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bation, which delivers severe attacks for robust models trained with `2 perturbations.
In the MNIST experiments with `∞ radius of 0.25, IR(R,SMG) beats the AT net-
work trained with `2 radius of 1.5, from which the target interpretations for IR are
extracted. Moreover, at `∞ radius of 0.30, IR(R,SMG) obtains the best robustness,
surpassing even the AT network trained with `2 radius of 2.5. In CIFAR-10, under `∞
perturbations, the performance of IR(R,SMG) always exceeds that of IR(R,simp).

We ascribe the strength of SmoothGrad to the fact that it removes noise-like pat-
terns in the interpretation and creates more human-like interpretations than simple
gradient. A qualitative observation of Figure 1 suggests that SmoothGrad interpreta-
tions on MNIST are consistent with human intuition. For example, the black spots
(negative gradient values) for the digit 3 indicate key differences between 3 and the
digits 6 or 8 and thus supply important features for classification. Similarly, the black
spots around the top of the digit 4 highlight the differences with the digit 9. The strong
SmoothGrad performance shows that interpretability is directly correlated with ad-
versarial robustness and Interpretation Regularization attains more than just the dis-
tillation of adversarially trained models.

5 Conclusion

The abundance of adversarial attacks and the lack of interpretation of how a deep
neural network makes its predictions are two issues that render some applications
of artificial intelligence untrustworthy in the eye of the general public. The litera-
ture suggests that these two issues may be closely related, as works have indicated
qualitatively that adversarial defenses techniques, such as adversarial training [65],
Jacobian regularization [49], and Lipschitz constraints [18] produce models that have
salience maps that agree with human interpretations.

These findings naturally lead to the question if the converse is true. If we force a
neural network to have interpretable gradients, will it then become robust? We devise
a technique called Interpretation Regularization, which regularizes the gradient of a
model to match the target interpretation extracted from an adversarially trained robust
model. The new model performs better than Jacobian regularization, which applies
more constraints than Interpretation Regularization. Most importantly, applying the
network interpretation technique SmoothGrad [57] improves robustness over simple
gradients, and in few cases, over the AT networks from which the target interpreta-
tions are extracted. These results suggest Interpretation Regularization accomplishes
more than distilling existing robust models.

In the discussion, we carefully disentangle two factors that contribute to the ef-
fectiveness of Interpretation Regularization: the suppression of the gradient and the
selective use of features guided by high-quality interpretations. With the two factors,
we manage to explain model behaviors under various settings of regularization and
target interpretation. We believe this study provides useful insights into the research
of adversarial defenses and interpretation methods. The joint investigation of these
two issues will continue to foster our understanding of deep neural networks.
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