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Abstract We present performance results from a new hybridized finite difference8

method for the spatial discretization of partial differential equations. The method9

is based on the standard Summation-By-Parts method with weak enforcement10

of boundary and interface conditions through the Simultaneous-Approximation-11

Term. We analyze the performance when applying the hybrid method to Poisson’s12

equation which arises in many steady-state physical problems, focusing on an13

application in Earth science. When solving the resulting linear system we compare14

direct and iterative solvers on both CPU and GPU, evaluating the performance on15

meshes with different numbers of computational blocks. Our results demonstrate16

the advantages of using the hybrid method in solving large-scale problems under17

the restriction of system resources by utilizing techniques from parallel computing.18

1 Introduction and Background19

1.1 Poisson’s Equation and an Application in Earth Science20

Poisson’s equation is a partial differential equation (PDE) of elliptic type that is21

widely used in physics, fluid dynamics, mechanical engineering, and other fields to22

study steady-state problems. The equation is given by23

∇2ϕ = f, (1)
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Fig. 1: A 2D simplified model in an earthquake simulation. Figure from Erickson
and Dunham (2014)

where f and φ are real or complex-valued functions on a Euclidean space, with f a24

given source function and ϕ is sought. When f = 0, we obtain Laplace’s Equation.25

In computational seismology, Poisson’s equation arises when describing the26

2D antiplane problem as shown in figure 1, where the out-of-plane displacement27

u = φ is sought (Erickson and Dunham, 2014). As illustrated in the figure, a28

section in the −yz plane is considered, containing symmetry with respect to the z29

axis. An 1D earthquake fault (an interface) is located along z-axis and is subject30

to a specified friction law. Tectonic motion is captured by setting the remote31

boundaries to be displaced at a slow plate rate of ≈ 32mm/yr, which is enforced32

by applying Dirichlet boundary conditions. Although the boundary conditions are33

changing through the time at an extremely low rate, we have assumed a quasi-34

static response. A sequence of earthquakes nucleate at the fault in response to the35

remote tectonic loading. In this earthquake cycle simulation, the fault is a thin36

zone of crushed rock separating blocks of the Earth’s crust. When an earthquake37

occurs on the fault, the rock on one side of the fault is displaced with respect to38

the other side, and this jump in displacement across the fault is known as slip. The39

fault length can be of several hundreds of kilometers, with frictional properties on40

the order of microns, which gives rise to large problems in simulation. Earth’s free41

surface is at z = 0 and we also assume a free surface at depth, corresponding to42

Neumann boundary conditions. Due to the symmetry of the system, the problem43

can be further simplified by considering only one side of the fault. Once we have the44

numerical solution for one side of the fault, the other side can be easily obtained45

from symmetry properties.46

The assumption of steady-state motion in the anti-plane scenario gives rise47

to the following anisotropic version of Poisson’s equation in a two dimensional48

domain Ω:49

−∇ · (b∇u) = f , on Ω

u = gD, on ∂ΩD

n · b∇u = gN , on ∂ΩN{
{{n · b∇u}} = 0
JuK = δ

on ∂ΓI ,

(2a)

(2b)

(2c)

(2d)

where the field u is the material displacement. Here, b(x, y) is a matrix valued50

function that is symmetric positive definite and the scalar function f(x, y) is the51
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source function. The boundary conditions of the domain have been partitioned into52

a Dirichlet one and a Neumann one, namely, ∂Ω = ∂ΩD∪∂ΩN and ∂ΩD∩∂ΩN = ∅.53

At the Neumann boundaries, the vector n is the outward pointing normal. We have54

also introduced an internal interface ΓI , and along this interface, the b−weighted55

normal derivative is taken to be continuous, with jumps allowed in the scalar field.56

Jumps allow us to apply this method to physical problems where displacements57

occur across an interface, e.g. earthquakes that occur along a fault which forms an58

interface in the solid Earth. {{w}} = w+ +w− here denotes the sum of the scalar59

quantity on both sides of the interface and JwK = w+−w− is the difference across60

the interface. For system with jumps across the interface, we define a non-zero61

constant δ vector to depict this discontinuity. When there is no jump across the62

interface, δ is set to be zero.63

1.2 Discretization with the SBP-SAT Scheme and Numerical Solution Methods64

We mesh our domain with rectilinear grids in order to apply finite difference meth-65

ods. For real geographical domains where rectilinear meshing can not be applied,66

we can use coordinate transformations to transform the physical domain into a67

logical rectangular domain where we can apply rectilinear meshing. The solutions68

obtained from the logical domain can later be transformed back into solutions for69

the real domain using inverse transformation. For our study here, we consider the70

unit square for simplicity without losing generality. The detailed technique on co-71

ordinate transformation can be found in Kozdon, Erickson, et al. (2020) and won’t72

be covered here.73

Summation-By-Parts (SBP) finite difference methods have been proposed to74

solve problems with complex geometries such as the problem in this paper due75

to their desirable properties of high order accuracy and provable stability (Kreiss76

and Scherer, 1974; Kreiss and Scherer, 1977; Strand, 1994; Mattsson and Nord-77

ström, 2004). The inter-block coupling conditions can be enforced weakly using78

the Simultaneous-Approximation Term (SAT) method (Carpenter, Gottlieb, et al.,79

1994; Carpenter, Nordström, et al., 1999). The SAT term here is analogous to the80

penalty term in discrete Galerkin methods. More details on SBP-SAT method will81

be covered in 2.82

In earthquake cycle simulations, earthquake nucleation and rupture propa-83

gation is simulated over thousands of years, where quasi-steady state problems84

are formed to depict slow and quiescent periods between earthquakes (Erickson85

and Dunham, 2014). In the steady-state regime, we need to solve elliptic partial86

differential equations, which will result in large linear systems of equations for87

realistically complex problems under the constraint of stability requirement for88

time stepping methods. In order to obtain stable solutions over long time scales,89

we need to apply a fine mesh in the spatial domain, and this is where large scale90

linear problems arise. This project is constructed around one key challenge: How91

can we obtain numerical results for a large linear system formed by SBP-SAT92

operators in order to study earthquake cycle simulations over long time scales?93

In the terminology of algorithm, the time complexity refers to the number94

of steps required for an algorithm, and the space complexity refers to the total95

space taken by the algorithm to store the input data and intermediate results with96

respect to the input size. Solving a linear system of size n × n directly with an97
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LU decomposition or other factorization-based direct method is known to have98

the time complexity of O(n3) and space complexity of O(n2). The computational99

complexity mainly comes from the process of factorization which has O(n3). After100

obtaining the factorization, using forward/backward substitution to solve the sys-101

tem has the time complexity of O(n2). In time stepping methods, we can reuse the102

factorization results during each linear solve, but the space complexity of factor-103

ization has limited the size of the problem that system is capable of doing. Another104

common issue is that the matrices that we form using the SBP-SAT methods can105

be expressed in a sparse matrix fashion which reduces the cost of matrix storage106

and operations. But this sparsity can be destroyed during the LU factorization,107

and it relies on certain factorization algorithms that can preserve sparsity to obtain108

optimal results.109

One way to get around the size restriction imposed by the space complexity of110

direct solvers is using iterative methods. Iterative methods convert the problem of111

solving a linear system into a problem in optimization. A common example is the112

Conjugate Gradient (CG) method which is a traditional iterative solver but more113

known to computer scientists in recent years because it has been widely used in114

machine learning to minimize the loss function defined with information entropy.115

CG is particularly suitable for solving a linear system that has a positive defi-116

nite (PD) left-hand side. For information on other iterative solvers, refer to Saad117

(2003). Iterative solvers avoid the challenge of obtaining a factorization for sparse118

matrices by using repeated matrix-vector products to obtain an approximate nu-119

merical result, approaching the exact solution with proven asymptotic accuracy.120

Given that in numerical methods, the accuracy is limited by the round-off error,121

iterative solvers can provide a numerical result that matches the accuracy of the122

result obtained from a direct solver. Iterative solvers have other desirable proper-123

ties in that we can gain efficiency by loosening the accuracy constraint, obtaining124

a less accurate result that is sufficient for the study in mind. The linear algebra125

operations such as matrix-vector multiplications can be easily accelerated by pack-126

ages such as Basic Linear Algebra Subprograms (BLAS) on both CPU and GPU127

architecture. In 3, we will study different iterative implementations to compare128

the accuracy, stability and performance for our problem in search for an optimal129

iterative method for this specific problems.130

Another way to bypass the limitation of using direct solvers on a large single131

system is to use an new hybridization technique that was proposed for SBP-SAT132

methods (Kozdon, Erickson, et al., 2020). This method reduces the system size133

by writing the numerical method in a way that leverages the Schur complement134

and eliminates degrees of freedom from within the element, leaving only degrees135

of freedom on element boundaries. We set the values on all the interfaces to be136

given input data known as the trace variables. These independent trace variables137

along the faces of the blocks are introduced so the inter-block coupling penalty138

terms can be expressed merely as a function of the trace variables. Hence the so-139

lution in each block is uniquely determined by these trace variables. In this hybrid140

method, the problem is broken into two pieces, a local problem and a global problem.141

local problem refers to the solution within the block given trace data, and the142

global problem refers to the value of the trace variable, given the block data. The143

local problem and the global problem are connected via a Schur complement. This144

is an extension of existing SBP-SAT scheme by introducing trace variables so we145
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can work on a domain with multiple blocks that share interfaces. Details will be146

covered in section 4 when we discuss performance of the hybrid method.147

1.3 Implementation148

In this paper we implement algorithms solving Poisson’s equation with SBP-SAT149

method and extended hybrid SBP-SAT method in the Julia programming language150

with support of various open packages from linear algebra to GPU computing. Ju-151

lia is a new programming language with an emphasis on scientific computing. It152

is designed to solve the Two-Language-Problem that many researchers encounter153

when developing a prototype in a high-level language such as Python or MATLAB154

(for efficiency in development) and then implementing the code in a low-level lan-155

guage such as C++ and FORTRAN for performance. Julia is a compiled language156

leveraging the JIT compilation for performance. It supports dynamic notation157

with multiple dispatch, which gives high code readability during development and158

high performance in code execution. At the compilation level, Julia uses LLVM,159

which generates an LLVM intermediate representation that can be used to work160

with other languages/frameworks that are also using LLVM. The extensibility161

from using LLVM as a compiler has been demonstrated with Julia’s capability of162

leveraging GPU power for HPC (Besard et al., 2019).163

Other nice features of Julia include metaprogramming from the legacy of the164

LISP language. Metaprogramming allows us to write less code by reducing repeti-165

tion. Unlike other languages or frameworks that are accessed in one programming166

language but written in another programming language, many Julia packages are167

written in Julia itself with core source code open-sourced. This makes cooperation168

in Julia much more handy, and for this reason, the Julia language has become one169

of the most fast-growing languages with professional active users in computational170

science who help form a booming Julia ecosystem. However, being a relatively new171

open language also means there is lack of official support when it comes to bugs.172

Our implementations were limited by the compatibility issues of different pack-173

ages that have to wait for the update from independent developers who wrote174

these packages.175

This rest of the paper is organized as follows: In Section 2, we provide a de-176

tailed description of the method of block decomposition and forming of SBP-SAT177

operators. In Section 3, we give performance evaluation of this problem on a single178

domain with different implementations. Namely, we confirm convergence results of179

SBP-SAT discretizaiton with different orders of accuracy. We test time and space180

resource consumption with different implementations. In Section 4, we cover the181

key ideas of the hybrid method introduced in the previous section, with extensive182

study on the performance of this novel method. We illustrate the promising aspects183

of this method and describe several existing issues of the current implementation.184

Solving these issues in the future implementation would be essential to further185

leveraging the benefits of the hybrid SBP-SAT scheme.186
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2 SBP-SAT introduction187

2.1 One Dimensional SBP Operators188

We discretize the domain 0 ≤ x ≤ 1 with N + 1 evenly spaced grid points189

xi = ih, i = 0, . . . , N with spacing h = 1/N. We then project a function u onto the190

computational grid to be u = [u0, u1, . . . , uN ]T . u is often taken to be the inter-191

polant of u at grid points. We define grid basis vector ej to be a vector with value192

1 at grid point j and 0 for the rest. We only need e0 and eN to form projections193

at boundaries. Note that in general we have uj = eTj u.194

We apply the class of high-order accurate SBP finite difference methods for195

first order derivatives which were introduced in Kreiss and Scherer (1974) and196

Kreiss and Scherer (1977) and Strand (1994) as mentioned above. For second order197

derivatives, we apply Mattsson and Nordström (2004), with variable coefficients198

treated in Mattsson (2012). The exact form of definitions are given below.199

Definition 1 (First Derivative) We define matrix Dx to be an SBP approxima-200

tion to ∂u/∂x if it can be decomposed as HDx = Q with H being symmetric201

positive definite and Q satisfying uT (Q+QT )v = uNvN − u0v0.202

Here, we only consider diagonal-norm SBP, i.e. finite difference operators where203

H is a diagonal matrix and Dx is the standard central finite difference matrix in the204

interior which transitions to one-sided at boundaries. The condition of Q defined205

above can be written as Q+QT = eNe
T
N − e0e

T
0 .206

The reason why the operator Dx is called SBP because it mimics the integration-207

by-part property208 ∫ 1

0

u
∂v

∂x
+

∫ 1

0

∂u

∂x
v = uv

∣∣∣∣1
0

, (3)

in a discrete form209

uTHDxv + uTDT
xHv = uT

(
Q+QT

)
v = uNvN − u0v0. (4)

Following the same pattern of the first derivative, we can define the second210

derivative.211

Definition 2 (Second Derivative) We define matrix D
(c)
xx to be an SBP approxi-212

mation to ∂
∂x

(
c∂u∂x

)
if it can be decomposed asHD

(c)
xx = −A(c)+cNeNd

T
N−c0e0d

T
0213

where A(c) is symmetric positive definite and dT0 u and dTNu are approximations214

of the first derivative of u at the boundaries.215

Similarly, the operator D
(c)
xx mimics the integration-by-parts property216 ∫ 1

0

u
∂

∂x

(
c
∂v

∂x

)
+

∫ 1

0

∂u

∂x
c
∂v

∂x
= uc

∂v

∂x

∣∣∣∣1
0

, (5)

in a discrete form217

uTHD
(c)
xxv + uTA(c)v = cNuNd

T
Nv − c0u0d

T
0 v. (6)

As noted above, we only consider diagonal-norm SBP finite difference operators218

here. In the interior, the operators use the minimal bandwidth central difference219
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stencil and transition to one-sided at boundaries in a manner that preserves the220

SBP property.221

It has been known that for SBP operators defined above, if the interior operator222

has accuracy 2p, then the interior stencil bandwidth is 2p+1 and the boundary223

operator has accuracy p. If we use operators with interior accuracy 2p = 2, 4, and224

6, the expected global order of accuracy is the minimal of 2p and p+2 as evidenced225

by empirical study (Mattsson, Ham, et al. (2009) Virta and Mattsson (2014)) and226

proved for the Schrödinger equation (Nissen et al., 2013). We will verify the result227

in later sections.228

2.2 Two Dimensional SBP Operators229

Two-dimensional SBP operators can be developed by applying the one-dimensional230

SBP operators in a tensor product faction. Here we describe the operators for a231

rectangular block B̂ ∈ [0, 1] × [0, 1]. We discretize this domain similar to 1d case232

in each direction resulting in an (N + 1)× (N + 1) grid of points where grid point233

(i, j) is at (ri, sj) = (ih, jh) for 0 ≤ i, j ≤ N with h = 1/N ; For simplicity, we only234

consider the case where we have the same numbers of grid points in each direction.235

A more complex scenario where we have different numbers of grid points in each236

direction can be formed similarly, but we are not going to discuss in detail here.237

The two dimensional SBP operators can be obtained from one dimensional SBP238

operators by taking Kronecker products with them in orders that are determined239

by directions in two dimensional space. The detailed technique can be found in240

Kozdon, Erickson, et al. (2020) and won’t be repeated here. We should note that241

tensor products are used here mainly for the purpose of simplicity in theoretical242

analysis. In computer memory, data are stored in a one dimensional array. Hence,243

the Kronecker products here mainly affects the order where we read data from a244

one dimensional array.245

2.3 SAT Terms246

SAT terms weakly enforce boundary conditions penalizing the grid point at the247

boundary towards the boundary data. It has the following simplified form:248

b = α ∗ (µBu− g). (7)

Here, u is the grid vector (the numerical approximation to the solution), g is249

boundary condition for a particular interfaces. B is an SBP operator that extracts250

boundary data from u and it would contain information about boundary layouts251

and associated conditions. µ is the block-diagonal matrix associated with B that252

needs to be compatible with boundary layouts. α is the penalty parameter in SAT253

term that is chosen under stability constraints from energy estimate. Finally, b254

is the assembled vector that weakly enforces a certain boundary condition in fi-255

nite difference methods. More detailed examples of SAT terms in practice can be256

found in Erickson and Dunham (2014). Boundary conditions can be assembled by257

gradually adding b terms to the RHS of the equation in a simple additive way.258

Compared to the traditional method of using injection or strong enforcement of259

boundary/interface conditions that would destroy the SBP property defined in260



8 Alexandre Chen, Brittany A. Erickson, Jeremy E. Kozdon

equations 4 and 6 in section 2, using SAT terms preserves strict stability mean-261

ing that the semi-discrete problem has the same asymptotic time-growth as the262

continuous problem (Mattsson, 2003).263

The combined SBP-SAT approach has been extensively used in computational264

science for solving problems from natural sciences where physical interfaces are265

ubiquitous. In geophysics particularly, it can be used to solve earthquake problems266

where continental and oceanic crustal blocks are separated by faults or in multi-267

phase fluids with discontinuous properties (Kozdon, Dunham, et al., 2012; Erickson268

and Day, 2016; Karlstrom and Dunham, 2016; Lotto and Dunham, 2015).269

2.4 Implementation in Julia270

In the Julia implementation, we use SparseArrays.jl to form sparse matrices. We271

use LinearAlgebra.jl for Kronecker products and other linear algebra operations.272

We use CUDAnative.jl and CuArrays.jl for computations on CUDA supported273

GPUs. For iterative solvers, we use IterativeSolvers.jl as well as our own matrix-274

free version of the CG algorithm. This project has been completely done in Julia275

except the meshing part where we use the external meshing software Trelis (https:276

//csimsoft.com/trelis).277

3 Performance Study on A Single Domain278

3.1 Comparison Between Direct Solver and Iterative Solver279

We first study the performance of the hybrid SBP-SAT method on a single domain.280

We chose a unit square, where we have Dirichlet boundary conditions on the281

left and the right, and Neumann boundary conditions on the top and bottom.282

To study the accuracy and convergence of the method, we apply the method283

of manufactured solutions (MMS), see Roache (1998) for example. In the MMS284

technique, an analytic solution is assumed from which we can derive compatible285

boundary and source data. In our test, we manufactured a solution to have the286

following form:287

u(x, y) = sin(πx+ πy), 0 ≤ x ≤ 1 (8)

where x and y denote the x and y coordinates of a given point. From this fabricated288

solution, we can derive the conditions on the boundary and source function in289

interior, namely290 

uxx + uyy + 2π2 sin(πx+ πy)= 0, 0 ≤ x ≤ 1

u= sin(πy), x = 0

u= − sin(πy), x = 1

−uy= cos(πx), y = 0

uy= − cos(πx), y = 1.

(9a)

(9b)

(9c)

(9d)

(9e)
291

Here uy represents the first derivative of u with respect to y and uxx represents292

the second derivative of u with respect to x. We don’t have cross derivative terms293

https://csimsoft.com/trelis
https://csimsoft.com/trelis
https://csimsoft.com/trelis
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in our simplified problem. The minus sign from the quation 9d above comes in294

because the normal vector at y = 0 points downward. We define the errorh =295 √
(uh − u)TH(uh − u). Here u is the exact solution in equation 8 evaluated on296

the numerical grid, and uh stands for numerical results from solving the system297

defined by and boundary conditions and source functions obtained from fabricated298

results u with governing equations in 9. uh and u are stacked to be one-dimensional299

vectors. H is SBP operator that incorporates grid space information and is the300

Kronecker product of Hx and Hy defined in the 2D SBP operators. This definition301

of errorh is the discrete-L2 error and is used for convergence tests.302

We begin convergence tests using a direct solver on CPU. For different p val-303

ues, we obtain the following accuracy results for convergence tests in table 1. We304

obtained expected convergence results for the 2nd order and 4th order SBP op-305

erators. For 6th order SBP operators, the convergence rates are close to 5.5. The306

reason why in higher order operators we don’t observe convergence rate as the307

order of SBP operators is because the order of the accuracy is lower on boundaries308

as described in 2. Also we are reaching machine precision with p = 6, so the rate309

of convergence is also affected by this factor.310

2nd Order 4th Order 6th Order

N errorN rate errorN rate errorN rate
24 1.735× 10−3 4.227× 10−5 1.139× 10−5

25 4.319× 10−4 2.0013 2.117× 10−6 4.320 2.605× 10−7 5.451
26 1.079× 10−4 2.0003 1.095× 10−7 4.273 5.847× 10−9 5.477
27 2.696× 10−5 2.00007 5.956× 10−9 4.200 1.301× 10−10 5.489
28 6.740× 10−6 2.000017 3.401× 10−10 4.130 2.896× 10−12 5.489

Table 1: Error and convergence rates using the method of manufactured solutions.

Convergence results above have verified the correctness of our implementations.311

We can also verify this with numerical results from the iterative solvers with similar312

outcomes.313

Although our ultimate goal is to solve this problem on a very large system,314

once convergence is verified, our next question is how can we solve this problem315

more efficiently while maintaining correct results. We fix p = 2 to reduce the num-316

ber of variables in our study. Our linear system has a positive semi-definite (PD)317

left-hand-side (LHS). It is easy to verify that the CG method out performs other318

iterative solvers that are designed to handle non-PSD cases such as MINRES (for319

indefinite matrices) or GMRES (for non-symmetric matrices when good precondi-320

tioning is available). We now compare the performance of a direct solver with the321

CG method on both CPU and GPU. The accuracy results are shown in table 2322

to demonstrate all three methods succeed in producing correct results. We should323

note that by default GPU works with Float32 which normally has significantly324

higher peak FLOPS than Float64. For convergence and accuracy comparisons325

however, we chose Float64 on GPU to compare with Float64 on CPU32. Float32326

on GPU still yields rather high accuracy (up to 2−9) which can be sufficient enough327

(depending on our accuracy requirements) while obtaining optimal performance.328

We evaluate the performance here according to how long it takes to solve the lin-329
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Grid Amounts Direct Solver GPU Iterative CPU Iterative

N Log2(errorN ) Log2(errorN ) Log2(errorN )
23 -7.140701 -7.140701 -7.140701
24 -9.170836 -9.170835 -9.170836
25 -11.17709 -11.177089 -11.177089
26 -13.178418 -13.178418 -13.178461
27 -15.178715 -15.178781 -15.178781

Table 2: Log Errors (base 2) Comparison of Direct Solver and Iterative Solver

ear system and how much memory is allocated. In order to achieve reproducible330

results, we use the zero vector as the initial guess for the CG method. In practice,331

using a random initialization normally gives 10x speed-up on our problem. We use332

the BenchmarkTools.jl package for performance evaluation.333

N Direct Solver GPU Iterative CPU Iterative Direct Solver After LU

23 91.387 µs 143.526 µs 1.112 µs 3.082 µs
24 313.194 µs 158.186 µs 4.249 µs 12.953 µs
25 1.180 ms 165.876 µs 10.934 µs 58.580 µs
26 5.799 ms 599.566 µs 37.629 µs 271.836 µs
27 32.527 ms 12.113 ms 144.675 µs 1.308 ms

Table 3: Time Comparison of Direct Solver and Iterative Solver

N Direct Solver GPU Iterative CPU Iterative Direct Solver After LU

23 68.99 KiB 5.64 KiB 2.97 KiB 1.47 KiB
24 250.24 KiB 5.67 KiB 8.13 KiB 4.91 KiB
25 988.21 KiB 5.75 KiB 26.91 KiB 17.41 KiB
26 4.03 MiB 5.75 KiB 100.27 KiB 66.31 KiB
27 22.27 MiB 2.93 MiB 651.58 KiB 260.31 KiB

Table 4: Memory Comparison of Direct Solver and Iterative Solver

After we verified the correctness, we compare the performance of the direct334

and iterative methods in terms of time and memory. For iterative methods, we use335

built-in CG method in IterativeSolvers package. For hyperparameters in CG, we336

use default ones. The maximum number of iterations is chosen to be the size of337

the linear system and the tolerance is set to be the square root of machine epsilon338

for a given floating point type. The results are given in table 3 and 4 respectively.339

Within the context of a time stepping method, the cost of the LU factorization is340

overhead cost; once it’s obtained, it can be reused in direct solver. Therefore, to341

compare the actual performance of the iterative solver with direct solver, excluding342

the cost of LU factorization is an important consideration when working with a343

time-dependent problem. However we should note that the size of the system that344

we can solve is limited by the memory cost from LU decomposition. As we can345

see from the table 4 and 3, for our system, even with factorization cost removed,346
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the iterative solver on CPU still out-performs the direct solver both in time and347

memory for the same problem. This nice speedup from using the CG iterative348

solver is most likely coming from the fact that our matrix is PD. Another nice349

property of our system is the narrow-band sparsity, which requires significantly350

less computational cost with iterative solvers compared to having factorization351

that cannot preserve sparsity. Both iterative solvers on CPU and GPU would use352

parallel framework such as BLAS and CUDA to accelerate, which is less practical in353

factorization. All these three contribute to the fact that even though factorization354

results can be reused, solving this system with direct method is still much more355

expensive than using iterative solvers.356

3.2 Further Speedup of Iterative Solvers357

One nice feature of using an iterative solver is the access to matrix-free methods358

where instead of forming matrix A, we compute the product Ax. We do this by359

writing a function f(x) that takes vector x as input and directly modifies the entries360

of x to achieve the same results of Ax. A naive example would be when A is identity361

matrix, we can use f(x) = x that export x itself as output which has the same362

effect as multiplying x by identity matrix A in Ax. A matrix-free implementation is363

extremely handy when the matrix A is sparse and is close to diagonal or tridiagonal364

with very low bandwidth such as we have in the hybridized SBP-SAT method.365

Using matrix free methods reduces the memory allocation from forming matrix A.366

And in-situ operations on x are faster in some cases by reducing the cost of forming367

intermediate results and storing them in matrix multiplications. One thing we need368

to be careful about is that Julia’s hidden pointer mechanism makes it prone to369

data contamination when we tried to use some of Julia’s notations for fast I/O.370

The solution is similar to writing Julia in C++ where you need to determine371

the data containers needed in advance and allocate them in memory, then reuse372

these containers in matrix-free functions. Our implementation showed that matrix-373

free functions achieve speedup of several times to ten times compared to sparse-374

matrix counterparts with zero garbage collector (GC) times. The zero overhead375

is extremely important because for large matrix operations, GC would determine376

the maximum time to finish a task, which would cause the volatility in run-time377

behavior depending on system load. For ideal parallelization, we would expect less378

volatility in order to have nice static load balancing in designing parallel scheme379

with optimal performance. Our matrix-free method can be easily parallelized using380

built-in multi-threading macros in Julia.381

To demonstrate the speed-up of multi-threading in Julia, we compared two382

versions of the same matrix-free functions, one with multi-threading and one in383

serial. The only difference is that in the multi-threaded matrix-free function, we384

add the @threads macro before the for loops. We tested speedup from multi-385

threading with respect to different system sizes. In our local environment, we set386

the number of threads in Julia to be 4. The results are shown in the table 5. Multi-387

threading has fixed overhead which makes it more expensive when our system is388

small, but as the size of the problem increases, this overhead is negligible and we389

can see significant speed-up from even naive implementation using the built-in390

macro. To further explore the speedup we can achieve by throwing more threads,391

we tested the case where N = 10000 on the Talapas server (https://datascience.392

https://datascience.uoregon.edu/talapas-supercomputer
https://datascience.uoregon.edu/talapas-supercomputer
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uoregon.edu/talapas-supercomputer) . Using 32 threads, we achieve 10x speedup.393

As the system size increases, We are expected to see more speedup from the multi-394

threading technique.395

Serial Multithreading

N Time Memory Time Memory
100 56.014 µs 79.83 KiB 119.677 µs 87.33 KiB
1000 2.965 ms 7.64 MiB 2.173 ms 7.65 MiB
10000 809.077 ms 763.09 MiB 423.203 ms 763.10 MiB

Table 5: Performance of Multi-threading in Matrix-free Operators

The speedup from matrix-free operators themselves associated with feasible396

multi-threading in matrix-free methods make it more appealing when using itera-397

tive solvers compared to sparse-matrix formulations. However, one big challenge is398

to optimize the memory allocation and multi-threading in a compound functions399

that calls external functions. Our matrix-free CG method out-performs existing400

sparse-matrix CG implementations, but the speed-up is not ideal to what we401

expected from the speedup from consisting functions within our CG. Further op-402

timization would be needed to further leveraging the power of matrix-free method403

and parallel processing including multi-threading.404

4 Hybridized SBP Scheme405

One of the main goals of this work is to explore peformance gains using the newly406

proposed hybridized SBP-SAT scheme from Kozdon, Erickson, et al. (2020). In407

the finite element literature, a hybrid method is the method where one unknown408

is a function on the interior of the elements and the unknown is function on the409

trace of the elements (Ciarlet, 2002, page 421). For SBP methods particularly, we410

write the method in terms of local problems and associated global problem. In the411

local problems, for each block B ∈ a grid of blocks B, the trace of the solution412

(i.e., the boundary and interface data) is assumed and each set of equations (2) is413

solved locally over B. In the global problem the solution traces for each B ∈ B are414

coupled. This technique will result in a linear system of the form415 [
M̄ F̄

F̄
T
D̄

] [
ū

λ̄

]
=

[
ḡ

ḡδ

]
. (10)

Here ū is the approximate solution to (2) at all the grid points and λ̄ are the416

trace variables along internal interfaces; trace variables that are associated with417

boundary conditions can be eliminated. The matrix M̄ is block diagonal consist-418

ing symmetric positive definite blocks for each B ∈ B, D̄ is diagonal, and the419

matrix F̄ is sparse and incorporates the coupling conditions. The right-hand side420

vector ḡ incorporates both boundary data (gD, gN ) and source terms whereas ḡδ421

incorporates the interface data δ.422

Using the Schur complement we can transform (10) to (11a) and (11b). The423

problem size in (10) is significantly reduced since the number of trace variables is424

https://datascience.uoregon.edu/talapas-supercomputer
https://datascience.uoregon.edu/talapas-supercomputer
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Fig. 2: Sample 2D meshes with different block numbers

significantly smaller than the number of solution variables. Because M̄ is block425

diagonal here, the inverse of a block diagonal matrix can be obtained in a decoupled426

manner for each B ∈ B. Thus there is a trade-off between the number of blocks427

and the size of system (11a), since for a fixed resolution increasing the number of428

blocks means that M̄ will be more efficiently factored but the size of (11a) will429

increase through the introduction of additional trace variables.430 (
D̄ − F̄ TM̄−1

F̄
)
λ̄ = ḡδ − F̄

T
M̄

−1
ḡ, (11a)

(
M̄ − F̄ D̄−1

F̄
T
)
ū = ḡ − F̄ D̄−1

ḡδ. (11b)

The big picture of the hybridized method is described above, more detailed431

formulation of how local problems and global problems are formed can be found432

in Kozdon, Erickson, et al. (2020). For the problem that we are studying, we433

want to see the trade-off between the number of the blocks and the number of434

trace variables, and how this trade-off would affect the performance of solving435

Poisson’s equation 9 on a given domain. For evaluation, we used and modified the436

code in https://github.com/bfam/HybridSBP for our test. We generate different437

square meshes that have unit length with decreasing grid spacing using built-in438

mesh refinement in the Trelis meshing software. For a unit square domain, we439

can choose different numbers of blocks with different local meshing levels within440

each block to achieve the same number of total grid points in each direction. To441

demonstrate this, we use two different meshes with the same number of total grid442

points in each direction in figure 2. The first mesh has only one block with no443

trace variables, and each block has 22 +1 grid points in each direction. The second444

mesh has four blocks with internal boundaries marked in red, and each block has445

21 +1 grid points. Trace variables along these internal boundaries can be obtained446

from solving a global problem using Schur complement as described previously.447

We use mesh refinement to generate unit mesh with the number of blocks in448

each direction ranging from 1 to 210 in Trelis. Within each block, we start with449

24 and gradually start mesh refinement by increasing the number of grid points450

in each direction and creating the respective local operators. Note that this is451

https://github.com/bfam/HybridSBP
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Number of Grid Points Block Size Of Given Mesh

N 1 x 1 (LU Factorization) 2 x 2 4 x 4 8 x 8 16 x 16
24 X
25 X X
26 X X X
27 X X X X
28 X X X X
29 X X X X
210 X X X X
211 X LoadError LoadError X X
212 MallocError × × ? ?

Table 6: The largest system that can be solved with different number of blocks

different than in mesh refinement software where increasing the number of blocks452

also increases the number of interfaces. Mesh refining in Julia only applies to local453

operators, with number of interfaces fixed. The number of trace variables would454

increase because each interface now have more trace variables as a result of local455

block mesh refinement. The first question we are trying to answer is whether the456

hybrid-method with multiple blocks can help us solve a problem with more grid457

points in each direction without using iterative solvers under the constraint of458

available memory. We choose 6th order operators for comparison. We requested459

128 GB memory on the Talapas server and explored the largest problems we can460

solve with respect to different block sizes using the hybrid method with a direct461

solvers. We also added results from a single block as benchmark. The results are462

given in table 6463

In this table, N+1 refers to the total number of grid points in each direc-464

tion. The MallocError in the table refers to the memory allocation errors that465

we encountered in the LU decomposition. The LoadError in the table refers to466

the error of loading the Cholesky factorization which is used in the hybridized467

method. They are denoted differently but the reasons are all associated with the468

limitation of memory for factroizations. We are limited by the size of the matrices469

that we can factorize. Note that our non-hybrid implementation on single block470

previously used LU factorization instead of Cholesky factorization. The results471

between a single block with multi-blocks can be inconsistent. But we can see as472

we increase the number of the blocks, we are able to solve this problem on a larger473

system. The reason that we couldn’t finish working on the server is limited by the474

job length that we submitted. The calculation for 212 block was terminated for475

both cases. No factorization error was reported after successfully obtaining results476

for 211. This means that given enough time, we are expected to see the system477

being solved with 212 grid points along each side on an 8×8 block. This is further478

confirmed that even though both the 8×8 grid of blocks and 16×16 grid of blocks479

can be used to solve a system with 211 + 1 total grid points in each direction, the480

memory allocations on the latter one is much less than the previous one because481

the most computationally expensive part is factorization, and in hybrid scheme,482

this is associated with local block sizes. The number 8 in 8 × 8 here refers the483

number of the grid points is 28 + 1. If there is no mesh refinement within each484

grid, the associated linear system has the size of 216 by 216.485
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N Grid Size Of Given Mesh

4 x 4 8 x 8 16 x 16
NV ol

p NTr
p NV ol

p /NTr
p NV ol

p NTr
p NV ol

p /NTr
p NV ol

p NTr
p NV ol

p /NTr
p

26 4624 408 11.33 5184 1008 5.14 6400 2400 2.67
27 17424 792 22 18496 1904 9.71 20736 4320 4.8
28 67600 1560 43.33 69696 3696 18.86 73984 8160 9.07
29 266256 3096 86 270400 7280 37.14 278784 15840 17.6
210 1056784 6168 171.33 1065024 14448 73.71 1081600 31200 34.67
211 4210704 12312 342 4227136 28784 146.86 4260096 61920 68.8

Table 7: Number of volume points and trace variables with different number of
blocks

The reason why we are seeing significantly long run-time from the code is486

because in the original implementation of the hybrid method, there is no parallel487

mechanism involved. Ideally, since each block is decoupled after solving the global488

problem, the factorization for each block can be done independently. Also in the489

hybrid method, many interior blocks have the same boundary conditions, which490

results in identical SBP operators on the LHS for these blocks. Therefore there is491

no need to do factorization for each matrix on the LHS. We only need to compute492

a factorization for each distinctive local matrix and reuse the result when we493

encounter an identical one. This is also not implemented in the code. The work of494

performance improvement is crucial to not just being able to solve a larger problem,495

but also solving it faster. We will continue exploring the optimization of the hybrid496

method. Nevertheless, with larger block-sizes, we can still solve the problem faster497

with more blocks. For direct solve after obtaining factorization results, we can498

also use multi-threading for acceleration. We set number of threads to be a fixed499

value 6, and we evaluate performance on meshes with different block numbers. To500

avoid the impact of jobs being assigned to different node with different capacity,501

we tested performance on a local computer with i-9500f CPU and fixed 16 Gb502

memory. The result is given in the table 8. For comparison we also list the number503

of volume points and trace variables in table 7. They are defined as:504

Nvol
p = (Nl + 1)2Nb

N tr
p = (Nl + 1)NI

Here Nb represents the number of blocks, Nl refers to the number of grid points505

in each direction in the local blocks. NI represents the number of interfaces. The506

ratio N tr
p /N

vol
p would increase for the same N as we increase the number of blocks,507

which can be confirmed with data in table 7.508

From table 8 , we can see as we increase the number of blocks, for the same N ,509

more numbers of blocks mean more local systems to solve, but the total time to510

solve all these local system is less. The computational complexity of direct solvers511

after factorization is O(N2). (Here N means the size of the system, not number512

of grid points in each direction). For each N , doubling the number of blocks in513

each direction would reduce the size of the local system to 1/4. The cost of solving514

each local problem is 1/16 of the previous one. But we also have 4 times more515

local systems. The total cost should be reduced by 1/4. We can see the time to516

do the direct solve after LU decomposition is faster, but the speedup is not 4x.517
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Number of Grid Points Grid Size Of Given Mesh

N 4 x 4 8 x 8 16 x 16
26 0.00410 s
27 0.00270 s 0.00510 s
28 0.01370 s 0.00920 s 0.00840 s
29 0.05480 s 0.02920 s 0.021300 s
210 0.29040 s 0.19320 s 0.11650 s
211 LoadError 1.12210 s 0.89510 s

Table 8: Time for direct solvers after factorization with different number of blocks

Number of Grid Points Grid Size Of Given Mesh

N 4 x 4 8 x 8 16 x 16
26 1251.687673025973
27 0.2722459250042488 8076.298905171896
28 0.006891702238438522 0.006643733883857528 11821.804240653208
29 0.00016887738908282545 0.0001429235518197867 0.0017873144253085962
210 3.932605990678488e-6 2.7931022138805148e-6 3.6928926337184484e-6
211 LoadError 7.434960489253316e-8 8.87865211871948e-8

Table 9: Errors for direct solvers with different number of blocks

The reason could be from implementation side, or it is coming from the fact that518

we are solving a sparse system instead of a dense system. Further experiments are519

needed to answer this question.520

We need to further verify that using different number of blocks in hybrid521

method can give results with errors at the same level if not identical. We listed522

results in table 9. Errors for the coarsest mesh on different blocks are significantly523

larger than the rest, this is because of the test function we used in Kozdon, Erick-524

son, et al., 2020. As we continue further mesh refinement in each local block, we525

would obtain sigfinicantly reduced errors that are also converging.526

The results are shown in table 10. The cost for forming the global problem527

and solving for trace variables, although not optimized with parallel scheme, also528

favors using more blocks for a given N that is sufficiently large. But for smaller N ,529

further increasing the number blocks increases the number of trace variables in the530

global problem, hence solving the global problem becomes the bottle-neck for the531

whole problem. This can be seen when N=28 and 29, using 16× 16 blocks results532

in worse performance compared to using 8 × 8 block. With optimized parallel533

implementation leveraging the advantage of having more decoupled local systems,534

we would expect for a very large system size that the hybrid SBP method would535

outperform the non-hybrid SBP method on a single domain. The fact that each536

local system is decoupled makes this problem embarrassingly parallel, which is537

extremely suitable for architecture that is better for computationally intensive538

tasks rather than I/O intensive tasks.539

5 Conclusions540

We tested the SBP-SAT method in solving Poisson’s equation on a single domain.541

Our results show that the Conjugate Gradient method on CPU outperforms Con-542
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Number of Grid Points Grid Size Of Given Mesh

N 4 x 4 8 x 8 16 x 16
26 0.202 s
27 1.460 s 0.005 s
28 3.961 s 2.374 s 4.650 s
29 34.330 s 19.740 s 29.408 s
210 307.085 s 183.804 s 167.213 s
211 LoadError 1522.338 s 1170.490 s

Table 10: Time for solving global problems with different number of blocks

jugate Gradient methods on GPU and direct solvers on CPU even excluding fac-543

torization costs. We weren’t able to test direct methods on GPU in our previous544

test due to the lack of properly implemented Julia interface to CUDA libraries.545

GPU iterative solvers have high start-up costs which make them not suitable for546

solving Poisson equations on a small system. We were limited by the incompat-547

ibility of Julia packages in GPU computing and linear algebra and we failed to548

test further on a large system. But computations on GPU are more scalable for549

linear algebra operations and also more ideal for computationally intensive jobs550

that are bottle-necked by I/O through-put between GPU and CPU. We are able551

to test more thoroughly with recent updates in Julia and related packages that fix552

the existing issues that limit our previous implementation.553

We also tested the newly proposed hybrid SBP scheme. Our result shows that554

hybrid SBP method can work on a larger system compared to traditional non-555

hybridized SBP method under the constraint of system memory. Our empirical556

results also show that the hybrid method achieves better performance on a system557

with more blocks. For certain values of N , using more grid points at the start558

improves performance, but further increasing the number of blocks reduces the559

performance. To explore the trade-off relationship between the number of trace560

variables and the local problem size quantitatively, we need to test our problem561

on more grids with different numbers of blocks.562

We bench-marked existing implementations to identify several issues that limit563

the size of the system that we are able to solve. We tested different methods to564

improve the current implementation. Results from our study form the foundation565

of utilizing the new finite difference method whose hybrid structure is ideally566

suited for GPU parallelization to achieve performance gains. This is much needed567

for simulations on a large problem which would give rise to a extremely large linear568

system that can’t be solved with existing method and implementation, in order to569

understand the behaviors of earthquakes in real scenario.570
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