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Abstract—We present a numerical framework for modeling
the temporal evolution of ground deformation caused by a
subsurface, pressurized magma reservoir situated within a
viscoelastic medium. The host rock surrounding an oblate,
ellipsoidal magma reservoir behaves as a Maxwell material.
Temporal evolution due to the viscous effects are encoded as
source terms on the static equilibrium equations; the coupled
system is solved via high-order FEM and explicit time-stepping.
We derive numerically stable time steps and verify convergence
at the theoretical rate. For an applied, sinusoidal pressure at
the reservoir boundary, the model is shown to reproduce the
theoretical relationship between stress and strain for Maxwell
materials.

I. Introduction and Literature Review
Understanding the temporal frequency of volcanic erup-

tions is a long-standing and important scientific problem.
As magma is transported from the Earth’s mantle into the
upper crust, magmatic reservoirs are coupled to surround-
ing deformations the dynamics of which influence volcanic
unrest. In the vicinity of a long-lived magma reservoir,
extreme temperature profiles may heat the surrounding
host rock sufficiently so that the rock may no longer
have a purely elastic response. Various models have been
proposed for simulating magma reservoir behavior; many
of these models focus on answering two key questions:

1) Given a deformation profile at the Earth’s surface,
can we determine the geometry, depth, and pressure
of the associated magma reservoir?

2) What are the conditions that cause a subsurface
magma reservoir to erupt?

Early models assume a perfectly-elastic rheology of the
host rock [1][2]. These elastic models have been widely
used to interpret geodetic data gathered from various
volcanic sites [1] [2][3]. However, [3] observed that in order
to reproduce the observed uplift measured at Pozzuoli, an
unreasonable overpressure was required at the reservoir
boundary. In the formation of a magma reservoir, if
the timescale over which the chamber evolves due to

mass injection is lower than the heat diffusion timescale,
a ductile region surrounding the reservoir may evolve
as crustal material is heated beyond the brittle-ductile
transition temperature [4].

More recent models assume that the host rock
behaves viscoelastically [5][6][7][8]. These models allow
for a viscous component in the medium. Though
initially constrained by constant coefficient viscosity,
the development of a model using a viscoelastic shell
around the reservoir allowed for simulation of a ductile
region situated within a perfectly-elastic crust [9]. In
[5], it was found that when viscosity was allowed to
vary as a function of space (dependent on a background
temperature profile), that the viscoelastic model could
reproduce the same displacements as the elastic model but
with more reasonable overpressures along the reservoir
boundary. However, these overpressures still seemed to
be fairly large and unreasonable [5].

Though the viscoelastic model seems to be a better
choice for modeling ground deformations, it might not
be much better at predicting eruptions. A condition
for the onset of an eruption is that the reservoir walls
fail. This failure indicates the initiation of a dike to
transport magma throughout the host rock and possibly
to the surface. The magma overpressure that the walls
of a chamber can sustain before failing depend on the
rheology of the host rock[7]. In fact, for brittle failure, the
overpressure at failure onset is independent of the host
rock viscosity [10]. Thus, it may be important to consider
the effect that the temperature profile surrounding a
magma reservoir has on the elastic material parameters
of the medium. Young’s modulus plays an important role
in the speed at which a dyke can propagate as well as the
dyke’s thickness [11]. Ultimately this means that the rate
at which magma can be transported out of the reservoir
is dependent on Young’s modulus within the host rock.
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In this paper, we present a robust numerical framework
for simulating the thermo-mechanical behavior of a
subsurface magma reservoir in an isotropic, heterogeneous,
viscoelastic space. Our model uses spatially dependent
material properties derived from a steady temperature
distribution within the medium. Both viscous and elastic
material parameters are considered to be affected by
temperature. After detailing the numerical framework we
verify accuracy using a manufactured solution. Finally we
use our framework to characterize the system’s response
to non-constant, viscoelastic material properties.

II. Problem Formulation
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Fig. 1: The region outside a subsurface, ellipsoidal magma
reservoir. The reservoir has a horizontal axis a > 0 and vertical
axis b > 0. The distance from the top of the reservoir to the
surface is D > 0. The region is bounded by a maximal depth
Lz and maximal distance from the radial center Lr.

A. Description
We simulate a subsurface magma reservoir in an

isotropic, viscoelastic half-space. The reservoir is assumed
to evolve in time as a steady supply of molten material is

provided from within the Earth’s mantle. There are two
primary interactions to consider:

• As mass is injected into the reservoir, how does the
the pressure along the reservoir boundary evolve?

• Given a pressure along the reservoir wall, how does
the surrounding crust of the Earth deform?

Our approach is to consider two systems, one internal
to the cavity and the other external, which are coupled
along the reservoir boundary interface. In developing our
framework, we focus on the external system dynamics
while drawing insight from the internal system.

B. Internal System
With regards to the reservoir, let Vc, Pc, ρc, Tc denote

volume, pressure, density, and temperature, respectively.
We consider the reservoir to be a spatially-uniform system
which is governed by the mass balance

ρc
dVc

dt
+ Vc

dρc
dt

= Ṁin − Ṁout, (1)

and Ṁin, Ṁout denote the mass flow rates in and out of
the system. Density is determined by a linear equation of
state

ρc = ρ0(1 +
Pc

κ
) (2)

where ρ0 is a reference density and κ is a constant
bulk compressibility. This allows us to make explicit the
dependence of Equation 1 on pressure

ρc
dVc

dt
+

ρ0Vc

κ

dPc

dt
= Ṁin − Ṁout. (3)

We supplement Eq. Equation 3 with an initial pressure
and reservoir volume

Pc(t = 0) = P0, (4a)
Vc(t = 0) = V0. (4b)

Solutions to Equation 3 dictate the appropriate pressure
data to impose at the reservoir boundary so long as
the rate of change for volume is known. Computing an
approximation to the change in the reservoir volume
requires knowledge about the displacement field in the
external system.

C. External System
1) Domain Geometry: We employ a cylindrical

coordinate system (r, z, θ) with an origin at the cavity’s
center. As shown in Fig. Figure 1, the cavity is assumed to
be ellipsoidal with horizontal axis a > 0 and vertical axis
b > 0 with its center at depth D + b. Maximum depth of
the domain is denoted by Lz and the maximum distance
from the center of radial symmetry is denoted by Lr.
We reduce the problem by an axisymmetric assumption
to avoid the computational cost of 3-D problems. This
assumption of axisymmetry means the problem shows no
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variation along the θ−coordinate enabling solutions in
the (r, z)−plane.

We construct the region outside of the cavity by
intersecting a closed, rectangular region D = {(r, z) ∈
R2 | 0 ≤ r ≤ Lr, −Lz ≤ z ≤ D + b} and a punctured
domain B = {(r, z) ∈ R2 | r2

a2 + z2

b2 ≥ 1}. The region Ω
outside of the cavity is defined by

Ω = D ∩ B.

2) Governing Equations: For computational efficiency,
we employ a quasi-dynamic model for elastodynamics. Our
particular approach assumes the medium is a Maxwell
material and, at each point in time, uses a Maxwell
aging law to determine sourcing data for the equations
of static equilibrium. Let u, ε,γ,σ be, respectively, the
displacement vector, the total strain tensor, the viscous
strain tensor, and the stress tensor. Displacements in the
Earth are related to strains by

ε(u) = εij(u) =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
(5)

for i, j ∈ {r, z, θ}. The relevant governing equations are:

divσ = f, (6a)
γ̇ = Aσ, (6b)
σ = E(ε− γ), (6c)

where E is the 4th-order elastic stiffness tensor defined
for any rank-2 tensor ϕ as

Eϕ = 2µϕij + λϕkkδij , (7)

with Lamé parameters µ and λ while A is the 4th-order
viscous compliance tensor defined by

Aϕ =
1

2η
(ϕij −

1

3
ϕkkδij), (8)

for viscosity η. Equation 6a is static equilibrium. Equa-
tion 6b is the aging law for a Maxwell material and
Equation 6c is Hooke’s Law. Boundary conditions are
imposed by partitioning the boundary ∂Ω of Ω. We let
Γkinematic ⊆ ∂Ω and Γtraction = ∂Ω\Γkinematic, and impose

u = g on Γkinematic, (9a)
σn = −P on Γtraction, (9b)

where n is the outward unit normal to the domain Ω. In
addition to boundary conditions, we must also supplement
the aging law Equation 6b with initial condition

γ(r, z, t = 0) = γ
0
(r, z). (10)

III. Numerical Methods
Here we provide the numerical components which

make up our framework. We pair a finite difference
discretization in time with a finite element method in
space. At each time step, the spatial problem is governed

by static equilibrium with a time-dependent source
term. This source term is determined by our Maxwell
aging law Equation 6b and accounts for viscous effects
within the system. Simulations are done using Python
code developed on top of the free and open source
multi-physics library NGSolve1 [12][13][14]. This section
outlines the static problem, the temporal discretization,
and provides a re-scaling of the problem.

A. Static solve
We solve the equilibrium equations Equation 6a subject

to boundary conditions Equation 9a, Equation 9b using
a finite element method. To properly detail the method
we discuss an integration by parts which arises when
deriving the weak form of the problem. For the remainder
of this paper, we adopt the notation

(
φ,ψ

)
r

to denote the
integral over Ω of rφ·ψ when φ and ψ are vector functions.
When φ,ψ are matrix functions we take the notation(
φ,ψ

)
r

to denote the integral over Ω of rφ : ψ. The
inner product of vector functions utilizes the dot product,
denoted by “·”, while the inner product of matrix functions
uses the Frobenius inner-product, which we denote “:”. To
convey the details of our method we consider a rank 2
tensor τ expressed with respect to our (r, z)−coordinates.
For such a τ , we may express the cylindrical divergence
operator by

div τ = ∇ · τ +
1

r

[
τrr − τθθ

τrz

]
, (11)

where ∇ · τ denotes the usual Cartesian divergence of τ .
We proceed by considering a test function φ and, in the
usual fashion, multiply Equation 11 by φ and integrate
over Ω to get

(
div τ ,φ

)
r
=

〈
τ ,φ

〉
r
−
(
τθθ, φr

)
−
(
τ , gradφ

)
r
. (12)

Furthermore, if τ can be written as the product of the
elastic tensor E and some tensor τ̂ , then

τij = 2µτ̂ij + λTr(τ̂ )δij , (13)

and

(
div τ ,φ

)
r
=

〈
τ ,φ

〉
r
−
(
τ , ε(φ)

)
r
. (14)

Now, for any domain T ⊂ R2, we will denote by Pp(T )
the space of binomials of degree at most p in R2, restricted
to T . Given a triangulation of Ω, denoted by Ωh, the
Lagrange finite element space of order p consists of those
functions which are continuous on Ω whose restriction to
each element of Ωh is a polynomial of degree p. We denote
the Lagrange finite element space of order p by

Vh,p = {v ∈ C0(Ω): v|K ∈ Pp(K), for all K ∈ Ωh}. (15)

1Source code available at https://bitbucket.org/jayggg/magmax-
isym/src/master/

https://bitbucket.org/jayggg/magmaxisym/src/master/
https://bitbucket.org/jayggg/magmaxisym/src/master/
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Solutions to the static problem will be approximate
displacements consisting of an r and z component and thus
we construct a compound space where each component is
an element of Vh,p, namely,

V h,p = Vh,p × Vh,p. (16)

We seek an approximate uh ∈ V h,p such that(
Eε(uh), ε(v)

)
r
=−

(
f,v

)
r
+
(
Eγ(uh), ε(v)

)
r

(17)
+
〈
E(ε(uh)− γ(uh)),v

〉
r

for every v ∈ V h,p.

B. Temporal discretization
Rather than explicitly solving Equation 6b we instead

consider C = Eγ and make the appropriate substitution
in the governing equations. By multiplying Equation 6b
by E we get a modified aging law

Ċ =
µ

η
devσ. (18)

Time integration is carried out using the first-order
accurate forward Euler method. At each time step, we
solve the static system governed by Equation 6a and use
the computed displacement to approximate C at the next
time step. The procedure to integrate from time step tn

to time step tn+1 over step size ∆t is as follows:

1) Set boundary conditions

un
h = g on Γkinematic, (19)

σn
hn = −P on Γtraction, (20)

2) solve the static problem by finding un
h such that

variational form Equation 17 is satisfied for every
test function vh ∈ V h,p.

3) Use un
h to update C by

Cn+1 = Cn +∆tEA
(
Eε(un

h)−C
n
)

(21)

C. Non-dimensionalization
In practice, the scales present in the system could

introduce large round-off errors as well as an unreasonable
computational burden. To mitigate these drawbacks, we
eliminate broad ranges in the system’s length and time
scale via a non-dimensionalization. We begin by handling
the scaling of the domain before addressing governing
equations. Let r = ar̃, z = az̃ and σ = P0σ̃. D̃ =
{(r̃, z̃) ∈ R2 | 0 ≤ r̃ ≤ Lr

a ,−Lz

a ≤ z̃ ≤ D+b
a } and

B̃ = {(r̃, z̃) ∈ R2 | r̃2 + a2

b2 z̃ ≥ 1} then our resulting
scaled domain is given by

Ω̃ = D̃ ∩ B̃. (22)

Due to our choice to scale both spatial coordinates by
the same characteristic scale a and linearity of differential

operators, we get the scaled form of the equilibrium
equations Equation 6a is

div σ̃ =
a

P0
f, (23)

and Hooke’s law Equation 6c becomes

σ̃ =
1

P0
E(ε− γ). (24)

For scaling the aging law we consider a time scale t = ξt̃
as well as the scaling C = P0C̃ and scale our modified
aging law Equation 18 to become

∂t̃C̃ =
ξµ

η
dev σ̃. (25)

D. Stability
Owing to the use of an explicit time-stepping scheme, it

is necessary to establish conditions for which time stepping
is stable. Moreover, it will be useful to characterize this
stability condition in terms of the non-dimensional number
which scales the right-hand-side of Equation 25. As this
non-dimensional quantity is related to the well-known
Deborah number, De, we will denoted it by

ξµ

η
=

1

De
= De−1. (26)

To carry out this analysis we will use the relationship

EAϕ =
µ

η
dev ϕ (27)

where ϕ is any second-rank tensor. Further, express the
deviatoric operator as matrix multiplication. That is, let

D =



2

3
−1

3
−1

3
0

−1

3

2

3
−1

3
0

−1

3
−1

3

2

3
0

0 0 0 1


(28)

so that Equation 27 can be written as

EAϕ =
µ

η
Dϕ. (29)

Now consider the forward Euler discretiziation of the aging
law, Equation 25, expressing the evolution from time tn

to time tn+1

C̃
n+1

= (I −∆tDe−1D)C̃
n
+∆tDe−1DEεn. (30)

Stability of the time stepping scheme is then dependent on
the eigenvalues of the growth-factor matrix I−∆tDe−1D
and whether we can bound its spectral radius using an
appropriate choice for ∆t. Eigenvalues for the growth-
factor matrix are

λ1 = 1, (31a)

λ2 = 1− 2

3
∆tDe−1, (31b)

λ3 = 1−∆tDe−1, (31c)
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where λ3 appears as a repeated eigenvalue. The choice of
∆t will only influence λ2, and λ3. From Equation 31b the
condition on ∆t is that ∆t < 3De but Equation 31c gives
the condition ∆t < 2De. Thus for the sake of stability,
the time step ∆t should be smaller than 2De.

Additionally, the time step must be sufficiently small to
resolve contributions from time-dependent boundary data.
Let δt be the largest time step resolving time-dependent
data on each of the domain boundaries. A sufficient time
step is then chosen by

∆t < min{2De, δt}. (32)

E. Verification
We verify accuracy of our numerical method using

the method of manufactured solutions [15]. This verifi-
cation technique lets us choose arbitrary solution fields
u∗(r, z, t), C∗(r, z, t) to act as exact solutions necessary
for measuring convergence. u∗ and C∗ need not satisfy the
governing equations or boundary conditions. We treat this
issue by appending corrective terms to those conditions
which the manufactured solutions do not satisfy. This
process is shown in detail later in this section. We base
our manufactured solution off of the well known solution
to the pressurize magma cavity problem in an elastic half-
space [16] given by

ue =
P0a

3

4µ(r2 + z2)3/2

[
r
z

]
. (33)

Define the manufactured solutions u∗, C∗ by

u∗(r, z, t) = (2− e−t)ue, (34)
C∗(r, z, t) = (1− e−t)Eε(ue). (35)

This choice of u∗ and C∗ satisfies the equilibrium
equations but not the aging law. The discrepancy caused
by a manufactured solution which does not satisfy the
aging law is accounted for by appending a corrective term
and solving

Ċ = EAσ +G (36)

where G is determined from the manufactured solutions
to be

G = e−tσ∗ − µ

η
dev σ∗. (37)

σ∗ is regarded as the manufactured stress and can be
obtained by computing

σ∗ = Eε(ue). (38)

Figure 2 shows the rate of convergence in the measured
spatial error over successive mesh refinements when poly-
nomials of degree 3 are used as a basis for the finite element
space. This agrees with FEM theory which predicts a
convergence rate of p + 1 when polynomials of degree p
are used and error is measured with respect to the L2

norm [17]. The same convergence pattern is observed for

h ‖c− ch‖ c-rate ‖u− uh‖ u-rate
h/2 5.25× 10−9 1.84× 10−8

h/4 7.17× 10−10 2.87 1.31× 10−9 3.81
h/8 9.13× 10−11 2.97 8.41× 10−11 3.96
h/16 1.14× 10−11 3.00 5.24× 10−12 4.00

Fig. 2: Spatial convergence data, measured with respect to
the L2-norm, for a single time step of ∆t = 10e−7 using
polynomials of degree 3.

∆t ‖c− ch‖ c-rate ‖u− uh‖ u-rate

∆t/2 1.75× 10−1 1.18× 10−6

∆t/4 8.85× 10−2 0.99 5.96× 10−7 0.99

∆t/8 4.46× 10−2 0.99 3.01× 10−7 0.99

Fig. 3: Temporal convergence data measured at point (Ã, 0)
under the discrete `2-norm.

polynomials with degree greater than 3 but the L2-error
drops below machine precision leading to round-off error
in the rate computation.

To measure convergence in the temporal domain we
select a single point in space and perform successive mesh
refinements in time. Figure 3 shows that both C and
u exhibit rate-1 convergence. Considering the first-order
accurate forward Euler method is used to approximate C
this verifies proper accuracy is attained in computing C.

F. Phase lag analysis
To discern the quality of our method, we survey

some expected patterns concerning the link between the
viscosity of the regime and the phase lag phenomenon
that results between stress and strain. The expectation is
that the viscous component of strain will put stress and
strain out of phase. (It should be the case that stress and
elastic strain are in phase, so only viscous components will
contribute to phase lag.) Although our problem considers
a tensor form of Hooke’s law, we have also assumed in
our simulations an isotropic homogeneous material with
(in particular) constant viscosity. As such, it suffices to
consider the Maxwell model in one dimension. In this case,
the stress σ and strain ε are related by the constitutive
law

ε̇ =
1

µ
σ̇ +

1

η
σ (39)

which we transform into Fourier space by making the
ansatz

ε(t) = eiωtε̂(ω); σ(t) = eiωtσ̂(ω)

after which substituting into the 1D constitutive law yields

ε̇(t) = iωeiωtε̂(ω) =

(
1

µ
iω +

1

η

)
eiωtσ̂(ω). (40)

Dividing the above by iωeiωt yields

ε̂(ω) = µ̂(ω)σ̂(ω) (41)
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or more usefully,

σ̂(ω) =
1

µ̂(ω)
ε̂(ω) =: γ̂(ω)ε̂(ω) (42)

The storage and loss moduli, µ̂1, µ̂2, are determined to be

µ̂1 =
η2ω2µ

η2ω2 + µ2
(43)

µ̂2 =
ηωµ2

η2ω2 + µ2
. (44)

We compute real and imaginary parts of γ̂ as

γ̂1 =
µ̂1

|µ̂|2
; γ̂2 = − µ̂2

|µ̂|2
. (45)

In our simulations, we impose a sinusoidal stress σ(t) =
sin(ωt) on the boundary. We will arrive at a result
for phase lag measurement independent of amplitude on
this stress. We mirror integral manipulations done to
the convolution relationship in [18] equation (1.2.32b) of
chapter 1,

ε(t) = [γ ∗ σ](t).

We find

ε(t) = γ̂2(ω) cosωt+ γ̂1(ω) sinωt (46)

from which we measure phase lag by

tanφ =
γ̂2(ω)

γ̂1(ω)

where we recognize γ̂1 and γ̂2 as analogues to storage and
loss moduli but instead with regards to measuring phase
lag of strain given stress.

Assembling all of the above gives phase lag

φ = arctan
γ̂2
γ̂1

= arctan

(
− µ̂2

µ̂1

)
= − arctan

1

De

De is the Deborah number

De =
ηω

µ

where η is our constant viscosity and µ is Lamé’s first
parameter.

Our numerical computation of phase lag is conducted
by discerning when stress attains a local minimum and
measuring the amount of time it takes for strain to respond
accordingly. In particular, what we measure is the normal
component of traction σn · n compared to its analogous
normal counterpart in strain εn · n at a specific point on
the chamber wall. Which point is immaterial, so long as
the computation is conducted on the chamber wall, where
expected traction is known precisely.

IV. Conclusion
A rigorous framework is presented to investigate the

evolution of crustal displacements due to a pressurized,
subsurface magma reservoir. We derive conditions on
the time step, which guarantees stability of the aging
law, and show that the numerical solution converges to
the exact solution at the theoretical rate of convergence.
Additionally, the model is shown to reproduce a

Fig. 4: Comparison of the phase lag between stress and strain.
The expected curve represents the theoretical phase lag and
the computed curve represents the phase lag observed from
numerical results.

characteristic phase lag, between applied stress and
resulting strain, which is intrinsic to viscoelastic systems.

This Directed Research Project(DRP) is part of an
ongoing collaboration effort to construct a rigorous,
transparent, and accessible model for volcano rupture
dynamics. Presently, we are working on extending
the framework proposed in this DRP to account for
temperature-dependent rheological parameters. This
extension is motivated by the influence that the thermal
state of the Earth’s crust has on the temporal evolution
of the deformation field [5].

The current model relies on user-supplemented bound-
ary conditions, however, knowing the correct conditions
to impose is a difficult task. For this reason, expanding
the current framework to infer pressure conditions from
solving a mass balance internal to the reservoir could allow
for more realistic pressures along the reservoir boundary.

References

[1] M. Kiyoo, “Relations between the eruptions of various volcanoes
and the deformations of the ground surfaces around them,”
Earthq Res Inst, vol. 36, pp. 99–134, 1958.

[2] D. McTigue, “Elastic stress and deformation near a finite
spherical magma body: resolution of the point source paradox,”
Journal of Geophysical Research: Solid Earth, vol. 92, no. B12,
pp. 12 931–12 940, 1987.

[3] G. Berrino, G. Corrado, G. Luongo, and B. Toro, “Ground de-
formation and gravity changes accompanying the 1982 pozzuoli
uplift,” Bulletin volcanologique, vol. 47, no. 2, pp. 187–200,
1984.

[4] L. Karlstrom, J. Dufek, and M. Manga, “Magma chamber
stability in arc and continental crust,” Journal of Volcanology
and Geothermal Research, vol. 190, no. 3-4, pp. 249–270, 2010.

[5] C. Del Negro, G. Currenti, and D. Scandura, “Temperature-
dependent viscoelastic modeling of ground deformation: Appli-
cation to etna volcano during the 1993–1997 inflation period,”
Physics of the Earth and Planetary Interiors, vol. 172, no. 3-4,
pp. 299–309, 2009.



7

[6] M. Head, J. Hickey, J. Gottsmann, and N. Fournier, “The
influence of viscoelastic crustal rheologies on volcanic ground
deformation: Insights from models of pressure and volume
change,” Journal of Geophysical Research: Solid Earth, vol. 124,
no. 8, pp. 8127–8146, 2019.

[7] G. Currenti and C. A. Williams, “Numerical modeling of defor-
mation and stress fields around a magma chamber: Constraints
on failure conditions and rheology,” Physics of the Earth and
Planetary Interiors, vol. 226, pp. 14–27, 2014.

[8] P. Segall, “Repressurization following eruption from a magma
chamber with a viscoelastic aureole,” Journal of Geophysical
Research: Solid Earth, vol. 121, no. 12, pp. 8501–8522, 2016.

[9] M. Bonafede, M. Dragoni, and F. Quareni, “Displacement and
stress fields produced by a centre of dilation and by a pressure
source in a viscoelastic half-space: application to the study of
ground deformation and seismic activity at campi flegrei, italy,”
Geophysical Journal International, vol. 87, no. 2, pp. 455–485,
1986.

[10] Y. Zhan and P. Gregg, “How accurately can we model magma
reservoir failure with uncertainties in host rock rheology?”
Journal of Geophysical Research: Solid Earth, vol. 124, no. 8,
pp. 8030–8042, 2019.

[11] R. R. Bakker, M. Frehner, and M. Lupi, “How temperature-
dependent elasticity alters host rock/magmatic reservoir mod-
els: A case study on the effects of ice-cap unloading on shallow
volcanic systems,” Earth and Planetary Science Letters, vol.
456, pp. 16–25, 2016.

[12] J. Schöberl, “Netgen an advancing front 2d/3d-mesh genera-
tor based on abstract rules,” Computing and visualization in
science, vol. 1, no. 1, pp. 41–52, 1997.

[13] J. Schöberl et al., “Netgen/ngsolve,” 2017.
[14] J. Schöberl, “C++ 11 implementation of finite elements in ng-

solve,” Institute for Analysis and Scientific Computing, Vienna
University of Technology, vol. 30, 2014.

[15] P. J. Roache, Verification and validation in computational
science and engineering. Hermosa Albuquerque, NM, 1998,
vol. 895.

[16] P. Segall, Earthquake and volcano deformation. Princeton
University Press, 2010.

[17] S. Larsson and V. Thomée, Partial differential equations with
numerical methods. Springer Science & Business Media, 2008,
vol. 45.

[18] J. Golden and G. Graham, Boundary Value Problems in Linear
Viscoelasticity. Springer-Verlag, 1988. [Online]. Available:
https://books.google.com/books?id=zQ2oAAAAIAAJ

[19] K. L. Allison and E. M. Dunham, “Earthquake cycle simula-
tions with rate-and-state friction and power-law viscoelasticity,”
Tectonophysics, vol. 733, pp. 232–256, 2018.

https://books.google.com/books?id=zQ2oAAAAIAAJ

	Introduction and Literature Review
	Problem Formulation
	Description
	Internal System
	External System
	Domain Geometry
	Governing Equations


	Numerical Methods
	Static solve
	Temporal discretization
	Non-dimensionalization
	Stability
	Verification
	Phase lag analysis

	Conclusion
	References

