
Countering Attacker Data Manipulation in Security Games

Andrew Butler, Thanh H. Nguyen, Arunesh Sinha

Abstract
Defending against attackers with unknown behav-
ior is an important area of research in security
games. A well-established approach is to utilize
historical attack data to create a behavioral model
of the attacker. However, this presents a vulner-
ability: a clever attacker may change its own be-
havior during learning, leading to an inaccurate
model and ineffective defender strategies. In this
paper, we investigate how a wary defender can
defend against such deceptive attacker. We pro-
vide four main contributions. First, we develop
a new technique to estimate attacker true behav-
ior despite data manipulation by the clever adver-
sary. Second, we extend this technique to be viable
even when the defender has access to a minimal
amount of historical data. Third, we utilize a max-
imin approach to optimize the defender’s strategy
against the worst-case within the estimate uncer-
tainty. Finally, we demonstrate the effectiveness of
our counter-deception methods by performing ex-
tensive experiments, showing clear gain for the de-
fender and loss for the deceptive attacker.

1 Introduction
Learning adversary behavior from historical attack data is a
firmly established methodology in adversarial settings, both
in academic literature [Nguyen et al., 2016; Peng et al.,
2019], and in real world applications such as wildlife secu-
rity [Fang et al., 2016; Tambe, 2011]. Herein lies a vulnera-
bility: a clever attacker may modify its own behavior in order
to conceal information or mislead the defender. This decep-
tive behavior can influence the defender’s learning process,
creating future gainful opportunities for the attacker. Indeed,
such deception has received considerable attention in secu-
rity games literature [Gan et al., 2019b; Zhang et al., 2021;
Nguyen et al., 2019]. However, robustness of the defender to
the adversary’s deceit is much less explored.

In this work, we investigate the defender’s counteraction
against attacker deception in a Stackelberg security game set-
ting. Our work builds upon the partial behavior deception
model [Nguyen et al., 2020a] in which the defender models
the behavior of the entire attacker population using a single

Quantal Response (QR) [McKelvey and Palfrey, 1995] model
of which the parameter λ ∈ R is learned from past attack
data. Among the attackers, however, there is a rational at-
tacker who can cause harm to the defender by manipulating
part of attack data. Such manipulation makes the defender
learn a wrong λ, leading to an ineffective defender strategy.
Addressing the attacker deception is still an open problem,
which is the focus of our paper.

As our first contribution, we develop a new technique to es-
timate the true behavior of the non-deceptive attackers (rep-
resented by a parameter value λtrue of QR), given the per-
turbed training data. Our technique leverages the Karush-
Kuhn-Tucker conditions of the rational attacker’s optimiza-
tion to formally express the relation between true behav-
ior of non-deceptive attackers (λtrue) and learning outcome
(λlearnt) forced by the deceptive attacker. Based on this re-
lation, we find that there is an interval of possible values
for λtrue which leads to the same deception outcome λlearnt.
Moreover, bounds of this interval are increasing in λlearnt.
We thus propose a binary-search based method which uses
λlearnt to guide the search for these bounds within an ε-error.

As our second contribution, we extend our first contribu-
tion, perhaps surprisingly, to apply in scenarios with small
number of attacks. The core issue is that the empirical at-
tack distribution induced by limited attack samples may be far
different from the true attack distribution induced by λtrue,
making it challenging to characterize the relation between the
true behavior and the deceptive outcome. We overcome this
challenge by re-formulating the attack sampling process as
choosing random seeds u drawn from the uniform distribu-
tion on [0, 1] followed by a deterministic computation on u.
We first prove that given any fixed u, all mathematical results
(from our first contribution) hold for small number of attacks.
As the random seed chosen by nature is unknown, we then
leverage the above result to perform binary search for multi-
ple random seeds and construct a new interval spanning all
found intervals as our final estimate for the range of λtrue.

As our third contribution, we propose a maximin ap-
proach to optimize the defender strategy against the worst
case within the uncertainty interval for λtrue. We formu-
late this maximin problem as a multiple non-linear programs,
each corresponds to a particular optimal attack choice of the
deceptive attacker. Finally, via extensive experiments, we
show that, even when optimizing against a wide uncertainty

interval of λtrue, our algorithm gives significantly higher util-
ity for the defender, and less benefit for the deceptive attacker.

2 Related Work
Adversarial Learning Adversarial learning is a field
within machine learning that has become increasingly pop-
ular [Lowd and Meek, 2005; Song et al., 2018; Huang et al.,
2011; Madry et al., 2017; Zhang et al., 2019]. The attacker
deception here is analogous to a causative attack (or poison-
ing attack) in adversarial learning [Huang et al., 2011]. A sig-
nificant difference between our work and adversarial learning
is that we seek to maximize defender utility through predict-
ing the attacker’s behavior, whereas in adversarial learning,
the end goal is prediction accuracy.
Attacker Behavior Inference Learning the behavior of
bounded rational attackers is crucial, and a major area of
interest in security games. Various models including QR
have been explored [Yang et al., 2011; Kar et al., 2017;
Zhang et al., 2021; Sinha et al., 2016; Perrault et al., 2019].
As this learning is used to create a defender strategy, the train-
ing attack pool is vulnerable to manipulation by a clever at-
tacker. This paper focuses on addressing this challenge in
security games. Our work overlaps with settings in which
one or more players has limited information [Albarran and
Clempner, 2019].
Deception in Security Games Historically, most work has
focused on deception from the defender side [Zhuang et al.,
2010; Guo et al., 2017]. In this scenario, the defender typ-
ically exploits information asymmetry to fool the attacker
(e.g. in network security, concealing some system charac-
teristics). More recently, research has investigated deception
from the attacker side [Gan et al., 2019b; Nguyen et al., 2019;
Zhang et al., 2021] in SSGs, and the follower side in general
Stackelberg games [Gan et al., 2019a]. Much of this work
concentrates on a single attacker whose payoff values are un-
known to the defender. The attacker-deception model we uti-
lize [Nguyen et al., 2020a], on the other hand, describes a
realistic scenario in which the defender must contend with
multiple attackers of unknown behavior.

3 Preliminaries
3.1 Stackelberg Security Games (SSGs)
In SSGs [Tambe, 2011], the defender must protect a set of
T targets from one or more attackers. The defender has a
limited number (K < T) of resources that each can be al-
located to protect a single target. A pure strategy of the de-
fender is defined as a one-to-one allocation of resources to
targets. A mixed defense strategy, x, is a probability distri-
bution over these pure strategies. For the purposes of this pa-
per, we consider no scheduling constraints to the defender’s
strategy, meaning that a mixed strategy can be compactly
represented as a coverage probability vector, given by x =
{x1, x2, . . . , xT } where xi ∈ [0, 1] represents the probabil-
ity that target i is protected by the defender and

∑
i xi ≤ K.

We denote by X the set of all feasible defense strategies. In
SSGs, the attacker is fully aware of the defender’s mixed strat-
egy and chooses a target to attack based on this knowledge.

An attack on target i gives each player a reward or a
penalty, depending on whether the defender is currently pro-
tecting target i. If i is unprotected, the attacker gains reward
Rai and the defender receives penalty P di . Conversely, if tar-
get i is protected, the attacker takes penalty P ai < Rai and the
defender gains reward Rdi > P di . Given coverage probability
xi, the expected utilities for the defender and the attacker for
an attack on target i can be formulated as follows:

Udi (xi) = xiR
d
i + (1− xi)P di

Uai (xi) = xiP
a
i + (1− xi)Rai

Quantal Response Behavior Model (QR). QR is an well-
known model describing attacker behavior in SSGs [McK-
elvey and Palfrey, 1995; Yang et al., 2011]. Intuitively, QR
provides a mechanism by which higher expected utility tar-
gets are attacked more frequently. Essentially, the probability
of attacking target i is given as follows:

qi(x;λ) =
(
eλU

a
i (xi)

)/(∑
j
eλU

a
j (xj)

)
(1)

3.2 Partial Behavior Deception Model

Our work on developing an optimal counter-deception strat-
egy for the defender is built upon the partial behavior de-
ception model introduced by [Nguyen et al., 2020a]. In this
model, multiple attackers are present, who have the same pay-
offs but different attack behavior due to different rationality
levels. Among these attackers, there is a rational attacker who
intends to play deceptively to mislead the defender. The de-
fender, on the other hand, is aware of the attackers’ payoffs
but is uncertain about the behavior of the attackers. The de-
fender thus attempts to to build a behavior model, i.e., the QR
model, to predict the attack distribution of the entire attacker
population. Real-world applications such as wildlife con-
servation also use this single-behavior-modeling approach as
park rangers usually cannot differentiate data collected, such
as poaching signs, among multiple sources [Kar et al., 2017].

Two-phase learning-planning of defender. This model
describes a one-shot two-phase learning-planning problem
for the defender, consisting of a learning phase and a plan-
ning phase. This is the typical security game model used in
literature [Tambe, 2011; Yang et al., 2011]. Essentially, in the
learning phase, the defender uses training attack data to esti-
mate the parameter λ of QR using the Maximum Likelihood
Estimation method (MLE), as formulated below:

λlearnt ∈ argmax
λ

∑
m

∑
i

zmi log qi(x
m;λ) (2)

where xmi is the defender’s coverage probability at target i
and step m and zmi is the corresponding number of attacks.

During the planning phase, the defender utilizes the learned
λlearnt value to optimize his defense against such an attacker.
The optimal strategy, x∗, is given by:

x∗ ∈ argmax
x∈X

∑
i

qi(x;λ
learnt)Udi (xi) (3)

Behavior deception of attacker. [Nguyen et al., 2020a]
Since the (naive) defender uses the entire learning dataset
to construct a single attacker model, a clever attacker might
change its own behavior during the learning phase in order to
benefit during the planning phase. It is naturally assumed that
only perfectly rational attackers display such deceptive be-
havior. Therefore, the partial behavior deception model cen-
ters on a single perfectly rational deceptive attacker, amongst
the bounded rational attackers, that can alter some fraction
of the training dataset. The bounded rational attackers attack
non-deceptively according to a fixed unknown QR parameter
λtrue. Essentially, the deceptive attacker wants to find the
best perturbation of the training data to maximize its utility in
the planning phase, denoted by Ua(x∗(z)), as follows:1

(DecAlter) : max
z={zmi }

Ua(x∗(z)) (4)

s.t. zmi ≥nmi ,∀m, i (5)∑
i

zmi ≤(f + 1) ·
∑
i

nmi ,∀m. (6)

where x∗(z) is the defender’s strategy determined based on
his learning-planning method in (2–3). In addition, nmi is the
number of attacks by the non-deceptive attackers and f ∈ R
is the ratio of deceptive attacks to non-deceptive attacks at
each step m. Constraints (5–6) guarantee that the decep-
tive attacker can only control its own attacks. We denote by
z = {zmi } the deception outcome of the deceptive attacker,
which includes the non-deceptive attacks (n = {nmi }). The
defender learns a (deceptive) parameter λlearnt using z.

3.3 Cognitive Hierarchy Approach
In order to determine a counter-deception strategy for the de-
fender, a possible approach is to compute a fixed point equi-
librium of the deception game in which each player reasons
about its opponent’s strategy recursively till infinity. How-
ever, finding a fixed point equilibrium in our game is ex-
tremely challenging. This is because the defender has no in-
formation (or prior) about the behavior of the non-deceptive
attackers. As a result, the defender has to relate the equilib-
rium outcome for every possible true behavior of these non-
deceptive attackers to the observed (manipulated) attacks.
This task is challenging (as well as impractical) given that
the behavior space of attackers is infinite.

In real world settings, cognitive hierarchy models have
been proven more effective than equilibrium based ap-
proaches at realistically modeling player behavior [Camerer
et al., 2004; Brown et al., 2012; Hortaçsu et al., 2019]. This
is because human players do not exhibit infinite level strate-
gic reasoning. Cognitive hierarchy theory states that players
in games can be divided into different levels of thinkers, each

1In this paper, we focus on the one-shot game which only con-
sists of a learning phase and planning phase—a commonly-used se-
curity game model in literature. Therefore, the deceptive attacker
can simply play perfectly rationally in the planning phase after de-
ceiving the defender in the learning phase. This model can also
serve as the basis for repeated security games which involve mul-
tiple learning-planning rounds where the attacker plays deceptively
in all rounds except the last round.

assuming that no players are on levels above them [Wright
and Leyton-Brown, 2014]. In a mixed attacker deception set-
ting, we can model the levels as follows:

• Level 1: The rational attacker plays truthfully. The de-
fender follows the two-stage learning-planning approach
to compute a defense strategy.

• Level 2: The rational attacker plays deceptively, assum-
ing the defender is at level 1. The level 2 defender, on
the other hand, attempts to counter the attacker decep-
tion, assuming the attackers are at levels 0, 1, or 2.

• Level l > 2: The strategic reasoning is similar to level
2. Specifically, the attacker assumes the defender is at
level l − 1 while the defender assumes the attackers are
at any one of the levels up to and including l.

Previous work has shown that distributions of human play-
ers in normal form games mostly consist of lower level play-
ers [Wright and Leyton-Brown, 2014]. The aforementioned
partial behavior deception model focuses on the deception by
a level 2 attacker [Nguyen et al., 2020a]. Our paper studies
the counter-deception by a level 2 defender.

4 Finding Non-Deceptive Attacker Behavior
In order to determine an effective defense strategy, we begin
our analysis by characterizing the space of possible attack be-
havior (described by QR) of the non-deceptive attackers, given
the perturbed data z. Recall that the non-deceptive attackers
respond according to a fixed λtrue, unknown to the defender.
Instead, the defender obtains a learning outcome λlearnt given
perturbed training data. Our goal is to estimate the possible
values of λtrue given observed learning outcome λlearnt.

4.1 Characterizing Deceptive Attacker’s Behavior
We first analyze the deception possibilities for the deceptive
attacker given any value λtrue of the non-deceptive attackers.
The results we establish here help us in our goal of estimat-
ing λtrue. For analysis sake, we assume that the number of
attacks is large enough such that the sampled attacks is close
to the actual attack probability distributions. We will relax
this assumption later. Mathematically, we assume:(

nmi
)/(∑

j

nmj
)
≈ qmi (xm, λtrue),∀m (7)

where nmi refers to the number of attacks committed by the
non-deceptive attacker at target i. As shown in (DecAlter),
the objective utility function of the deceptive attacker de-
pends on the strategy of the defender, which in turn is gov-
erned by the training data {zmi }, and the training data con-
tains attacks by the non-deceptive attacker too ({nmi }). Thus,
the outcome of λlearnt depends on the behavior of the non-
deceptive attacker λtrue (or {nmi }). We thus also use the no-
tion DecAlter(λtrue) = λlearnt to represent the dependence
of the learning result (altered by deception) on λtrue.

For this portion of our analysis, we relax the domain of z
to be continuous. This allows our proofs to be simpler and
more concise. In practice, this value is limited to discrete
integers; fractional attacks are nonsensical. Later, we will ex-
tend the methods to the discrete z case, and show why they

still apply. We exploit the KKT condition for the optimality of
the deceptive λlearnt as the outcome of the defender’s learn-
ing, formulated in optimization (2). Essentially, λlearnt has to
satisfy the following KKT condition:∑
m

[∑
i

zmi

][∑
iz
m
i U

a
i (x

m
i)∑

i

zmi
−
∑
i

qi(x
m;λlearnt)Uai (x

m
i)︸ ︷︷ ︸

Attacker utility Ua(xm;λlearnt)

]
=0

where Ua(xm;λlearnt) is the attacker’s expected utility when
the defender plays xm and the attacker plays according to
λlearnt. In our theoretical analysis, we leverage the following
important monotonicity property of this utility function:
Observation 1 ([Nguyen et al., 2020b]). Ua(xm, λ) is an
increasing function of λ for any given strategy xm.

Let’s assume, WLOG, the attacker’s utilities at each target
has the following order: Ua1 (x

m
1)≤Ua2 (xm2)≤ . . .≤UaT (xmT)

for all m. Observation 1 aids us in showing that all feasible
(not necessarily optimal) deceptive λ values form an interval
[λlearntmin , λlearntmax] with λlearntmin , λlearntmax specified as follows:
Theorem 1 (Characterization of Deception Space). Given
λtrue and the attack ratio f , the space of deceptive param-
eters inducible by the deceptive attacker forms an interval
[λlearntmin , λlearntmax], where λlearntmax is the unique solution of:∑
m,j

nmj
[
Ua(xm;λtrue)+fUaT (x

m
T)−(f+1)Ua(xm, λlearntmax)

]
=0

and λlearntmin is the unique solution of:∑
m,j

nmj
[
Ua(xm;λtrue)+fUa1 (x

m
1)−(f+1)Ua(xm, λlearntmin)

]
=0

All formal proofs are in the appendix. Essentially, The-
orem 1 states that given some true behavior of the non-
deceptive attacker λtrue, the deceptive attacker can force the
deceptive λ to be any value in [λlearntmin , λlearntmax]. Further, the
deceptive attacker cannot make the defender learn any λ out-
side of this range. Based on Theorem 1, we present the
following corollaries which characterize the monotonicity of
λlearntmin and λlearntmax , as well as the monotonicity of the opti-
mal deception λlearnt = DecAlter(λtrue) ∈ [λlearntmin , λlearntmax]
with respect to the non-deceptive attacker behavior λtrue.
Corollary 1. Consider two different behavior parameters,
λtrue1 ≤λtrue2 . Denote by [λlearntmin,1 , λ

learnt
max,1] and [λlearntmin,2 , λ

learnt
max,2]

the corresponding deceptive parameter ranges, we have:
λlearntmax,1≤λlearntmax,2 and λlearntmin,1≤λlearntmin,2 .

Based on Corollary 1, we obtain Corollary 2 showing the
monotonicity relation between λlearnt and λtrue.
Corollary 2. Consider two different behavior parameters,
λtrue1 6= λtrue2 . Then, we have:
λtrue1 ≤λtrue2 =⇒ DecAlter(λtrue1)≤DecAlter(λtrue2)

(8)

DecAlter(λtrue1)<DecAlter(λtrue2) =⇒ λtrue1 <λtrue2
(9)

Corollary 3. Consider two different behavior parameters
λtrue1 ≤ λtrue2 . If the corresponding optimal deception so-
lutions: DecAlter(λtrue1) = DecAlter(λtrue2), then for any
λtrue ∈ [λtrue1 , λtrue2], we also have its optimal deception so-
lution: DecAlter(λtrue)=DecAlter(λtrue1).

4.2 RaBiS: Characterizing Behavior of
Non-Deceptive Attacker

In this section, we attempt to find the range of possible values
for λtrue, which is unknown to the defender, as only the de-
ceptively altered QR parameter λlearnt is observed. We lever-
age the results of Corollaries 2 and 3 for this analysis.

Lemma 1. Given some learned λlearnt, there exists an inter-
val [λtruemin , λ

true
max] such that all values λtrue ∈ [λtruemin , λ

true
max]

leads to the same outcome λlearnt. In addition, both bounds
λtruemin and λtruemax are increasing in λlearnt.

Based on the above result, we propose a binary-search
based approach, RaBiS (Range-finding Binary Search), to
find the interval [λtruemin , λ

true
max] within an ε-error in a polyno-

mial time for arbitrary small ε > 0. RaBiS consists of two
binary searches: the first binary search is to find the upper
bound λtruemax and the second binary search is to find the lower
bound λtruemin . Both binary searches maintain a pair of bounds
for binary search (lb, ub). While in theory the range of λtrue
is [0,∞), in practice, a limited range of [0,M], where M is
a very large constant, ensures that the attacker’s QR behavior
with λtrue =M is close enough to λtrue =∞. Therefore, in
our algorithm, we initialize lb = 0 and ub =M .

At each iteration, we examine the mid-value r=(lb+ub)/2
by comparing the deception calculation λ′ = DecAlter(r)
with the actual deception outcome computed by the defender,
λlearnt. In particular, in the binary search for finding λtruemax,
if λ′ ≤ λlearnt, there must be a λtruemax ∈ [r, ub] such that
DecAlter(λtruemax) = λlearnt and any λ > λtrue implies
DecAlter(λ) > λlearnt. Thus, in order to find λtruemax, we
update the lower bound lb = r. Conversely, if λ′ > λlearnt,
it means all λtrue ∈ [r, ub] will lead to a deceptive parameter
value strictly greater than λlearnt. Therefore, we update the
upper bound ub= r. The reasoning for the binary search for
finding λtruemin is similar. This process stops when ub−lb<ε.

4.3 Principled Approach for Low-Data Challenge
Thus far, our analysis of the range of the non-deceptive at-
tacker λtrue was performed under the approximation assump-
tion of Equation 7. However, in practice, this assumption may
not hold true. This is because the attacker may conduct a lim-
ited number of attacks, which leads to a substantial difference
between the empirical attack distribution and the true attack
distribution, that is:(

nmi
)/(∑

j

nmj
)
6= qmi (xm;λtrue),∀m

To address this challenge, we first investigate the generation
of limited attack samples from the true distribution under a
static random seed. We show that our previous theoretical
results for the ideal scenario still hold in this “limited-attack”
scenario. We then leverage this result for a static random seed
to address the general case of unknown random seed.

Sampling by transformation. Sample generation from
certain parameterized distributions can be split into a two
step process by using a transformation of known distribu-
tions [Price, 1958; Kingma, 2014]. We show that such split
generation is possible for our problem. Let u be a real valued

0 1S 1;λ	 S 2;λ

u

Figure 1: Attack generation by transforming uniform dist.

random variable that is distributed uniformly between 0 and
1. Given a defense strategy, xm, and QR parameter λ, we de-
fine the function fλ such that P

(
fλ(u) = i

)
= qi(x

m;λ).
Note that fλ is a deterministic function dependent on λ,
which we define explicitly next. For any given xm, parti-
tion the interval [0, 1] according to the attack probabilities
qi(x

m;λ) specified by QR with parameter λ, with the fol-
lowing partition boundary points: S(0;λ) = 0, S(i;λ) =∑i
j=1 qj(x

m;λ), and S(T ;λ) = 1. Figure 1 is an example
when the number of targets is T = 3. Given this division, we
define fλ(u) = i when u ∈ [S(i − 1;λ), S(i;λ)]; it can be
readily verified that P

(
fλ(u) = i

)
= qi(x

m;λ). In the case
ofN>1 attacks, we can view the attack generation process as
N samples of u to get u = {u1, . . . , uN} and then applying
fλ to each of those samples to obtain the targets attacked.
Static random seed generation. For our problem with pa-
rameter λtrue, after separating the randomness (u) and the
effect of the parameter (fλtrue) in attack generation, the main
idea of a static random seed is to assume that theN uniformly
sampled values u are the same for any value of λtrue that
we consider in the binary search for λtruemin or λtruemax. By con-
trolling the randomness, we establish a deterministic baseline
to compare the empirical distribution arising from the differ-
ent λtrue that we consider. A big advantage of controlling
randomness is that it allows us to carry over all the previous
proofs to a low data setting, as described next.

Let E(u, λtrue) be the empirical distribution when attacks
are computed using fλtrue and the generated N samples u.
We can define the attacker expected utility w.r.t. this distribu-
tion, denoted by Ua(xm;E(u, λtrue)), exactly analogously
to how Ua(xm;λtrue) is defined w.r.t. the true distribution.
We obtain Lemma 2 which is analogous to Observation 1.
Lemma 2. For a fixed seed, u, the attacker expected utility
computed based on the corresponding empirical distribution,
Ua(xm;E(u, λtrue)), is an increasing function of λtrue.

In all results previously (including corollaries), we
only used the Observation 1 property of Ua(xm;λtrue).
With the result above, we can replace Ua(xm;λtrue) by
Ua(xm;E(u, λtrue)) and all proofs still go through. Hence,
our Theorem 1 holds with respect to Ua(xm;E(u, λtrue))
(which replaces Ua(xm;λtrue) in the equations presented in
Theorem 1). This result shows that for a fixed random seed u
we can recover all previous results.
Extension to unknown random seed. The random seed
used (by nature) in the generation of the training data is not
known to the defender. To overcome this challenge, we ex-
tend our binary search to consider multiple random seeds. For
each random seed, we run RaBiS to obtain an interval of pos-
sible values for λtrue. Taking a worst-case approach, we con-
sider the smallest interval that spans all of these ranges as the
uncertainty set containing all possible values of λtrue.

5 Maximin to Optimize Defender Utility
After finding the range [λtruemin , λ

true
max], the defender must op-

timize its strategy accordingly. Essentially, the defender is
aware that there are attacks not only from a rational (decep-
tive) attacker (who will act optimally in the defender’s plan-
ning phase) but also from bounded rational attackers (whose
λtrue can be any value within [λtruemin , λ

true
max]). In order to over-

come the uncertainty about the behavior of these attackers, we
take a maximin approach where the defender seeks to maxi-
mize its utility against the worst possible (for the defender) λ
value within the calculated range. In practice, to deal with the
computational challenge due to an infinite number of possible
values in [λtruemin , λ

true
max], we break down this range into a set of

possible discrete values {λtruemin , λ
1, λ2, . . . , λtruemax}. Further-

more, since the rational attacker will choose an optimal target
to attack in the planning phase, we decompose our defense
problem into multiple non-linear programs, each corresponds
to a particular optimal target to attacker for the rational at-
tacker. In particular, our non-linear program corresponding
to an optimal target j can be formulated as follows:

maxx f · Udj (xj) + Udworst-case (10)

s.t. Uaj (xj) ≥ Uai (xi),∀i (11)

Udworst-case ≤
∑

i
qi(x;λ)U

d
i (xi), (12)

∀λ ∈ {λtruemin , λ
1, λ2, . . . , λtruemax}∑

i
xi ≤ K,xi ∈ [0, 1],∀i (13)

The objective (line 10) balances optimization against the fully
rational attacker, Udj (xj), and the worst possible bounded
rational attacker, Udworst-case, with multiplier f correspond-
ing to the ratio of deceptive to non-deceptive attacks. Con-
straint (11) ensures that the target chosen by the fully ratio-
nal attacker, j, is indeed the highest-utility target. Constraint
(12) effectively iterates through the λ range, setting Udworst-case
equal to the lowest defender utility value among all possible
lambdas. In a zero sum game, these lines could be replaced by
simply setting λ=λtruemax. Lastly, constraint (13) provides log-
ical bounds to the defender’s strategy: the total coverage per-
centage of all targets cannot exceed the number of resources,
and all targets have coverage probability between 0 and 1.

6 Experiments
In our experiments, we analyze: (i) the defender’s utility
gain by addressing deception, and (ii) the loss of utility for
the devious attacker. The training data includes attacks from
both the fully rational deceptive attacker and a boundedly ra-
tional attacker whose behavior is described by QR. We use
5 defender training strategies (M = 5) each with 50 non-
deceptive attacks (

∑
i n

m
i = 50) sampled from the QR distri-

bution with λtrue of the bounded rational attacker. Each data
point is averaged over 200+ games, generated using GAMUT
(http://gamut.stanford.edu). For our trials, we vary (i) the true
non-deceptive lambda λtrue value and (ii) the fraction f of
attacks done by the devious adversary. Due to limited space,
we will only highlight important results. Additional results
are included in our appendix. All utility results are statisti-
cally significant under bootstrap-t (α=0.05) [Wilcox, 2002].

(a) Vary % of dec. attacks (b) Vary λtrue

(c) Vary % of dec. attacks (d) Vary λtrue

Figure 2: Players Utility Evaluation

Figures 2a and 2b display the defender’s utility in two
cases: (i) Addressed — the defender addresses the attacker’s
deception using our counter-deception algorithm; and (ii)
Unaddressed — the defender simply does not take the at-
tacker’s deception into account. In these two figures, the
y-axis represents the defender’s expected utility on average.
Both figures show that the defender can significantly increase
his utility for playing our maximin counter-deception strat-
egy. In Figure 2a we observe that, when deception is unad-
dressed, the defender’s utility decreases exponentially as the
deceptive attack ratio increases. On the other hand, when the
defender does address deception, the slope is far more grad-
ual. Figure 2b shows how defender utility increases as the
non-deceptive λtrue value does. This effect tapers off on the
upper end of the spectrum. This result is expected because the
non-deceptive attacker gets more rational as λtrue increases,
leading to less changes in the defender’s maximin strategy.
Furthermore, in Figure 2b, the lowest utility point for the
defender is when λtrue gets to zero. This makes sense: as
the non-deceptive attackers become completely non-strategic
(i.e., λtrue = 0), the non-deceptive attackers will have less
influence on the training data, or equivalently, the deceptive
attacker has more power to manipulate the data.

Naturally, we observe an opposite trend in the attacker-
utility graphs shown in Figures 2c and 2d. That is, the utility
of the attacker reduces substantially when the defender ad-
dresses the attacker deception. Figure 2c shows that when
the defender plays our maximin strategy, the attacker’s utility
actually decreases w.r.t. the percentage of attacks controlled
by the deceptive attacker. This result appears to be counter-
intuitive at first glance. However, it’s logical: our maximin
algorithm knows the attack ratio so it tailors more of the de-
fense strategy towards a fully rational attacker (the actual ra-
tionality of the deceptive attacker).

Lastly, we analyze runtime performance of both portions
of the algorithm in Figure 3. For the binary search, runtime is

(a) Binary Search Runtime (b) Maximin Runtime

(c) Binary Search Runtime (d) Maximin Runtime

Figure 3: Runtime Evaluation

high across the board due to the sheer number of partial de-
ception games (DecAlter) solved in each search. However,
this runtime scales linearly w.r.t. the number of targets (Fig-
ure 3a), implying that the algorithm can be scaled to large
games. Furthermore, when varying the attack percentage
(Figure 3c), we see that the runtime peaks with a percentage
around 0.3. This peak is shifted compared to the runtime for
solving (DecAlter) only, which peaks around 0.5 [Nguyen
et al., 2020a]. This is because the range, [λtruemin , λ

true
max] in-

creases as the deceptive attack percentage does, meaning the
total search time decreases as RaBiS exits earlier.

Figure 3b shows how the maximin runtime increases w.r.t.
the number of targets. This is expected since the number of
non-linear programs involved is equal to the number of tar-
gets. The maximin optimization can scale to large games:
500 target games are solved in less than 10 minutes. Observe
that we examine a larger spread of targets here than for the
binary search portion of the algorithm; the binary search run-
time is orders of magnitude higher, reaching our 100 minute
cut-off with far fewer targets. Figure 3d shows that maximin
runtime initially increases as the percentage of attacks that are
deceptive does, reflecting the wider range of possible values
for λtrue. At higher values this effect diminishes and run-
time ends up decreasing at the 0.9 marker, indicating that it is
easier to optimize a strategy against mostly rational attacks.

7 Conclusion
We successfully addressed attacker deception in security
games, showing both theoretically and experimentally the
value of our approach. Through mathematical analysis we
explored the characteristics of deception and defense letting
us develop effective countermeasures: RaBiS allowed the de-
fender to see through the deceptively altered historical attack
data, after which a maximin approach yielded a robust strat-
egy. Our extensive experiments showed the wary defender
receiving much higher utility than its naive counterpart.

References
[Albarran and Clempner, 2019] Silvia E. Albarran and

Julio B. Clempner. A stackelberg security markov game
based on partial information for strategic decision making
against unexpected attacks. Engineering Applications of
Artificial Intelligence, 81:408 – 419, 2019.

[Brown et al., 2012] Alexander L. Brown, Colin F. Camerer,
and Dan Lovallo. To review or not to review? limited
strategic thinking at the movie box office. American Eco-
nomic Journal: Microeconomics, 4(2):1–26, May 2012.

[Camerer et al., 2004] Colin F. Camerer, Teck-Hua Ho,
and Juin-Kuan Chong. A Cognitive Hierarchy Model
of Games*. The Quarterly Journal of Economics,
119(3):861–898, 08 2004.

[Fang et al., 2016] Fei Fang, Thanh H Nguyen, Rob Pickles,
Wai Y Lam, Gopalasamy R Clements, Bo An, Amandeep
Singh, Milind Tambe, and Andrew Lemieux. Deploying
paws: Field optimization of the protection assistant for
wildlife security. In IAAI-16, 2016.

[Gan et al., 2019a] Jiarui Gan, Qingyu Guo, Long Tran-
Thanh, Bo An, and Michael Wooldridge. Manipulating
a learning defender and ways to counteract. In NIPS-19,
2019.

[Gan et al., 2019b] Jiarui Gan, Haifeng Xu, Qingyu Guo,
Long Tran-Thanh, Zinovi Rabinovich, and Michael
Wooldridge. Imitative follower deception in stackelberg
games. In EC ’19, 2019.

[Guo et al., 2017] Qingyu Guo, Bo An, Branislav Bosan-
sky, and C. Kiekintveld. Comparing strategic secrecy and
Stackelberg commitment in security games. In IJCAI,
2017.

[Hortaçsu et al., 2019] Ali Hortaçsu, Fernando Luco,
Steven L. Puller, and Dongni Zhu. Does strategic ability
affect efficiency? evidence from electricity markets. AER,
109(12):4302–42, December 2019.

[Huang et al., 2011] Ling Huang, Anthony D Joseph, Blaine
Nelson, Benjamin IP Rubinstein, and J Doug Tygar. Ad-
versarial machine learning. In AISec, 2011.

[Kar et al., 2017] D. Kar, B. Ford, S. Gholami, F. Fang,
A. Plumptre, M. Tambe, M. Driciru, F. Wanyama,
A. Rwetsiba, and M. Nsubaga. Cloudy with a chance of
poaching: Adversary behavior modeling and forecasting
with real-world poaching data. In AAMAS ’17, 2017.

[Kingma, 2014] Diederik P Kingma. Auto-encoding varia-
tional bayes. In ICLR, 2014.

[Lowd and Meek, 2005] Daniel Lowd and Christopher
Meek. Adversarial learning. In ACM SIGKDD, 2005.

[Madry et al., 2017] Aleksander Madry, Aleksandar
Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to
adversarial attacks, 2017.

[McKelvey and Palfrey, 1995] Richard D McKelvey and
Thomas R Palfrey. Quantal response equilibria for normal
form games. In Games and economic behavior, 1995.

[Nguyen et al., 2016] Thanh. H. Nguyen, A. Sinha, S. Gho-
lami, A. Plumptre, L. Joppa, M. Tambe, M. Driciru,
F. Wanyama, A. Rwetsiba, R. Critchlow, et al. Capture: A
new predictive anti-poaching tool for wildlife protection.
In AAMAS ’16, pages 767–775, 2016.

[Nguyen et al., 2019] Thanh H Nguyen, Yongzhao Wang,
Arunesh Sinha, and Michael P Wellman. Deception in
finitely repeated security games. In AAAI-19, 2019.

[Nguyen et al., 2020a] Thanh H. Nguyen, Arunesh Sinha,
and He He. Partial adversarial behavior deception in se-
curity games. In IJCAI, 2020.

[Nguyen et al., 2020b] Thanh H Nguyen, Nam Vu, Amulya
Yadav, and Uy Nguyen. Decoding the imitation security
game: Handling attacker imitative behavior deception. In
24th European Conference on Artificial Intelligence, 2020.

[Peng et al., 2019] B. Peng, Weiran Shen, Pingzhong Tang,
and Song Zuo. Learning optimal strategies to commit to.
In 33th AAAI Conference on Artificial Intelligence, 2019.

[Perrault et al., 2019] Andrew Perrault, Bryan Wilder, Eric
Ewing, Aditya Mate, Bistra Dilkina, and Milind Tambe.
Decision-focused learning of adversary behavior in secu-
rity games. CoRR, abs/1903.00958, 2019.

[Price, 1958] Robert Price. A useful theorem for nonlinear
devices having gaussian inputs. IEEE Trans. Inf. Theory,
4, 1958.

[Sinha et al., 2016] Arunesh Sinha, Debarun Kar, and
Milinde Tambe. Learning adversary behavior in security
games: A pac model perspective. In AAMAS ’16, 2016.

[Song et al., 2018] Yibing Song, Chao Ma, Xiaohe Wu, Li-
jun Gong, Linchao Bao, Wangmeng Zuo, Chunhua Shen,
Rynson W.H. Lau, and Ming-Hsuan Yang. Vital: Visual
tracking via adversarial learning. In IEEE CVPR, 2018.

[Tambe, 2011] Milind Tambe. Security and game theory: al-
gorithms, deployed systems, lessons learned. Cambridge
University Press, 2011.

[Wilcox, 2002] Rand Wilcox. Applying contemporary statis-
tical techniques. Academic Press, 2002.

[Wright and Leyton-Brown, 2014] James R. Wright and
Kevin Leyton-Brown. Level-0 meta-models for predicting
human behavior in games. In EC ’14. ACM, 2014.

[Yang et al., 2011] Rong Yang, Christopher Kiekintveld,
Fernando Ordonez, Milind Tambe, and Richard John. Im-
proving resource allocation strategy against human adver-
saries in security games. In IJCAI, 2011.

[Zhang et al., 2019] Xuezhou Zhang, Xiaojin Zhu, and Lau-
rent Lessard. Online data poisoning attack, 2019.

[Zhang et al., 2021] Jing Zhang, Yan Wang, and Jun Zhuang.
Modeling multi-target defender-attacker games with quan-
tal response attack strategies. Reliability Engineering &
System Safety, 205, 2021.

[Zhuang et al., 2010] Jun Zhuang, Vicki M. Bier, and
Oguzhan Alagoz. Modeling secrecy and deception in a
multi-period attacker-defender signaling game. European
Journal of Operational Research, 203:409–418, 2010.

Appendix
7.1 Proof of Theorem 1
In order to prove this theorem, we introduce a series of lem-
mas (3–6). For the sake of analysis, we denote by:

ymi =
zmi∑
j z

m
j

cm =
1∑
j z

m
j

Intuitively, ymi is the empirical attack distribution estimated
from the perturbed training data D̂ = {xmi , zmi } and cm is
the normalization term. Also, {ymi , cm} and {zmi } are in-
terchangeable. That is, given {ymi , cm}, we can determine
zmi =

ymi
cm . We first present the Lemma 1 which determines

the deception capability of the deceptive attacker:

Lemma 3. Given the true behavior λtrue of the non-deceptive
attackers and the attack ratio f , the deceptive space for the
deceptive attacker is specified as follows:∑

m

1

cm

[∑
i
ymi U

a
i (x

m
i)− Ua(xm, λ)

]
= 0 (14)

ymi
cm
≥ nmi ,∀m, i (15)

cm ≥ 1

(f + 1)
∑
i n

m
i

,∀m (16)

ymi ∈ [0, 1],
∑

i
ymi = 1,∀m, i (17)

That is, any deceptive λ that the defender learns has to be
a part of a feasible solution (λ, ymi , c

m) of the system (14–
17). Conversely, given any feasible (λ, ymi , c

m) satisfying
(14–17), the deceptive attacker can make the defender learn
λ by inducing the following perturbed data:

zmi =
ymi
cm

Proof. Equation (14) is simply the KKT condition presented
in the previous section with ymi and cm substituted in. Sim-
ilarly, the constraints (15–16) correspond to the constraints
for the deception capability of the deceptive attacker in (5–
6). Finally, the constraint (17) follows from the definition of
ymi and ensures that

∑
i

zmi∑
j z

m
j

= 1 and zmi∑
j z

m
j
≤ 1.

According to Lemma 3, we now can prove Theorem 1
based on the characterization of the feasible solution domain
of λ for the system (14–17). We denote by:

F(λ, {ymi , cm}) =
∑
m

1

cm

[∑
i

ymi U
a
i (x

m
i)− Ua(xm, λ)

]
the LHS of (14). In addition, we denote by S =
{(ymi , cm) : conditions (15–17) are satisfied} the feasible re-
gion of (ymi , c

m) which satisfy the conditions (15-17). In
the following, we provide Lemmas 4 and 5 which specify the
range of F as a function of λ. Essentially, if the value of F
contains the point zero, then λ is a feasible solution of the
system (14–17). We will use this property to characterize the
feasible region of λ.

Lemma 4. Assume that, WLOG, Ua1 (x
m
1) ≤ Ua2 (x

m
2) ≤

· · · ≤ UaT (x
m
T) for all m. Given a λ, the optimal solution

to

Fmax(λ) = max
{ymi ,cm}∈S

F(λ, {ymi , cm}) (18)

is determined as follows:

cm =
1

(f + 1)
∑
i n

m
i

(19)

ymi = nmi c
m, when i < T (20)

ymi = 1− cm
T−1∑
i=1

nmi when i = T (21)

Proof. First, F(λ, {ymi , cm}) can be reformulated as:

∑
m

1

cm

[
UaT (x

m
T)+

T−1∑
i=1

ymi [Uai (x
m
i)−UaT (xmT)]−Ua(xm, λ)

]

Under our assumption that Ua1 (x
m
1) ≤ Ua2 (x

m
2) ≤ · · · ≤

UaT (x
m
T), we know that [Uai (x

m
i)−UaT (xmT)] is a strictly non-

positive term for all i. Thus, maximizing F involves min-
imizing ymi when i < T . From constraint (15), the mini-
mum ymi for all i is nmi c

m. This gives us ymi = nmi c
m when

i < T . From constraint (17), we know that this leaves us with
ymi = 1− cm

∑T−1
i=1 nmi when i = T .

Finally, given this specification of {ymi }, the optimization
problem (18) is reduced to:

max
cm

∑
m

∑
i<T

nmi [Uai (x
m
i)−UaT (xmT)]+

UaT (x
m
T)−Ua(xm, λ)

cm

s.t. cm ≥ 1

(f + 1)
∑
i n

m
i

and cm ≤ 1∑
i n

m
i

,∀m

in which the objective function comprises of two terms: the
first term does not depend on {cm} and the second term is a
decreasing function of cm (since UaT (x

m
T)−Ua(xm, λ) > 0).

Therefore, it is maximized when cm is minimized, which is
cm = 1

(f+1)
∑

i n
m
i

, concluding the proof.

Lemma 5. Assume that, WLOG, Ua1 (x
m
1) ≤ Ua2 (x

m
2) ≤

· · · ≤ UaT (x
m
T) for all m. Given a λ, the optimal solution

to

Fmin(λ) = min
{ymi ,cm}∈S

F(λ, {ymi , cm}) (22)

is determined as follows:

cm =
1

(f + 1)
∑
i n

m
i

(23)

ymi = nmi c
m, when i > 1 (24)

ymi = 1− cm
T∑
i=2

nmi when i = 1 (25)

The proof of Lemma 5 is similar. Finally, using Lem-
mas (4–5) and the approximation in Eq. 7, we obtain:

Fmax(λ) =
∑
m

∑
j

nmj

[Ua(xm, λtrue)
+ fUaT (x

m
T)− (f + 1)Ua(xm, λ)

]
(26)

Fmin(λ) =
∑
m

∑
j

nmj

[Ua(xm, λtrue)
+ fUa1 (x

m
1)− (f + 1)Ua(xm, λ)

]
(27)

Observe that, given λ, F(λ, ·) is continuous in {ymi , cm}.
Therefore, given a λ′, if Fmax(λ′) ≥ 0 ≥ Fmin(λ′), there
must exist {ymi , cm} ∈ S such that F(λ′, {ymi , cm})= 0. In
other words, λ′ is a part of a feasible solution for (14–17).
Conversely, if Fmax(λ′) < 0 or Fmin(λ′) > 0, it means λ′
is not feasible for (14–17). Moreover, using Observation 1,
we can infer that both Fmax and Fmin are continuous and
decreasing in λ. We obtain Lemma 6 which essentially says
that feasible solutions of (14–17) form an interval.

Lemma 6. Let us assume λ1 < λ2 are two feasible solutions
of (14–17). Then any λ ∈ [λ1, λ2] is also a feasible solution
of the system.

Proof. Since λ1 and λ2 are feasible solutions of (14–17), we
obtain the following inequalities:

Fmax(λ1)≥0≥Fmin(λ1)

Fmin(λ2)≥0≥Fmin(λ2)

For any λ ∈ [λ1, λ2], since Fmax and Fmin are decreasing
functions in λ, the following inequality holds true:

Fmax(λ) ≥ Fmax(λ2)≥0≥Fmin(λ1) ≥ Fmin(λ)

which implies that λ is also a part of a feasible solution for
(14–17), concluding the proof.

Finally, Lemma 7 specifies the interval [λlearntmin , λlearntmax] of
all feasible solutions of λ for (14–17).

Lemma 7. There exist λlearntmax ≥ λlearntmin such that:

Fmax(λlearntmax) = Fmin(λlearntmin) = 0,

which means λlearntmin and λlearntmax are feasible solutions for
(14–17) and any λ /∈ [λlearntmin , λlearntmax] is not a feasible so-
lution for (14–17).

Proof. As noted before, Fmax(λ) is a continuous and de-

creasing function in λ. On the other hand, we have:

Fmax(λ=+∞)=
∑
m

∑
j

nmj

[Ua(xm, λtrue)
−UaT (xmT)

]
≤0

Fmax(λ=−∞)=
∑
m

∑
j

nmj

[Ua(xm, λtrue)
+fUaT (x

m
T)−(f + 1)Ua1 (x

m
1))

]
≥ 0

for all λtrue since Ua(xm, λtrue = +∞) = UaT (x
m
T) and

Ua(xm, λtrue = −∞) = Ua1 (x
m
1) is the highest and lowest

expected utilities for the attacker among all targets , respec-
tively, and by Observation 1, Ua(xm, λtrue) is increasing in
λtrue.2 Since Fmax(λ) is continuous, there must exist a value
of λlearntmax ∈ (−∞,+∞) such that Fmax(λlearntmax) = 0. The
proof for λlearntmin is similar.

Finally, for any λ < λlearntmin , we have Fmin(λ) >
Fmin(λlearntmin) = 0 since Fmin is decreasing in λ. Similarly,
for any λ > λlearntmax , we haveFmax(λ) < Fmax(λlearntmax) = 0.
Both imply that λ is not feasible, concluding our proof.

By combining Lemmas 3,6, and 7, we obtain Theorem 1.

7.2 Proof of Corollary 1
Proof. Corollary 1 is deduced based on the monotonicity
property of the attacker’s utility (Observation 1). When
λtrue1 ≤ λtrue2 , we have Ua(xm;λtrue1) ≤ Ua(xm;λtrue2) for
all m. Based on the relationship between Ua(xm;λtrue) and
Ua(xm;λlearntmax) presented in Theorem 1, we readily obtain
λlearntmax,1 ≤ λlearntmax,2. Similarly, we have: λlearntmin,1 ≤ λlearntmin,2 .

7.3 Proof of Corollary 2
Proof. We first prove (8). Let’s consider the true behavior
parameters λtrue1 ≤ λtrue2 . Based on Corollary 1, the corre-
sponding optimal deception solutions have to belong to the
deception ranges: DecAlter(λtrue1) ∈ [λlearntmin,1 , λ

learnt
max,1] and

DecAlter(λtrue2) ∈ [λlearntmin,2 , λ
learnt
max,2] where λlearntmin,1 ≤ λlearntmin,2

and λlearntmax,1≤λlearntmax,2. We have two cases:
The first case is when the deception ranges do not over-

lap, i.e., (λ1max < λ2min). In this case, it is apparent that
DecAlter(λtrue1)<DecAlter(λtrue2).

The other case is when the ranges overlap (i.e., λmax1 ≥
λmin2). If the optimal deceptive value for one or both does not
belong to the overlap, i.e., DecAlter(λtrue1)<λlearntmin,2 and/or
DecAlter(λtrue2)>λlearntmax,1), the result is clearly the same as
in our previous case (DecAlter(λtrue1)<DecAlter(λtrue2)).
On the other hand, if both values fall within the overlap, that
is λlearntmin,2 ≤ DecAlter(λtrue1), DecAlter(λtrue2) ≤ λlearntmax,1,

2Observe that the facts Ua(xm, λtrue = +∞) = Ua
T (x

m
T),

Ua(xm, λtrue = −∞) = Ua
1 (x

m
1) also readily holds for

Ua(xm, E(u;λtrue)).

both will take on the same value (DecAlter(λtrue1) =
DecAlter(λtrue2)). This is true because both these deceptive
values DecAlter(λtrue1) and DecAlter(λtrue2) are being op-
timized to maximize the same objective: the utility function
of the deceptive attacker (as shown in DecAlter).

Finally, (9) can be easily deduced based on (8). Let’s con-
sider DecAlter(λtrue1) < DecAlter(λtrue2). We can prove
λtrue1 < λtrue2 by contradiction. That is, we assume λtrue1 ≥
λtrue2 . According to (8), it means DecAlter(λtrue1) ≥
DecAlter(λtrue2), which is a contradiction.

7.4 Proof of Corollary 3
Proof. Corollary 3 is a direct result of Corollary 2. In-
deed, since λtrue1 ≤ λtrue ≤ λtrue2 , we obtain the inequal-
ity among optimal deception solutions DecAlter(λtrue1) ≤
DecAlter(λtrue) ≤ DecAlter(λtrue2) according to Corol-
lary 2. Therefore, if DecAlter(λtrue1) = DecAlter(λtrue2),
then we obtain the optimal deception solution w.r.t λtrue:
DecAlter(λtrue)=DecAlter(λtrue1).

7.5 Proof of Lemma 1
Proof. Corollary 2 says that the deception outcome λlearnt =
DecAlter(λtrue) is an increasing (not strict) function of
λtrue, and additionally using Corollary 3, we can say that
given some deception outcome λlearnt, there exists (un-
known) λtruemin , λ

true
max such that any λtrue ∈ [λtruemin , λ

true
max] leads

to the same outcome λlearnt = DecAlter(λtrue). Any λ out-
side of the range [λtruemin , λ

true
max] cannot lead to the deception

outcome λlearnt. Corollary 2 further implies that λtruemin and
λtruemax themselves are increasing functions of λlearnt.

7.6 Proof of Lemma 2
Proof. Assume WLOG, Ua1 (x

m
1) ≤ Ua2 (x

m
2) ≤ · · · ≤

UaT (x
m
T). We claim that S(i, λtrue) =

∑i
j=1 qj(x

m;λtrue)

for T > i ≥ 1 is decreasing (not strictly) in λtrue, or in other
words, the upper bound of the ith segment is decreasing (not
strictly) for all i except i = T . This means that for any sin-
gle fixed u value, increasing λtrue implies that fλtrue(u) is
also increasing (or stays same) because the upper bound of
the interval that u lies in shifts downwards as λtrue increases.
fλtrue(u) increasing means a higher value target is chosen for
attack. Thus, for fixed u, a higher λtrue implies that the em-
pirical distribution places more (or same) attacks on higher
utility targets and hence Ua(xm, E(u;λtrue)) increases (not
strictly) with λtrue.

Finally, to prove our claim at the start of the proof, we show
that the derivative of S(i, λtrue) is non-positive everywhere.
Indeed, its derivative is computed as follows:

i∑
j=1

qj(x
m;λtrue)Uaj (x

m
j)− S(i, λtrue)Ua(xm;λtrue)

= S(i, λtrue)
[i∑
j=1

qj(x
m;λtrue)

S(i, λtrue)
Uaj (x

m
j)− Ua(xm;λtrue)

]
(28)

where the attacker utility function Ua(xm;λtrue) can be de-
composed into two separate terms, as follows:

S(i, λtrue)

i∑
j=1

qj(x
m;λtrue)

S(i, λtrue)
Uaj (x

m
j)+

(T∑
j=i+1

qj(x
m;λtrue)

) T∑
j=i+1

qj(x
m;λtrue)∑T

j=i+1 qj(x
m;λtrue)

Uaj (x
m
j)

As we know that Ua1 (x
m
1) ≤ Ua2 (x

m
2) . . . ≤ UaT (x

m
T), the

following inequality holds:

T∑
j=i+1

qj(x
m;λtrue)∑T

j=i+1 qj(x
m;λtrue)

Uaj (x
m
j)

≥ Uai (xmi) ≥
i∑

j=1

qj(x
m;λtrue)

S(i, λtrue)
Uaj (x

m
j)

Using this we get:

Ua(xm;λtrue)

≥
(
S(i, λtrue)+

T∑
j=i+1

qj(x
m;λtrue)

) i∑
j=1

qj(x
m;λtrue)

S(i,λtrue)
Uaj (x

m
j)

= 1 ·
i∑

j=1

qj(x
m;λtrue)

S(i, λtrue)
Uaj (x

m
j)

Using the above in the derivative Eq. 28, we get that the
derivative of S(i, λtrue) is non-positive, hence it is decreasing
w.r.t. λ, concluding our proof.

Supplemental Experiment Results
Aside from those previously discussed, we present the fol-
lowing experimental results. First, in Figure 5, we examine
the range [λtruemin , λ

true
max] that the defender would learn. Fig-

ure 5a shows that the range increases w.r.t. the percentage
of attacks controlled by the deceptive attacker. This is in-
tuitive, as more manipulation gives less information about
bounded rational attackers leading to more uncertainty. Fig-
ure 5b displays how this range also increases with the ground
truth λtrue value of the non-deceptive attackers. This means
that as λtrue increases, the same fraction of perturbation by
the deceptive attacker produces a larger uncertainty range.

Figure 4 shows additional relationships when varying the
number of targets. Figure 4a demonstrates a slight decreas-
ing trend in the maximum non-deceptive lambda value lead-
ing to the observed λlearnt, perhaps reflecting that, up to a
certain point, a wider spread of targets makes it easier to ac-
curately infer the true λ value of a partially rational attacker.
The player utility graphs, Figures 4b and 4c, simply show that
the potential gain for the defender, and loss for the deceptive
attacker, does not vary notably w.r.t. the number of targets.

Lastly, Figures 6 through 9 are for 30-target games, and
each corresponds to a previously discussed 20-target figure.
It is readily apparent that the same trends exist in both cases.

(a) Lambda Range (b) Attacker Util

(c) Defender Util

Figure 4: Evaluation Varying Number of Targets

(a) Vary % of dec. attacks (b) Vary λtrue

Figure 5: Lambda Range Evaluation with 20 Targets

(a) Vary % of dec. attacks (b) Vary λtrue

Figure 6: Lambda Range Evaluation with 30 Targets

Experimental Details
System specification
All experiments were run on the same HPC cluster, on in-
stances using dual E5-2690v4 processors (28 cores). Each
process was allocated 16000 megabytes of RAM. Instances
run Red Hat Enterprise Linux Server, version 7.8. The Mat-
lab version used was R2018b.

Hyperparameter listing
All experiments used the L-Infinity norm with a value of 2 as
a rejection threshold for non-deceptive attack samples. Es-

(a) Vary % of dec. attacks (b) Vary λtrue

Figure 7: Defender Utility Evaluation with 30 Targets

(a) Vary % of dec. attacks (b) Vary λtrue

Figure 8: Attacker Utility Evaluation with 30 Targets

(a) Binary Search Runtime (b) Minimax Runtime

Figure 9: Runtime Evaluation with 30 Targets

sentially, this is done to prevent outlying samples from com-
promising the binary search. Values between .5 and 5 for this
metric were tested, along with the same value ranges for the
L1 and L2 norms. The L-Infinity norm with a value of 2 was
shown to produce the best results, without drastically increas-
ing the runtime of the algorithm.

Additionally, all experiments used a value of 0.05 as a tol-
erance multiplier within the binary search itself. This pre-
vents the inherent inaccuracy of discrete attack samples from
ruining binary search, which typically requires exact compar-
isons. For the sake of consistency, an initial random number
generation seed of 1 was used across all experiments. After
defender strategy generation and solving the initial deceptive
attacker calculation (DecAlter), the binary search is run 10
times, each with a different random seed. The superset of all
the resulting ranges forms our final uncertainty set for λtrue.

The trials shown in Figures 5a, 2a, 2c, 3, 6a, 7a, 8a, and
9 were conducted using a true lambda value of 0.4 and a re-
source/target ratio of 0.2. Those in Figures 5b, 2b, 2d, 6b,
7b, and 8b utilized a deceptive attack percentage of 0.3, and
a resource/target ratio of 0.2. Experiments in Figures 3 and 4

use deceptive attack percentage of 0.1, a true lambda value of
0.4, and a resource/target ratio of 0.2.

	Introduction
	Related Work
	Preliminaries
	Stackelberg Security Games (SSGs)
	Partial Behavior Deception Model
	Cognitive Hierarchy Approach

	Finding Non-Deceptive Attacker Behavior
	Characterizing Deceptive Attacker's Behavior
	RaBiS: Characterizing Behavior of Non-Deceptive Attacker
	Principled Approach for Low-Data Challenge

	Maximin to Optimize Defender Utility
	Experiments
	Conclusion
	Proof of Theorem 1
	Proof of Corollary 1
	Proof of Corollary 2
	Proof of Corollary 3
	Proof of Lemma 1
	Proof of Lemma 2

