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Abstract— Computational simulations frequently only save a subset of their time slices, e.g., running for one thousand cycles, but
saving only fifty time slices. With this work we consider the problem of temporal upscaling, i.e. inferring visualizations at time slices
that were not saved, as applied to ensemble simulations. We contribute a new algorithm, which we call DATUM, which incorporates
machine learning techniques, specifically, dotted attention and convolutional networks. To evaluate our approach, we conduct 1327
experiments, on 32x32 pixel renderings of two-dimensional data sets. Our experiments infer imagery at unsaved time slices and
compared to ground truth renderings both visually and with an established metric (peak signal-to-noise, or PSNR). We also compare to
a linear interpolation method, and find that our technique has a significantly higher accuracy, in some cases producing renderings that
are 19% more accurate. Overall, we demonstrate that our method can learn patterns from a single simulation within an ensemble and
use this information to perform temporal upscaling on other simulations within the same ensemble that are sparsely saved. We show
that with 1% of data from a new simulation, equivalent to a simulation saving imagery one out of every hundred cycles, is enough to
improve accuracy for temporal upscaling.

1 INTRODUCTION

Many scientific visualization usages involve analyzing time-varying
data, and yet typically only a subset of the temporal data is available
to visualization routines. Saying it another way, if a field is defined as
F(T,P) for time T and position P, then typically there exist a discrete
set of times, t0, t1, t2, ..., tN ∈ T , where the data is available to a visual-
ization program, i.e., F(ti,P) is defined. For all other times, the field is
not defined, i.e., if T ? is not one of t0, t1, t2, ...tN , then F(T ?,P) is not
defined.

While complete spatio-temporal data is desirable for analyzing time-
varying data, it is often not practical to obtain. For experimental and
observational data, the temporal data obtained may be limited, for
example, by the rate at which sensors can ingest data. For computational
simulations, there are two reasons. The first and more minor reason
is that the simulation itself only defines the field at a discrete set of
times. Simulations typically advance in “cycles,” with a simulation
starting a cycle at some time T and ending at some time T + ε . Field
values for times T ? where T < T ? < T +ε are not defined. The second
and more major reason is that the simulation cannot store data from all
of its cycles, due to prohibitive costs. These prohibitive costs involve
not only the execution time to interact with I/O, but also disk space to
represent many bytes (up to exabytes).

There are two strategies for obtaining additional temporal data. The
first strategy is to “do it again”: re-run the simulation or experiment.
This is sometimes possible, but not always, as the temporal frequency
may be limited by sensor technology, disk storage, etc. The second
strategy — called temporal upscaling — is to use software to infer data
or imagery at the missing times. The “do it again” strategy offers more
certain results, but can have high costs. The temporal upscaling strategy
can be done quickly, but with less accurate results.

With this work, we consider the strategy of temporal upscaling, and it
is the premise of this work that temporal upscaling is useful for domain
scientists due to its low costs. This premise matches other recent works,
as temporal upscaling, as well as generally inferring imagery that is
costly to obtain, has recently become an active research area [11, 14].

The contribution of our work is a novel, machine learning-based
algorithm for temporal upscaling. Our algorithm takes a novel approach
and provides a novel capability:

• Novel approach: we believe that we are the first to incorporate
a dot-product attention based and fully convolutional solution to
temporal upscaling.

• Novel capability: we provide a “transfer learning” function. That
is, our algorithm studies one simulation and then applies (“trans-
fers”) the knowledge to another.

Using machine learning techniques, our algorithm increases tempo-
ral upscaling accuracy by as much as 19% compared to linear inter-
polation. In addition, the “transfer learning” capability has significant
practical benefit in the context of ensemble simulations. In this case,
one ensemble member can save data at high temporal resolutions (for
training), and then the remainder of the simulation can output at low
temporal resolutions to save costs.

Finally, our approach currently only considers a limited set of use
cases, but we feel that it has significant potential for future improvement.
First, our approach currently operates on “thumbnail”-size imagery due
to memory and computational constraints. That said, recent innova-
tions in machine learning have demonstrated that such techniques can
be scaled up to more typical sizes fairly easily. Second, our exper-
iments evaluate performance on a two-dimensional data set, which
somewhat simplifies the problem. Regardless, we believe the nature of
the machine learning approach will be applicable to three-dimensional
renderings as well.

2 RELATED WORK

Herein we introduce the related work to our own. As machine learning
is a new and quickly evolving area of research within the scientific
visualization community, there is not much work that is significantly
similar. While this creates ample opportunity to expand on our commu-
nity’s scope of knowledge, it also does not provide foundational work
to build upon.

2.1 Video Upscaling With Machine Learning
Video super resolution has become an active research area within the
machine learning community [22, 28, 33, 42]. There are many works
showing generation of video frame upscaling. For example, Google’s
DAIN [3] and Jiang et al’s Super SloMo [17] shows how machine
learning can be used to enable slow motion video by significantly
upscaling the video frames. Bao et al. show MEMC-New [2] which
can de-blur image motion and upscale videos with convolutional neural
networks. There are many other works focusing on temporal upscaling
and solving challenges of video enhancement [27, 34, 41], solving
specific challenges in upscaling such as motion blue and denoising.
These works have shown how machine learning can be useful in making
smoother videos, even going as far as upscaling videos from the early
1900’s to 60FPS and 4K.

2.2 Sequence Learning With Attention
Another active field in machine learning research is understanding
the relationships between sequences of data. Many use a network
mechanism called Attention [38]. Attention has been shown to be a



powerful method in machine translation and text sequencing because
of its ability to learn sequences and patterns between words, even in
long texts [6, 8, 24, 32, 36]. These works have shown that these various
attention mechanisms are able to perform long sequence to sequence
transformations.

2.3 Machine Learning in Scientific Visualization

Within the scientific visualization community, the adoption and appli-
cation of machine learning techniques is an emerging subfield. Re-
searchers have focused on taking advantage of new many-core archi-
tectures and have leveraged machine learning to improve post hoc
analysis [4,10] and reduce reliance on human analysis [1,16,19,30,35].
Berger et al. [4] demonstrated the use of GANs for volume rendering
and analysis tasks. Weiss et al. [37] showed how super-resolution tech-
niques can be applied to volumetric isosurfac rendering. In the domain
of flow visualization, FlowNet [10] addresses the challenge of selecting
a representative set of streamlines or streamsurfaces. FlowNet uses
an autoencoder to learn integral curve feature descriptors, followed
by dimensionality reduction and clustering to identify and visualize
representative flow features.

There is also much work in super resolution techniques, where
researchers take a low resolution image or dataset and use machine
learning to increase the resolution. Zhou et al. [44] show that convo-
lutional networks can be used for volume upscaling, applying super
resolution techniques to volume data. Xie et al. [40] and Wiewel et
al. [39] both presented methods that can generate high resolution im-
ages in fluid flows. Upscaling the quality of images has been an active
research area within scientific computing.

2.4 Machine Learning to Infer Data

The work herein focuses on temporal upscaling and transfer learning.
While there are several machine learning papers on the subject [9,25,29]
there are two notable papers that are related to our work. The first is Han
and Wang’s TSR-TVD [11] where they developed an algorithm based
on ConvLSTM [31] to develop a temporal upscaling algorithm. Within
this work they perform temporal upscaling by using sub volumes from
voxel data at cycles i and i+ k, where k is some distance in the range
of 1-7. They use multiple ConvLSTM layers to create a Generative
Adversarial Network (GAN), which uses a generator and discrimina-
tor model to infer new intermediate cycles. This work demonstrates
temporal upscaling with voxel data. Our work differs from this not
only in our model, but in the algorithm we developed for visualization
practitioners. Our work is distinct in that it is applied to ensemble
simulations and focuses on temporal upscaling of unseen and highly
sparse sets of images from a new simulation than what our model was
trained on.

The second relevant work is that of InSituNet [14], by He et al.
InSituNet accepts and trains using ensemble simulation data generated
considering varying simulation input parameters. The model can then
be used to predict simulation outcomes for unseen simulation input
parameters.

InSituNet was developed to learn the relationship between parame-
ters of ensemble simulations. This work also uses a GAN to produce
representations of differing ensemble simulations after learning from
several examples. Our work differs significantly from InSituNet in that
we are focusing on the temporal upscaling problem and not trying to
completely predict what a new ensemble may look like. We are also
trying to learn the temporal relationship between data instead of the
relationship of the input parameters.

Our work differs from these works because we are focusing on a
temporal upscaling applied to ensemble simulations. Han and Wang
perform upscaling applied to a single simulation whereas InSituNet
tries to solve a whole ensemble. Our work is closer to Han and Wang’s
but we focus on the transferability of temporal upscaling and how we
can use these techniques in ensemble simulations.

3 MACHINE LEARNING-BASED ALGORITHM FOR TEMPORAL
UPSCALING

This section describes our algorithm. It begins by formally defining
the problem we address (3.1). It then describes the machine learning
building blocks we incorporate in our algorithm (3.2). This section
concludes with a full description of our algorithm (3.3).

3.1 Problem Definition
Intuitively, temporal upscaling takes two adjacent visualization ren-
derings as input and produces intermediate renderings between the
two. More formally, we define our temporal upscaling problem as
follows. Our algorithm operates on 2D scalar data, or greyscale
images, which are equivalent to fields of data. Given two fields,
F(ti,P) and F(ti+ j,P), we wish to find an intermediate field, F(tk,P),
where i < k < i+ j. Thus we wish to find some mapping function
N(F(ti,P),F(ti+ j,P),x) 7→ F(tk,P). Here N represents our approxima-
tion function, F(ti,P) and F(ti+ j,P) are our input images, x represents
a tensor of temporal parameters, and F(tk,P) is the field we are try-
ing to approximate. Because N is an approximation function it will
never exactly map to F so we say that N maps to some field that is
approximately F . In this manner our approximation function solves the
following equation.

F(tk,P)≈ F ′(tk,P) = N(F(ti,P),F(ti+ j,P),x) (1)

The idea behind transfer learning is that if we train a machine learn-
ing model from one set of data, and then keep training the same model
using a slightly different technique on a second dataset but with sig-
nificantly smaller size, then the model will give similar results as if it
was fully trained on the full amount of the second dataset. Formally,
we define our transfer problem as follows. An ensemble of simulations,
{S0,S1, · · · ,Sn} ∈ E, is defined as a set of simulations that follow the
same basic rules but have differing parameters. That is S0 = S(X0) is
distinct from S1 = S(X1) where Xi represents the set of input parame-
ters to the simulation, thus there is some relationship between Si and
S j. Transfer learning is defined as using a network trained on some
dataset, Si, on another distinct dataset that it was not trained on, S j. If
we simplify Equation 1 to Ni(Si) = N(F(ti,P),F(ti+ j,P),x), we can
say that Ni(Si)≈ N j(S j). Here Ni(Si) is the algorithm N fully trained
on the dataset Si, and similarly N j(S j) being trained on S j We can gain
a better approximation if we add a small amount of data from the new
ensemble, εS j, and improve the results of our approximation. That is

N j(S j)≈ Ni(Si)+Ni(εS j) (2)

3.2 Machine Learning Components
This section describe different machine learning building blocks, and
also informs their usage within our model.

3.2.1 Convolutional Neural Network
Convolutional Neural Networks (CNNs) have been shown to be effec-
tive in performing image based analysis and have become the de facto
tool for machine learning on images [5, 12, 20]. CNNs have a signifi-
cant advantage over linear layers due to their use of sliding windows
over data regions. This window, called a kernel or filter, is able to
learn relationships between adjacent data points. This is particularly
useful for image-based work where these relationships are necessary to
understand complex structures. The other advantage of CNNs is that
they are extremely computationally efficient [7, 15]. As a result, CNNs
have become common practice.

The kernel is the main attribute to a CNN: it holds the learned
information from training. A convolutional kernel is composed of four
parts: a volume size W , a kernel size K, a padding size P, and a stride
S. Each of these parts maps to our problem as follows:

• W represents either the width or the height of the image.
• K is set to 3 for all our CNNs, which correlates to each window

having 9 data points. In effect, this is a 3x3 window centered
around each target pixel.



• P is the number of padding values, which are usually 0’s, placed
around the data so convolutions can be performed on data edges.
In our case ,we set the padding size to 1, which is the minimal
size for our filter to process each edge pixel.

• S is the step size our kernel takes when moving. We selected a
stride of 1, which corresponds to the window focusing on the next
adjacent pixel.

Given these parameter choices, the convolution operation produces
an output with the exact same dimensions as the input.

3.2.2 Scaled Dotted Attention
Attention is a recent machine learning technique where relationships
are learned between different features. Attention’s main benefit is that it
is able to operate on sequences of features. This technique is commonly
applied to Natural Language Processing (NLP) workloads, so a model
can gain an understanding of the relationships between words. To date,
attention has been demonstrated to be a useful and powerful mechanism
for learning sequence tasks [8, 30, 32, 36] Attention’s main advantage
over other sequence-based models, such as Recurrent Neural Networks
(RNNs), is that its sequence of inputs does not need to be provided in
order. This allows this mechanism to be used in parallel, and thus is
frequently more computationally efficient.

In our work, we use the Scaled Dot-Product Attention mechanism.
Attention is defined by three learned parameters, Q,K,V , that represent
a “query,” “key,” and “value,” respectively. Its equation is defined as:

Attention(Q,K,V) = so f tmax
(

QKT
√

n

)
V (3)

Where n is the dimension of the data. A variation of this attention
mechanism introduces a learned parameter γ such that our attention
mechanism is altered as follows:

Attention = γ (so f tmax(Q(x)K(x)T )V(x))+ x (4)

We use this form and follow the same attention mechanism described
in SaGAN [43]. This uses a 1x1 convolutional layer to learn the
Q,K,V parameters and then γ is learned instead of using the

√
n term.

Additionally, we sum with the original input. This allows this model to
adapt better and weight the importance of attention in each layer. For
example, if attention is unneeded in a layer, then γ → 0.

3.2.3 Residual Networks and Skip Layers
Residual Neural Networks (ResNet) are neural networks that incorpo-
rate skip layers, where information flow can skip some layers to quickly
reach future layers [13].

Residual networks have several advantages. First, in very deep
networks, they can help simplify the model, as a network may be too
deep and become less effective. Second, later layers can receive fresh
information from any earlier layer. As an example, in image processing,
earlier layers tend to learn high-level features, while the later layers
tend to learn low level features. By combining them one can provide
output with both high-level and low-level features.

3.2.4 AdamW
AdamW is an alternative to the commonly used Adam stochastic op-
timization method. Adam is an adaptive gradient method that is com-
monly used in machine learning because it is able to optimize quickly
and avoid local minima. It has been shown that adding weight de-
cay (thus AdamW) — as opposed to L2 regularization — provides
significant improvements to finding optimal choices [23].

3.3 DATUM
Our contribution is a novel method for temporal upscaling on ensemble
simulations, which is named DATUM: Dotted Attention Temporal
Upscaling Method. DATUM uses a machine learning model with
Dotted Attention, which is essential to its success, and a methodology
to obtain accurate temporal upscaling using this model. This subsection

describes both the algorithm and the model: the algorithm is described
in 3.3.1, treating the model as a black box; the model is described at a
high level in 3.3.2 and in depth in 3.3.3.

3.3.1 Algorithm Description
DATUM is more than a machine learning model, but also a method
to provide accurate temporal upscaling on ensemble simulations. Our
method uses the following algorithm:

• Phase I
1. Running a single ensemble where images are saved out at a

high temporal frequency.
2. Training an attention based machine learning model until

there is a satisfactory convergence.
• Phase II

1. Run a set of new ensembles where images are saved at
lower frequencies that satisfy storage constraints.

2. Fine tune our time machine learning model with this low
temporal frequency image data (transfer learning).

• Phase III
1. During post hoc analysis when high frequency imagery

is required, generate missing images on the fly using the
machine learning model.

DATUM works by training an attention based machine learning model
on a set of images with high temporal fidelity and then fine-tuning on a
sparse representation of a new simulation from the same ensemble. In
Phase I, the model is able to learn both temporal – from the attention
layers – and spatial – from the CNN layers – parameters from the
high-frequency training ensemble simulation. In Phase II, the model
is able to adjust the learned temporal and spatial parameters based on
how a different set of parameters changes a simulation’s outputs. This
is because ensembles utilize the same physics and there are similar
patterns in how these simulations evolve. For example, a expanding
wave follows a consistent pattern across different simulations, which
can be learned and re-used within our method. DATUM is not expected
to work well when simulations are using differing physics. In Phase III,
the tuned model will be able to infer missing images at a fast enough
rate that it could be used on the fly along with post hoc analysis routines.

3.3.2 High-Level Model Description
To support our algorithm, we developed a novel end-to-end convolu-
tional neural network with skip-layers and attention layers. Our model
takes three inputs: two are images and one is a set of three temporal
parameters. We used 32x32 2D images as our image input as this has
a lower memory footprint, enabling us to train faster on our GPUs.
Training on smaller images is a standard technique in machine learn-
ing and we expect our method scale to larger sizes, but more testing
needs to be done. The first two temporal parameters correspond to
the cycle numbers of the two input images and the third corresponds
to the cycle number of the desired image. The output of the model
is simply the desired image at the cycle corresponding to the third
temporal parameter.

Our model is made of a series of CNNs, Attention layers, and skip
layers. A diagram of our model is shown in Figure 1. Our images begin
by going through a preprocessing CNN that is followed by two attention
layers. These preprocessing CNNs are composed of three layers. These
CNNs all have a single channel in and out. We use an adaptive average
pooling on our parameters with an output size the same as the image
size. The outputs of the two preprocessing networks and the average
pooling are then concatenated. This concatenation is then processed by
a pretrained VGG11 model [18]. This is then followed by two attention
layers. The output of this is then concatenated with the input to VGG11.
Finally this is processed by three convolutional layers, with channels
515, 256, and 1, respectively. This result ends with a tensor the same
size as our original image and with a single channel, representing a
greyscale image. It is trivial to modify the network to work with three
channel color images, but this will require more memory overhead and
processing time.
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Fig. 1: Diagram representing our machine learning model. Subnet-
works are highlighted with a bounded box for added clarity.

3.3.3 Detailed Model Explanation

Our network is fully convolutional, meaning that each learned parame-
ter is done with a convolutional network. From the beginning of this
network, we compose each convolutional block of a convolutional layer
with kernel size 3, stride of 1, and padding of 1, followed by a ReLU
rectifier. Each image is processed by three convolutions which each
have a single channel. This is so that the convolutions learn high-level
features from the data set. The intent of this decision is to utilize
the information from the images to gain some understanding of the
physics of the simulation. These convolutional layers are subsequently
followed by two single-headed dotted self attention layers. These atten-
tion layers follow the same pattern as that from SaGAN as described in
Section 3.2.2. This subnetwork is highlighted in a gray box in Figure 1
directly after the input images on the left.

The temporal parameters ({ti, ti+dt , t ′} in Figure 1) are an important
part of the model that tells it how much to weigh each input. We use an
adaptive average pooling method directly on these terms, generating
output at the same size as the output of the convolutional layers. Then
these parameters represented as tensors are concatenated with the ten-
sors representing the output from the convolutions. Concatenation is
represented by the

⊕
symbol in Figure 1.

In the middle of our network we use a pretrained version of VGG11
that helps determine how to weigh these inputs (the middle gray box in
Figure 1). We use a pretrained network because this helps our model
train faster — VGG11 has been trained on image classification and
already has learned about how to process images. We chose VGG11
because of memory constraints but a deeper alternative could just as
easily be used. We also slightly modify VGG11 by removing its pooling
layers because pooling layers would shrink the tensor’s size. At the
end of the VGG output we add two additional attention layers. We
can think of our network up to this point as encoding and determining
the latent variables needed to produce an inferred image. Testing with
more layers or attention layers within VGG showed no improvements
but resulted in larger memory consumption.

In the next step, we concatenate the output from VGG with the input
to the VGG block (the second

⊕
symbol from left to right in Figure 1).

At this point in the network we have an approximation of the latent
space. By having the input images and these parameters we provide a
similar input structure to interpolation methods like linear interpolation
(LERP). The major difference here is that we can think of this model
as similar to LERP but with many high order parameters that learn how
to bias based on inputs and the simulation. The attention layers help
determine the temporal aspects — this is why we have attention at the
end of the input convolutions as well as at the end of VGG.

Finally we have a small decoding step that takes this latent ap-
proximation and produces an output image. This is done by using
convolutional layers to reshape the tensor into one that can be easily
converted to an image — three CNN layers were sufficient for our
experiments to produce the desired outcome (the last CNN block from

left to right in Figure 1). We note that more layers may provide better
results as image sizes increase and when images have more channels.

4 EXPERIMENTAL DESIGN

This section describes our experimental design. It is organized into
the algorithms we consider (4.1), our corpus of data (4.2), types of
experiments (4.3), the parameters for our machine learning infrastruc-
ture (4.4), the hardware used (4.5), the software used (4.6), and an
overview of our techniques for evaluation (4.7).

4.1 Algorithms Considered
Our experiments consider two algorithms:

• Our ML-based algorithm, which is described in Section 3
• Linear interpolation (“LERP”) between images

4.2 Corpus of Images
For these experiments, we generated images using the Ascent [21] in
situ framework and the included CloverLeaf3D miniapp [26]. Clover-
Leaf3D is a hydrodynamic simulation, which we used to simulate an
essemble of high pressure regions within a closed container. For each
member of the ensemble, the imagery we generated was of a z-slice at
the center of the box.

We refer to the ensemble members as MEM1, MEM2, and MEM3.
We note that the number of cycles per ensemble member is variable,
based on the physics occurring inside the closed container. Specifically,
MEM1 ran for 600 cycles, MEM2 ran for 300 cycles, and MEM3 ran
for 800 cycles. In terms of additional differences:

• MEM1 starts with a high pressure region located at the center of
a box. As the simulation progresses, this high pressure expands,
and the pressure reflects off of the hard walls that contain the fluid.
For this simulation, images that are 50 cycles apart are visually
distinct and cannot be trivially inferred from the adjacent images.
Figure 2 shows images from MEM1.

• MEM2 is similar to MEM1, but visually distinct. MEM2
evolves from a point source and thus has a more circular shape
to it. The pressure is higher and the initial high pressure region
is offset from our slice. This results in a faster convergence and
CloverLeaf3D exits earlier, causing this data set to have fewer
cycles. Figure 3 shows images from MEM2.

• MEM3 is dissimilar from MEM1 (and from MEM2). MEM3
has same high pressure region as MEM1, but adds to it additional
high pressure regions. This causes the first few cycles of the sim-
ulation to be similar to MEM1, up until the interaction between
the multiple high pressure regions causes interfering waves and
a more complex wave pattern evolves. Figure 4 shows images
from MEM3. Overall, the images from MEM3 are drastically
different than MEM1 (and from MEM2).

Fig. 2: Corpus of images for ensemble member MEM1, sampling
every 50 cycles, from time-step 0 to time-step 550

Fig. 3: Corpus of images for ensemble member MEM2, sampling
every 50 cycles, from time-step 0 to time-step 250



Fig. 4: Corpus of images for ensemble member MEM3, sampling
every 50 cycles, from time-step 0 to time-step 750

4.3 Experimental Campaigns
Our study consists of two campaigns:

• Inferring Images on New Ensemble Members: This campaign
studies how our model learns on members of an ensemble simula-
tion. We look at three ensembles in total, where we train on one
and infer images from the other two. This campaign informs how
our algorithm could be used by visualization practitioners.

• Understanding Model’s Data Dependence: This campaign pur-
sues a set of experiments to understand our model’s dependence
on data and help practitioners understand the limitations.

Each campaign involves many image comparisons, and we refer to
each comparison as an experiment. The details of the experiments are
described in the campaign descriptions (4.3.1 and 4.3.2). However, at a
high level, the first campaign involves 847 experiments (comparisons)
and the second campaign contains 480 experiments (comparisons),
spread out over three sub-campaigns of 60, 180, and 240.

In total, we ran 1327 experiments (847 + 60 + 180 + 240)

4.3.1 Inferring Images On New Ensemble Members
A well-trained and effective machine learning model is typically noted
by its ability to generalize. That is, a model’s ability to perform accu-
rately on unseen data. While we leave out testing and validation sets
to determine the effective power of our model these data sets do not
inform us how well this model works on novel simulations. We do
not expect our model to trivially transfer to simulations that are drasti-
cally different, the same way we would not expect a model trained to
identify cats to accurately identify airplanes. Instead, we compare our
algorithm’s effectiveness at transferring to CloverLeaf3D simulations
with different input parameters. In short, we measure the effectiveness
of our model on ensemble simulations.

In this campaign, we train on the entirety of MEM1 data. We do
this with a 2x repeat and 80% training size. We then evaluate how well
this model can infer images for other ensemble members, specifically
MEM2 and MEM3. For each ensemble member, we perform “transfer
learning,” i.e., fine tune our model with a proportion of the images from
that ensemble. These images are representative of the time slices that
the simulation would save. We consider the efficacy of our algorithm
as it is allowed to see more and more data. The proportion of data we
consider is 0% (no data), 1%, 2%, 3%, 4%, 5%, and 10% (7 options
overall). For example, we did an experiment where our model trained
on MEM1, was allowed to fine tune with 1% of the data from MEM2
and then inferred new images for unseen time slices at MEM2. In all,
this means that we ran fourteen sub-campaigns, as the cross product of
two ensembles (MEM2 and MEM3) and seven proportions. Further,
we attempted to reconstruct 50 different images from MEM2 and 71
from MEM3, equating to 121×7 or 847 images overall.

For evaluation, we use LERP as our comparator. Our LERP uses the
best images available, drawing from both the training set (e.g., the 1%
of data used to fine tune) as well as two input images given to the model.
For example, the case of 1% of data from MEM2 corresponds to only
three images, at cycle 0, 100, and 200. If the model was asked to infer
the image at cycle 150 and was given inputs of cycle 75 and 175, then
our LERP method would interpolate between the images at 100 and
175. This is because its closest available on the low side is from the
training data, while its closest matches on the high side was one of
the input images to the model. We feel this is a “best effort” approach
with LERP, although it obviously does not make use of any data from

MEM1. We believe that this method is also more representative of
what would be used by scientists, since they are required to save out
images, albeit sparsely, to use our algorithm. The difference is that
our algorithm has learned from the previous dataset and is able to use
the information gathered previously, having learned how these types of
simulations evolve over time.

An important goal of the campaign is to investigate how much data
is needed to fine tune our algorithm to our new ensemble. Our data
proportions (0%, 1%, 2%, 3%, 4%, 5%, and 10%) range from a sparse
temporal sampling (1%) to typical (3% to 4%) to a dense temporal
sampling (10%). These values give us an idea of how data dependent
our algorithm is and how well it adapts to new simulations.

Overall, this campaign demonstrates our algorithm’s ability to gen-
eralize and perform on ensemble simulations. This demonstrates our
algorithm’s ability to be used in real world simulations and shows a di-
rect use-case that simulation scientists can use today. It directly informs
how sparse ensemble simulations can be and the trade-off in quality of
results.

4.3.2 Understanding the Model’s Data Dependence
This campaign was made up of multiple sub-campigns aimed at gather-
ing an understanding of the model’s data dependence. They experiment
with using different data set sizes and different temporal spacing, to
investigate how our model responds. This informs the limitations of
our model, as well as directions for improving results.

Midpoint Temporal Upscaling For this sub-campaign we inves-
tigate how our model performs on a simple task. We select a fixed
distance between the two input images, 100 cycles, and reproduce the
midpoint. That is, if we select an image at cycle i our second input im-
age is located at cycle i+100 and we produce the image at cycle i+50.
This distance was chosen because it is a large range with distinct events
occurring between these cycles, as can be seen in Figure 2. For evalua-
tion, we supply the model with the input image at i, the input image at
i+100 and the parametric scalars: i, i+100, and i+50. Overall, this
sub-campaign evaluates whether our model is able to perform accurate
reproductions of the ground truth over long temporal sequences, even
when there are significant changes between the inputs.

Arbitrary Temporal Upscaling The next sub-campaign deviates
from the midpoint model in two ways.

First, it considered arbitrary distances. For each test, we generated
three cycles that were located at arbitrary temporal separations: ci1, co,
and ci2, with i1 < o < i2. i1 and i2 were input images and o was the
desired images. (We also required i2− i1 > 3 to ensure that there was
a source image between the two input images.)

The second deviate is that we allow for selection of how many times
to repeat this process over the data, in this case 2. With a large enough
n, as in this case, we reduce the likelihood that there is overlap between
our testing and training data. If we allow for this process to be repeated
2x both our training and testing datasets increase proportionally and we
maintain a low probability of overlap.

We supply the model with the two input images, i1 and i2, and the
three parametric scalars: i1, o, and i2.

With this campaign we demonstrate the ability to reproduce both
long and short temporal sequences as well as having varying reproduc-
tion distances. This shows that our model is highly flexible and able to
learn a complex interpolation method through just a small selection of
images.

4.4 Machine Learning Parameters
To read in this data we parse the directory where the images are se-
quentially denoted and assign an index associated with the ordinal data.
These indices are then shuffled and split into training (80%), validation
(10%), and test sets (10%). This ensures that the model is able to train
on a representative sample set of the data and we leave enough data for
validation and testing to ensure our results are statistically significant.
For these experiments we use a learning rate of 5×10−5, the AdamW
optimizer with default parameters, and a batch size of 100. The batch
size was chosen because this was the maximal value we could batch



within our memory constraints. We limit these experiments to a maxi-
mum of 10k epochs, and do not halt the run based on fidelity metrics.
We do save randomly selected images from the validation set as the
simulation progresses so that we can visually inspect the improvements
of our inference as our model converges.
Because the color map represents one dimensional data, we convert
the images to greyscale. This provides us with single channel data,
and reduces the memory consumption of the input data by a third.
Similarly, to reduce memory consumption we reduce the image sizes
to 32x32, from 1024x1024. We note that we have investigated sizes
up to 128x128, though the algorithm takes longer to perform as the
batch size needs to be dramatically reduced because of our hardware
constraints. We believe that the quality of our results are agnostic to
the size of the image, and would require a similar number of epochs
if GPU memory was scaled proportionally. No other preprocessing
measures were applied.

4.5 Hardware
To perform our experiments we used a system with an Intel Xeon
E5-1650 v3 @ 3.50GHz with a GeForce RTX 2080 Ti (11GB).

4.6 Software
For these experiments we used the PyTorch machine learning frame-
work. Code and sample data are located at https://github.com/uo-
cdux/DATUM.

4.7 Evaluation
For each experiment we compare our reproduction to the ground truth
and the mean of the input images. We use PSNR to evaluate our results
on the testing and validation sets.

PSNR = 20log10(MAXI)−10log10(MSE)

Where MAXI is the maximal pixel value, in this case 255 (greyscale
images), and MSE is the Mean Square Error. PSNR is a variant of the
MSE metric and because of this, images that are visually distinct can
have means that are close to the original. It should be noted that the
higher the PSNR value the better the images are. If the images are
identical then the MSE would be 0, this PSNR would be infinite.

To account for the downfalls of the metric, we visually inspect the
images by plotting 10 random sample images from the test set. To
visually inspect, on the same plot we also show: the ground truth,
LERP, and the two input images. Through this we ensure that produced
images are both visually appealing and have empirically similar.

5 EXPERIMENTAL RESULTS

In this section we discuss the results of the experimental campaigns
described in Section 4. We break this out into subsections discussing
the results from each of our two campaigns — inferring images new
ensemble members(5.1) and understanding the data dependence of our
model(5.2).

5.1 Inferring Images on New Ensemble Members
This campaign demonstrates our algorithm’s ability to transfer learn
between ensemble simulations and investigates how much data we need
to fine tune our algorithm for a new ensemble member. We look at our
algorithm’s ability to infer images when given access to 0%-10% of
a new simulation. Specifically, we train on MEM1 and transfer our
machine learning algorithm to MEM2 and MEM3. In each case we
use 10% of the dataset from the new ensemble members for our testing
set. Table 1 shows the percentage of training data that our algorithm and
LERP had access to and the average of the associated PSNRs. Figure 5
shows sample outputs from the methods when shown 5% of the new
ensemble member. Figure 6 shows the PSRN vs the number of training
epochs for the same case, a mean value for the input images is depicted
to show that DATUM is not just blending images.

From Table 1 we can see that our algorithm beats LERP by a fair
amount on the MEM2 case. In the MEM3 case our algorithm wins
when given access to a low, but non-zero, training amount. LERP

MEM2 MEM3
% DATUM LERP DATUM LERP
0 60.25 64.89 59.23 77.37
1 82.30 70.96 90.48 84.28
2 85.11 73.69 90.32 88.64
3 84.01 73.26 90.77 90.57
4 82.31 75.93 87.76 87.69
5 86.34 72.74 89.43 89.45
10 86.52 83.38 93.77 100.74

Table 1: PSNR for Transfer Learning on MEM2 and MEM3. This
table shows a comparison of DATUM vs LERP using the compari-
son described in Section 4.3.1. Bold numbers show which algorithm
performed the best.

quickly wins out against DATUM as more training data becomes avail-
able. Once given 3% of MEM3’s dataset DATUM’s prediction has a
PSNR that is relatively the same as LERP. We also can see that DA-
TUM performs poorly when it does not have access to any information,
the 0% case, from the new ensemble member. This shows that the
ensemble members are not similar enough that our algorithm just mem-
orizes images from the first member and spits them out in the new
member. Our algorithm here only has access to two images form the
new ensemble members but does not have any information that this
is a different member. LERP has no prior information about what an
ensemble should or should not look like, and thus the simpler method
wins out with no priors.

Figure 5 shows an example output from the testing set when given
access to 5% of the new ensemble member. We show DATUM’s predic-
tion as well as the ground truth for visual comparison. The inference
isn’t perfect, but a visual inspection shows that these are reasonable
approximations of the data. The main issue with our algorithm is that it
has some noise in certain regions. When looking at the MEM2 case
we see regions, such as those in columns 8,9, and 10, are almost in-
distinguishable but there is a little noise. In columns 3 and 5 there is
greater noise and our algorithm seems to have a harder time generating
smooth images. Despite this, the overall shape of the prediction looks
similar. When looking at the MEM3 case we see similar success and
losses. Particularly column 2 has a lot of noise. While most images do
not have this noise – column 3 is almost identical and does not have
the noise – DATUM’s inability to infer on these images greatly affects
the average PSNR of the set. This is likely due to our algorithm using a
randomized distance between the input images and a high learning rate.
The difference in columns 2 and columns 3 is that column 2 had used
images at cycle 2 and 126, predicting cycle 75. Column 3 used cycles
52 and 82 to predict cycle 80. We note that LERP has a slight edge in
this manner, because we allow it to find the closest input images while
we do not account for this in our algorithm.

Figure 6 shows the PSRN at the 5% access as DATUM trains over
new epochs. There are two interesting parts of these graphs. The first
is that in MEM3 it grows to a higher PSNR than the MEM2 case
and quicker. The second is that the MEM3 case is more noisy than
the similar case. A similar factor plays into the role of both these
phenomena, the learning rate. We had held the learning rate constant
at 5× 10−5 for all experiments to reduce the number of changing
parameters. A large learning rate causes a machine learning algorithm
to converge to a solution faster, but if it is too large it may oversetp the
local optima and have a noisy convergence. In this case it is clear that
in MEM3 a smaller learning rate would smooth out the results, but this
would also require more training time. This is also why MEM2 has a
more gradual convergence to the optima. In MEM3, visual inspection
shows us that while many images are correctly inferred there are a few
images that are more difficult. Here the model is trying to fit these
images but is oversteping the optima.

Additionally, from the PSNR results in the table and the graph
we can conclude that while MEM3 is more distant from the trained
ensemble, it is a simpler simulation. We can conclude this because both
DATUM and LERP are able to perform better on this dataset with less

https://github.com/uo-cdux/DATUM
https://github.com/uo-cdux/DATUM


(a) MEM2

(b) MEM3

Fig. 5: Example outputs from Transfer learning on the (a) MEM2 and (b) MEM3 datasets when given access to 5% of the dataset. Prediction
shows DATUM’s inference and True shows the ground truth from the dataset.

(a) MEM2 (b) MEM3

Fig. 6: DATUM’s PSNR vs training epoch. (a) shows the results for
MEM2 and (b) depicts MEM3. A black line showing the average
mean of the two input images is also shown.

information. Additionally, on the 0% case, DATURM performs worse
on MEM3, compared to MEM2, while LERP performs significantly
better. Lastly, we see that the average of the mean of the inputs is higher
in MEM3, showing that the inputs are more similar. This last fact also
contributes to why DATUM learns faster on MEM3.

5.2 Understanding Data Dependence
Our second campaign, as described in Section 4.3.2, focuses on un-
derstanding the data dependence of our model. We first look at the
midpoint experiment in 5.2.1 to demonstrate our model’s ability to
capture long temporal sequences. Then at an arbitrary distance in 5.2.2
and focus on several experiments that help us understand the data de-
pendence of our model. Within this campaign we only look at the data
from MEM1.

5.2.1 Midpoint Experimental Results
As described in Section 4.3.2 we infer the midpoint image where the
difference between the input images is 100 cycles.

For this campaign, we describe results using two figures:

• The first figure (Figure 7) plots PSNR vs the training epoch, which
provides quantitative information about the quality of upscaling.
PSNR graphs show the PSNR increasing as the model trains
more. There is a solid black line representing the average PSNR
achieved by LERPing methods.

• The second figure (Figure 8) plots the reconstructed images,
which provides qualitative information about the quality of up-

scaling. These plots show a matrix of images. The columns of the
matrix show the two input images, the ground truth, the LERPed
image, and our model’s inference, in that order. The rows of the
matrix represent different time slices for the inputs and ground
truth, respectively, as described in previously. One row represents
a single time slice that our techniques On the x-axis we label the
columns accordingly. On the y-axis we label the cycle number
for the row of images – input1, input2, ground truth.

As can be seen in Figure 7 our model quickly surpasses the fidelity
of the LERPed images.

Fig. 7: PSNR as model trains on midpoint inference with step size 100
cycles

With Figure 8 we note that the ground truth and our model’s infer-
ence are almost identical. We bring the reader’s attention to row 9
(cycles 442,542,492) because it is the worst prediction in this subset.
We note that there is difficulty in connecting the two pointed regions
in the bottom right of the image. Additionally there are some slight
color offsets in this region. The four corners pattern also is not as
apparent in our inference. This at least demonstrates that our model is
not memorizing the dataset and pasting back what it remembers.

We do note that in Figure 7 that the model is not fully converged
and the fidelity is noisy between epochs. We note that the model is not
fully converged and that there is a trade-off between training time and
accuracy. While we do not expect our PSNR to approach infinite within
a finite amount of time, we see in other experiments (below) that noise
can be reduced and other factors play a role in increasing fidelity. The
fidelity could be less noisy if a lower learning rate was used but this has
a cost in time to convergence. We also decided to hold the learning rate,
and all other ML parameters, constant to best compare results between
experiments. In this way we only modify a single variable at a time.

5.2.2 Arbitrary Experimental Results
For our arbitrary distance experiment we performed more tests to
demonstrate the effectiveness and limitations of our model. We first



Fig. 8: 10 randomly selected samples from the test dataset

(a) 1x (b) 2x (c) 5x

Fig. 9: PSNR when we duplicate the data 1x, 2x, and 5x times

look at how many times we repeat the process described in Section 4.3.2
affects the data. Second, we investigate varying our training set size.
Third, we perform a check by reconstructing the dataset from 7 inputs.

Similar to Section 5.2.1 we look at PSNR for quantitative results and
sample images for qualitative results.

Repeat Selection vs Quality For our first set of experiments we
examine how repeating our selection process multiple times affects the
model’s accuracy. That is, how many times we cycle over the data,
pick a new m and c as described in Section 4.3.2. Essentially this is
organizing the data in different ways. We may want to use multiple
repetitions of data so that we decouple the model’s dependence on
images and increase increase its dependence on the parameters. By
having one fixed parameter and image the model will learn different
relationships.

From these figures we can see that 1x produces the lowest results,
but performing the process twice we get substantially better results.
The difference between 2x and 5x is not as meaningful. While the
PSNR for the 1x results looks great, the inferred images do not look as
visually pleasing. We show a sample of these images in Figure 12

These results performed better than the LERP but still have signif-
icant feature defects. It can be seen that these inferences are taking
on the general shape of the ground truth image but when the ground
truth image has complex features the inference becomes less refined
and has a lower fidelity. We draw attention to the difference in rows
5 and 6. m is fairly small for both these rows, but row 6 has a harder
time performing. We also draw attention to the last row. m is large here
and the model has a harder time producing a more accurate image. We
leave it to the reader to determine of our image is more accurate than

(a) 20% (b) 40%

(c) 60% (d) 80%

Fig. 10: PSNR of 20%, 40%, 60%, and 80% training sizes

Fig. 11: Examples from test output when training on 20% of the data

the LERPed image.
In contrast to this, results from the 2x test set, Figure 12(b), looks

substantially better. Here it is much more difficult to see the difference
between columns 3 and 5. We note that there still are minor errors and
draw the attention of the reader to rows 2 and 9. In row 2 we see that m
is large (137), and the model performs quite well. The bow and arrow
shape within the image is captured but more faded than the ground
truth. Similarly, in row 9 the arch connecting the two spikes is less
distinct and the central diamond is significantly faded. While the main
part of these features is captured there is still some loss.

Lastly, we show the sample outputs from the 5x experiment, Fig-
ure 12(c). We note that the results here have slight improvements over
the 2x experiment. While the PSNR of these experiments are similar
it is more difficult to visually distinguish the difference between the
ground truth and our inference.

Training Size vs Quality Our second experiment focuses on how
dependent our model is to the amount of data it has access to. We
investigate the model with access to 20%, 40%, 60%, and 80% of the
data. We use the 1x method, as described above, so we can see the



(a) 1x (b) 2x (c) 5x

Fig. 12: Sample outputs from the 1x,2x,5x test dataset

largest difference between sets.
To better understand the qualitative results we also include samples

from the output test sets. Figure 11 shows the result of the test set
from only using 20% of the available data to train. As noted above, the
training data is randomly selected from the available data. Figure 12
already shows samples from the 80% case.

Similar to the 1x experiment, the 20% experiment struggles to handle
the more complex features, such as in the last row, but performs better
than LERP in simple features like row 6. In cases where the input
images are not distant, LERP actually performed better than this 20%
experiment, as is best seen in row 7.

Arbitrary Remarks These experiments show us that there is a
wide range in the inference power of our model. Section 5.2.2 shows
us that the more data we have available the better our model performs.
Section 5.2.2 shows us that there are tactics we can use to supplement
our lack of data, by providing more training samples by rearranging the
data we have. This allows users of our model to understand the limita-
tions of our model but also gives them a method to improve accuracy
when more data is unobtainable. As with any machine learning model,
the more data one can feed in, the better it will train. In addition we
note that the arbitrary results are able to perform better than the fixed
distance results. This is because the model is getting access to a wider
range of data. This shows that this training method is more beneficial
to DATUM than by using a fixed temporal distance.

6 CONCLUSION AND FUTURE WORK

In this work we presented DATUM, a method for temporal upscaling on
ensemble simulations. We explored the use case of this algorithm and
explored the how our machine learning model learns with different data
sizes and arrangements. We demonstrate DATUM’s ability to more
accurately produce temporal upscaling from a sparsely saved ensemble
simulation than LERPing. Overall, we feel that this work provides an
important step towards a useful capability for visualization practitioners

that is currently not possible. However, we recognize that there are still
further avenues to improve upon this work and in this area of research.
One fault is that with our limited access to hardware we were only
able to train on small image sizes. While other machine learning work
has shown that this can scale, access to more GPUs would allow us
to demonstrate if this holds true for our work, and how far it scales.
Additionally, there is an open ended question of if DATUM can be used
in situ, fine-tuning on the new ensemble member in situ. This would
greatly further the applicability of this work and provide a more useful
tool to researchers. There are also other model structures that can be
explored, such as other attention mechanisms that may improve results.
Additionally we seek to expand DATUM’s use cases such that instead
of learning patterns in ensembles, it learns patterns in groups of physics
simulations. For example, DATUM being used to learn the nature of
wave patterns and being able to be applied to a wide set of wave solving
simulations.
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