
WalkGAN: pairwise adversarial network alignment
Luis F. Guzman-Nateras

University of Oregon
lguzmann@uoregon.edu

Yang Zhou
Auburn University

yangzhou@auburn.edu

Dejing Dou
University of Oregon
dou@cs.uoregon.edu

Abstract—Network alignment (NA) consists on finding the
optimal node correspondence between distinct networks (graphs).
Previous works in this field have had various degrees of success.
However, they rely on some strong assumptions of topological
and/or attribute consistency among the aligned networks. Simul-
taneously, Generative Adversarial Networks (GANs), generative
models that have achieved remarkable results on continuous
data such as images and audio, have recently been successfully
applied to tasks with discrete domains, such as text generation.
This work presents our efforts into designing a GAN-based NA
model to address the limitations of other approaches by exploiting
(1) random walks’ trait of being able to capture the local and
global topological structure of networks and (2) GAN’s ability to
estimate the unknown distribution of the training data.

Index Terms—network alignment, generative adversarial net-
works, node embeddings

I. INTRODUCTION

Network Alignment (NA) consists in finding node corre-
spondence across different networks. That is, for each node
in a given network, find a node (or set of nodes) in a second
network, that is (are) most likely to correspond to it. NA is
often the first step in many data mining tasks [26] that analyze
the complex structure and diverse relationships of several net-
works. Because of this, NA has attracted lots of attention from
both the academic and industry environments [6]. Mapping
pairs of similar nodes in different networks has many potential
useful applications, such as user alignment in social networks.
If the same (or similar) users can be identified in distinct social
networks, for example, their profiles’ characterization can be
improved for more accurate classification or recommendations
[23].

In this work, we focus on Pairwise Network Alignment
(PNA)1, which refers to finding the optimal alignment between
a pair of networks. In contrast, Multiple Network Alignment
(MNA) also aims to find an such an alignment, but between
several (> 2) graphs2. PNA and MNA have each their own
advantages and disadvantages. PNA is, usually, an easier
problem to solve. However, in MNA there is more information
available, which can lead to alignment results that would not
be possible without multiple networks [6]. We restrict our
work to PNA due to the nature of the proposed approach.
Nonetheless, we do not discard it from being applicable to
MNA (with some adjustments) in the future.

1When used in this paper, the term NA refers to PNA, unless stated
otherwise.

2The concepts of network and graph are used interchangeably throughout
this paper.

A. Motivation

Previous efforts in NA have had various degrees of suc-
cess. Nonetheless, there are still areas for improvement. One
example of this is the fact that some works [11, 21, 26]
hold what is known as the topology consistency assumption.
That is, nodes share a consistent connectivity structure across
different networks. However, it is often observed that nodes
corresponding to the same entities have very diverse neighbors
and behaviors in different networks. Thus, they have quite
different structural features. Say, for instance, two social
networks with distinct semantics such as Facebook, which is
mostly used for socializing with friends, and LinkedIn, which
is used for job or professional purposes. This assumption can
lead to sub-optimal or misleading alignments if it does not
reflect the actual state of the networks.

Other related works [23, 26], rely heavily on attribute
information to make precise alignments. However, this infor-
mation may be unreliable, incomplete, or all-together missing
which makes these methods not applicable in some instances.
Many unsupervised NA algorithms rely heavily on highly
discriminative attributes and node/edge types to ensure the
effectiveness of the alignment, thus limiting their applicability.
MEgo2Vec [25], for example, generates candidate pairs by
considering only user pairs that share similar usernames. Yet,
the same user does not always use similar usernames in
different networks.

Finally, supervised NA methods use prior alignment knowl-
edge in the form of anchor nodes (sometimes referred to as
anchor links). These anchors are pairs of nodes (or sets in
MNA) for which the alignment is already known (e.g. a user
whose accounts are known in both Facebook and Twitter).
The anchors are used for validation purposes and as alignment
constraints to guide the alignment process. However, a large
number of anchor node pairs are necessary to maintain the
quality of the network alignment.

Concurrently to the research efforts in NA, Generative
Adversarial Networks (GANs) were presented in [8]. GANs
are frameworks to estimate generative models – models ca-
pable of generating data – by jointly training two distinct
neural network models: a Generator and a Discriminator. They
achieve this by proposing a minimax two-player game in
which they pit the generator and discriminator against each
other as adversaries. The purpose of the generator is to capture
the distribution of the training data by producing data samples
from a noise distribution. Meanwhile, the discriminator esti-

mates the probability of a sample coming from the training
data (also referred to as real samples) or from the samples
created by the generator (fake samples). The generator is
trained with the objective of maximizing the probability of
fooling the discriminator. That is, making the samples created
by the generator as similar to the real samples as possible.
A unique equilibrium point for the proposed minimax game
exists. In such equilibrium, the generator matches the training
data distribution exactly, and the discriminator is unable to
distinguish between the real and the fake samples.

GAN training is known to be complicated and unstable
[1], making it difficult to reach the equilibrium solution.
Nonetheless, GANs have been used to successfully estimate
generative models capable of producing continuous data– such
as images and audio–with some impressive results [1].

B. Contribution

Our objective is to design a semi-supervised NA method to
align a pair of networks containing only topological informa-
tion with few prior alignment knowledge.

Random walks have proved to be a powerful tool to capture
both the local and global topological structure of networks.
We argue that, it is highly possible for two nodes in different
networks to belong to the same entity if multiple truncated
random walks through them also go through many common
anchor nodes. This implies these nodes share many common
anchor nodes within their L–neighborhood, where L is the
length of the truncated random walks. The reason to use
truncated random walks with length L (L > 1), instead of
using direct neighbors (i.e., L = 1), is that it is possible that
there are no common anchor neighbors within 1–neighborhood
when the amount of prior knowledge (anchor nodes) for
training is limited, exacerbated by the assumption that the
two networks have different topological features. On the other
hand, by extending the radius of the neighborhood to L, there
is a larger probability of finding common anchor neighbors
within L–neighborhood since the two networks should still
share some common structural features.

The main contribution of this work is to present a novel
effort into using a GAN framework to tackle the problem
of pairwise network alignment. Our intuition being that, by
using random walks as training data, a successfully trained
generator will capture the data distribution of a network. Thus,
addressing the topology and attribute consistency assumptions
that are widely embraced by other NA approaches, while
still obtaining good alignment results even on networks with
distinct semantics in which such assumptions do not hold.

II. BACKGROUND AND RELATED WORK

We acknowledge as background, or related work, research
efforts that fall into the following areas:

• Node embedding generation.
• Network alignment.
• GANs applied to discrete data.

A. Node embeddings

Recently, with the success attained using representation
learning techniques such as word2vec[13] in domains like Nat-
ural Language Processing (NLP), network-embedding tech-
niques have also been developed to learn latent network
features [4, 9, 17, 22]. These techniques have been shown
to be more effective at capturing the latent characteristics
of a network [17, 23], and more efficient than their matrix-
factorization based counterparts [9, 15].

DeepWalk [17] was probably the first graph representation-
learning approach that gained popularity. DeepWalk learns
latent representations of a graph’s nodes by modeling a series
of short, uniformly-sampled random walks. The use of random
walks to extract information from a network has two main
advantages: it’s easy to parallelize, and it’s easy to accommo-
date for small changes in the graph structure without having to
recompute its representations. A node embedding captures its
neighborhood similarity and community membership using the
SkipGram [16] algorithm. SkipGram is a language modeling
technique that aims to create word embeddings such that the
vector features can predict nearby words. In a graph context,
the embedding features should be able to predict the node’s
neighbors or its ‘community’.

Node2Vec[9] is an extension upon the random walk ap-
proach to generating the network embeddings. Instead of
using a uniform approach to generate the random walks, the
authors specify a search bias αpq which depends on two hyper-
parameters (p and q) and affects the transition probabilities of
the random walks. The p and q parameters guide the direction
of the walk in the following way:

• p controls the likelihood of returning to the last visited
node. Setting p to a high value makes it less likely to
backtrack along the path, while setting a low p value
would encourage the walk to remain “local”.

• q allows the search to distinguish between “inward” and
“outward” nodes. A higher q value makes the search
biased towards nodes closer to the current node, while
doing the opposite encourages outward exploration.

This approach to random walk generation proved to be more
effective at tasks like multi-label classification and link pre-
diction than the uniform generation approach (equivalent to
p = 1, q = 1) used by DeepWalk.

There are other, non-random-walk-based approaches such
as LINE[22], which optimizes two distinct loss functions: one
approximating the first-order proximity between nodes, and
another for the second-order proximity. First-order proximity
is considered to be the local pairwise proximity between two
nodes indicated by the weight of the edge between them. If
there’s no edge between two nodes then their local proximity
is 0. Second-order proximity is the similarity between the
neighborhood network structure of two nodes. The idea behind
it is that if a pair of nodes have very similar neighborhoods
then they must be similar to each other, even if there’s no
direct link between them.

B. Network alignment

Extensive research has been performed on NA. One com-
mon approach is to compute the structural alignment between
networks by using matrix factorization (usually Eigenvalue
decomposition) of the networks’ adjacency matrix [2, 14, 21].
These approaches, however, usually involve taking the matrix
inverse, which makes them costly and hard to scale up for
large problems[15].

In FINAL[26] the authors propose a family of network
alignment algorithms for attributed networks. Instead of re-
lying only on the network’s topology to find node correspon-
dence, the authors argue that integrating attribute information
from the nodes, which is usually present in many networks,
can lead to better alignment results. This means they do not
need to rely as much on the networks being topologically
consistent, i.e., that the nodes display a consistent connectivity
structure across networks.

REGAL[11] was the first work to propose node embeddings
that generalize to multiple graphs. The approach to finding
cross-network node similarity in REGAL is different from the
singular network approaches [9, 17] because in these types
of problems the nodes have no direct links between them
and, thus, cannot be sampled by random walks. Instead, they
define their similarity function in terms of structural identity
and attribute-based identity. For structural identity, they build
a vector using the degrees of the node’s neighbors at varying
distances. In the case of attribute-based identity, they create a
vector representing the node’s attribute values.

Another approach to network embedding generation and
alignment is the IONE algorithm [15]. IONE encodes a node’s
follower-ship (incoming links) and followee-ship (outgoing
links) into input and output context vectors, hence IONE
(Input-Output Network Embedding). The idea being that the
embedded space will preserve the proximity of nodes with
similar sets of followers/followees. It also can use both known
and suspected anchor users as hard and soft constraints to aid
in contextual information transfer. Its objective function is built
taking into account all these factors so that the embeddings
are generated and the nodes are aligned simultaneously.

An MNA approach that also makes use of embedding
representations is presented in CrossMNA[6]. Their approach
consists on generating 3 different types of vectors. A network
vector for each of the networks that reflects the similarity
of global structure between networks. An inter vector for
each node in a network that is shared across known anchor
nodes and preserves the common features between such anchor
nodes. And an intra vector for each node in the network that
depicts the community features of a node within its selected
network. They use the inter vectors to perform cross-network
alignment.

In DeepLink[28], the authors propose to learn a soft bidi-
rectional mapping between the embeddings of two networks
using shallow neural networks and supervised learning. Then
these soft mappings are jointly optimized in an unsupervised
manner. Finally, the mappings are again improved via a

supervised dual learning game in which each one tries to align
the two latent spaces according to the rewards of mapping the
anchor nodes.

The approach presented in SNNA[5] projects the distribu-
tion from a source network into the distribution of a target
network using an adversarial learning framework. In their
work, the authors rely on attribute information and feature
extraction besides pure strutural information when creating the
latent space. They use a modified WGAN loss and test three
versions of their approach: unidirectional, bidirectional, and
orthogonal projection model with this latter one obtaining the
best performance.

C. GANs for discrete data

Even though GANs were originally envisioned to work with
continuous data such as images, there have been efforts into
applying GAN-like architectures to deal with discrete data,
particularly in Language Modeling (LM). Language models
estimate the probability of a sequence of words and can
be used to generate text sequences by sampling from these
estimated distributions.

In TextGAN[27], the authors present an approach that uses
an LSTM-based RNN generator with a CNN discriminator to
produce text sequences at the word level. They use the standard
GAN loss function but propose an approximate discretization
to select the next character in the sequence at inference time.

A similar effort is presented in [19]. The authors, however,
explore both CNN and RNN architectures for the discriminator
and the generator. Additionally, they use the WGAN loss
function along with curriculum learning to train their models.

The authors of [18] use the WGAN loss function, along
with an RNN-based generator and discriminator. They work
at the character level to generate the text sequences but do
not perform any sampling at training time. Instead, they feed
the discriminator with ‘soft’ distribution vectors as the ‘fake’
sequences, and one-hot encoded vectors for the real ones.

Another, more recent, effort into adversarial text generation
is the MaskGAN model presented in [7]. In their work, the
authors use sequence-to-sequence models (encoder-decoder
pairs) for both the generator and discriminator. They use
the WGAN loss function and use reinforcement learning to
estimate the gradient updates for the generator. Another key
component of their work, is that they “mask” some of the
words in the sentence and their objective is to train their
models to predict these masked elements based on their
context.

Finally, NetGAN[3], though not a language model, is a
different example of a GAN architecture applied to discrete
data. The authors tackle the task of reconstructing a graph by
training a discrete GAN model to learn to generate sequences
of nodes using random-walks, taken from the original graph, as
the training data. In their work, the authors use an RNN-based
generator and discriminator. They also use Gumbel-Softmax
reparametrization to deal with the flow of gradients during
backpropagation.

We consider NetGAN to be the work that is most closely
related to ours. We adopt some of the fundamental ideas
presented in both MaskGAN[7] and NetGAN[3] and combine
them into our proposal which is described in section III.

III. WALKGAN: AN ADVERSARIAL NETWORK ALIGNMENT
APPROACH

A. Problem definition

A pairwise network alignment problem has two networks
denoted as Gk = (V k, Ek)(1 ≤ k ≤ 2), where V k =
vk1 , . . . , v

k
Nk is a set of nodes with cardinality |V k| = Nk,

and Ek = {(vki , vkj) : 1 ≤ i, j ≤ Nk, i 6= j} is a set
of edges. A node vki ∈ V k(1 ≤ i ≤ Nk) represents an
entity in Gk (e.g., a person in the Facebook graph). An
edge (vki , v

k
j) ∈ Ek is associated with two nodes vki and

vkj , and denotes a relationship between two entities (e.g., two
persons that are friends on Facebook would have an edge that
links their corresponding nodes). The objective of the pairwise
alignment problem is to match nodes v1i ∈ G1 and v2j ∈ G2

that belong to the same entity (e.g., given a known person on
Facebook, find the same person on Twitter).

In addition, in network alignment problems, it is usual to
have a set of anchor-node pairs Anc = {(v1i , v2j)|v1i ↔ v2j },
where v1i and v2j are the anchor nodes in G1 and G2 respec-
tively, and v1i ↔ v2j indicates that v1i and v2j belong to the
same entity. That is, the set of anchor nodes Anc consists
on pairs of nodes for which the corresponding alignment is
already known. These pairs of already aligned nodes can then
be used as ground truth for validation purposes, or to guide
the alignment process.

When performing the alignment, nodes are represented as
vectors or node embeddings. Using a vector representation
allows nodes to be compared using distance metrics, and to
be used as inputs for the neural network architecture. A simple
way to define the vector representation of a given node vki is
to use the corresponding ith row of the adjacency matrix Ak

of Gk. Ak is an Nk × Nk matrix where the value at the
ith row and jth column, denoted as Ak

ij , specifies the value
of the edge between nodes vki and vkj . The symbol Ak

i can
then be used to denote the ith row vector of Ak, which is
used to specify the vector representation of the node vki . For
ease of presentation, we use vki to denote the node itself and
its vector representation Ak

i . This simple approach, however,
leads to representations that are very sparse due to their high
dimensionality (Aki ∈ RNk

). Instead, we utilize existing,
representative node embedding approaches, such as DeepWalk
[17] and Node2Vec [9], to learn the pre-trained individual
embeddings of the nodes in G1 and G2, respectively. These
techniques map the vector representation Ak

i of each node
vki to a low-dimensional embedding uki with the minimum
reconstruction error between the output and the input, i.e.,
vki : RNk 7→ uki : RD and D << Nk. The alignment of the
networks is then performed in terms of these low-dimensional
embedding features u1i and u2j .

B. Random Walk Generation

Random walks have been shown to be able to capture
the structural features of a graph [9, 17]. A Random-Walk
Generator (RWG) receives a network Gk as an input and
produces a finite random walk through the network as the out-
put. For our experiments, we tried with two distinct random-
walk generation strategies. Both aim to make multiple random
walks capture as many topological features of the anchor nodes
v1i ∈ Anc as possible.

Both strategies use G1 as the input network and uniformly
sample a random anchor node v1i ∈ Anc as the starting point
of a walk W 1

i . We then repeatedly generate R random walks
of length L beginning from v1i . These walks are denoted
as W 1

i1, . . . ,W
1
iR. We use the symbol W 1

irl to represent the
lth(1 ≤ l ≤ L) node in the rth(1 ≤ r ≤ R) walk starting
from v1i . Notice that W 1

ir1 = v1i .
Our random-walk generation strategy, here-on denoted as

RWG1, is summarized in the following algorithm:

Algorithm 1 Random-walk generation strategy 1

1: procedure RWG1(W 1
irl, Anc)

2: W 1
ir ← [W 1

irl]
3: l← 0
4: while |W 1

ir| < L do
5: v1l ←W 1

irl

6: if Neighbors(v1l) ∩Anc ∩W 1
lr 6= ∅ then

7: v1l+1 ← sample(N(v1l) ∩Anc ∩W 1
lr)

8: else
9: if Neighbors(v1l) ∩W 1

lr 6= ∅ then
10: v1l+1 ← sample(N(v1l) ∩W 1

lr)
11: else
12: Discard W 1

ir

13: end if
14: end if
15: W 1

ir.append(v1l+1)
16: l = l + 1
17: end while
18: return W 1

ir

19: end procedure

where Neighbors(v) is a function that returns the set of
nodes that share an edge with node v, and W 1

lr is the
complement of the set of nodes already in W 1

lr. The RWG
algorithm prioritizes to randomly sample an unvisited anchor
neighbor of the last visited node vil , if there are any available.
Otherwise, it uniformly samples from the unvisited non-anchor
neighbors of vil . These steps are repeated until the desired
length L of the walk is reached, or all neighbors of vil have
been visited during the generation of W 1

ir and the current,
partial walk is discarded. This process is replicated for every
anchor node in A until the desired number R of walks per
anchor node is achieved.

Our RWG1 approach encourages each random walk to go
through as many anchor nodes as possible, while also visiting

distinct nodes and avoiding creating loops. This makes the
radius of the subgraph (i.e., path of W 1

ir) as large as possible.
Similarly, our second random-walk generation strategy

(RWG2) is summarized in the following algorithm:

Algorithm 2 Random-walk generation strategy 2

1: procedure RWG1(W 1
irl, Anc)

2: W 1
ir ← [W 1

irl]
3: l← 0
4: while |W 1

ir| < L do
5: v1l ←W 1

irl

6: if v1l ∈ Anc then
7: if Neighbors(v1l) ∩W 1

lr 6= ∅ then
8: v1l+1 ← sample(N(v1l) ∩W 1

lr)
9: else

10: Discard W 1
ir

11: end if
12: else
13: if Neighbors(v1l) ∩Anc ∩W 1

lr 6= ∅ then
14: v1l+1 ← sample(N(v1l) ∩Anc ∩W 1

lr)
15: else
16: Discard W 1

ir

17: end if
18: end if
19: W 1

ir.append(v1l+1)
20: l = l + 1
21: end while
22: return W 1

ir

23: end procedure

The main change in our RWG2 strategy consists in not
allowing two non-anchor nodes to occur consecutively in
a walk. If the current node in the walk is not an anchor,
the next node must be sampled from the anchors. If there
does not exist a suitable anchor node, the walk is discarded.
The intuition behind RWG2 is that, by only having single
non-anchor nodes between pairs of anchors, the alignment
process can be simplified. There are, however, some drawbacks
to RWG2 when compared with RWG1 that arise from the
additional restrictions:
• Fewer random walks can be generated starting from each

available anchor node which, in turn, means that there is
less data available for training.

• The number of encountered non-anchor nodes is greatly
reduced. Consequently, there are fewer candidates for
alignment which limits the overall impact of our ap-
proach. This, nonetheless, can also be a considered as
a favorable characteristic since the non-anchors, that do
appear, are encountered more frequently and can be
aligned with more certainty.

The set W 1, with cardinality |W 1| = R ∗ |Anc|, of generated
random walks, using either RWG1 or RWG2, serves as the
data set for our experiments.

As each walk W 1
ir = (W 1

ir1, . . . ,W
1
irL) in W 1 is generated,

a binary mask Mir = (Mir1, . . . ,MirL) of the same length

is concurrently produced. Each element Mirl in a mask has a
value of 1, if W 1

irl is an anchor node, or a value of 0, otherwise.
Using a walk W 1

ir and its mask Mir, we then create a semi-
translated walk: given that the correct alignment for anchor
nodes is already known, every node in W 1

irl with mask Mirl =
1 is replaced by its corresponding node in G2. All other
nodes (those with mask Mirl = 0) are replaced by an empty
identifier φ representing non-anchor nodes in the walk. This
procedure yields a masked walk W 2

ir = (W 2
ir1, . . . ,W

2
irL) in

G2 that gets its name due to the fact that it’s composed by
translated anchor nodes and masked non-anchor nodes. Figure
1 illustrates the aforementioned procedure.

Fig. 1: Masking procedure: anchor nodes are colored blue,
non-anchors in yellow, and masked nodes in green.

C. GAN Model

The objective of our WalkGAN architecture is to match
pairs of nodes in the two networks in terms of both their local
and global structures. In this section we discuss the design
details of our model.

The generator in our GAN model is composed by two
distinct sub-models: the filler F and the translator T. The filler
receives a masked walk W 2

ir as input, and fills in the masked
nodes, identified by φ, with suitable nodes in G2. Thus, its
output is a filled walk Ŵ 2

ir = F(W 2
ir). These filled walks

Ŵ 2 serve as inputs to the translator model T which works as
an alignmenter and outputs translated walks Ŵ 1

ir = T(Ŵ 2
ir)

in G1. The generator G, as a whole, can then be defined as
G(W 2

ir) = T(F(W 2
ir))→ Ŵ 1

ir (Figure 2).

Fig. 2: Two-step Generator architecture.

The purpose of the discriminator D is to output the prob-
ability that a random walk belongs to either the set of real
random walks W 1 sampled from G1, or the fake random walks
Ŵ 1 created by the generator after filling and translating the
masked walks W 2.

The loss function for our GAN model is defined as the
following minimax optimization problem:

min
F,T

max
D
U(D,T,F) =

Ei∼p(i)Er∼p(r)[log D(W 1
ir)− log D(T(F(W 2

ir)))] (1)

The filler F computes and decomposes the distribution over
the whole random walk into the distribution of each non-
anchor node in the walk given the context of the mask Mir

(2).

F(W 2
ir) = P (Ŵ 2

ir|W 2
ir,Mir)

= P (Ŵ 2
ir1, . . . , Ŵ

2
irL|W 2

ir,Mir)

=

L∏
l=1

P (Ŵ 2
irl|Ŵ 2

ir1, . . . , Ŵ
2
ir(l−1),Mir) (2)

Where each distribution P (Ŵ 2
irl|Ŵ 2

ir1, . . . , Ŵ
2
ir(l−1),Mir)

is defined as a softmax over all nodes in G2.
Let F′ = P (Ŵ 2

irl|Ŵ 2
ir1, . . . , Ŵ

2
ir(l−1),Mir), which denotes

the filler at the node level, we can rewrite (2) as:

F(W 2
ir) =

L∏
l=1

F′(W 2
irl) (3)

The discriminator D computes and decomposes the prob-
ability of a sample random walk, W 1

ir or Ŵ 1
ir, being a real

walk into the multiplication of the probability of each non-
anchor node being real in the context of the mask Mir (4). D
has the same framework as F. The difference is it outputs a
probability of a sample random walk being real, rather than a
distribution over the node set V 2 and a filled node with the
maximum score.

D(W 1
ir) =

L∏
l=1

P (W 1
irl = real|W 1

ir,Mir)

D(Ŵ 1
ir) =

L∏
l=1

P (T′(F′(W 2
irl)) = real|W 2

ir,Mir) (4)

Where T′ is the translator at node level, i.e., translates a
node in a filled walk Ŵ 2

ir in G2 into a node in G1.
Similarly, let D′(Wirl) denote the discriminator at node

level, we can then reformulate (4) as:

D(W 1
ir) =

L∏
l=1

D′(W 1
irl)

D(Ŵ 1
ir) =

L∏
l=1

D′(Ŵ 1
irl) (5)

Therefore, we reorganize the original GAN model at the
walk level into another GAN model at the node level:

min
F′,T′

max
D′
U(D′,T′,F′) =

Ei∼p(i)Er∼p(r)[log D′(W 1
ir)− log D′(T′(F′(W 2

ir)))] (6)

Figure 3 presents a high-level view of the complete Walk-
GAN architecture: the generator G receives the masked walks
as input and outputs translated walks. These translated walks
are then fed to the discriminator D along with the real walks
for it to produce a prediction. Next, the prediction errors are
used to update the parameters of both the discriminator and
the generator. This procedure is iteratively repeated until the
model converges or a pre-determined maximum number of
iterations is reached.

Fig. 3: WalkGAN architecture.

D. Model framework

As mentioned in the previous section, the frameworks for
F and D are very similar. In both cases, we use an RNN-
based encoder-decoder model: the encoder receives a masked
random walk as input, and outputs the last hidden state of the
RNN model as the latent representation for the input walk.
The decoder uses the latent representation obtained by the
encoder to initialize its own hidden state and then produces
its desired output. The output of the decoder is where the
key difference between F and D relies: the former outputs a
probability distribution over the node set V 2, while the latter
outputs the probability of a given walk being real, i.e. that it
comes from W 1.

We use Long Short-Term Memory (LSTM) cells for our
RNNs. All vectors in the LSTM model have the same dimen-
sion D as the node embedding vectors. The LSTM cells can be
replaced with a different RNN model such as Gated Recurrent
Units (GRU) for enhancing the efficiency since they usually
display similar performance.

Without loss of generality, here we describe in greater detail
the LSTM architecture of the filler F. First, the encoder re-
ceives a masked random walk W 2

ir = (W 2
ir1, . . . ,W

2
irL) along

with its corresponding binary mask Mir = (Mir1, . . . ,MirL)
as input, and outputs its last hidden state hL as the latent
representation of W 2

ir. The decoder receives this represen-
tation vector and uses it to initialize its own initial hid-
den state h0. Next, it computes the conditional probability

P (Ŵ 2
ir1, . . . , Ŵ

2
irL|W 2

ir,Mir) node by node using the Soft-
max function. The Softmax function (7) operates on a context
vector hl (i.e., hidden state) and a node embedding vector uki
to compute the distribution of each non-anchor node in the
random walk over all nodes in G2.

P (Ŵ 2
ir1, . . . , Ŵ

2
irL|W 2

ir,Mir) =
exp(hTl · u2j)∑Nk

k=1 exp(hTl · u2k)
(7)

During training, whenever a non-masked node, i.e., anchor
node, is encountered during the filling process, it is left
untouched by the decoder: its embedding is appended to the
resulting filled walk Ŵ 2

ir and used as the input for the next step
in the process, independently of whatever the decoder outputs.
A masked node, however, is filled with the embedding u2j of
the node v2j ∈ V 2 that has the maximum Softmax value and
becomes an unmasked node Ŵ 2

irl. By repeating this process
for every masked node in the walk, the filler outputs the filled
walk Ŵ 2

ir.
The translator at the node level T′ is implemented by adding

an additional linear layer to translate each filled non-anchor
node Ŵ 2

irl in a filled walk Ŵ 2
ir in G2 into a corresponding

non-anchor node Ŵ 1
irl in the translated walk Ŵ 1

ir in G1.

Ŵ 1
irl = T′(Ŵ 2

irl) = WT · Ŵ 2
irl (8)

where WT ∈ RD×D is a translation matrix to be learned.
A fill and translation loss between the original masked non-

anchor nodes and the corresponding filled and translated non-
anchor nodes is used to improve the quality of the filling and
translation functions.

Ltrans = (9)

min
T′,F′

∑
v1i∈Anc

R∑
r=1

L∑
l=1

||W 1
irl −T′(F′(W 2

irl))||2, if Mirl = 0

E. Dealing with sampling

Unlike the generators in traditional GAN models which
generate fake images from a continuous noise space, the
process of unmasking a masked node W 2

irl, by selecting a
suitable real node, performed by the filler F is discrete. At each
time step, the filler samples from the estimated probability
distribution over all the nodes in V 2 in order to obtain the next
node in the sequence. However, sampling from a categorical
distribution is a non-differentiable operation which prevents
the use of the backpropagation algorithm to propagate the
gradients through the model and train it using the standard
Stochastic Gradient Descent (SDG) method [3].

Different approaches have been used to deal with the issue
of having a generator produce discrete data. The authors of
MaskGAN[7] use reinforcement learning to approximate the
generator’s gradient updates. In NetGAN [3] they make use
of the Gumbel-Softmax reparametrization trick [12]. Other
efforts such as [10, 18] propose not sampling at all during
training and only doing it during inference time for evalua-
tion purposes. In this work, we tried with two approaches:

initially, a policy gradient[20] based reinforcement learning
approach, and eventually, an approach using Gumbel-Softmax
reparametrization.

For our initial reinforcement-learning approach, we estimate
the parameters updates of F′ by performing gradient ascent
using an algorithm from the REINFORCE family:

∇θF′[Rl] = Rl∇θlogF′θ(W 2
irl) (10)

Similar to the approach in [7], a node generated at step l
not only defines the reward Rl, but also influences all future
rewards:

∇θF′[Rl] =

L∑
l=1

(Rl)∇θlogF′θ(W 2
irl) (11)

=

L∑
l=1

(

L∑
s=l

γsrs)∇θlogF′θ(W 2
irl) (12)

Where γ is non-zero discount factor that penalizes greedily
selecting a node that earns immediate high-rewards alone. We
define the rewards rs as follows:

rs = log
1

1−D′(T′(Ŵ 2
irs))

(13)

As mentioned previously, for our second approach we use
the Gumbel-Softmax transformation:

v∗l = σ(
pl + g

τ
) = σ(

F′(W 2
irl) + g

τ
) (14)

where σ is the softmax funtion, g are samples from a Gumbel
distribution with zero mean and scale of 1, pl is the probability
distribution estimated by the RNN generator at time l, and τ
is a temperature parameter that controls the trade-off between
better flow of gradients (large τ) and more exact calculations
(small τ). Then, the next node in the sequence is obtained by
taking the argmax, and encoding it as a one-hot vector.

vl = one hot(argmax(v∗l)) (15)

This one-hot encoded vl is used as the input for the next time
step. However, during the backward pass, the gradients flow
through the differentiable v∗l [3].

F. Wasserstein GAN

The standard GAN loss function seeks to improve the
discriminator’s ability to distinguish between real and fake
data while, at the same time, improving the generator’s ability
to trick the discriminator. The aforementioned, creates a zero-
sum game that forces both to improve their functionalities.
Mathematically, this is expressed as a minimax game in which
the following loss function is optimized:

min
G

max
D

L(D,G) = (16)

Ex∼pr(x)[log D(x)] + Ez∼pz(z)[log(1−D(G(z)))]

If the generator is trained to its optimal point, then pg = pr
and D∗(x) = 0.5, i.e., the discriminator is not able to tell
the real data apart from the fake one. In practice, however,
achieving this point of equilibrium is difficult since each model

updates its cost independently, and updating both models
concurrently does not guarantee convergence. Because of this,
GAN training is known to be delicate and unstable [1].

Two of the most common problems that arise during the
training phase are vanishing gradients3 and mode collapse.
Vanishing gradients occur when the discriminator quickly
learns to distinguish between real and fake data which, in
turn, causes it to provide unreliable gradient information to
the generator. Mode collapse, on the other hand, happens when
the generator always produces the same outputs, which usually
means that the generator is being able to fool the discriminator
by producing ‘garbage’. Thus, in a sense, vanishing gradients
and mode collapse can be seen as different sides of the same
coin: the former takes place when the discriminator is too good
at its job, while the latter happens if it’s not good enough.

A proposed approach to deal with the training issues men-
tioned above is to use a Wasserstein GAN (WGAN)[1], which
has been known to lead to more stable training overall and pre-
vents mode collapse [3]. WGAN uses the Wasserstein distance,
also called Earth Mover’s distance, which is continuous and
differentiable, to calculate the loss function for the generator
and discriminator:

LD = E[D(x)]− E[D(G(z))] (17)
LG = E[D(G(z))] (18)

The job of the discriminator in a WGAN is different: it is
no longer tasked with telling fake samples apart from the real
ones. Instead, it learns a continuous function to help compute
the Wasserstein distance. For this reason, the authors in [1]
call it the critic instead. As the loss decreases during training,
the Wasserstein distance gets smaller which, in turn, means
that the outputs from the generator grow closer to the real
data distribution. To enforce Lipschitz continuity, the authors
propose clipping the weights to a small window ([-0.01, 0.01])
resulting in a compact parameter space, however, they also
state that weight clipping is a terrible way to enforce a
Lipschitz constraint. Thus, a variation of the standard WGAN
was introduced in [10] where, instead of clipping the gradients,
a gradient penalty is computed to enforce the Lipschitz
constraint:

x̃ = G(z) (19)
x̂ = εx+ (1− ε)x̃

LD = E[D(x)]− E[D(x̃)] + λ(||∆x̂D(x̂)||2 − 1)2

where ε is a random number sampled from a uniform distri-
bution U [0, 1], and λ is called the penalty coefficient (λ = 10
by default).

IV. EXPERIMENTS AND CURRENT RESULTS

This section includes a subset of the experiments we have
performed thus far and the corresponding intermediate results.
It is meant to showcase the progression of our work and

3Even though they share a name, it is important to note that this is a
different phenomenon than the one that occurs in RNNs that deal with long
sequences.

provide a revision of the distinct steps we have taken in
an attempt to overcome the difficulties encountered when
implementing our model.

A. Data sets

We have three real wold data sets available to use for our
experiments. Their characteristics are shown in the following
table:

TABLE I: Data set characteristics

nodes
Data set Graph 1 Graph 2 Graph 3 # anchors

Autonomous systems 10,900 11,113 11,461 10,580
DBLP 28,478 26,455 - 25,926

Social networks 5,742 5,053 4,829 588

The autonomous systems dataset4 represents information
from router networks in the state of Oregon. The DBLP
data set composed of co-authorship networks taken from the
computer science bibliography website5. The social networks
dataset is composed by graphs taken from three distinct social
networks: Flicker, Livejournal, and Myspace. The fact that we
have an almost complete prior alignment knowledge for the
autonomous systems (92% known anchor pairs) and the DBLP
(91% know anchor pairs) data sets allows us to quantitatively
measure the performance of our approach.

We chose to develop our model using the autonomous
system data set given that its networks are medium-sized
(∼ 10K nodes) and not overly sparse. Hence, all of the
experiments presented in this section were performed using
such data set as training and validation data.

It is our intention to test our model’s performance on the
other two data sets once we have tuned our parameters and
obtained a sufficiently acceptable performance.

B. Model evaluation

The alignment of the networks comes from successfully
training the generator G to (1) correctly impute the masked
nodes and (2) correctly translate the embeddings of the im-
puted nodes in G2 to its corresponding node’s embeddings in
G1. Thus, we can actually evaluate our model’s performance
using either the filler F′ or the translator T′.

However, evaluating F′ is more complicated due to the fact
that it’s either hit-or-miss, i.e. either F′ imputes the correct
node or not. Additionally, F′ will impute different G2 nodes
for the same G1 node in distinct walks depending on the
context.

Furthermore, NA methods are usually evaluated using top-k
precision [6, 11, 15] – a node is considered as correctly aligned
if its ground-truth alignment is found in the top k predictions
– using some sort of alignment score.

For these reasons, we choose to evaluate using the translator
T′ instead. By using T′ we can simply compare its output em-
beddings with the expected embeddings using some distance
metric, e.g. Cosine distance.

4https://snap.stanford.edu/data/Oregon-2.html
5https://dblp.uni-trier.de/

This, however, implicitly sets an upper bound on the
alignment results we can obtain because of there’s a limit
on how good of a mapping between the two embedding
sets can be learned by the T′ module [28]. To test these
assumption we trained a T′ using standard SGD and Cosine
Embedding loss with varying amounts of anchor nodes which
is analogous to having F′ correctly impute such nodes. Then,
we compute the alignment accuracy for 5 different values of
k = {5, 10, 30, 50, 100} using a KD-Tree. The results are
presented in Figure 4.

Fig. 4: Single-layer T′ top-k alignment accuracy

There are several insights obtained from these results:
• When considering the top-100 predictions, the alignment

accuracy is high (0.7891), even when using very few
(200) anchors to train. This result implies that the net-
works are pretty similar, given that really good alignment
results can be obtained by mapping only a few pairs of
anchor embeddings.

• Accuracy never reaches 90% even when using lots of
training anchors (8K) and using top-100 predictions.

• Top-5 accuracy plateaus at around 55%, even when using
+5K anchors to train, which seems counter-productive
given that at +5K we already have around 50% top-1
accuracy.

• All of the curves seem to plateau when using around 4K
nodes (∼ 40% of the graph) without further significant
gains.

These observations confirm our assumptions about the upper
bound performance of our model. On the other hand, they also
imply that we can achieve results close to that upper bound
by obtaining around 40% anchor pairs.

By replacing the single-layer T′ with a slightly deeper
model with an extra hidden layer and a non-linearity, the align-
ment accuracy results can be improved (Figure 5). However, all
of the previous observations are still valid. Further ‘deepening’
T′ does not seem to improve the results (Appendix A).

C. Module pre-training

Before discussing training of the GAN framework as a
whole, we first we talk about model pre-training, as it is
common in GAN-based works [7, 24]. We can individually

Fig. 5: Multi-layer T′ top-k alignment accuracy

pre-train the three modules that make up our model: filler F′,
translator T′, and discriminator D.

The role of F is to impute the masked walks W 2 with
suitable nodes in G2, thus outputting the filled walks Ŵ 2.
Thus, a good starting point is to have F generate valid random
walks in G2. This is analogous to how a language model
is trained to generate text sequences. The training corpus
is obtained by sampling a considerable amount (+500K) of
truncated random walks through G2. These sampled walks
have the same length as the length of the masked random walks
W 2 that F imputes when performing the alignment. Using the
generated set of walks as training/validation data, we then train
F via the standard Maximum Likelihood Estimation (MLE)
approach until a satisfactory validation error is achieved. We
found that it is critical for a better performance that we mask
some nodes in the input walks to mimic the masked nodes the
encoder would encounter during GAN training. This way the
encoder learns to include information about the masked nodes
in its output hidden state.

The translator T, as discussed previously, aims to translate
the embedding vector of a given node v2i to the embedding
vector of its corresponding pair v1j . Given that we have a set of
anchor pairs (Anc) available, we can pre-train T to minimize
the error when translating between the pairs (v1j , v

2
i) ∈ Anc.

We utilize a subset of the known anchor-node set Anc for
training – around 90%– while the rest is left for validation
purposes. We use the Cosine Embedding distance to measure
the similarity of the embeddings produced by T and the
expected embedding vectors. We found that the cosine distance
achieved a better performance than other similarity metrics like
Mean Squared Error (MSE).

Finally, D’s pre-training consists in getting it to distinguish
between actual random walks in G1 and random noise sampled
from a Gaussian distribution. For this task, we use standard
Binary Cross Entropy (BCE) loss. We provide D with embed-
ded random walks from the W 1 set as positive examples. For
negative examples, we create fake walks out of noise vectors
with the same dimensionality and length as the embedded W 1

walks.

D. Parameters and model configuration
In this section we provide a rundown of the results we

have obtained and an in-depth analysis of the GAN training
progress. For the experiments shown in this section we use
the following set up:
• Autonomous Systems data set using ’o1’ as G1 and ’o2’

as G2.
• 128-dimension Node2Vec embeddings with p = 1 and
q = 0.5.

• Random-walk length = 9.
• 500 anchor-node pairs (∼ 5%)
• Single-layer, bidirectional LSTMs with 128-dimension

hidden states for the encoders and decoders.
• Multi-layer T′ with 128 input/output dimentions, and a

hidden layer with 512 neurons and ReLU activation.
We found that this model configuration yields the best perfor-
mance. Additional results with different model configurations
and hyper-parameters can be found in Appendix A.

E. Alignment before training
Once the filler F has been pre-trained, we tested its perfor-

mance at imputing the masked walks W 2 before starting the
GAN training. Of course, F chose different G2 nodes to fill-in
for the same G1 node in different walks. So, we devised the
following strategy to choose the best alignment candidate:
• Choose the G2 node with the most appearances.
• In case of a tie, choose the candidate with the highest

anchor-node average.
Table II shows the alignment results obtained by following

this selection strategy. Accuracy is fairly low for both random
walk generation modes. RWG2 is almost twice as accurate,
however, due to the restricted way in which walks are gener-
ated. One interesting observation is that F is considerably less
certain when using RWG2 given that the amount of G2 nodes
used is almost double the number of encountered G1 nodes.

TABLE II: Alignment results before training

Mode Walks G1 nodes G2 nodes Correct Acc
RWG1 48096 3483 3926 405 11.6%
RWG2 39782 973 1711 221 22.7%

Upon further inspection, we discovered that many of the
encountered nodes appear only a handful of times in the
walks. Given that our selection strategy is based on number
of appearances, the alignment for these less common nodes is
not very trust-worthy. Table III shows the change in alignment
results by only considering nodes that appear > 100 times:

TABLE III: Alignment for non-anchor nodes appearing > 100
times

Mode G1 nodes Correct Acc Recall
RWG1 341 219 64.2% 54%
RWG2 267 149 55.8% 67.4%

When only considering nodes that appear frequently (> 100
times) in the walks, the alignment accuracy increased signif-
icantly: 53% for RWG1, and 45% for RWG2. On the other

hand, some of the correctly aligned nodes are lost: 46% and
33% for RWG1 and RWG2, respectively. Nonetheless, when
choosing alignment candidates, accuracy is more important
than recall, given that having many incorrectly aligned pairs of
nodes impacts negatively on the performance of T′. To further
increase the alignment accuracy, at the expense of recall, we
devised a bidirectional best-candidate selection approach by
finding out for each imputed G2, the G1 node for which it is
substituted the most. This way we get a similar best candidate
mapping going from G2 to G1. Then we only keep the pairings
in which both the mappings agree. Table IV shows the results
using this selection strategy:

TABLE IV: Alignment with bidirectional selection strategy.

Mode Alignments Correct Acc Recall
RWG1 196 173 88.2% 42.7%
RWG2 135 130 96.2% 58.8%

The alignment accuracy we obtain is considerably high,
specially in the case of RWG2, which points to the fact that
our best-candidate selection strategy is successful.

F. Initial RL approach

As discussed previously, our initial approach is to estimate
the gradient updates of F using policy-gradients. Figure 6
shows the F, T, and D losses during a training session of
our RL approach. On the surface, it actually seems to have
gone well:
• F loss drops harshly and then seems to stabilize
• T loss seems to be dropping steadily
• D starts high and then seems to stabilize at around 0.6.
However, upon close inspection of the alignment results,

we found that F was suffering from severe mode-collapse.
Very early into training, it was imputing the same node over
and over again. We believe the model quickly learned that,
by imputing the same node, it consistently fooled D –thus
increasing it’s reward – using T to translate such node’s
embedding to some sort of average of the G1 embeddings.
In short, G was fooling D with garbage, which is a common
sign of mode collapse.

G. Gumbel-Softmax based approach

To deal with mode collapse, in our second approach we use
the WGAN (III-F) loss and update the gradients of F using
Gumbel-Softmax reparametrization (III-E). By freezing T′, we
observe the effects of the training on F. Figure 7 shows the
behaviour of F during a training session of 400 iterations when
RWG1 is used. The generator is updated every 5 iterations, as
specified in [1].

Figure 7a shows the translation loss. The overall trend of
the loss is to increase as training progresses. Furthermore, we
observe that, as the T loss increases, the number of correctly
aligned nodes decreases (blue line in Figure 7b, which implies
that the translation loss is a good indicator of F’s performance.

Figure 7b also shows the effectiveness of our bidirectional
best-candidate selection approach. The dotted red line shows

Fig. 6: Training losses of RL approach

the total amount of nodes that have more > 100 appearances in
the training data set. The purple line shows how many nodes,
out of those with > 100 appearances were initially correctly
aligned before starting the training. The orange line represents
the amount of node pairings extracted by our selection scheme.
Finally, the green line shows how many of these pairings were
correctly aligned. Ideally, the orange and green lines would
overlap perfectly. This would mean that our selection scheme
works perfectly, selecting correctly aligned pairs only. In
practice, the orange and green lines are fairly close throughout
the whole process, meaning that our selection scheme is doing
a good job selecting correctly aligned pairs. It would also be
ideal for the orange line to be as close as possible to the

purple line, meaning that our approach is able to extract all of
the correctly aligned pairs with > 100 appearances. However,
during training, the amount of node-pairs extracted by our
approach also decreases, meaning that F is less certain when
imputing nodes.

Another relevant effect of the GAN training is shown on
Figure 7c: the number of G2 nodes used to fill the masked
walks initially increases before beginning to collapse. The
dotted orange line signals the total amount of G1 nodes
encountered in the training dataset, thus, once the blue line
is below it, the model is effectively collapsing.

Finally, Figure 7d presents the accuracy and recall of our
selection strategy. It’s note-worthy that recall remains stable
during the initial imputing diversification. Accuracy, however,
has a clear decreasing trend throughout .

Similarly, Figure 8 shows Fs performance when using the
restricted random-walk generation process RWG2. Some of
the observations made for RWG1 still hold: the translator loss
is a good indicative of F’s performance and the aligned pairs
decrease with training. There are, however, some noticeable
differences. The model does not seem to reach mode collapse,
for example. Additionally, due to the restricted way random-
walks are created, less G1 nodes are encountered which makes
it easier for our selection approach to correctly select aligned
pairs (Figure 8b). In any case, training does not seem to be
effective in this case either.

GAN training seems to be beneficial for the first few
iterations: the initial increase in node diversity helps with
mode collapse without decreasing the number of correctly
aligned nodes. However, the ability of our strategy to select
correctly aligned nodes quickly starts decreasing after a few
iterations, as the orange and green lines start to diverge
before taking a steep decline that seems to align with the
model starting to collapse. While this phenomenon seems
to be consistent throughout our experiments, due to distinct
weight initialization and randomized training, its behaviour is
slightly different in each training session. As such, we have
not been able to determine a suitable stopping point that would
generalize to all cases.

H. Additional experiments

We have yet to find a model configuration in which GAN
training proves beneficial in the long run. We have performed
extensive experimentation with hyper-parameters and other
configuration points such as:
• Attention modules for the decoders in F and D.
• WGAN with Gradient Penalty.
• Standard GAN loss with Gumbel-Softmax.
• Random-walk length and curriculum training.
• Embedding generation techniques.
• Embedding and hidden state dimensionality.
Examples of these experiments can be found in Appendix

A. All of them, however, follow a similar pattern to the one
discussed previously in this section. At this point, we believe
the issue goes beyond hyper-parameter tuning.

(a) Translator Loss.

(b) Node alignment.

(c) Fill in node usage.

(d) Accuracy and Recall.

Fig. 7: F training behaviour with RWG1.

(a) Translator Loss.

(b) Node alignment.

(c) Fill in node usage.

(d) Accuracy and Recall.

Fig. 8: F training behaviour with RWG2.

I. Non-GAN alternative

From our current results, we devise the following iterative
alignment process that does away with the GAN framework:

Algorithm 3 Iterative alignment by Random-Walk imputing

1: procedure NON GAN ALIGN(G1,G2,Anc)
2: Pre-train F
3: do
4: W 1 ← RWG(Anc)
5: W 2 ← Mask(W 1)
6: Ŵ 2 ← F(W 2)
7: Selected← best candidates(W 1, Ŵ 2)
8: Anc← Anc ∪ Selected
9: while |Selected| > 0

10: Train T
11: return T
12: end procedure

The process simply uses a pre-trained F to impute the
masked walks W 2, and iteratively augments the initial set of
anchors Anc using our bidirectional best-candidate selection
strategy until no further alignments are found. However, we
have not tested its performance given that it completely
removes any GAN-based training which defeats the main
motivation of our work.

V. CONCLUSIONS

Even though we have yet to be successful in our GAN
training experiments, we still believe there is value in our
approach to NA because of its novelty in using F to fill-
in masked random walks. This, supported by the alignment
results achieved by our candidate selection strategy that our
experiments have shown to be effective at selecting correctly
matched pairs.

We have some ideas on how to continue working on
solving our current shortcomings such as creating a custom
loss function that incorporates supervised information to help
guide the GAN training procedure, and improving the fill-in
performance of F by providing it with additional information
such as explicit mask embeddings or positional ones.

At the same time, we are aware that a simple fix might
not be easily found and a more comprehensive revision of our
framework could be necessary.

REFERENCES

[1] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein
generative adversarial networks. 70:214–223, 06–11 Aug
2017.

[2] M. Bayati, M. Gerritsen, D. F. Gleich, A. Saberi, and
Y. Wang. Algorithms for large, sparse network alignment
problems. pages 705–710, 2009.

[3] A. Bojchevski, O. Shchur, D. Zügner, and S. Günnemann.
NetGAN: Generating graphs via random walks. 80:610–
619, 10–15 Jul 2018.

[4] S. Cao, W. Lu, and Q. Xu. Grarep: Learning graph
representations with global structural information. pages
891–900, 2015.

[5] L. Chaozhuo, W. Senzhang, Y. Philip, L. Yanbo, L. Yun,
and L. Zhoujun. Snna: Adversarial learning for weakly-
supervised social network alignment. Proceedings of the
AAAI Conference on Artificial Intelligence, 33, 2019.

[6] X. Chu, X. Fan, D. Yao, Z. Zhu, J. Huang, and J. Bi.
Cross-network embedding for multi-network alignment.
pages 273–284, 2019.

[7] W. Fedus, I. Goodfellow, and A. Dai. Maskgan: Better
text generation via filling in the . ICML 2018, 2018.

[8] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. C. Courville, and
Y. Bengio. Generative adversarial networks. CoRR,
abs/1406.2661, 2014.

[9] A. Grover and J. Leskovec. Node2vec: Scalable feature
learning for networks. pages 855–864, 2016.

[10] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and
A. C. Courville. Improved training of wasserstein gans.
CoRR, abs/1704.00028, 2017.

[11] M. Heimann, H. Shen, T. Safavi, and D. Koutra. Regal:
Representation learning-based graph alignment. Pro-
ceedings of the 27th ACM International Conference on
Information and Knowledge Management (CIKM), 2018.

[12] E. Jang, S. Gu, and B. Poole. Categorical reparameteri-
zation with gumbel-softmax. ICLR 2018, 2017.

[13] D. Kiela, E. Grave, A. Joulin, and T. Mikolov. Efficient
large-scale multi-modal classification. pages 5198–5204,
2018.

[14] D. Koutra, H. Tong, and D. Lubensky. Big-align: Fast
bipartite graph alignment. Proceedings - IEEE Interna-
tional Conference on Data Mining, ICDM, pages 389–
398, 12 2013.

[15] L. Liu, W. K. Cheung, X. Li, and L. Liao. Aligning users
across social networks using network embedding. Pro-
ceedings of the Twenty-Fifth International Joint Confer-
ence on Artificial Intelligence (IJCAI’16), pages 1774–
1780, 2016.

[16] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Effi-
cient estimation of word representations in vector space.
CoRR, abs/1301.3781, 2013.

[17] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online
learning of social representations. In Proceedings of
the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, abs/1403.6652,
2014.

[18] O. Press, A. Bar, B. Bogin, J. Berant, and L. Wolf. Lan-
guage generation with recurrent generative adversarial
networks without pre-training. CoRR, abs/1706.01399,
2017.

[19] S. Rajeswar, S. Subramanian, F. Dutil, C. J. Pal, and A. C.
Courville. Adversarial generation of natural language.
CoRR, abs/1705.10929, 2017.

[20] S. Richard, M. David, S. Satinder, and M. Yisha. Pol-
icy gradient methods for reinforcement learning with

function approximation. Advances in neural information
processing systems, page 1057–1063, 2000.

[21] R. Singh, J. Xu, and B. Berger. Global alignment of
multiple protein interaction networks with application to
functional orthology detection. Proceedings of the Na-
tional Academy of Sciences, 10(35):12763–12768, 2008.

[22] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei.
LINE: large-scale information network embedding. In
Proceedings of the 24th International Conference on
World Wide Web, abs/1503.03578, 2015.

[23] S. Wang, X. Li, Y. Ye, S. Feng, R. Y. K. Lau, X. Huang,
and X. Du. Anchor link prediction across attributed
networks via network embedding. Entropy, 21(3), 2019.

[24] L. Yu, W. Zhang, J. Wang, and Y. Yu. Seqgan: Sequence
generative adversarial nets with policy gradient. CoRR,
abs/1609.05473, 2016.

[25] J. Zhang, B. Chen, X. Wang, H. Chen, C. Li, F. Jin,
G. Song, and Y. Zhang. Mego2vec: Embedding matched
ego networks for user alignment across social networks.
In ACM International Conference on Information and
Knowledge Management, pages 327–336, 2018.

[26] S. Zhang and H. Tong. Final: Fast attributed network
alignment. Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining (KDD’16), pages 1345–1354, 2016.

[27] Y. Zhang, Z. Gan, and L. Carin. Generating text via
adversarial training. NIPS, 2016.

[28] F. Zhou, L. Liu, K. Zhang, G. Trajcevski, J. Wu, and
T. Zhong. Deeplink: A deep learning approach for
user identity linkage. In IEEE INFOCOM 2018 - IEEE
Conference on Computer Communications, pages 1313–
1321, 2018.

APPENDIX

Fig. 9: Top-k alignment accuracy for a T′ with 2 hidden layers.

Fig. 10: Decoders with Attention modules.

Fig. 11: Different loss functions.

Fig. 12: Different random-walk lengths.

Fig. 13: Different embedding techniques.

Fig. 14: Different embedding dimensions.

