
The Design and Implementation of a Real-Time
Complex Event Processing Framework for CPS/IoT

Systems
Jared Hall

dept. Computer Information Science
University of Oregon

Eugene, Oregon
jhall10@cs.uoregon.edu

Abstract—As the field of Cyber-Physical Systems continues to
advance, new and interesting changes regarding its capability,
adaptability, scalability, and usability [1] have come about.
The most notable change has been the aggressive expansion
of the variety of entity types that can be deployed in these
systems (i.e. the entity eco-system). With this expansion, the
complexity of handling vastly different communication protocols,
processes, and data becomes a significant challenge since these
data sources possess many more characteristics compared to the
scalar data acquired by traditional IoT inputs. These additional
characteristics severely limit the usefulness of such data sources
to a CPS/IoT control system, especially in determining what
controls should be enforced, effectively rendering these growing
areas of the IoT out of the scope of many current CPS/IoT
control systems. New CPS/IoT control systems would therefore
need to leverage a great deal of computing power on demand to
be able to deal with these devices and their data at scale while
still being able to keep up with the core demands of real-time
control, adaptability, and usability that users of these systems
expect. Typically, the response to these issues has been to rely
heavily on cloud computing resources. But this reliance has come
at the cost of additional latency that would prove disastrous in
application domains such as Industry 4.0, Internet of Healthcare
Things, and defense, to name a few. In our previous work
[2]–[5], we developed the cloud-based, Command Messaging
Policy Enforcement Service (CoMPES). CoMPES is the result
of an initiative towards a policy enforcement platform for large-
scale, massively distributed Cyber-Physical Systems (CPS) with
a core objective to offer an elastic architecture for managing
and controlling physical devices using discrete control schemas
that are interconnected via our novel CPS/IoT control system.
However, CoMPES has a significant performance bottleneck in its
policy enforcement cycle as it relies on a collection of processing
hubs to forward entity telemetry to the cloud for processing. In
this paper, we propose a novel edge computing framework that
relies on the established Pub/Sub communication paradigm to
build a complex event processing framework that allows users to
push critical computations to the edge of the IoT. We then, with
supporting results, show that when we increase the utilization
of edge computing resources, CoMPES outperforms the cloud-
centric variant by a 20-43x when comparing the latency of
transitional state changes and supports systems of significantly
larger scale (10-100x) while maintaining the same level of service
as the cloud-centric version.

Thanks to Dr. Joe Sventek and the University of Oregon for funding this
research.

Index Terms—Cyber-Physical Systems, Internet of Things,
Edge computing, Complex Event Processing, IoT policy Enforce-
ment, Artificial Intelligence, Cloud Computing

I. INTRODUCTION

The term “Cyber-Physical Systems” (CPS) refers to those
systems which seamlessly integrate sensing, computation, con-
trol, and networking into physical objects and infrastructure
[1]. Formally, a CPS consists of three components: A cy-
ber component that performs computation (e.g., information
processing and control), a communication component that
handles the communication between the cyber and physical
components, and a physical environment that consists of
physical entities or processes [1], [6] as shown in Fig. 1 below.
In these systems, the cyber component is tightly coupled with
the physical component via a feedback loop [1], [7] where
the physical environment informs the cyber component of its
current state via the communication component, and the cyber
component exerts control over the physical environment which
alters its state, causing the cycle to repeat.

Fig. 1. Cyber-Physical Systems Component Model

Since its introduction in 2006, the field of CPS has evolved
with new and interesting advancements concerning its ca-
pability, adaptability, scalability, and usability [1]. One such

advancement is the unified field paradigm which merges the
fields of CPS with the Internet of Things (IoT), and introduces
CPS/IoT systems [1]. The IoT is a concept that enables real-
world, everyday objects to connect to the internet and interact
with each other. In the unified field paradigm, the two fields
are essentially merged with the following changes:

• The IoT takes the place of the communication component
in the traditional CPS model.

• The CPS/IoT software platform/middleware is called by
the generic term “platform”.

• The platform and the physical environment are wrapped
together and given the term “CPS/IoT system”.

In this paradigm, humans play a central role both as entities
in the physical environment and as users of the system
(e.g., “human-in-the-loop”) via their interactions with both the
system and the physical environment. Because of this, humans
are added as the fourth component in CPS/IoT systems, as
stated by the National Institute for Standards and Technology
(NIST) in [1]:

“. . . reflect the varying roles humans may have in CPS/IoT
systems, ranging from user to component, environmental fac-
tor, etc. (for example, for a Level 3 automated vehicle a
passenger is a user, a safety driver is a component, and a
pedestrian is an environmental factor). The interactions of
humans with CPS/IoT systems may be limited to the logical
realm, to the physical realm, or extend to (and link) both.
Because of this diversity of interactional modes, humans are
treated as a distinct component in the CPS/IoT Components
Model.”

In addition to the introduction of the unified field of
CPS/IoT, the entity eco-system for CPS/IoT has been rapidly
expanding to include a wide array of devices and entities with
functionalities that far exceed the simple sensor and actuator
networks of the previous generation of IoT devices. This
relatively new generation of CPS/IoT entities include industrial
robotics, healthcare devices and subsystems, city and com-
munity core infrastructure, multimedia systems and entities,
vehicles, household appliances, wearables, social networks,
etc. – that all come with their own unique challenges and
demands as they are integrated into the CPS/IoT ecosystem.
These expansions to the traditional view of the CPS/IoT
entity ecosystem have been met with new entity paradigms
such as the Internet of Multimedia Things (IoMT) [8], The
Internet of Healthcare Things (IoHT) [9], and the social IoT
[10] among others. This evolution arose naturally because
the utility and ubiquity of CPS/IoT systems allows them
to be useful in building managed environments for many
domain applications from city and residential automation to
industrial resource management, healthcare, public safety, and
even entertainment.

This expansion of the CPS/IoT ecosystem has resulted
in a need for modern CPS/IoT systems to adopt a more
expansive approach to what we consider the “sensors” and
“actuators”, the building blocks of the CPS/IoT ecosystem.
We see this shift already with the inclusion of multimedia
sensors such as video and audio sources, social networks, or

complex industrial mechanisms that generate more data with
far greater complexity than the traditional scalar data generated
from simple sensors and actuators such as Radio-Frequency
Identification (RFID) networks or other traditional sensor and
actuator networks.

However, as will be shown in the literature review, most
current IoT systems focus rather exclusively on processing
scalar data from a constrained set of devices. This is because
the type of data acquired by traditional things in the IoT
(e.g light, temperature) is by nature scalar and requires less
memory and fewer computational resources to analyze. Since
this kind of data demands only simple processing capabilities,
these systems can enact decisions rapidly because of the lower
data rates from the sensing device. But with the expansion of
the entity eco-system, the complexity of handling vastly dif-
ferent communication protocols, processes and data becomes
a significant challenge since these data sources possess more
complex characteristics compared to the scalar data acquired
by traditional IoT inputs. These additional characteristics
severely limit the usefulness of such data sources to a CPS/IoT
control system, especially in determining what controls should
be enforced, effectively rendering these growing areas of the
IoT out of the scope of many current CPS/IoT control systems.
New CPS/IoT systems would therefore need to leverage a great
deal of computing power on demand to be able to deal with
these devices and their data while still being able to keep up
with the core demands of real-time control, data synthesis, and
interoperability that users of these systems expect.

A. Core Research Challenges

During the course of our preliminary research, we have
identified the following challenges that exist for new CPS/IoT
systems that must be addressed:

1) Heterogeneity of CPS/IoT entities and their data: Since
the IoT is a fundamentally inclusive networking paradigm
CPS/IoT systems must be able to handle communications from
a wide variety of sources. These systems must be able to
both accept and process this communication as well as being
able to communicate with the end device in it’s own protocol.
With the inclusion of data rich sources such as multimedia
devices or smart city infrastructure as members of the IoT,
the complexity of handling vastly different communication
protocols, processes, and data becomes a significant challenge
since these data sources possess more complex characteristics
compared to the scalar data acquired by traditional IoT inputs.
New CPS/IoT systems must therefore be extensible to these
new data sources in order to stay relevant in a rapidly changing
CPS/IoT ecosystem.

2) CPS/IoT Platform Elasticity and Reusability: Currently,
CPS/IoT systems are designed with a specific domain in mind
(e.g., IoHT as seen in [11]). However, for CPS/IoT systems
to be truly ubiquitous and useful, new CPS/IoT systems must
be designed to be both elastic and reusable. These systems
must be able to accept potentially dense and arbitrarily deep
network definitions for a variety of domains. For instance, if
we consider a city government as an IoT user, then this city

could have one public Network of Things (NoT) for the entire
city covering lower level networks for individual boroughs,
individual blocks, substations, buildings, etc. This user could
also have a private NoT for emergency services that takes on
an entirely different architectural design. In order to handle
these different application domains, new CPS/IoT systems
must allow the users to add, alter, or remove entities and their
corresponding control schemas from the CPS/IoT platform,
with these changes taking effect in real time. This, therefore,
demands that IoT systems be reusable and not hard-coded to a
specific use-case as it would severely restrict the applicability
of the CPS/IoT system and therefore its usefulness to future
users.

3) Interoperability with Middleware: With the advent of
Fog/Edge computing, middleware for the IoT is becoming a
powerful tool that CPS/IoT systems can use for processing
complex data of various formats. Yet there is a dearth of
current IoT systems that are interoperable with 3rd party
fog/edge computing services. This requires rich data to be
processed within the device or system which introduces a
heavy burden on the performance of the IoT system as a whole
and restricts the ability of the IoT system to adapt to new
changes and advancements in the field. For new IoT systems to
be able to meet real-time performance constraints and maintain
applicability in an ever-changing world they must include
some method of interacting with these powerful processing
applications.

4) Latency of Environmental Control and Scalability: With
the increasing adoption of CPS/IoT systems into the main-
stream consciousness, the core performance of these systems
has become a pressing issue. During the course of our own
research, we have identified two core metrics that can be used
to measure the performance of CPS/IoT systems in addition
to whether these other systems meet the challenges stated
above: 1) The Latency of Transitional State Change (TSC
Latency) and, 2) The scalability of the CPS/IoT system. The
core concept of TSC latency is similar to Round-Trip Time
(RTT): It is the time from when an entity reports its state
to the time when that same entity or another receives the
corresponding action. With respect to scale, CPS/IoT platforms
need to be able to operate arbitrarily deep, potentially densely
interconnected, Networks of Things (NoTs). To accomplish
this, these new platforms must be able to scale with the
network definition given to them while maintaining average
TSC latency within the constraints of “real-time” or “near real-
time”.

In summary, in order to meet these challenges, new High-
Performance CPS/IoT systems must be designed that are
scalable and elastic with the ability to manage user-defined
physical environments composed of a wide variety of entities
in real time. To address these challenges, we propose a
Complex Event Processing (CEP) edge computing framework
for the Command Messaging Policy Enforcement Service
(CoMPES). Our core motivation for this research stems from
the above challenges in addition to the following research
questions:

• Could introducing an event processing framework at the
edge of our CPS/IoT operational policy enforcement
system significantly increase scale and reduce the overall
latency?

• Would the process of ”Entity Virtualization” address the
challenge of entity heterogeneity and system elasticity/re-
usability in an expanded CPS/IoT Eco-system?

• Would altering the policy enforcement cycle to be more
reactive lead to significant decreases in processing la-
tency?

The rest of this paper is organized as follows: In Section
2, we take a look at current research trends in CPS/IoT
systems with a focus on how they address the core challenges
discussed above. In section 3, we present our edge computing
framework. In section 4, we present our experimental results,
analyze how our new system addresses the core challenges
above, and compare this work with our previous architecture.
Finally, we end in section 5, with a brief discussion on our
contributions and future work.

II. LITERATURE REVIEW

As mentioned in the introduction, the expansion of the entity
ecosystem has driven the development of new and successive
generations of CPS/IoT systems. Since the field’s introduction
in the early 2000’s we have seen no less than four separate
“generations” of CPS/IoT systems. Earlier systems (Gen 1)
such as the systems presented in [12] were primarily composed
of simple sensor networks arranged around a central ”gate-
way”. These early systems mostly focused data synthesis and
providing the user with information regarding their individual
Network of Things (NoT). After a short period, a second
generation of CPS/IoT systems emerged that incorporated
traditional sensors and actuators into the IoT such as in [13].
In the last 10 years researchers have begun to expand the
scale of CPS/IoT platforms by introducing cloud based IoT
systems such as in [2], [3], [5], and [14]. Finally, the most
recent generation of CPS/IoT systems has seen a return to
the ground with edge/fog computing. As we will see, these
changes to the construction of CPS/IoT systems have been
primarily driven by two key factors: 1) an inherent drive to
expand the “reach” of CPS/IoT systems by incorporating new
kinds of “things”, and 2) A need to increase the performance of
CPS/IoT systems in order to better utilize these new “things”.
To illustrate this point, we now take a brief look at several
archetypal systems and the entity eco-systems for which they
were designed.

A. Expansion of CPS/IoT application domains and their entity
ecosystems

The system’s presented in [12], [13], and [15] are classic
examples of many smaller IoT systems that typically fea-
tured a mostly hardware-based solution for interacting with
a limited set of device types (e.g., transducers, RFID tags,
etc) and focused only on presenting the data to the user.
These architectures were primarily focused around a central
“gateway” that would receive telemetry from it’s connected

entities. Typically, this gateway would then send this data to a
processing component that would extract useful information
from the telemetry before forwarding it to the application
layer that would synthesize the data and present it to the user.
These simplistic, gateway based, IoT systems make up the first
generation of CPS/IoT systems.

However, with the introduction of the field of Cyber-
Physical Systems in 2006, as noted in [1], numerous possi-
bilities presented themselves to researchers in the field. We
could now include entities that execute actions and, together
with the concept of ”transitional states”, implement discrete
feedback loops that exert programmed control over environ-
mental factors in the real world as discussed in [7]. This
spawned a second generation of IoT systems that started to
gain increasing similarity to traditional CPS systems.

The eventual conjunction of the fields of CPS and IoT would
prove to be both a huge boon to the applicability of the field to
various application domains but also a significant challenge as
discussed in [16]. This research challenge came about because
previous CPS/IoT systems simply lacked the processing power
necessary to handle the significantly increasing amounts of
data.

As an answer to this challenge, researchers in the field began
proposing the addition of cloud computing to the processing
component of a CPS. The works presented in [17] encapsulate
this idea. These systems often feature a distributed controller
in some form that is located in the cloud. This cloud-based,
distributed controller allowed these systems to do a massive
amount of computation without needing the user to invest in
additional computing resources for their CPS. As such, third
generation Cloud-based CPS/IoT systems have become the
preferred solution for CPS/IoT platforms.

With the increase of processing power from the cloud came
an increase in the types of entities that are included under the
umbrella term ”things” in the IoT (i.e. an expansion of the
entity eco-system). For instance, [8] introduced the idea of
multimedia objects as things, while [10] introduced the idea
of ”social things”.

However, these changes to the entity eco-system do not
come without their own challenges to performance and us-
ability. As we increased the reach of the entity eco-system,
two major challenges have arisen: 1) The performance of
these systems (in terms of TSC) has significantly decreased as
noted in [18] and, 2) Systems built for a particular application
domain (e.g., IoMT) have limited applicability or usability
in other domains. The apparent answer to these challenges
has been the introduction of a fourth generation of CPS/IoT
systems (cohesive systems) and the integration of Fog/Edge
computing to CPS/IoT systems.

B. Fog/Edge Computing Frameworks for CPS/IoT Systems

According to [19], the central goal of Fog/Edge computing
frameworks is to move some of the processing that would
otherwise take place in the cloud closer to the entity in order
to gain the benefits of a ground based system while still
having the computing power of the cloud. By moving certain

processing closer to the entity, we gain multiple benefits, such
as decreased TSC latency which leads to more transitional
state changes per second and the decentralization of the
IoT. Another benefit of Fog/Edge computing is the ability
to abstract CPS/IoT architectures which increases their re-
usability by allowing developers to build a generic solution
and leave specific details regarding the IoT devices to the edge.

Since 2016, there have been a number of papers proposing
fog/edge computing frameworks for CPS/IoT systems such as
[20] and [21]. However, despite the obvious applicability of
edge computing to the policy enforcement cycle of CPS/IoT
control systems, we have not been able to find any related
work. Of the proposals for fog/edge computing frameworks
we have seen, most focus on a different aspect of the CPS/IoT
technology stack such as in [22] where the authors introduce
a Fog/Edge computing framework for offloading resource
management, or [23], where the authors introduce an edge
computing method for IoT data analytics.

C. Cohesive CPS/IoT Platforms

A cohesive system addresses many issues, such as those
presented by constrained devices, legacy devices without
internet connections, and typical bandwidth and processing
issues, found in typical cloud-only or ground-only systems.
Typically, a cohesive system (e.g. [2], [23]) consists of both
cloud and ground components, which enables us to gain the
computing power of the cloud while maintaining the speed and
adaptability of the ground. With cohesive CPS/IoT systems,
the bandwidth and processing issues are usually addressed
by means of relegating these tasks to a specially designed
application. For example, in our previous work [2], the concept
of Compute Pages is introduced to handle both IoT related
processing and communications while the hubs offload the
processing of data to specially designed applications.

The general idea of this kind of system consists of an
abstract ground architecture that allows it to be mapped to
pre-existing physical IoT infrastructure, a virtual object layer
that may be hosted in the cloud or located on the ground, and
a cloud-processing layer that may feature some form of virtual
object aggregation.

D. Previous work

In our previous work [2]–[5], we developed the cloud-based
Command Messaging Policy Enforcement Service (CoMPES).
CoMPES is a cohesive CPS/IoT platform that offers decen-
tralized control for individual Networks of Things and, to a
greater extent, the Internet of Things. The core architecture is
shown in Fig. 2.

1) The ”Cloud Side” of CoMPES: The cloud side of the
CoMPES is primarily composed of three cloud services: 1) the
Policy Enforcement Service (PES), 2) the Compute Service,
and 3) the Policy Generation Service. For our brief review
of the service we will only be covering the PES since the
Compute Service and the Policy Engine have little to do with
the actual policy enforcement cycle which is the focus of our
contribution in this paper. The PES consists of a scalable set of

Fig. 2. CoMPES High Level Design

“Compute Pages” hosted on virtual machines. The Compute
Page is a software processing object which is given a set
amount of the hosting VM’s resources. Using these resources,
the Compute Page uses the Telemetry Data Transformation
(TDT) algorithm first proposed in [2] to enforce the user’s
policy for their devices. The compute page also operates a
web server and performs essential web management, such as
load balancing. The Compute Page and the TDT algorithm
are the driving forces of the service and were designed with
platform independence in mind.

The TDT algorithm largely consists of three parts - a
primary cache, a secondary cache, and a rule engine. The
primary cache matches the cohesive system state, i.e. the
states of every entity in the CPS, to a known operational
policy. System-wide caching yields the fastest runtime for
the TDT algorithm of O(1) which is also the average case
because we only activate the secondary cache or rule engine
when unknown states are observed. In the secondary cache,
the observed states of each entity are cached to a known
behavior as defined by that entity’s operational policy. This
has a runtime of O(n), since it has to look at every device.
The associated algorithm is show in Algorithm 1.

To illustrate how the TDT algorithm works, let us say a
user builds their network and a hub is ready to send a State
Representational Image (SRI), a textual snapshot of an area’s
state, to the PES in order to trigger the build cycle. When
the Hub sends the SRI to the service, the first thing the SRI
encounters is the CoMPES Communication Module (CCM).
On the PES side, the CCM will receive the SRI and insert
it into a Network-wide State Representational Image (NSRI).
This process is done for every Hub with which the client
interacts, thus keeping the NSRI up to date. The NSRI is then
cached with the primary cache. On cache hit, the resulting
network-wide operational policy is retrieved from the cache,
broken down into Hub-specific Policy Representational Images
(PRI), a textual snapshot of the commands to be executed,
and broadcast to each Hub. The Hubs will then either execute
the policy themselves or pass on the relevant commands to
middleware which will execute them. On a cache miss, the
NSRI is used to cache the individual states of each device in
the secondary cache using the Operational Policy Definition
(OPD), a collection of Associative-Behavioral rules [5]. On
a secondary cache hit, the state of each device is matched
with an action it should take and these actions are merged
into a network wide policy image, which is then used to

Algorithm 1: Telemetry Data Transformation
PC = load the primary cache
OPD = load the OPD if it exists

On SRI update from Hub
NSRI = load the NSRI from memory
Update the current NSRI with the new SRI
if NSRI in PC then

output actions
else

Policy = “”
if OPD exists then

Policy Block
for each area x in the region do

for each ACU A in x do
P = OPD[x][A.ID][A.CS] or NULL
Area policy += P

end
end
Policy = join all area policies

else
Request OPD from Policy Engine
Trigger policy block

end
Update the primary cache with new policy
Get actions from policy and send to hubs

end

update the primary cache. This new image is then sent to the
communication module to be broadcast to all of the Hubs. A
secondary cache miss only occurs if there is no OPD, and as
such, the policy engine is called to build one. This perpetuates
a feed-forward mechanism where the service would eventually
learn every macro state of the user’s CPS and be able to,
in constant time, match said macro state to a known set of
behaviors that the CPS should execute.

2) The ”Ground Side” of CoMPES: The ontological IoT
network architecture that CoMPES manages consists of a
generalized hierarchy of a cluster-based network of things with
three categories: Regions, Areas, and Atomic Computational
Units (ACUs). At the base of our network hierarchy are the
ACUs. An Atomic Computational Unit (ACU) is a discreet,
integrated, CPS composed of any sensor, actuator, device,
middleware, web service or otherwise unnoted platform with
observable states and exactly one representative virtual object.
This Virtual Object (VO), at a minimum, must be capable of
observing the entity and representing its states but it may also
be able to interact with said entity in the form of executing
actions. These ACUs are split into two broad categories based
on their capabilities: sensors and actuators. For the purposes
of our research, a sensor is classified as any entity that only
provides information, while an actuator is any entity that both
provides information and can execute actions. The ACU serves
as our answer to the problem of entity heterogeneity in the

IoT. An ACU’s primary purpose is to interpret data received
via device specific protocols into a universal protocol and vice
versa.

Next in our network hierarchy is the area. An area is a
secondary cluster of ACUs that are connected to a single pro-
cessing hub. The processing hub can consist of any hardware
capable of running the VOs. In the hub, an event loop waits
until either an update event is triggered for any ACU, the hub
receives a PRI from the PES, or a trigger event occurs on an
interval to pull ACU states or send an SRI to the PES. Finally,
a region is a dependency-based supercluster of areas, similar to
a network except that the interconnections consist of semantic-
links (i.e. dependencies) instead of physical connections.

A semantic-link is an ontological binding between two
ACUs that explicitly determines the behavior of these ACUs.
This link can be cataloged as either a one-way or a two-way
link. An example of a one-way link would be a dependency
of a Wi-Fi enabled light (an actuator) connected to a smart
switch (a sensor). An example of two-way semantic link could
be explained by means of a master-type smart switch and
a joystick. If the master button is pressed then the joystick
will be inoperable, whereas if the joystick is in operation
then the master button’s input will be ignored. This semantic
link provides important semantic context to the data received
from the device, enriching said data and giving the policy
enforcement service needed information so that it can enforce
the correct operational policy. Our network architecture uses
the “Implicitly Defined Communication (IDC)” concept first
proposed in [2]. Since all the devices talk to a controlling
agent in the cloud and the controlling agent talks to every
other device in the network, we can then say that any device in
the network implicitly communicates with any other device in
the network even though that communication does not directly
happen.

In this brief survey we have shown that while many IoT
systems have been proposed for a variety of contexts and
applications, a cohesive IoT system which can operate in
the expanded entity ecosystem and maximize its use with
Fog/Edge computing services has yet to be realized.

III. PROPOSED SOLUTION

To address the challenges outlined in the introduction, we
are proposing a novel edge computing framework for CoM-
PES; the core idea is to address the inefficiencies of CoMPES
while also maintaining the advancements made in our previous
works [2-6]. On its own, the CoMPES system is insufficient
for domains which require control cycles that process high
volumes of data rapidly (in excess of 100 events a second),
or infrastructure that requires massive, arbitrarily deep IoT
architectures (e.g., smart cities). This is because the CoMPES
system was primarily designed for the “Smart and Connected
Community” domain that largely focuses on smart homes or
offices were the number of entities at a local scope is limited
and performance above the capacity for human recognition is
not needed. However, for domains such as healthcare, defense,
industry, and public infrastructure the speed of the previous

system (approx. 5 – 15 events a second) renders the system
simply unusable.

The greatest contributing factors to these issues would be
our implementation of the Transitional State Change cycle,
discussed in the introduction, and the communication frame-
work used in our previous version. To be specific the core
issues are:

• The operational policy enforcement cycle necessitated
that all information be sent to the Policy Enforcement
Service (PES) in the cloud for processing before the
system could decide what a particular entity should
do. This is unnecessary for entities that are either self-
determinate or local in scope.

• The system focused solely on the use of raw states
to implement transitional state change. This causes a
massive increase in redundant communications over the
internet/to the cloud as any entity needs to be constantly
polled for its state.

• The communication framework relied largely on HTTPS
based WebSockets (which are, admittedly, slow) to facili-
tate communication because of their portability and asyn-
chronous nature (both client and server can push/pull).
However, this creates a communication bottleneck as the
extra time is spent communicating over this protocol.

To address these limitations, we are presenting a new CPS-
IoT architecture that makes the following changes:

• The central policy enforcement cycle will be split
amongst the different layers of the architecture enabling
lower level entities (e.g., self-determinate entities) to
make their own decisions.

• The introduction of real-time Complex Event Processing
(CEP) to significantly reduce communication over the
network and increase processing speeds.

• The introduction of a real-time Complex Event Process-
ing cache [25] along with a Pub/Sub communication
module that uses SRPC [24] to significantly reduce the
communication bottleneck.

• The Atomic Computational Unit (ACU) has been com-
pletely redesigned with the ability to make its own
decisions in accordance with the user’s policy without
needing to push data upstream.

• The CoMPES processing hub was also redesigned to
include the addition of an AI algorithm that, we hypothe-
size, will significantly reduce the processing time needed
to make decisions as well as completely remove the build
and secondary cache cases from our previous version of
CoMPES.

Our central hypothesis is that the introduction of these core
changes will significantly increase the performance of the
system relative to the task of transitional state change and
as well as increase its scalability. These alterations make up
the core of our new edge computing framework. The rest of
this section will explain each of these in depth along with an
overview of the new edge computing framework.

A. An overview of the Edge-Computing Framework

As can be seen in Fig. 3 below, the new edge-computing
framework is similar component-wise to the old CoMPES
framework with the notable addition of a ”virtual cache”.
However, the individual components on the ”Ground-Side”
were altered significantly. We will detail each of the new
components starting from the outermost edge of the new edge
computing architecture.

Fig. 3. The new Edge computing architecture for CoMPES

B. The Physical Environment

The first half of our new edge computing framework is com-
posed of two primary components: a) the ”physical entity”, and
b) the Atomic Computational Unit (ACU). While the nascent
concept of these components existed in our previous work,
for this work, one of our major questions is if restructuring
these components will increase the performance of the CPS
has a whole. Another major question was whether making
the physical entities and their associated ACU’s components
on their own will increase the scale-ability, elasticity, and re-
usability of the system.

1) Agnostic Entity Design: A “physical entity” consists
of anything in the real-world that can be either observed or
controlled by the user’s provisioned CPS with the entity’s com-
munication being handled either directly or via a processing
middleware framework such as the multimedia middleware
we proposed in [3]. These physical entities include traditional
sensors and actuators, both legacy and smart devices, com-
putational resources, appliances, environmental factors such
as temperature or humidity, multi-media representations of
things, etc. Fig. 4 shows the general layout of how our
system would interact with real-world entities. How the entity
interfaces with the CPS is up to the user as well as the format
of its communication.

In general, the user has two generic options for establishing
communications between the entity and the system: a) the
entity can communicate with the system directly or, b) it
can do so via a 3rd party middleware framework. Acceptable
middleware for our framework consists of any fog or edge
computing middleware that exists to process raw data from
the physical entity into telemetry that our system can use. This
includes rich media data or any other form of complex data
that is too costly to process in the core architecture. Whether

Fig. 4. Physical Entity Design

the communication happens over a direct wire to the ACU or
over the internet is also left to the user. The general idea in our
design of the communication framework is to be as flexible as
physically possible in order to accommodate the user’s choice
of application domain and/or physical infrastructure. It is at the
physical entity that we address the challenge of ”middleware
interoprability” discussed in the introduction.

2) The Atomic Computational Unit: For the field of
CPS/IoT in general, the concept of a “thing”, a sensor, or
an actuator is borrowed from other fields (e.g., the concept
of sensor/actuators from computer engineering), however, in
our previous work, we introduced a different principal for
classifying things in relation to our system: the Atomic
Computational Unit. As discussed in our previous work, an
Atomic Computational Unit (ACU) is a discrete, integrated,
cyber-physical subsystem composed of any physical entity and
exactly one representative virtual entity. This Virtual Entity
(VE), at a minimum, must be capable of observing the physical
entity and representing its states but it may also be able to
interact with said entity in the form of executing actions. For
this work we further expand on our previous definition by
adding two distinct classes of ACU’s:

• Sensors – A sensor ACU’s sole purpose is to provide
information, via telemetry/events, into the CPS. In this
case the VE will not have a write routine because
it cannot execute actions and it will also not receive
events from the upper levels. Some good examples of
a “sensor” ACU would be a temperature sensor or the
video representation of a human user.

• Actuators – This type of ACU can execute actions in
addition to providing telemetry/events. It possesses all
of the components seen in Fig. 5. An actuator’s main
task is to control the physical entity as well as provide
a computational interface with said entity/physical pro-
cess. Actuators are, in and of themselves, cyber-physical

systems. This is an important distinction and is one of
our main contributions in our new framework (the other
being the processing hub which will be discussed later).

We refer to the process of creating an ACU as ”Entity
Virtualization” since from our systems perspective the physical
entity is the virtual entity. In order to build the IoT, many
systems try to interface their core components directly with
the physical entities. This has spawned the problem of entity
heterogeneity in CPS/IoT and has resulted in a boom of IoT-
centric communication protocols. To avoid this, we utilize
entity virtualization, effectively solving the problem of entity
heterogeneity in the IoT since an ACU may communicate
with an entity in its own native format but communicates with
the rest of the framework using our communication protocol
(which will be discussed later).

In our previous version of CoMPES [2]–[5], the VE was
simply a virtual object that was utilized by the processing
hub. The hub would use the VE to get a device’s state and to
execute action on the device. However, for ACUs that are self-
determinate (i.e., the ACU’s own state determines what action
it should take), the Hub still had to perform an entire PES
cycle just to tell that device to execute an action. This is also
true for ACU’s who are dependent upon other ACUs under
the same processing hub. Since everything is locked into the
Hub’s PES cycle this meant that there would be some delay
before an ACU could execute an action as the hub would need
to talk with the cloud before telling the device what to do. This
delay also applied to states that affect other entities. In order
to remedy this issue, we are proposing an ACU redesign that
allows the user to close the loop closer to or even at the ACU
level along with an operational policy schema that supports
this.

Fig. 5. The Atomic Computational Unit Design

As can be seen in Fig. 5, in our new ACU design, we
decoupled the ACU from the processing Hub and gave it
the ability to run on its own with three central components:
a) a driver, b) a Virtual Entity and, c) a publisher. The
driver is primarily responsible for setting up and running the
components. For the virtual entity we chose an object-oriented
approach in its design. As such, the virtual entity is a class
that contains the following:

• An abstract base class that contains the base function-
alities for data translation and communicating with the

publisher/processing hub.
• An open reader method that is left to the entity manufac-

turer or user to implement.
• A writer method that is also left to the user/manufacturer

to implement.
• A method for starting the VE and running it in its own

process or thread.

The reader and writer methods are the primary customizable
methods of communicating with the entity itself. Since they are
left open for implementation, they can be customized to utilize
any given entity’s communication framework. So long as the
reader method dumps the data into the publishers’ channel in
the abstract base class and the writer is able to send/execute
actions on the entity the system will work.

This customizability in the ACU gives users an incredible
amount of freedom in designing and building their CPS.
Should the ACU be self-determinate then the user can simply
add an operational policy directly to the ACU and on reading
telemetry from the entity the ACU will cache the telemetry
with the policy and immediately execute the relevant action.
This process gives our system it’s fastest run time since there
is only one step needed to resolve the loop.

We chose to use the Simple Remote Procedure Call (SRPC)
[24] to facilitate communication between the ACU and the
rest of the system since it is a reliable protocol based on
UDP. SRPC is an extremely fast and scalable protocol built
for pub/sub architectures which enables us to rapidly publish
events up-stream without the prohibitive overhead imposed by
using TCP.

Let’s take a WiFi light bulb as an example to illustrate how
the new ACU design works. For this smart light bulb, we have
a reader method that is capable of requesting the current state
of the light once a second. We also have a writer method
that can execute commands such as ”turn off” or ”turn on”
by sending the corresponding commands to the light bulb in
its own language. The VE, in this case. would be in charge
of collecting the entity’s state and executing any action it
receives. Under our event-based framework, on receiving any
telemetry from the entity, the VE’s reader method sends that
telemetry to the publisher. The publisher then publishes this
telemetry up-stream to the vCache and waits for new telemetry.
For actions, when the ACU receives an action from the hub, it
sends the action to the writer method that executes the action
(e.g., telling the light to turn off). Thus, with just the ACU
we have established a discrete CPS with the ability to control
the light. Since the communication channels are dedicated to
either publishing telemetry or receiving actions, we can also
take advantage of the speed of SRPC in order to build a near
real-time networked control system.

C. The Processing Hub

In this work, the processing hub is the second main contri-
bution to our new edge computing framework and contains
two key technological improvements; namely, the “Virtual
Cache” (vCache) and our novel event processing module. In

this section, we will be presenting both of these new modules
(the vCache and the CEP architecture) in greater detail.

1) The Virtual Cache (vCache): The Virtual Cache
(vCache) consists of a Homework system cache [25] whose
central purpose concerns the translation of entity telemetry
into discrete events via automatons. The vCache serves as
the central location in an individual Network of Things(NoT)
where ACUs publish their telemetry in order for it to be
translated into discrete events for the processing hub. These
publications take the form of a simple SQL insert call made by
the ACU’s publisher to insert the telemetry into an ephemeral
table registered with the vCache for that specific ACU. This
telemetry is then translated into discrete events by an automa-
ton programmed using the Glasgow Automaton Programming
Language supported by the Homework Cache [22-23].

In order to give the user a wide range of flexible options
in how they design their CPS, the cache is configured so that
the user can either select a pre-built automaton or program
one themselves. This difference in the automaton’s internal
programming allows it to handle ACU telemetry in vastly
different manners. For instance, consider our WiFi light bulb
from earlier. The light bulb ACU can publish two kinds of
telemetry: a)current power consumed, or b) a discrete state
such as ‘on’ or ‘off’. For the first kind, we could use an
automaton that scans over the power telemetry and synthesizes
an event by utilizing a sliding window over the telemetry. This
event can be acted on by the hub. In the second case, if the
ACU already reports a discrete state, then the automaton can
either forward this state to the hub or it can also run a window
over the state to synthesize higher level events.

These automatons are registered with the vCache before
the policy enforcement cycle starts and are subscribed to an
ephemeral table created for that ACU. So, when an ACU
receives telemetry from its entity, the ACU’s publisher will
publish that telemetry into the vCache under the ephemeral
table for that particular ACU. Then the automaton subscribed
to that table will then do the following: 1) grab the data from
the table, 2) process it into a discrete event according to its
internal programming (decided or selected by the user), and
3) send said event to the event processing module.

2) The Event Processing Hub: Adjacent to the vCache is
our event processing module, that is responsible for making
decisions on what actions should be executed as well as
forwarding events from the cache to the cloud. The overall
architecture for the hub is shown in Fig. 6.

The hub itself consists of two primary components, the first
of which is the device manager – the module responsible
for performing routine administrative tasks for the NoT it
manages. These routine administrative tasks include tasks such
as adding or removing ACU’s, alterations to an ACU’s policy,
and setting up the ACU with the event processing server. On
startup the device manager registers the hub with the Compute
Service, then starts the event processor’s main loop. From here,
the device manager will then start the cache instance, create
all of the ephemeral tables for each ACU registered with it,
load the automatons given by the user and send them to the

Fig. 6. The Event Processing Hub’s Architecture

event processing server to be registered with the cache. When
a new ACU connects to the hub the device manager will load
the configuration file for that ACU and send it to the ACU as
well as setup an SRPC connection between the ACU and the
event processing server.

The second component of our event processing module
is the event processing server – the module responsible for
implementing and maintaining the policy enforcement cycle.
The event processor’s main job is to receive events from the
vCache, send them to either its own on-board AI algorithm
or to the cloud to obtain the corresponding action that should
be executed, then forward that action to the corresponding
actuator.

One of the main contributions of this paper to the hub, aside
from the ACU redesign, lies in the addition of a reactive AI
algorithm and the vCache to the hub to facilitate fast decision
making. As stated in the previous section, the central goal
of the CoMPES platform is to offer users a way to integrate
ambient intelligence into physical environments (e.g., a smart
home or smart city). To accomplish this, we are proposing the
use of AI in the form of a Dynamic Reactive Agent (DRA)
to solve the core problem of operational policy enforcement
discussed in great detail in our previous work [5].

The DRA is a novel take on the classic reactive agent [26],
with changes to its composition and focus to make it useful to
CoMPES. As such, the basic idea of the DRA is similar in that
it takes in some input data, matches it against a set of known
behaviors, and then outputs the actions our actuators would
need to take. The key differences are in its composition. The
DRA relies primarily on a special table called the Operational
Policy Definition (OPD) instead of the typical if-else chain.
This allows the DRA to be programmable to fit the specific
environment defined by the user as well as maintain constant
time complexity for triggering a rule [6]. The benefit of this is
significant compared to the linear or quadratic run times that
typical reactive agents take to trigger a rule in rule-based CPS
[5].

In Algorithm 2, we show the main algorithm the DRA uses
to make decisions. The DRA starts by grabbing an update
event from the vCache. Then it processes the event to pull
out useful information such as the ACU’s name and state.
Once this is completed, the DRA then updates the State

Algorithm 2: Dynamic Reactive Agent (DRA)
Result: Set of actions Act
SRI = A lookup table containing the current states of
all entities under this hub
ACUs = An Associative array containing information
for each ACU
OPD = The operational policy for all actuators under
this hub
while event loop is active do

On update from any entity E:
A ← Null
SRI[E.name] ← E.state
foreach Actuator A in ACUs with a Link to E do

cohesiveState ← SRI[A.name]
foreach Entity E2 with a Link to A do

cohesiveState += SRI[E2 .name]
end
Act += (A.name, OPD[cohesiveState])

end
end

Representational Image (SRI), an ordered textual snapshot of
every ACU’s last known state, using the entity’s name and
proceeds to the main decision-making loop. In this loop, the
DRA needs to cycle through every actuator in the network in
order to find out if it needs to send actions to that actuator.
The process for making this decision is as follows:

1) Check if the updating ACU is contained in the actuators
map of semantic links. If not, move to the next actuator.
If it is then move to step 2.

2) Loop through every entity this actuator is linked to and
do the following:

a) Build an array of current states (the Cohesive state)
for every linked ACU using the inner array from
the links map.

b) Join this array using commas as the delimiter to
create a key for the OPD.

c) Hash it and grab the action from the OPD.
d) Send this action back to the processing server to

be forwarded to the actuator.
3) Repeat until the exit flag is given.
This process allows the DRA to respond more quickly to

events than the old TDT algorithm. This is primarily because
the DRA does not need the ”learning period” that TDT needs
since events from the vCache will always be directly hashed
with the OPD and on misses we simply ignore the event since
the user has not specified an action to be taken. In this way, the
DRA is a central part of our CEP framework since it makes
decisions based on the events synthesised in the vCache.

IV. EXPERIMENTAL SETUP AND RESULTS

In this section we will discuss our experimental setup and
provide an analysis of the results from a series of tests in

Fig. 7. The layout of the devices used in our real-world experiment. The
devices are not connected to each other but because of IDC [2] they behave
like they are.

both the real world and in simulation. The application domain
for our experiments is the smart home/home automaton do-
main with an eye toward applicability in other domains. The
real-world and simulation experiments consist of arranging
a collection of ACUs into a smart room and measuring
the performance of the CoMPES system according to our
performance criteria. For our test case, a multi-area environ-
ment is unnecessary since communication between area’s is
handled by the cloud. As such we would see no difference in
performance over our previous work. The performance criteria
for these experiments are as follows:

• Latency of Transitional State Change (TSC Latency) -
The CoMPES platform was designed to enable users
to build autonomous, intelligent, physical environments.
As such one the primary metrics with which we are
concerned is how quickly the system responds to en-
vironmental stimulus. A transitional state consists of
some stimulus or event that serves as an impetus for the
physical environment to change its state from Ei to Ei+1.
For instance, in a smart home setup, the temperature
rising from 65 to 70 could serve as a stimulus for a
CPS to turn on the air conditioner. The latency of a
TSC is measured from the time the virtual entity receives
telemetry to the time that the corresponding actuator’s
virtual entity receives an action. We chose this interval
because we have no control over how long it takes to
send or receive communications with the entity itself as
this is decided by the manufacturer.

• Scalability - This metric concerns the number of tran-
sitional states that can be processed per second by the
hub. This allows us to gauge the number of ACUs a user
could connect to a single hub before it incurs significant
increases in latency caused by congestion over shared
resources.

• Connection type - We also tested different methods of
connecting to the hub. For this we connected the ACUs
to the hub using either Ethernet or WiFi.

Fig. 8. This figure shows the real-world performance results for CoMPES v2 and v3 in microseconds over Ethernet. The TSC Latency shows the distribution
of latency’s for each of the 1000 Transitional State Change’s (TSC) performed in the experiment. Processing shows the distribution of processing times per
TSC, likewise for communications.

In order to perform a consistent comparison between our
original work and our improved version, we performed the
same experiments with both versions using CoMPES v2.0’s
cloud architecture and on the same physical/simulated envi-
ronments.

A. Real-world experimental design

The the design of our real-world experiment is as follows:
The processing hub was implemented on an Intel® NUC Kit
NUC6i7KYK (2.6 Ghz, 4-core CPU), with 16 GB RAM,
running Linux Mint 20. Connected to the processing hub
(either by WiFi or Ethernet) were 3 Raspberry Pi 4’s. Each
Raspberry Pi ran a collection of ACUs based on a entity
connection archetype: one for WiFi, Bluetooth, and X-10,
one for Zigbee, and one for Z-Wave. The entities for this
experiment are a mix of typical smart things currently available
on the market, DIY projects that can be built by a user, and
legacy devices with no IoT compatibility. The ten devices
chosen for this experiment are as follows:

• Lamp 1 - A table lamp connected to an X10 lamp
module, which is then connected to the raspberry pi via
a Firecracker PC interface.

• Lamp 2 - A lamp with a Kasa/TP-Link LB130 WiFi light
bulb.

• Front Door - An Aeotec Door/Window contact sensor.
• Desk Fan - A Honeywell desk fan connected to a Kasa

WiFi smart plug.
• Occupancy Sensor - a Raspberry Pi with a camera and a

motion detector running our own person detection/gesture
recognition software [4]; when the pi detects motion it
runs the images through a neural network that detects
human shaped objects.

• Air Purifier - A Levoit LV-PUR131S air purifier.
• Voice control - Alexa Echo Dot; with skills that send

recognized commands to the pi.
• Heater - Off brand Ceramic indoor Heater.

• Temp/Humidity - Aqara Temperature/Humidity Sensor
• Samsung Smart TV - Controlled with a Samsung univer-

sal remote library for Python.
In addition, we made a policy focused around device

interactivity. For instance, for our Kasa WiFi light bulb, we
linked it to the occupancy sensor with a semantic link and gave
it a policy such that if the user were to enter the room then
the light would turn on. If the user left the room the policy
stated that the light would turn off. To implement this the hub
was given an Operational Policy Definition (OPD) with the
following associative-behavioural rules:

• ”Off,1” : ”Turn On”
• ”On,0” : ”Turn Off”

This OPD would turn on the lights when a person entered
the room and off when they left. The first word in the rule
is the state of the actuator (the light bulb) and the second is
the number of people detected by the occupancy sensor (1 in
this case). A policy like the one above was constructed for
every actuator and given to the hub. Fig. 7 shows a graphical
representation of our setup.

1) Real-World Experimental Results: For the real-world
experiment, we let the setup run until 1000 Transitional State
Change (TSC) cycles per actuator was observed while we
interacted with the devices in a manner typical to home use
(i.e. we would do things like enter the room and watch tv,
etc). While the experiment was running we would passively
measure the TSC latency and collect the telemetry for the
simulation experiment. After the devices reach 100 TSC
cycles, we changed the connection types for all the Raspberry
Pi’s and ran it again.

As can be seen in Figs. 8 and 9, the benefits of using our
new edge computing framework, in regards to performance,
cannot be understated. The best case for both versions is over
Ethernet where the new version of CoMPES performs a whole
cycle at around 799 micro-seconds while the old version did
the same thing in approximately 34 milli-seconds. This is

Fig. 9. This figure shows the real-world performance results for CoMPES v2 and v3 in microseconds over WiFi. The TSC Latency shows the distribution
of latency’s for each of the 1000 Transitional State Change’s (TSC) performed in the experiment. Processing shows the distribution of processing times per
TSC, likewise for communications.

around a 43x speedup over the previous version. We see even
greater performance increases when you compare the other
performance cases for the old version. However, even over
WiFi we observed a roughly 10-20x speedup when using the
edge computing framework.

In Figs. 8 and 9, we can see the distributions of the per-
formance results for the real-world experiment for CoMPES
v2 (without the CEP framework) and CoMPES v3 (with the
CEP framework) by connection type. The performance was
measured in micro-seconds for both trials. In both figures,
the ”TSC Latency” column shows the distribution of the
observed latency’s for each of the 1000 TSC cycles performed
in the experiment. The ”Processing” and ”Communications”
columns show the distributions of time spent processing or
passing messages per TSC. These two columns give us an
explanation as to what CoMPES is spending it’s time on during
the TSC.

As can be seen in Fig. 8, a majority of the TSC latency in
v2 is caused by the ”Processing” column. This processing is
a combination of the time spent doing pre-processing for the
Telemetry Data Transformation (TDT) algorithm, TDT itself,
as well as post-processing for the policies generated by TDT.
Here we can clearly see the benefit of the new AI, as the
average processing times were reduced from roughly 30,000
usec to under 500 usec.

In v2, there is a large amount of variance as well as
significant number outliers which is primarily due to v2’s
costly ”learning period”. During this period, the system needs
to build the rule base as well as construct the hash table for it’s
operational policy. It does this by waiting until it encounters
a TSC it has not seen before, then it looks for an appropriate
rule to trigger, and finishes by building a hash entry for that
TSC based on the rule. This process takes a long time (around
100-300k usec for the cache miss case with up to 4 seconds for
the build case). The AI in v3 completely gets rid of this entire
process by relying on the Homework vCache to synthesize

only the events that it knows (i.e. the events that it has an
operational policy for). So it only encounters the best run case
from v2.

Another thing we can see from the figures, is the benefit of
the new event system shown in the ”Communications” column.
In Figs. 8 and 9, part of the reason v3 is much faster than v2
due to the Pub/Sub nature of ACU communications in v3. In
v2, the hub ran on a cycle and would poll each ACU for it’s
current state before building an image of these states to send
to the cloud. This incurred additional latency since even if
the ACU had reported it’s state at time t, the hub may not
report it to the cloud until time t+1 when it sends up the next
image. With our new Pub/Sub system and ACU’s telemetry is
immediately sent upstream to be processed by either the hub
or the cloud with no polling cycle necessary. This difference
is even more apparent when we ran the experiment over
WiFi. When using WiFi the time spent in message passing
clearly outpaces the time spent in processing. In v2, this
makes up the majority of TSC latency seen in Fig. 9. Of
course, both versions suffer latency spikes when we switch to
WiFi. However the chief difference between the two is that at
approximately 100 milliseconds the old version cannot handle
more than 10 messages a second. Whereas the new version
can handle up to 100 messages a second on WiFi.

One thing to note on the distribution of latency’s in v3 as
seen in Fig. 9; we would see a rare jump in latency of around
20 milli-seconds that would happen once a minute or so. We
are currently investigating the reason for these odd jumps in
latency, but is is our current belief that this can be attributed
to issues with the way the underlying Linux system manages
WiFi communications. However, at 20 milliseconds this extra
latency is far beyond the human capacity to recognize and
well within the constraints of ”near-real time”. The majority
of the distribution was around 5 milliseconds.

B. Simulation Experiment

For the simulation experiment we followed the general lay-
out of the real world experiment with a notable few changes.
In the real world experiment we collected the states recorded
from the entities into CSV files that could be read by virtual
entities. We arranged the virtual entities in the same layout as
the real-world ones with the same policies except we added
a mass client to the environment. The mass client provides a
multi-threaded environment so that we can run many ACUs
from a single computer. We then scaled the number of ACUs
provisioned and running in the system. This allowed us to do
our scaling experiment without having to purchase thousands
of entities. And since we do not measure the time to get the
message from the virtual entity to the physical entity (we
have no control over that) the two are basically the same
performance-wise. The mass-client starts by telling each ACU
under it to send telemetry in a round robin fashion. After the
telemetry is sent it waits for one second and then sends the next
round. This process is done for 1000 rounds with the number
of ACUs scaling up to 1000 in groups of 100. In Fig. 10, we
show the results of this experiment for each version.

Fig. 10. The performance results of our scale experiment for CoMPES V2
and V3. The y-axis lists the time measured in micro-seconds and the x-axis
is the number of ACUs in the trial.

In Fig. 10, we show the average performance of both
versions as the number of ACUs under one hub is scaled
from 10 to 1000. The new version honestly surprised us. We
scaled it up to 1000 devices and it still maintained average
latency’s under 20 milliseconds. However there is a caveat
to the higher scaling values; In v2, the performance was
primarily lowered by the secondary (cache miss) case and an
increasing component of v2’s performance could be attributed
to the effects of congestion. In a home setting, the poorer
performance of v2 is of no real consequence since even at 1000
devices the average TSC latency was under 150 milli-seconds
(roughly at the lower bound of human recognition). As such,
the user would perceive any action taken by the CPS as or near
instantaneous. However, for other application domains such as
industry, healthcare, or defense this would be unacceptable. V3
maintains latency’s in the low 10’s of milliseconds with no
noticeable jump in latency’s. Of course, if the CPS had a hard
requirement to service events the instant they are received,

v3 would be able to handle 100 devices over WiFi or 1000
devices over Ethernet per hub while v2 could only handle
roughly 2-10 devices in either case. If the user allows some
queuing or additional latency then v3 would ensure that each
device’s telemetry was utilized within 20 milli-seconds over
WiFi.

V. CONCLUSION

In this paper, we presented our new edge computing frame-
work for our CPS/IoT platform CoMPES. For this research, we
hypothesized that by integrating our new edge computing/CEP
framework into the CoMPES platform, we would address the
following research questions:

• Could introducing an event processing framework at the
edge of our CPS/IoT system significantly increase scale
and reduce the overall latency?

• Would ”Entity Virtualization” address the challenge
of entity heterogeneity in an expanded CPS/IoT Eco-
system?

• Would altering the policy enforcement cycle to be more
reactive lead to significant decreases in latency?

To address the first and third question, in our experiments
we achieved a 20-43x speedup over the version of CoMPES
that was not using the edge computing framework along
with a roughly 10-100x increase in scale. This performance
increase can be attributed to three factors: 1) in v3, we are
closing the loop closer to the end devices, 2) we altered the
operational policy enforcement algorithm to include a reactive
agent that makes decisions more rapidly, and 3) we introduced
a new Pub/Sub CEP architecture that processes telemetry into
events more quickly than the old interpretation scheme did.
Over Ethernet, a significant portion of the TSC was spent
processing. By adding our Dynamic Reactive agent in addition
to the CEP framework, we reduced the time spent processing
telemetry from 30,000 usec on average to 500 usec on average
over Ethernet. We can thus say with confidence that adding an
edge computing framework to CPS/IoT control systems should
result in decreased latency and increased scale.

We addressed our second research question by the addition
of a new ACU design. The ACU is now it’s own entity with it’s
own processing capacity. This allows it to more easily ”map”
to physical entities in the real world. The ACU was specifically
re-designed to offer users and manufacturers greater control
over how their devices communicate with the CPS/IoT system.
This was achieved by relying on programmable automatons
[24] that scan over entity telemetry and synthesize events.
Together with the new ACU design users can now either select
an appropriately programmed ACU or build their own for their
entities. These ACUs can be made for virtually any kind of
entity so long as it can either interact and/or observe said
entity.

These alterations have multiple benefits. First is the concern
over privacy: since the hub can be running over the users
own hardware at their location, data no longer needs to be
shipped to the cloud unless it concerns entities in another area.
This offers the user an increased degree of control over what

information is actually sent out over the internet. Second is
that with tighter loops users are free to add critical systems or
other features (such as additional security) to the TSC cycle
and still meet their real-time bounds.

For future work, we will be investigating whether similar
changes to way we process telemetry in the cloud side of
CoMPES would have similar effects. We are also interested
in investigating the security and privacy aspects of CPS/IoT
systems in general and CoMPES in particular. There is also
a need to see how to apply CPS/IoT control systems like
CoMPES to other application domains such as agriculture,
healthcare, and the ”smart city”.

REFERENCES

[1] D. W. C. Greer, M. Burns and E. Grior, ”Cyber-physical systems and
internet of things,” Tech. Rep. NIST.SP.1900-202, National Institute for
Standards and Technology, 2019.

[2] J. Hall and R. Iqbal. 2017. “CoMPES: A Command Messag-
ing Service for IoT Policy Enforcement in a Heterogeneous Net-
work,” In Proceedings of the Second International Conference on
Internet-of-Things Design and Implementation (IoTDI ’17). Asso-
ciation for Computing Machinery, New York, NY, USA, 37–43.
DOI:https://doi.org/10.1145/3054977.3054988

[3] R. Iqbal, J. Lee and J. Hall, ”A Cloud Middleware Enabling
Natural Speech Analysis for IoT Policy Enforcement in Smart
Home Environments,” 2018 IEEE International Congress on Inter-
net of Things (ICIOT), San Francisco, CA, 2018, pp. 184-187, doi:
10.1109/ICIOT.2018.00035.

[4] R. Iqbal, J. Hall, J. H. Lee, A. Islam, “Enabling real-time audio-
video inputs for Internet of Things operational policy enforcement,”
Internet of Things, Volume 6, 2019, 100041, ISSN 2542-6605,
https://doi.org/10.1016/j.iot.2019.02.001.

[5] Hall, J, ”The Generation of Operational Policy for Cyber-Physical
Systems in Smart Homes” (2019). MSU Graduate Theses. 3441.
https://bearworks.missouristate.edu/theses/3441

[6] M. C. V. Y. Tan and S. Goddard, ”Spatio-temporal event model for cyber-
physical systems,” in 29th IEEE International Conference on Distributed
Computing Systems Workshops, pp. 44-50, IEEE, 2009.

[7] R. Baheti and H. Gill, ”Cyber-physical systems,” tech. rep., IEEE
Control Systems Society, February 2011.

[8] Sheeraz A. Alvi, Bilal Afzal, Ghalib A. Shah, Luigi Atzori, Waqar
Mahmood, Internet of multimedia things: Vision and challenges, Ad
Hoc Networks, Volume 33, 2015, Pages 87-111, ISSN 1570-8705,
https://doi.org/10.1016/j.adhoc.2015.04.006.

[9] S. M. R. Islam, D. Kwak, M. H. Kabir, M. Hossain and K. Kwak, ”The
Internet of Things for Health Care: A Comprehensive Survey,” in IEEE
Access, vol. 3, pp. 678-708, 2015, doi: 10.1109/ACCESS.2015.2437951.

[10] Luigi Atzori, Antonio Iera, Giacomo Morabito, Michele Nitti, The Social
Internet of Things (SIoT) – When social networks meet the Internet of
Things: Concept, architecture and network characterization, Computer
Networks, Volume 56, Issue 16, 2012, Pages 3594-3608, ISSN 1389-
1286, https://doi.org/10.1016/j.comnet.2012.07.010.

[11] M. Asif-Ur-Rahman et al., ”Toward a Heterogeneous Mist, Fog, and
Cloud-Based Framework for the Internet of Healthcare Things,” in IEEE
Internet of Things Journal, vol. 6, no. 3, pp. 4049-4062, June 2019, doi:
10.1109/JIOT.2018.2876088.

[12] Q. Zhu, R. Wang, Q. Chen, Y. Liu and W. Qin, ”IOT Gateway: Bridging
Wireless Sensor Networks into Internet of Things,” 2010 IEEE/IFIP
International Conference on Embedded and Ubiquitous Computing,
Hong Kong, 2010, pp. 347-352, doi: 10.1109/EUC.2010.58.

[13] Datta SK, Bonnet C, Nikaein N (2014) An IoT gateway centric architec-
ture to provide novel M2M services. In: IEEE World Forum on Internet
of Things (WF-IoT) pp. 514-519. doi: 10.1109/WF-IoT.2014.6803221

[14] V. C. Emeakaroha, N. Cafferkey, P. Healy and J. P. Morrison, ”A
Cloud-Based IoT Data Gathering and Processing Platform,” 2015 3rd
International Conference on Future Internet of Things and Cloud, Rome,
2015, pp. 50-57, doi: 10.1109/FiCloud.2015.53.

[15] C. Tang, Z. Tang, Y. Yang and Y. Zhan, ”WSID identification platform of
heterogeneous networks based on RFID and WSN,” 2010 IEEE Interna-
tional Conference on RFID-Technology and Applications, Guangzhou,
2010, pp. 217-221, doi: 10.1109/RFID-TA.2010.5529935.

[16] Al-Fuqaha A, Guizani M, Mohammadi M, Aledhari M, Ayyash M
(2015) Internet of Things: A Survey on Enabling Technologies, Proto-
cols, and Applications. In: IEEE Communications Surveys & Tutorials
vol. 17 4:2347-2376. doi: 10.1109/COMST.2015.2444095

[17] V. K. Sehgal, A. Patrick and L. Rajpoot, ”A comparative study of
cyber physical cloud, cloud of sensors and internet of things: Their
ideology, similarities and differences,” 2014 IEEE International Advance
Computing Conference (IACC), Gurgaon, 2014, pp. 708-716, doi:
10.1109/IAdCC.2014.6779411.

[18] M. Olson and K. M. Chandy, ”Performance Issues in Cloud Computing
for Cyber-physical Applications,” 2011 IEEE 4th International Confer-
ence on Cloud Computing, Washington, DC, 2011, pp. 742-743, doi:
10.1109/CLOUD.2011.118.

[19] Bonomi F., Milito R., Natarajan P., Zhu J. (2014) Fog Computing: A
Platform for Internet of Things and Analytics. In: Bessis N., Dobre
C. (eds) Big Data and Internet of Things: A Roadmap for Smart
Environments. Studies in Computational Intelligence, vol 546. Springer,
Cham. https://doi.org/10.1007/978-3-319-05029-4 7

[20] M. A. López Peña and I. Muñoz Fernández, ”SAT-IoT: An Architectural
Model for a High-Performance Fog/Edge/Cloud IoT Platform,” 2019
IEEE 5th World Forum on Internet of Things (WF-IoT), Limerick,
Ireland, 2019, pp. 633-638, doi: 10.1109/WF-IoT.2019.8767282.

[21] A. Mijuskovic, R. Bemthuis, A. Aldea and P. Havinga, ”An Enterprise
Architecture based on Cloud, Fog and Edge Computing for an Airfield
Lighting Management System,” 2020 IEEE 24th International Enter-
prise Distributed Object Computing Workshop (EDOCW), Eindhoven,
Netherlands, 2020, pp. 63-73, doi: 10.1109/EDOCW49879.2020.00021.

[22] D. Wang, N. Zhao, B. Song, P. Lin and F. R. Yu, ”Resource
Management for Secure Computation Offloading in Softwarized
Cyber-Physical Systems,” in IEEE Internet of Things Journal, doi:
10.1109/JIOT.2021.3057594.

[23] Jun Kim, Ju Yeon Lee, Server-Edge dualized closed-loop data analytics
system for cyber-physical system application, Robotics and Computer-
Integrated Manufacturing, Volume 67, 2021, 102040, ISSN 0736-5845,
https://doi.org/10.1016/j.rcim.2020.102040.

[24] Sventek J., Koliousis A. (2012) Unification of Publish/Subscribe
Systems and Stream Databases. In: Narasimhan P., Triantafil-
lou P. (eds) Middleware 2012. Middleware 2012. Lecture Notes
in Computer Science, vol 7662. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-35170-9 15

[25] Richard Mortier, Tom Rodden, Peter Tolmie, Tom Lodge, Robert
Spencer, Andy crabtree, Joe Sventek, and Alexandros Koliousis. 2012.
Homework: putting interaction into the infrastructure. In Proceedings of
the 25th annual ACM symposium on User interface software and tech-
nology (UIST ’12). Association for Computing Machinery, New York,
NY, USA, 197–206. DOI:https://doi.org/10.1145/2380116.2380143

[26] Nils J. Nilsson, ”Agents That Plan,” Artificial Intelligence: A New Syn-
thesis, Morgan Kaufmann, 1998, Pages 117-127, ISBN 9781558604674,
https://doi.org/10.1016/B978-0-08-049945-1.50013-7.

