
Eurographics Symposium on Parallel Graphics and Visualization (2021)
S. Frey, J. Huang, F. Sadlo (Editors)

Improving Parallel Particle Advection Performance
With Machine Learning

Samuel D. Schwartz,1 Hank Childs1 and David Pugmire2

1Department of Computer and Information Science, University of Oregon, Oregon, United States
2Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States

Abstract
Parallelized particle advection algorithms are a key visualization tool for domain scientists. They are also very computationally
expensive to run. Machine learning techniques have been widely used in regression settings to predict results based on a set
of input features. Our work describes an approach for parallel particle advection optimization; an approach which uses a
machine learning algorithm at its core. We specifically investigate how our approach operates when applied to a GPU-based
parallel particle advection algorithm. We examine the efficacy of 14 different machine learning models (including six neural
network models) in our approach and validate the top theoretical performers’ accuracy with respect to speedup over a baseline
algorithm. From our investigations we find that the machine learning based optimization architecture yielded by our approach
considers 45% of examined particle advection workloads to be “acceleratable," of which 74% truly do receive acceleration.
Of the “acceleratable" workloads, our architecture achieves an overall average speedup of 12.7% and an average speedup of
20.3% for workloads that took longer than 60 seconds to execute.

CCS Concepts
• Human-centered computing → Scientific visualization; Visualization techniques;

1. Introduction

Flow visualization is a foundational technique for understanding
the behavior of vector fields in scientific data. The techniques that
encompass flow visualization are varied, and include operations
such as streamlines, pathlines, FTLE, Poincare analysis. All of
these techniques are built upon a common foundational algorithm
for performing particle advection.

In particle advection, a massless particle called a seed is placed
in the vector field. The path of each seed is computed by success-
fully displacing the position by the velocities in the vector field.
The computed path can be described using an ordinary differential
equation, and in practice is computed iteratively using numerical
techniques.

The costs of particle advection based flow visualization and anal-
ysis can be very expensive depending on the workload. Each of
these workloads and intended use cases can have dramatically dif-
ferent performance results. As an example, when using streamlines
to interactively understand a vector field, a small number of seeds
might be placed at strategic locations within the dataset and ad-
vected for a large number of steps. It can also be useful to gen-
erate a large number of long streamlines and then either analyze
their characteristics, or use some interactive methods to cull away
streamlines and focus on a particular subset. In the case of FTLE or
Poincare analysis, one or more seeds can be placed in every cell the

mesh, and advected for either a short or long duration depending on
the nature of the analysis. This can result in billions of particles be-
ing advected for thousands of steps. As a result, particle advection
workloads can have excessive times for solving.

Particle advection algorithms become more complicated in the
context of supercomputers. In these settings, the data are typically
very large and must be distributed across the memory space of a
number of nodes in the supercomputer. This requires the use of
parallel particle advection algorithms which are notoriously diffi-
cult to efficiently parallelize. The basic challenge in parallel parti-
cle advection algorithms is to ensure that the data block and seed
are brought together at the right time. It is difficult to coordinate
this bringing together of data and particles, and so these methods
are subject to load imbalance. In the context of in situ processing on
a supercomputer, performance is even more critical. When analysis
and visualization are expensive, they will be performed less fre-
quently while a simulation is running. For an in situ setting, where
all data cannot be written to disk, this results in lost opportunities
for analysis of data and decreased understanding of scientific data.

The computational expense of algorithms, and the impact on the
extraction of understanding from large data makes performance of
these types of algorithms important. The performance of the par-
ticle advection algorithm does not correlate directly with the size
of the data (both grid size and the number of particles and steps to

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.



Schwartz, Childs & Pugmire / Improving Parallel Particle Advection Performance with ML

take). The performance is also correlated to the nature of the vector
field, which varies across types of simulations, and the placement of
the seeds. The data blocks that are needed at any one time are func-
tion of the seed placement, and the nature of the flow. The problem
of bringing together of seeds and data in an optimal way is diffi-
cult in distributed memory setting. The relationship among these
factors are not fully understood and is an active area of research.
Further, particle advection algorithms have a number of configu-
ration parameters that determine their behavior and performance.
These additional parameters pose further challenges in gaining op-
timal performance.

These host of challenges makes it difficult to know how to con-
figure and run a particle advection algorithm a priori. Our research
question asks if we can use machine learning to optimize a parallel
particle advection algorithm. Machine learning techniques are pow-
erful tools that can be used to understand complex processes. These
techniques can discover complex relationships among a set of in-
puts and a desired set of outputs. In this paper we generate a set of
training data from over 2500 runs from a parameter sweep of a par-
ticle advection algorithm. We formulate the parameters of a parallel
particle advection algorithm as an optimization problem and assess
the efficacy of several machine learning algorithms in addressing
the optimization problem. We trained a total of 14 different types
of models to this data and selected a model that is best suited to pre-
dicting optimal parameter settings for the algorithm. We then take
this model and run a set of validation experiments to confirm our
model. Our results identified a large set of workloads that could be
accelerated using optimal parameter settings. Our validation runs
using the machine learning model resulted in 60% of these iden-
tified uses cases being accelerated. Our model can be used within
a particle advection system. Given a workload specified by a user,
the model can be used to predict optimal parameter settings for the
algorithm.

2. Related Work

Related work is divided into three parts: machine learning overview
(2.1), performance optimization (2.2), and particle advection (2.3).

2.1. Machine Learning, Supervised General Regression, and
High Performance Contexts

Machine learning has been incorporated as a tool in a variety of set-
tings to predict or infer optimal outcomes. Supervised regression is
a type of machine learning wherein machine learning models pre-
dict new continuous scalar outcomes based on inputted features af-
ter being trained on a set of existing set of ordered pairs of (features,
continuous scalar outcome).

One of the simplest and most well known supervised regression
machine learning model is linear regression. Linear regression in-
volves fitting a line of the form f (~x) =~x ·~β+β0 to an existing set
of points in Rn (typically by ordinary least squares). A subsequent
prediction given an additional point ~p ∈ Rn is the calculated out-
come of f (~p).

Many other non-linear techniques for supervised regression ex-
ist. Often derived from supervised classification models, these clas-
sic supervised regression models include random forests, support

vector machines (SVMs), k nearest neighbor variants, among many
others. We find the textbooks [Bis06, HTF09] provide an excellent
overview of all of these techniques.

Some kinds of neural network are also supervised machine learn-
ing techniques. While many architectures of neural network models
are quite complex, other smaller and simpler models offer excellent
predictive performance, too. Goodfellow et al. [GBC16], provide
a strong starting point for understanding the theoretical underpin-
nings of neural networks.

2.2. Optimizing Algorithm Performance

Machine learning, in the broadest sense, has been used to au-
totune high performance algorithms by using optimization tech-
niques such as genetic algorithms [MPP∗18] and random cor-
relation grid search, with Balaprakash et al. providing a com-
prehensive overview of autotuning oriented optimization tech-
niques [BDG∗18].

Tuncer et al. [TAZ∗17] provided an early example of supervised
machine learning in high performance algorithm analysis. They
constructed a framework which decomposed time series data of
anomalies in a high performance computing algorithm into train-
able data and assessed the efficacy of several machine learning
techniques, among them k nearest neighbors, support vector classi-
fiers with a radial basis function kernel, and random forests. They
found that the random forest model worked best for the problem
they investigated. Their work was focused purely on anomaly de-
tection, however, and only incidental to optimization.

2.3. Particle Advection in Parallelized Settings

Particle advection has been studied for a long time to find optimal
ways for load balancing the problem. There are two fundamental
ways of parallelizing the problem, Parallelize over Data (POD) and
Parallelize over Particles (POP), and hybrid methods that use ele-
ments of both approaches. In the POD method [PPG12], the data
are distributed over the processes. Each process advects the parti-
cles located in its data block until it terminates or exists the spatial
bounds of the block. Particles are communicated to the process that
owns the needed block when a particle when they exit. This process
continues until all particles terminate.

A number of extensions to POD have been considered to im-
prove the performance of the algorithm. Sisneros et al. [SP16]
studied the impact of communication granularity in the POD al-
gorithm. Optimizations for spatial decomposition have been stud-
ied in [PRN∗11] to improve load balance. Work in hybrid paral-
lelism (both shared and distributed memory) have also been stud-
ied for particle advection. Camp et al. [CGC∗11] first looked
at these methods for streamlines, followed by work looking at
the performance on different types of workloads and hardware
types [CKP∗13, CBP∗14]. Finally, Pugmire et al. [PYK∗18] pro-
vided a hardware portable method for shared memory particle ad-
vection using VTK-m [MSU∗16].

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.



Schwartz, Childs & Pugmire / Improving Parallel Particle Advection Performance with ML

3. Algorithm and Data Corpus

In this section we describe the particle advection algorithm, and the
experiments performed to generate our data corpus. The algorithm
characteristics as well as the workload characteristics are used to
train the machine learning models.

3.1. Particle Advection Algorithm

In this study we used the Parallelize-Over-Data algorithm
(POD) [PPG12]. This algorithm divides the blocks of data over the
nodes of computer and communicates particles between nodes as
they travel between blocks. Each process is assigned one or more
blocks and is responsible for advecting all of the particles that travel
through these blocks. Each process advects the particles located in
its data blocks until they terminate or exit the spatial bounds of the
block. When a particle leaves a data block, asynchronous commu-
nication is used to send it to the process that owns the required data.
A counter is maintained across all of the processes of the number of
active particles. The algorithm exits once there are no more active
particles.

When running the POD algorithm using a GPU, all of the par-
ticles on a process are loaded onto the GPU and advected until all
have been processed. Processing on each particle will continue un-
til it has exited the current data block, or a termination criterion
has been met (e.g, maximum number of steps taken). In this work,
we use the following two parameters to control the behavior of the
POD algorithm.

• “Batch Size”: which specifies how many advection steps to take
before checking the status of particles. The GPU processes a
large number of particles in parallel. The GPU will process these
particles in rounds depending on how many hardware threads are
available. If particles that have terminated – or have traveled out
of the current block – can be removed from the GPU, then effi-
ciency of the GPU can be improved by assigning active particles
to these recently vacated threads. When “Batch Size” is greater
than or equal to the total number of advection steps, all particles
will be processed.
• “Delay Send”: controls when communication is performed.

When “Delay Send” is True, particles are communicated after
all of the particles have been processed by the GPU. When False,
communication is performed after each check for particle status,
as specified by the “Batch Size” parameter.

The default settings for the POD algorithm is for the “Batch Size”
to be ALL (i.e., process all particles without checking status), and
for “Delay Send” to be True (i.e, communicate particles after all
particles have been processed.

These parameter settings can impact algorithm performance in
several different ways. Using the default settings for the POD al-
gorithm (“Batch Size” = ALL and “Delay Send” = True), parti-
cles are advected until they either terminate, or leave the block.
When running this algorithm on a many core device (e.g., GPU),
all of the particles are sent to the GPU to be advected. Once all of
the particles are finished, the state of each particle determines if it
has terminated or needs to communicated to the process that has
the data block. There are two implications of this. First, the GPU

will be busy until all of the particles are done. Because the GPU
can process a large number of particles in parallel it is likely that
some particles will finish earlier than others. For example, assume
that 1000 particles are loaded onto the GPU for advection. If 999
particles terminate after one advection step, the GPU will remain
busy until the final particle finishes. Second, communication is per-
formed only after all of the particles are finished advecting. This
can result in fewer communications of larger groups of particles,
which may be more efficient. But, it also slows down the rate at
which busy processes can send particles to other processes, which
are potentially idle.

Optimal settings for “Batch Size” and “Delay Send” for a given
particle advection workload can decrease the time the algorithm
takes. Optimal settings for “Batch Size” will increase GPU utiliza-
tion by removing particles that become inactive. “Delay Send” will
change the communication patterns in the algorithm. When True,
larger sets of particles are communicated less frequently. This can
result in a decrease in communication for some workloads. When
False, particles are communicated more frequently. This allows
particles to be moved more quickly to other processes, which are
potentially idle. Knowing the proper parameter settings for this al-
gorithm is difficult to know for a given workload.

3.2. Training Data Corpus

To collect data for training our machine learning models, we ran
a total of 2513 different workloads of the particle advection algo-
rithm. Each run considered was characterized by 4 workload fea-
tures: flow field, number of particles, seeding strategy, and number
of advection steps; and 2 algorithm features: Batch Size and Delay
Send. For each workload feature, we ran the algorithm using the
default parameter settings to collect a baseline performance char-
acteristics. We then varied the algorithm features for each workload
to collect data which could be compared against the baseline. The
features we used are described below.

• Flow Field: We considered three datasets that have different
types of flow characteristics. We chose these datasets as they
span a range of scientific use cases and provide insight for the be-
havior of the algorithm. The first dataset is an astrophysics sim-
ulation of the magnetic field surrounding a solar core collapse
resulting in a super nova. The vector field used is from the GenA-
SiS code, a multi-physics code being developed and used for
the simulation of astrophysical systems involving nuclear mat-
ter [ECBM12]. The second is a fusion simulation of the magnet-
ically confined fusion in a tokamak device using the NIMROD
code [SGG∗04]. This dataset has the unusual properly that most
of the magnetic field lines are approximately closed and repeat-
edly follow the toroidal vector field domain. The third is a ther-
mal hydraulics simulation using the Nek5000 code [FLPS08].
This dataset consists of a vessel with two inlets where hot and
cold air are pumped, and a single outlet where the air exists.
Each dataset was uniform grid of size 20483 and decomposed
into 64 spatial blocks, each with a size of 5123.
• Number of Particles: The number of particles ranged in value

from 1000 to 500 million.
• Number of Advection Steps: The number of advection steps

ranged from 100 to 10,000.

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.



Schwartz, Childs & Pugmire / Improving Parallel Particle Advection Performance with ML

• Seeding Strategy: Two seeding strategies were considered:
sparse seeding, and dense seeding. In sparse seeding, seeds are
randomly distributed throughout the bounding box of the entire
domain. This provides an understanding of the entire flow in the
flow field. In dense seeding, the seeds are placed in a small region
of interest inside the flow field. This provides an understanding
of the flow originating in a specific location.
• Delay Send: This is a Boolean with values of True and False.
• Batch Size: The Batch Size used depended on the number of

advection steps in the workload. On average, 4 different Batch
Size values were generated per baseline.

3.2.1. Performance Data

The performance data collected for each experiment consisted of
four values. Two were time related: the execution time for a run,
Time, and the sum over all proceeds of time spent in communica-
tion, CommTimeSum. The final two were metrics computed related
to the communication patterns associated with the setting for the
Batch Size and Delay Send. The first metric, SumBatchSends is the
sum over all processes of the number of messages (groups of parti-
cles) that were sent. The second metric, AverageBatchSends is the
average number of messages sent when the GPU is interrupted to
inspect the workload. Our training was focused on the optimization
of speedup, but these metrics were also used to examine the ma-
chine learning techniques’ efficacy in learning other performance
characteristics.

Given a workload~θ, batch size B, and delay send D, the speedup
is defined as:

Speedup(~θ) :=
Time for baseline algorithm(~θ)

Time for algorithm(B, D,~θ)

4. Our Approach

Our approach has two phases. The first phase creates machine
learning models that inform particle advection algorithm perfor-
mance. The second phase constructs an “oracle” that visualization
practitioners can then use to optimize particle advection.

We divide this section into two parts: Section 4.1 defines ma-
chine learning models and our oracle, while Section 4.2 describes
the workflow we employ to build the models and oracles.

4.1. Definitions

4.1.1. Machine Learning Model

We consider a machine learning model to derive from two compo-
nents: a data corpus and a machine learning technique.

A data corpus is a set of samples, where each sample is an or-
dered pair. The abscissa (i.e., the first member of the ordered pair)
serves as inputs to the model, and the ordinate (i.e., the second
member of the ordered pair) is the output of the model. In the con-
text of this study, the abscissa (input) contains both the particle ad-
vection workload characteristics and the algorithm characteristics,
and the ordinate (output) defines the execution characteristics that
the model predicts. Explicitly, these characteristics are:

• Particle advection workload characteristics (abscissa/input)

– Flow field
– Seeding strategy
– Number of particles
– Number of advection steps

• Particle advection algorithm characteristics (abscissa/input)

– Batch size
– Delay Send

• Execution characteristics (ordinate/output)

– Speedup (compared to a default batch size)

The values of one sample in the corpus would be of the form:

( (FlowField-Value, SeedingStrategy-Value, #ofParticles-Value,
#ofAdvectionSteps-Value, BatchSize-Value, DelaySend-Value),
(Speedup-Value) )

A machine learning (ML) technique trains on a data corpus. Dur-
ing this training, it infers relationships between the input (abscissa
of the data corpus) and output (ordinate of the data corpus). After
training, the ML technique can predict values, i.e., when given a
specific value for the input, it can predict a value for the output.
While we refer to this learning and prediction process using the
general term of “machine learning,” a more precise name of this
machine learning process is “supervised regression.”

Putting it all together, after a training phase, an ML model takes
in particle advection workload characteristics and algorithm char-
acteristics and predicts execution characteristics. For example, for
a given number of seeds, steps, batch size, etc., an ML model can
predict the speedup.

Looking ahead to our experiments, we considered seven machine
learning techniques (see Section 5.1.3). We also considered two
data corpora for training purposes: particle advection workloads
that included flow field (“flow field sensitive”) and those that ex-
cluded flow field (“flow field agnostic”). In all, this means we con-
sidered 14 types of machine learning models.

4.1.2. Oracle

Our oracle predicts whether speedup of a particle advection algo-
rithm is possible compared to a baseline and, if so, provides the
particle advection algorithm characteristics that will achieve maxi-
mum speedup. Note that this is subtly different than our ML model:

• For our machine learning model:

– Input consists of particle advection workload characteristics
and algorithm characteristics

– Output consists of execution characteristics

• For our oracle:

– Input consists of particle advection workload characteristics
– Output consists of algorithm characteristics

In our approach, an oracle is constructed from a machine learn-
ing model. In essence, an oracle uses the predictions from a ma-
chine learning model to decide on the best algorithm characteris-
tics. Explicitly, for a given number of seeds, steps, and particles, an

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.



Schwartz, Childs & Pugmire / Improving Parallel Particle Advection Performance with ML

oracle returns a batch size and delay send value that it believes will
provide the optimal performance.

Finally, there is some flexibility in how an oracle utilizes its
machine learning model, and we consider two variants (see Sec-
tion 5.2.2). In all, this means there are 28 possible oracles, one for
each of the two oracle variants applied to each of the 14 machine
learning models.

4.2. Workflow

This section is divided into two parts, with Section 4.2.1 describ-
ing the generation of ML models and Section 4.2.2 describing the
generation of oracles. Both sections are reflected in Figure 1, which
illustrates the workflow.

4.2.1. Phase 1: Generating a Machine Learning Model

The purpose of the first phase is to generate a good ML model that
can be used in the oracle. It operates in two steps.

Step 1

The first step is to generate a diverse set of candidate ML models.
This set of machine learning models should draw from different ar-
chitectures, hyperparameters, and data preparation techniques. Step
one is represented in Figure 1 as “Machine Learning Development
Workflow.”

Many authors have described techniques for developing and ap-
plying individual machine learning models to a specific problem.
We find the nine-step technique by researchers from Microsoft
in [ABB∗19] to be particularly informative as a practical frame-
work for constructing individual models.

There are two broad areas of critical importance for the success-
ful modeling of phenomena. These include:

(a) Data collection and preparation of that data into appropriate in-
put for a machine learning technique.

(b) Selection of the hyperparameters and other settings of the ma-
chine learning technique itself.

Frequent points of failure in the development of an ML model
hinge on inappropriate choices made in (a) or (b).

Step 2

The second step is to assess which candidate ML models —
if any — adequately capture particle advection performance. Step
two is represented in Figure 1 as “Decision: Assess models.”

Once each machine learning model in our set has been trained, it
will then be assessed for efficacy in modeling phenomena. Models
should be assessed on their own merits (e.g., does model X have
high enough accuracy to be useful), as well as evaluated through
direct comparison with the other models under assessment (e.g., is
model X more accurate than model Y).

The end outcome of assessment determines whether there is a
viable model that sufficiently predicts the targeted execution char-
acteristic. Viable models can be used for subsequent inclusion in
the creation of an oracle.

Finally, one possibility from this phase is that no ML model will

Phase	1:	Machine	Learning

Machine 
Learning 
Development 
Workflow

Data 
Preparation

Parameter 
Tuning

Candidate 
ML Model 

Performance Data

Machine 
Learning 
Development 
Workflow

Data 
Preparation

Parameter 
Tuning

Candidate 
ML Model 

Machine 
Learning 
Development 
Workflow

Data 
Preparation

Parameter 
Tuning

Candidate 
ML Model 

...

Decision: Assess models. Is one sufficiently good?

Yes. Proceed to Phase 2 
with best model.

No. Reassess input data, 
its articulation, tuning, and 
base models considered.

Phase	2:	Oracle	Assembly

ML Model of 
Performance

Oracle Algorithm Design & Construction

Run many 
simulations 
using ML 
model.

Candidate 
Oracle 

Incorporate 
domain 
specific 
knowledge.

Use
optimization
techniques.

Oracle 
Algorithm 
Design & 
Construction...

Candidate 
Oracle 

Decision: Assess oracles. Is one sufficiently good?

Yes. Incorporate best 
oracle into visualization
frameworks.

No. Reassess oracle 
construction and underlying 
ML model rigour.

Best Oracle 

Incorporation into 
Technology A

Incorporation into 
Technology B

Incorporation into 
Technology C

Figure 1: Flowchart describing our approach for generating an
oracle to optimize particle advection performance.

adequately capture particle advection performance. If there is not
a viable model, then we iterate through the model creation process
again. We would particularly investigate the two common points for
machine learning modeling failure: a lack of adequate data integrity
and preparation, and insufficient tuning of settings and parameters
of the machine learning architecture itself.

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.



Schwartz, Childs & Pugmire / Improving Parallel Particle Advection Performance with ML

4.2.2. Phase 2: Generating an Oracle

Oracle development, like machine learning model development,
consists of two steps: generation and assessment.

Step 1

The first step of oracle development is to construct variant algo-
rithms. Step one is represented in Figure 1 as “Oracle Algorithm
Design & Construction.” All oracle generation techniques which
use our approach will utilize the predictive power of the ML mod-
els generated in Phase 1 to simulate many runs of our particle ad-
vection algorithms; far more runs than were provided to train our
ML models in the first place. Oracles may optionally include op-
timization processes in their designs. Oracles also may optionally
incorporate decision logic predicated on domain specific knowl-
edge about the behavior of the algorithm; knowledge which may
have only been implicitly learned by the ML model but is explic-
itly known by human developers.

Looking ahead to Section 5.2.2 we construct two oracle variants.
Both of these oracle variants use a naive optimization technique,
wherein we search over the ML model to quickly determine the
algorithm characteristics which maximizes speedup across a wide
swath of parameters. One oracle variant also incorporates our do-
main specific knowledge about the underlying behavior of the par-
ticle advection algorithm in its analysis.

Step 2

Once an oracle is constructed it will then be assessed for effi-
cacy in predicting performance characteristics. This final step of
our last phase is represented in Figure 1 as “Decision: Assess Or-
acles.” Oracles that predict execution and algorithm characteristics
when given workload characteristics should be assessed against the
true execution characteristics of runs defined by those workload
and algorithm characteristics. As with machine learning models,
oracles should also be evaluated through direct comparison with
the other oracles under assessment (e.g., is oracle X more accurate
than oracle Y).

5. Experimental Overview

This section provides an overview of our experiments. We per-
formed two sets of experiments, corresponding to the two phases
of our approach. The experiments for Phase 1, described in Sec-
tion 5.1, considered 14 machine learning models, and evaluated
them for accuracy. The most accurate models were then used as
input for the experiments for Phase 2, which are described in Sec-
tion 5.2. These experiments considered oracles constructed from
each of the most accurate models, and evaluated the extent to which
they can improve particle advection performance.

5.1. Experimental Overview for Phase 1

This subsection divides the experimental overview of Phase 1 into
four parts: description of the input data (Section 5.1.1), data prepa-
ration (Section 5.1.2), machine learning techniques (Section 5.1.3),
and model assessment (Section 5.1.4).

5.1.1. Input Data

The input data corpus to Phase 1 of our approach was the perfor-
mance data collect from running our particle advection algorithm.
This corpus was described in section 3.2, and consisted of 2513
runs with varied workloads and non-default particle advection algo-
rithm parameters compared with a baseline. Each run became one
sample, meaning that each machine learning technique had 2513
samples to train on.

5.1.2. Data Preparation

This section describes how we transformed the performance data
from our data corpus to a form that can be used by machine learning
frameworks.

One important consideration from the preparation was whether
to include information about the flow field in the training. (Note
that we do not mean specific values from the flow field, but rather
the identity of the overall flow field itself.) On the one hand, includ-
ing flow field information would allow for models to capture flow
field-specific behaviors and thus provide further optimization. On
the other hand, generic, flow field-agnostic models are much more
useful in practice. For our experiments, we decided to do both. In
practice, this involved making a duplicate of our data corpus, and
removing flow field information from the duplicate. We refer to the
original data corpus as “flow field sensitive” and the modified ver-
sion as “flow field agnostic.” An important byproduct of this deci-
sion was that it doubled the number of machine learning techniques
we needed to consider — for each technique we would train one in-
stance with the “flow field sensitive” corpus and another instance
with the “flow field agnostic” corpus.

The remainder of this section describes how we mapped a data
corpus to a form that can be ingested by machine learning frame-
works. The details here are not critical for understanding our ap-
proach and results, but we feel it is important to describe them to
aid in reproducibility.

At a high level, the machine learning techniques we consider in-
gest data as single vectors, and so the challenge of this step was
mapping performance data from each of our runs to this form (i.e.,
a single vector). For our experiments, we made the following trans-
formations to create these vectors:

• Seeding Strategy and Delay-Send had two possible values and
were encoded as 0 or 1 in the vector.
• Number of Advection Steps, Number of Particles, and Batch

Size all have integers values. For each, their values were sub-
jected to a natural logarithm, and then underwent linear transfor-
mation and scaling to obtain a mean of 0 and unit variance.
• When Flow Field was used, it was treated as a categorical feature

— Fishtank 7→ 0, Fusion 7→ 1, and Astro 7→ 2.

Categorical inputs (i.e., Flow Field and Seeding Strategy) were
one hot-encoded, which can improve model accuracy for many ma-
chine learning techniques. Finally, once the model was trained, new
inputs underwent the same transformations as samples from the
training data.

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.



Schwartz, Childs & Pugmire / Improving Parallel Particle Advection Performance with ML

5.1.3. Machine Learning Techniques

The seven machine learning techniques we considered included
three neural network variants and four classical machine learning
models. Between these seven models and two data corpora (“flow
field sensitive” and “flow field agnostic”), we considered fourteen
machine learning models overall.

In the description of the seven models, we use the following no-
tation: Let ~x ∈ Rn denote an individual sample that is input to a
machine learning model and let ~y ∈ Rm denote the output of this
model for an individual sample. Further, let X denote the set of
inputs for all the samples used in training.

Neural Network Models:

All three of our neural network models shared the following
characteristics:

• The model is a fully connected, feed-forward neural network.
• The activation function for the final layer is the identity function.
• Dropout is not incorporated at any point.
• The optimization algorithm used for training is Hinton’s RMS

Propagation [HSS12].
• The loss function is mean squared error.
• “Training batch size” (which we note here as a characteristic of

our neural network’s algorithmic framework and not the same
as “batch size” as described in our data corpus) for the neural
network was chosen to be b

√
|X |c.

• The number of epochs used for training was selected to be 250
for our “flow field agnostic” corpus and 500 for our “flow field
sensitive” corpus. This selection was due to observed conver-
gence of the loss function at these configurations.

The neural network models only differed in the composition of
their hidden layers, all of which used Rectified Linear Units (Re-
LUs).

• Neural Network A (Model A): This model contains one hidden
ReLU layer. The size of this layer is d 1

2 · (n+m)e.
• Neural Network B (Model B): This model contains two hidden

ReLU layers. The layers are of size: input (n) → d 2
3 · (n+m)e

→ d 1
3 · (n+m)e → output (m).

• Neural Network C (Model C): This model contains one hidden
ReLU layer. The size of the layer is d 1

2 · (n+m)e2.

Classic Machine Learning Models: Our four classic regression
models were:

• Linear Regression (Model D): We fit a linear model using or-
dinary least squares fitting. We expect this model to perform
poorly, but use it as a point of comparison given its simplicity,
speed, and widespread popularity.
• Random Forest (Model E): A forest of 100 regression trees,

each using Gini impurity as its discrimination function. The for-
est included bootstrap sampling to build its trees, and used mean
squared error as its discriminating criterion. Each tree was fully
expanded until each leaf node was pure.
• Support Vector Machine (Model F): Support Vector Regres-

sion using a radial basis kernel was used. Gamma was selected

to be
1

n ·Var(X)
.

• K Nearest Neighbors (Model G): A k Nearest Neighbors model
was used, where the number of neighbors = b

√
|X |c.

Implementation Details: The neural networks, models A, B,
and C were implemented in Keras [C∗15] with a Tensorflow
[AAB∗15] backend. Models D, E, F, and G were implemented with
Scikit-Learn [PVG∗11]. Unless otherwise specified, the default pa-
rameters for the machine learning algorithms implemented in these
libraries were utilized.

5.1.4. Model Assessment

We used 10-fold cross-validation [Sto74] to assess the accuracy
and robustness of a specific machine learning technique to model
speedup.We recorded the true output versus the predicted output
of the testing data assessed across each of the 10 folds. From this
predicted versus truth output, we derived various metrics.

The criteria we considered when evaluating the machine learning
models trained to predict speedup included: error, explained vari-
ance, and efficacy of the underlying machine learning technique
when the same base architecture was retrained to model and pre-
dict other execution characteristics.

5.2. Experimental Overview for Phase 2

This subsection divides the experimental overview of Phase 2 into
three parts: construction of a lookup table for optimal performance
(Section 5.2.1), definition of our oracle variants (Section 5.2.2), and
information on our verification runs (Section 5.2.3).

5.2.1. Lookup Table Construction

In an offline process, we calculated the optimal algorithm char-
acteristics for a set of workload characteristics by using our se-
lected machine learning model. This information was stored in a
lookup table that could be used subsequently by our oracles. The
oracles were then able to specify workload characteristics and re-
ceive the algorithm characteristics that provided the maximum pre-
dicted speedup. Since this was done as an offline process, the time
to calculate the lookup table did not affect algorithm performance.
If this research is adopted in the future, this offline process (which
takes a few hours) would be done whenever a new supercomputer
is stood up, and the resulting lookup table would be compiled into
production visualization software.

For a given workload, the optimal algorithm characteristics were
calculated in a brute force manner. We selected a set of ≈ 25,000
possible values for algorithm characteristics and we ran our ML
model for each of them to see the predicted speedup. Whichever
settings for algorithm characteristics had the highest speedup was
the recommended value for that workload and was the value stored
in the lookup table.

The ≈ 25,000 possible values spanned both batch size and
“delay send.” For batch size, the values were selected in a
logarithmically-spaced manner from 2 to 100,000,000. For “delay
send,” the values were 0 and 1. The final set of values were the
Cartesian product of options for batch size and “delay send.”

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.



Schwartz, Childs & Pugmire / Improving Parallel Particle Advection Performance with ML

5.2.2. Oracles Considered

We consider two variants of oracles. In both cases, the oracles take
workload characteristics and produce the algorithm characteristics
that are predicted to achieve maximum speedup. Further, the ora-
cles rely heavily on the lookup table from Section 5.2.1, and modify
its behavior only slightly. One important modification for the ora-
cles involves the default configuration — the default configuration
of “batch size == all” is actually a good setting in many cases, and
so setting the batch size to a finite value will lead to slowdowns,
not speedups. In this case, we want the oracles to recommend the
default algorithm.

We define our oracle variants as follows. Let W be workload
characteristics, LUT be the lookup table from Section 5.2.1, and A
be the answer returned by the lookup table, i.e., A = LUT (W ). Fur-
ther, assume the attributes of characteristics are accessible. Specif-
ically, let A.BATCH_SIZE be the recommended batch size for A,
A.SPEEDUP be the predicted speedup for A, and W.ADV _ST EPS
be the number of advection steps for W . Finally, denote the algo-
rithm characteristics for default execution as DEFAULT .

Algorithm 1: Oracle Variant I
A=LUT(W)
if A.SPEEDUP > 1 then

return A
else

return DEFAULT

Algorithm 2: Oracle Variant II
A=LUT(W)
if A.SPEEDUP > 1 and A.BATCH_SIZE <
W.ADV _ST EPS then

return A
else

return DEFAULT

Summarizing, both variants capture the desired behavior of us-
ing the default mode if no speedups are possible. The distinguish-
ing component to Oracle Variant II is that it also checks to see if
the batch size is less than the number of advection steps. This is
because the batch size limits how many steps can be taken. If that
batch size is larger than the number of advection steps, then impos-
ing this limit just causes an overhead with no benefit.

5.2.3. External Verification Runs

Once each model was assessed and the best performing selected,
we trained this best-performing model on the full data corpus of
2513 samples.

We then used the Cartesian product of the below features to con-
struct runs:

• Number of particles ∈ {1000, 10000, 100000, 1000000,
10000000, 100000000}
• Number of steps ∈ {100, 1000, 10000}
• Seeding strategy ∈ {sparse, whole}

• Flow Field ∈ {Fishtank, Fusion, Astro}

This Cartesian product of features resulted in 108 runs for us to
evaluate.

These 108 runs, with batch size and delay send selected for a
theoretically optimal speedup, were then processed and their true
real-world speedups calculated. We thresholded by runs which had
corresponding baselines complete within a two hour time frame.
We analyze these results in the context of their usage in an oracle
in Section 6.

5.3. Hardware Used

The particle advection algorithm was implemented in VTK-
m [MSU∗16, PYK∗18] and run using 64 GPUs on the Summit
supercomputer at Oak Ridge National Laboratory [VdB∗18]. Each
Summit node consists of 6 NVIDIA Volta V100 GPUs, 2 POWER9
CPUs, 608 GB of RAM and connected with a Mellanox EDR 100G
InfiniBand.

A personal computer, an Acer Aspire E 15 running on an Intel
Core i7-6500U CPU at 2.50GHz-2.60GHz with 32 GB of RAM
installed, was used for the machine learning model training and
subsequent batch size optimization.

6. Results and Analysis

In this section we return to our research question, and demonstrate
how machine learning can be used to accelerate the performance
of a particle advection algorithm. This section provides results and
analysis for the approach that was outlined in Section 4. In Sec-
tion 6.1 we describe the results from the assessment step of Phase 1
and show the efficacy for each of the machine learning models that
were considered. In Section 6.2, we describe results from the as-
sessment step of Phase 2 where we used verification runs to select
an oracle. Finally, in Section 6.3 we present the speedups that were
achieved by our oracle for the particle advection algorithm.

6.1. Phase 1: Machine Learning Model Selection

Selection of the best machine learning models was driven by identi-
fying models with the lowest mean absolute error and unexplained
variance. Absolute error is defined as |truth - prediction|. Unex-
plained variance is a measure of the degree to which our model
fails to explain variation in the data. These metrics provide evi-
dence that the model has a good understanding of the relationship
between a model’s inputs and outputs and can therefore provide
useful predictions.

Figure 2 plots the mean absolute error and unexplained variance
for each of the seven models on both data corpora. This analy-
sis concluded that the most effective model for the flow field ag-
nostic corpus is Neural Network C. We made this conclusion by
noting that it has nearly the lowest mean absolute error of all the
models considered and the most explained variance. Unlike Neu-
ral Network B, however, Neural Network C consistently preforms
well when trained on performance characteristics besides Speedup.
This consistency led us to conclude that the Neural Network C
model would be a better candidate for subsequent inclusion into

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.



Schwartz, Childs & Pugmire / Improving Parallel Particle Advection Performance with ML

an oracle. We also concluded that the most effective model for
the flow field sensitive corpus is our Random Forest model. This
model clearly has the lowest error and unexplained variance. Ran-
dom Forest models also consistently had the lowest error and unex-
plained variance when trained on performance characteristics be-
sides Speedup.

Flow Field Agnostic Flow Field Sensitive

20.0% 40.0% 60.0% 20.0% 40.0% 60.0%

0.05

0.10

0.15

0.20

Unexplained Variance

M
ea

n 
A

bs
ol

ut
e 

E
rr

or

Model
Linear Regression

Nearest Neighbors

Neural Net A

Neural Net B

Neural Net C

Random Forest

SVM

Figure 2: Plots showing the performance of each model with re-
spect to unexplained variance and mean absolute error. Plots for
both flow field agnostic and flow field sensitive corpora are shown.
Models closer to (0,0) are better.

6.2. Phase 2: Oracle Selection

We used the models selected in Phase 1 as a starting point for selec-
tion of an oracle. For brevity, we term the flow field agnostic model,
Neural Network C, NN C, and the flow field sensitive model, Ran-
dom Forest, RF. We evaluated 108 validation runs (described in
Section 5.2.3) optimized over 12,500 potential Batch Sizes and the
two Delay Send options. The {Batch Size, Delay Send} combina-
tion with the highest corresponding speedup predicted by NN C,
and again by RF was returned. This optimization is a one time run
cost and the results can be stored in a lookup table.

We considered two oracle variants, “Oracle I” and “Oracle II,”
described in Section 5.2.2. The Cartesian product of these two or-
acles and two models results in four oracle-model configurations.
We assess the error of these four oracle-models and the speedup
gained by applying them.

6.2.1. Prediction Accuracy

In this subsection, we evaluate the accuracy of our predictions. We
define “error” in this context to be the difference between our pre-
dicted speedup and the actual speedup. Positive values mean we
predicted a larger speedup than was achieved, while negative val-
ues mean that the speedup was larger than anticipated. Further, we
also consider the absolute value of error, which captures the extent
to which our prediction was wrong. Finally, while we report outlier
behavior (i.e., how much faster or slower a workload performed

than our prediction), we feel the most important aspect is mean be-
havior (i.e., how much compute time is saved in aggregate by using
the predicted best settings on a set of workloads).

Figure 3 shows the actual, observed speedups against each con-
figuration’s predicted speedup across all runs that were considered
“acceleratable” by that oracle-model.

Oracle: I

Model: NN C

Oracle: I

Model: RF

Oracle: II

Model: NN C

Oracle: II

Model: RF

1.00 1.25 1.50 1.75 2.001.00 1.25 1.50 1.75 2.001.00 1.25 1.50 1.75 2.001.00 1.25 1.50 1.75 2.00

0.5

1.0

1.5

2.0

Predicted Speedup
A

ch
ie

ve
d 

S
pe

ed
up

Figure 3: Actually achieved speedup compared to the predicted
speedup of the runs the given oracle-model configuration consid-
ered to be “acceleratable.” The line is perfect accuracy: predicted
speedup = actual speedup.

Table 1 lists information about the error for each of the four
oracle-model configurations. The distribution of errors are shown
in Figure 4.

Model: NN C Model: RF

O
racle: I

O
racle: II

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

0

10

20

30

0

10

20

30

Error: Achieved Speedup − Predicted Speedup

F
re

qu
en

cy

Figure 4: Histogram of the errors for each of the four oracle-model
configuration.

One observation is that the NN C-based configurations do not
have extreme outliers of low actual, observed speedups. While
there are runs which underperformed, NN C - based configura-
tions never resulted in runs which had significant slowdowns (0.5

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.



Schwartz, Childs & Pugmire / Improving Parallel Particle Advection Performance with ML

Oracle Variant: I II I II
ML Model: NN C NN C RF RF
Min |Error| 0.001 0.004 0.002 0.001
Mean |Error| 0.111 0.141 0.091 0.110
Max |Error| 0.945 0.945 1.118 1.118

Table 1: Summary of absolute errors for each of the four oracle-
model configurations.

of baseline or lower) like the RF - based configurations did. This
insight is tempered by the observation that the Variant II, NN C
oracle-model configuration also has the highest mean absolute er-
ror of the configurations considered. We also note, however, that
the mean error of this configuration is positive, whereas all other
configurations are negative. This indicates that once the Variant II,
NN C oracle-model configuration identifies a run to be accelerat-
able, it is more likely than not to have a higher achieved speedup
than its predicted speedup.

6.3. Speedup Results

To test our research question on the four oracle-model configura-
tions that were created, we performed runs of 108 different work-
loads, as discussed previously in Section 5.2.3.

Each of our four oracle-model configurations considered 108
runs with varying workload characteristics, and is used to predict
the algorithm parameters for a given workload. Given a workload,
if the model predicts that a speedup over the base line is possible,
the settings for Batch Size and Delay Send are predicted that will
maximize the speedup.

We call a run “acceleratable” if an oracle-model configuration
predicts that a speedup greater than one is possible. We validated
that each “acceleratable” run actually achieved speedup over the
baseline. Some of our runs had workload characteristics which pre-
vented the baseline algorithm from completing within a two-hour
timeout window. These workload characteristics always involved
many particles and many advection steps. These timeout cases con-
stituted fewer than 5% of our validation runs and are excluded from
further analysis.

Each validation run contains the following attributes:

• Workload characteristics (e.g., number of particles, number of
advection steps, etc).
• Algorithm characteristics predicted by the oracle-model config-

uration.
• Speedup predicted by the oracle-model configuration.
• Speedup actually obtained.

The rates at which each oracle-model predict an “acceleratable”
workload, and the rate at which acceleration is achieved is shown
in Table 2. Oracle Variant II is more hawkish in its predictions of
speedup for both NN C and RF models. However, when a predic-
tion of “acceleratable is made, Variant II is much more accurate
than Variant I. This is true for both NN C and RF models.

When an oracle-model configuration predicted a workload could
achieve speedup, we validated it by running the workload with the

Oracle Variant: I II I II
Machine Learning Model: NN C NN C RF RF
“Acceleratable” runs 76.70% 44.66% 85.71% 50.48%
“Acceleratable” runs
that achieved speedup

56.96% 73.91% 61.11% 75.47%

Table 2: Prediction percentages for each of the four oracle-model
configurations.

algorithm parameters given. The results from these run are shown
in Table 3 for each of the four oracle-model configurations. This ta-
ble shows the minimum, maximum and mean speedup over all runs.
It also shows results for use cases where execution times are greater
than 5, 10 and 60 seconds. Plots of these speedups are shown for
all four oracle-model configurations in Figure 5.

Oracle Variant: I II I II
Machine Learning Model: NN C NN C RF RF

Maximum Speedup Achieved 2.066 2.066 2.271 2.271

Mean Speedup Achieved 1.067 1.127 1.058 1.107

Mean Speedup Achieved;
Execution Time > 5 seconds

1.131 1.149 1.134 1.134

Mean Speedup Achieved;
Execution Time > 10 seconds

1.158 1.173 1.156 1.156

Mean Speedup Achieved;
Execution Time > 60 seconds

1.203 1.203 1.171 1.171

Minimum Speedup Achieved 0.888 0.935 0.138 0.138

Table 3: Speedups of workloads considered “acceleratable” when
run with the particle advection parameters provided by the given
oracle-model configuration.

Using these data, we find that the oracle-model configuration
Oracle Variant II – NN C consistently provided the highest mean
speedups when compared to our other configurations. On average,
it provided a 1.12X speedup across all workloads. As the execution
time of the algorithm increases (i.e., larger workloads), the speedup
achieved rises up to 1.203X when the execution time is above 60
seconds. This configuration also had a minimum speedup achieved
of 0.935X, which was the best lower bound among all configura-
tions. The Variant II – RF configuration had similar, although lower
average speedups, and higher maximum speedups, but it also made
poor predictions that resulted in very poor minimum speedups of
0.138X. Paired with the knowledge that this oracle-model configu-
ration also has the highest precision of all the configurations con-
sidered, we conclude that Oracle Variant II undergirded by Neu-
ral Network C (flow field agnostic version) is the best predictor of
speedups and algorithm settings of all the options we considered.

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.



Schwartz, Childs & Pugmire / Improving Parallel Particle Advection Performance with ML

1.00

1.05

1.10

1.15

1.20

1.25

ML Model: NN C
Oracle Variant: I

ML Model: NN C
Oracle Variant: II

ML Model: RF
Oracle Variant: I

ML Model: RF
Oracle Variant: II

A
ch

ie
ve

d 
S

pe
ed

up

Mean Mean; Time > 05 sec Mean; Time > 10 sec Mean; Time > 60 sec

Figure 5: Mean speedup of workloads that were considered “ac-
celeratable” and used the particle advection algorithm parameters
provided by the given oracle-model configuration.

7. Conclusion and Future Work

This study was designed to answer the question of whether or not
machine learning could be used as a tool to optimize the perfor-
mance of a parallel particle advection algorithm. To probe this
question we first generated a large collection of performance data
from the algorithm with varying workloads and algorithm parame-
ter settings. This collection of data serves as input to our two phased
approach for the design of a machine learning based oracle for ac-
celerating the algorithm. In phase 1 of our approach, a series of
machine learning models are generated and their performance is
assessed. Once suitable models are found, a set of oracles is built
and then assessed. We then ran the algorithm with a number of
workloads and used the oracle to predict algorithm parameters that
would provide the best speedup. For workloads where speedup is
possible, the oracle we describe in Section 6.3 was able to improve
the speed over all workloads by an average of 12.7%. For larger
workloads that take more time to complete, the oracle provided an
average speedup of 20.3%.

In the future, we would like to apply this approach to algorithm
acceleration to other visualization algorithms. We are also inter-
ested in further study of the neural network used in our oracle, and
whether expanding its architecture (e.g., more nodes per layer, ad-
ditional layers) improves oracle efficacy.

References
[AAB∗15] ABADI M., AGARWAL A., BARHAM P., BREVDO E., CHEN

Z., CITRO C., CORRADO G. S., DAVIS A., DEAN J., DEVIN M., GHE-
MAWAT S., GOODFELLOW I., HARP A., IRVING G., ISARD M., JIA Y.,
JOZEFOWICZ R., KAISER L., KUDLUR M., LEVENBERG J., MANÉ
D., MONGA R., MOORE S., MURRAY D., OLAH C., SCHUSTER M.,
SHLENS J., STEINER B., SUTSKEVER I., TALWAR K., TUCKER P.,
VANHOUCKE V., VASUDEVAN V., VIÉGAS F., VINYALS O., WARDEN
P., WATTENBERG M., WICKE M., YU Y., ZHENG X.: TensorFlow:
Large-scale machine learning on heterogeneous systems, 2015. Software
available from tensorflow.org. URL: http://tensorflow.org/. 7

[ABB∗19] AMERSHI S., BEGEL A., BIRD C., DELINE R., GALL H.,

KAMAR E., NAGAPPAN N., NUSHI B., ZIMMERMANN T.: Software
engineering for machine learning: A case study. In International Con-
ference on Software Engineering (ICSE 2019) - Software Engineering
in Practice track (May 2019), IEEE Computer Society. URL: https:
//www.microsoft.com/en-us/research/publication/
software-engineering-for-machine-learning-a-case-study/.
5

[BDG∗18] BALAPRAKASH P., DONGARRA J., GAMBLIN T., HALL M.,
HOLLINGSWORTH J. K., NORRIS B., VUDUC R.: Autotuning in high-
performance computing applications. Proceedings of the IEEE 106, 11
(2018), 2068–2083. 2

[Bis06] BISHOP C. M.: Pattern Recognition and Machine Learning.
Springer, 2006. 2

[C∗15] CHOLLET F., ET AL.: Keras. https://keras.io, 2015. 7

[CBP∗14] CHILDS H., BIERSDORFF S., POLIAKOFF D., CAMP D.,
MALONY A. D.: Particle Advection Performance over Varied Archi-
tectures and Workloads. In IEEE International Conference on High Per-
formance Computing (HiPC) (Goa, India, Dec. 2014), pp. 1–10. 2

[CGC∗11] CAMP D., GARTH C., CHILDS H., PUGMIRE D., JOY
K. I.: Streamline Integration Using MPI-Hybrid Parallelism on
a Large Multicore Architecture. IEEE Transactions on Visualiza-
tion and Computer Graphics (TVCG) 17, 11 (Nov. 2011), 1702–
1713. doi:http://doi.ieeecomputersociety.org/10.
1109/TVCG.2010.259. 2

[CKP∗13] CAMP D., KRISHNAN H., PUGMIRE D., GARTH C., JOHN-
SON I., BETHEL E. W., JOY K. I., CHILDS H.: GPU Acceleration of
Particle Advection Workloads in a Parallel, Distributed Memory Setting.
In Proceedings of EuroGraphics Symposium on Parallel Graphics and
Visualization (EGPGV) (Girona, Spain, May 2013), pp. 1–8. 2

[ECBM12] ENDEVE E., CARDALL C. Y., BUDIARDJA R. D., MEZZA-
CAPPA A.: Turbulent magnetic field amplification from spiral SASI
modes in core-collapse supernovae. J. Phys. Conf. Ser. 402 (2012),
012027. arXiv:1203.3385, doi:10.1088/1742-6596/402/
1/012027. 3

[FLPS08] FISCHER P., LOTTES J., POINTER W., SIEGEL A.: Petascale
algorithms for reactor hydrodynamics. Journal of Physics: Conference
Series 125 (08 2008), 012076. doi:10.1088/1742-6596/125/
1/012076. 3

[GBC16] GOODFELLOW I., BENGIO Y., COURVILLE A.: Deep Learn-
ing. MIT Press, 2016. http://www.deeplearningbook.org.
2

[HSS12] HINTON G., SRIVASTAVA N., SWERSKY K.: Neural networks
for machine learning lecture 6a overview of mini-batch gradient descent.
Neural networks for machine learning (2012). 7

[HTF09] HASTIE T., TIBSHIRANI R., FRIEDMAN J. H.: The Elements
of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edi-
tion. Springer Series in Statistics. Springer, 2009. 2

[MPP∗18] MOIZ A. A., PAL P., PROBST D., PEI Y., ZHANG
Y., SOM S., KODAVASAL J.: A machine learning-genetic algo-
rithm (ml-ga) approach for rapid optimization using high-performance
computing. SAE Int. J. Commer. Veh. 11 (04 2018), 291–306.
URL: https://doi.org/10.4271/2018-01-0190, doi:10.
4271/2018-01-0190. 2

[MSU∗16] MORELAND K., SEWELL C., USHER W., LO L., MERED-
ITH J., PUGMIRE D., KRESS J., SCHROOTS H., MA K.-L., CHILDS
H., LARSEN M., CHEN C.-M., MAYNARD R., GEVECI B.: VTK-
m: Accelerating the Visualization Toolkit for Massively Threaded Ar-
chitectures. IEEE Computer Graphics and Applications (CG&A) 36, 3
(May/June 2016), 48–58. 2, 8

[PPG12] PUGMIRE D., PETERKA T., GARTH C.: Parallel integral
curves. In High Performance Visualization: Enabling Extreme Scale Sci-
entific Insight, Bethel E. W., Childs H., Hansen C., (Eds.). CRC Press,
2012. 2, 3

[PRN∗11] PETERKA T., ROSS R., NOUANESENGSY B., LEE T., SHEN

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

http://tensorflow.org/
https://www.microsoft.com/en-us/research/publication/software-engineering-for-machine-learning-a-case-study/
https://www.microsoft.com/en-us/research/publication/software-engineering-for-machine-learning-a-case-study/
https://www.microsoft.com/en-us/research/publication/software-engineering-for-machine-learning-a-case-study/
https://keras.io
https://doi.org/http://doi.ieeecomputersociety.org/10.1109/TVCG.2010.259
https://doi.org/http://doi.ieeecomputersociety.org/10.1109/TVCG.2010.259
http://arxiv.org/abs/1203.3385
https://doi.org/10.1088/1742-6596/402/1/012027
https://doi.org/10.1088/1742-6596/402/1/012027
https://doi.org/10.1088/1742-6596/125/1/012076
https://doi.org/10.1088/1742-6596/125/1/012076
http://www.deeplearningbook.org
https://doi.org/10.4271/2018-01-0190
https://doi.org/10.4271/2018-01-0190
https://doi.org/10.4271/2018-01-0190


Schwartz, Childs & Pugmire / Improving Parallel Particle Advection Performance with ML

H., KENDALL W., HUANG J.: A study of parallel particle tracing for
steady-state and time-varying flow fields. In 2011 IEEE International
Parallel Distributed Processing Symposium (2011), pp. 580–591. 2

[PVG∗11] PEDREGOSA F., VAROQUAUX G., GRAMFORT A., MICHEL
V., THIRION B., GRISEL O., BLONDEL M., PRETTENHOFER P.,
WEISS R., DUBOURG V., VANDERPLAS J., PASSOS A., COURNAPEAU
D., BRUCHER M., PERROT M., DUCHESNAY E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12 (2011),
2825–2830. 7

[PYK∗18] PUGMIRE D., YENPURE A., KIM M., KRESS J., MAYNARD
R., CHILDS H., HENTSCHEL B.: Performance-Portable Particle Advec-
tion with VTK-m. In Eurographics Symposium on Parallel Graphics and
Visualization (EGPGV) (Brno, Czech Republic, June 2018), pp. 45–55.
2, 8

[SGG∗04] SOVINEC C., GLASSER A., GIANAKON T., BARNES D.,
NEBEL R., KRUGER S., PLIMPTON S., TARDITI A., CHU M., THE
NIMROD TEAM: Nonlinear magnetohydrodynamics with high-order
finite elements. J. Comp. Phys. 195 (2004), 355. 3

[SP16] SISNEROS R., PUGMIRE D.: Tuned to terrible: A study of paral-
lel particle advection state of the practice. In 2016 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW)
(2016), pp. 1058–1067. 2

[Sto74] STONE M.: Cross-validatory choice and assess-
ment of statistical predictions. Journal of the Royal Statis-
tical Society: Series B (Methodological) 36, 2 (1974), 111–
133. URL: https://rss.onlinelibrary.wiley.com/
doi/abs/10.1111/j.2517-6161.1974.tb00994.x,
arXiv:https://rss.onlinelibrary.wiley.com/
doi/pdf/10.1111/j.2517-6161.1974.tb00994.x,
doi:10.1111/j.2517-6161.1974.tb00994.x. 7

[TAZ∗17] TUNCER O., ATES E., ZHANG Y., TURK A., BRANDT J.,
LEUNG V. J., EGELE M., COSKUN A. K.: Diagnosing performance
variations in hpc applications using machine learning. In High Perfor-
mance Computing (Cham, 2017), Kunkel J. M., Yokota R., Balaji P.,
Keyes D., (Eds.), Springer International Publishing, pp. 355–373. 2

[VdB∗18] VAZHKUDAI S. S., DE SUPINSKI B. R., BLAND A. S.,
GEIST A., SEXTON J., KAHLE J., ZIMMER C. J., ATCHLEY S., ORAL
S., MAXWELL D. E., LARREA V. G. V., BERTSCH A., GOLDSTONE
R., JOUBERT W., CHAMBREAU C., APPELHANS D., BLACKMORE R.,
CASSES B., CHOCHIA G., DAVISON G., EZELL M. A., GOODING T.,
GONSIOROWSKI E., GRINBERG L., HANSON B., HARTNER B., KAR-
LIN I., LEININGER M. L., LEVERMAN D., MARROQUIN C., MOODY
A., OHMACHT M., PANKAJAKSHAN R., PIZZANO F., ROGERS J. H.,
ROSENBURG B., SCHMIDT D., SHANKAR M., WANG F., WATSON P.,
WALKUP B., WEEMS L. D., YIN J.: The design, deployment, and eval-
uation of the coral pre-exascale systems. In SC18: International Confer-
ence for High Performance Computing, Networking, Storage and Analy-
sis (2018), pp. 661–672. 8

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1974.tb00994.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1974.tb00994.x
http://arxiv.org/abs/https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1974.tb00994.x
http://arxiv.org/abs/https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1974.tb00994.x
https://doi.org/10.1111/j.2517-6161.1974.tb00994.x

