
Identifying Strongly Connected Components on
Distributed Networks

DRP Report

Sudharshan Srinivasan
University of Oregon, Eugene, OR, USA

ssriniv2@cs.uoregon.edu

Abstract—Strongly connected components (SCC) are
an essential property for understanding the structure of
directed networks. Given that many real-world networks
are significant, it is often computationally efficient to
partition the network over many distributed systems and
solve for SCC simultaneously over the partitioned network.
In this paper, we present an algorithm for identifying
SCC on distributed systems. Our algorithm comprises
of three phases. In the first phase, we locally perform
SCC over all partitions while in the second phase, we
update the partial results across the partitions in a reduced
graph form. Lastly, we reapply SCC over the reduced
graph at all partitions. The computations within individual
partitions are highly scalable using both shared-memory
CPU and GPU threads. Due to its distributed nature, our
algorithm allows for analysis of much larger networks than
is previously possible. Comparisons with state-of-the-art
baseline approaches are made to analyze the algorithm.
Our results show performance speedups up to 3.1x and
memory reductions up to 2.6x with respect to serial
implementations.

Index Terms—strongly connected components, dis-
tributed memory, GPU threading

I. INTRODUCTION

Detecting Strongly Connected Components SCCs in
a large directed graph is a fundamental graph analytics
problem. A strongly Connected component can be de-
fined as a subset of vertices in a directed graph where
there is a path from any vertex to every other vertex in
that subset. A single graph can have many SCCs, but
vertices are mutually exclusive to these SCCs. Detecting
SCCs has many advantages such as pattern matching [1],
topological sort [2] and graph analytics [3]. The general
idea for detecting SCCs is to perform a DFS (Depth-
First- Search) on a directed graph. The traditional ap-
proach of using DFS works well for sequential networks.
However, performing a DFS is expensive, and it is tough
to compute DFS in parallel [4].

In order to overcome the challenges of parallelizing
DFS on static networks, FW-BW (Forward-backward)
approach was proposed [5]. To further improve the
performance, trim techniques which fast reduce the large
number of trivial SCCs (e.g., with one or two vertices,
called trim-1 and trim-2, respectively) are introduced by

[6]. To the best of our knowledge, there have only been
one attempts to detect SCC on distributed networks [7].
For the most part, the state-of-the-art parallel approaches
for detecting SCCs are optimized for shared-memory
systems.

In this paper, we introduce a new hybrid algorithm
called DistSYNC to detect SCCs on distributed net-
works. The approach is considered hybrid as it is enabled
with distributed, multithreaded CPU and GPU paral-
lelism. We also introduce a framework that efficiently
implements our approach in a hybrid systems. The rest
of the paper is organized into five sections. In section
II, we introduce all the required background information
and related works. Section III dives into explaining the
DistSYNC algorithm with the help of examples. The
implementation details and experimental evaluations are
covered in sections IV and V respectively. The final
section finishes off with the conclusion and future works.

II. BACKGROUND AND RELATED WORK

Detecting SCC’s in a network is a well-studied prob-
lem. This section of the paper discusses all the related
work on detecting SCC’s in the large-scale network. We
utilize some of the concepts in our approach, so this
section also provides prerequisite background informa-
tion. We have categorized the SCC implementations into
the following categories: Sequential, Shared Memory,
Distributed, and GPU implementations.

A. Sequential SCC

Tarjan’s [8] implementation is the well-known se-
quential algorithm for detecting SCC. Both approaches
use DFS (Depth First Search), and the complexity is
O(V+E), where V is the number of vertices and E is the
number of Edges. There are many attempts to parallelize
Tarjan’s approach; however, all of them demonstrate
poor scalability.

The Forward-Backward (FW-BW) algorithm uses a
recursive approach, and the algorithm can be described
as follows: Let V be the set of the vertices in the graph
G(V, E), O(V) be set of all outgoing edges in the graph,

and I(V) set of all incoming edges. Now for a given
graph G(V,O(V)), a random pivot vertex u is selected,
and then a BFS is performed on G(V, O(V)) from a
pivot vertex u to detect vertices that can reach from u
and that set is called D. Next, another BFS is performed
on G(V, (V)) from the pivot vertex u and a backward
search is done where those vertices that can reach u are
selected and are inserted to P. The intersection of two sets
D and P forms SCC which has the pivot element. Now
from the original graph, the vertices identified in SCC are
removed, and the FW-BW approach is recursively called
on the remaining sets and the disjoint sets obtained after
removing the vertices part of SCC from D and P. In the
best-case scenario, it takes O(n log n) to detect SCC.
This approach was further improvised to remove those
vertices which have zero in-degree and out-degree; this
step is called trimming. By trimming these vertices, we
can reduce the number of vertices in FW-BW sets and
speed up the overall performance. The coloring approach
is also similar to FW-BW with some modifications.
Instead of just using one pivot, it uses multiple pivots.

B. Shared Memory SCC
Ji et al. [7] proposed a novel synchronization

paradigm called Rsync to spanning tree-based detecting
of SCC. The R-Sync approaches provide many benefits,
such as early termination for conventional bottom-up
traversal. The early termination allows them to check
only a few neighbors and reduces the traversal compared
to the conventional synchronization approach.

Hong et al. [6] identified the potential limitation of the
FW-BW-Trim approach on large real-world networks.
They proposed an extension of the FW-BW approach,
which considers the characteristics of the dataset in-
stances, such as the small-world property. Their imple-
mentation was the first attempt to develop a parallel
algorithm to detect SCC and outperform the sequential
Tarjan [8] implementation. Based on the small-world
property, they have identified that wiring a few edges
in the diameter of a real-world graph can shrink its size.
Their main idea is to expand trimming operation and
decomposing after the initial SCC is found based on
partitioning on weakly connected components.

Slota et al. [9] proposed a shared memory multistep
approach that uses a parallel BFS and graph coloring.
They have used variants of FW-BW and applied Orzan’s
coloring method. In order to minimize synchronization,
they avoid using locks. Their experiments on real-world
graphs show better scalability on low-diameter networks.
We use this approach to perform multi-threaded SCC
within distributed processes.

C. GPU Implementation
Li et al. [10] proposed a GPU implementation of

detecting SCC using the FB-BW-Trim algorithm. They

present a hybrid method that allows the adoption of
different parallelism strategies for various graph prop-
erties. Barnet et al. were the first to implement the
FB-Trim algorithm using CUDA. Stuhl [11] extended
the work by introducing an extended graph traversal
implementations. Sthul ran experiments on the synthetic
network demonstrated good performance on synthetic
networks and, when running on real-world networks,
except for one. The reason for poor scalability was
due to the nature of the real-world graphs and skewed
component sizes. The emphLi et al. implementation [10]
has a hybrid method that detects SCC in phases, wherein
phase-1, the algorithm is only focussed on detecting a
single large SCC, and in the second phase, the remaining
small-sized subgraphs are processed. It is shown that
identifying the small-sized SCC’s takes more time than
identifying the single large SCC.

III. METHODOLOGY

In this section, we will first explore the terms and
notations that will be used throughout the rest of the
paper. Then we will explain the DistSYNC algorithm
with the help of an example workflow for a small graph.
We will lastly look into the algorithmic complexities
involved.

A. Terms and notations

Terms used across this paper are :
1) Original Graphs and subgraphs: Original graphs

G(V, E), where V and E represent the vertices and
edges, are the full-sized input directed graphs before
partitioning them and allocating them to different pro-
cesses. After partitioning, each process holds a subset
of the original graph G, which we refer to as subgraphs
G′(V′, E′). If an edge goes across partitions, they are
allocated to both partitions by creating a ghost vertex for
the vertex that doesn’t belong to that partition. Usage of
term vertex A is used to reference a vertex with label A.
Vertex labels are numeric. Likewise, the term {X, Y} is
used to represent an edge between the vertices X and Y.

2) Local, external and global SCCs: SCCs are
strongly connected components. We sometimes refer to
them as just components. The term SCC A represents
an SCC with the ID A. On the other hand, the term
SCC(x) refers to the SCC ID to which vertex x belongs.
Computing SCCs or performing SCCs refer to the act
of finding the components and are not to be confused
with SCC(x) or SCC A. We use the prefix local, external
and global to mention the scope of the SCC ID across
processes. Local SCC IDs are labels given to components
within a process after computing SCC on the subgraph
G’. Local IDs are unique within a process but not across
processes. All local SCC IDs have a counterpart external
ID which are labeled unique across processes. The

2

processes can reference the local IDs of other processes
using its equivalent external ID and not have a clash
in label with its own external ID. Lastly, global SCC
IDs are labels given to components generated on the
original graph G, which is the final output of DistSYNC.
To clarify, external IDs aren’t the same as global IDs
and not the final answer. Across processes, a single
vertex can have many external IDs, each unique to that
specific process, but a vertex can only have one global
ID regardless of which process looks at it.

3) Partial and complete meta-graphs: Meta-graphs
G′′(MN,ME) are abstractions on top of existing graphs
where the vertices, which is referred to as meta-
nodes(MN), are external SCC IDs. The edges of the
meta-graph, which is referred to as meta-edges(ME), are
directed edges that connect two meta-nodes. The meta-
graphs are much smaller than the original graph as many
vertices belonging to an SCC can be represented using
just a single label(external SCC ID/meta-node). Partial
meta-graphs are locally created at each process using
only the view of its own subgraph G’. Complete meta-
graphs are globally created and shared by all processes.
They are created by overlapping all partial meta-graphs.
This overlapping happens because a single ghost vertex
can exist in multiple processes and can belong to SCCs
with different external IDs.

B. DistSYNC

This subsection will explain the workings of the
DistSYNC algorithm and how it achieves reduced com-
putation and space utilization. DistSync is a three-phase
algorithm that identifies local SCC components and
creates partial meta-graphs at each process on phase one,
followed by a communication phase where the partial
meta-graphs are exchanged across all processes. Lastly,
we enter a recomputation phase that builds a complete
meta-graph and recomputes SCC on the meta-graph to
identify all the global components.

The motivation behind this algorithm stems from two
lemmas on the structural property of graphs and strongly
connected components.

Theorem

Lemma 1. Given two SCCs A and B, if there is a
forward edge between any vertex in SCC A to a vertex
in SCC B, we could say there is a forward path between
all vertices in SCC A to all vertices in SCC B.

In Figure 1, there are two SCCs with labels A and B.
Each SCC has three vertices, each labeled 1 through 6.
We can see that there is a forward edge between vertex 1
and 2 in SCC A to vertex 4 and 5 in SCC B. Since there
is a forward path between all vertices within an SCC, we
can say that vertex 1 in SCC A is reachable from vertex
3. Similarly, there is a forward path between vertex 4 and

vertex 6. This added to the fact that there is a forward
path between vertex 1 and 4 means there is a forward
path between vertex 3 and vertex 6 through vertices 1
and 4 even though there is no direct edge between them.

Because of this structural property, maintaining any
other edge that goes across two SCCs is redundant
information when identifying the components. As we
can see on the RHS of Figure 1, all the inter-SCC
connections are replaced with one forward path between
the two SCCs. By doing so, we are able to reduce the
number of inter SCC edges while representing the same
structural information of the graph. This lemma could be
extrapolated to any SCCs that are bigger in size than the
provided example as long as there is one forward path
that connects both the SCCs acting as a one-way bridge
between the SCCs.

Figure 1: Example for lemma 1. The RHS has the same
structural property as LHS with reduced connectivity

Lemma 2. Given two SCCs A and B, if there is a
forward and backward path between them, then the
vertices in both the SCCs could be merged to a single
component.

On the LHS of Figure 2, there are two SCCs with three
vertices, each labeled 1 through 6. We can see that there
is a forward path from vertex 1 to vertex 4 while there is
a backward path to vertex 3 from vertex 6. Once again,
from both the fact that there is a forward path between
any two vertices within the same SCC and there is a
forward and backward path between the two SCCs, we
can say there is a forward path between any two vertices
from both the SCCs and hence all the vertices belong to
the same SCC. This is represented on the right side of
Figure 2.

By applying Lemma 2, we can represent two SCCs
residing in different processes as a single component,
thereby reducing the unique components we need to
represent the same structural information of the graph.
Similar to Lemma 1, this can be extrapolated to any
number of SCCs of any size as long as there is a forward
and backward path between the both of them.

We apply these two lemmas before the communication
phase of the DistSYNC algorithm to create a reduced

3

size meta-graph that retains the same structural informa-
tion required to compute the global SCC of a graph.

Figure 2: Example for lemma 2. The RHS has the same
structural property as LHS but with reduced number of
SCCs

Figure 3 outlines the overall workflow of the three-
phase DistSYNC algorithm. To the left, we have our
input original graph, for which we need to find all the
strongly connected components. First, the input graph
is partitioned N-ways based, where N is the number of
processes. When we say partitioned, we allocate every
vertex in that graph with a partition ID. This partition ID
is directly linked with the process ID. Each process reads
and stores only edges from the graph that has vertices
with the same partition ID. If both the vertices of an edge
have the same partition ID, it represents an intra-process
edge, and only the process with the same process ID
reads that edge.

On the other hand, edges that have vertices allocated
to two different partition IDs represent an inter-process
edge. The processes with the same ID as the source
vertex reads that edge. The destination vertex in that edge
that doesn’t belong to the respective process is marked
as a ghost vertex. By doing so, we can allocate smaller
subgraphs to different processes while all processes put
together still maintain the overall connectivity of the
original graph.

In Figure 3, we can see that each process P1, P2,
and P3 reads only the edges which are allocated to the
partition. For instance, process P1 reads the intra-process
edges {1,2} , {2,3} and {3,1} along with inter-process
edge {2,8} as vertices 1, 2 and 3 belong to partition 1.
Similarly, P2 reads edges {4,5} , {5,6} , {6,4} and {4,1}
while P3 reads {7,8} , {8,9} , {9,1} and {7,5}. Vertices
8, 1, 5 are marked as ghost vertices(yellow) in P1, P2,
and P3, respectively.

With each process owning a unique subgraph, each of
them proceeds to perform the three phases in parallel.
The three phases are executed in sequence from left to
right within a process, as shown in Figure 3.

1) Phase 1 : Initial SCC and partial meta-graph:
During phase 1, each process takes in the allocated
subgraph as input and performs SCC on the subgraph to

allocate a local SCC ID to each vertex in the subgraph. It
is to be noted that this local ID is not the global SCC ID
with respect to the entire original graph but rather just
the partial SCCs with respect to the allocated subgraph.
This is represented in Figure 3 where during phase 1
at P1, vertices 1, 2, 3 are allocated to external SCC
A while vertex 8 is allocated to external SCC B. To
recap from section II, external SCC IDs are another set
IDs given to every local SCC ID that are unique across
processes unlike local SCC ID. The same happens at P2
and P3 with their own allocated subgraph to produce
components C, D, E and F during phase 1.

Algorithm 1 Phase 1

Input: Subgraph G’(V’,E’)
Output: list of meta-edges ME[] and meta-nodes MN[]

1: Perform initial SCC on G’
2: for each edge e{, y} ∈ E′ do
3: if e{SCC(), SCC(y)} /∈ ME then
4: ME[] ← e{SCC(), SCC(y)}
5: MN[] ← SCC()
6: MN[] ← SCC(y)
7: end if
8: end for

After mapping vertices with their respective local SCC
IDs, we move on to creating a partial meta-graph. As
explained in section III-A, a meta-graph is an abstraction
on top of an original graph where the vertices(meta-
nodes) are external SCC IDs and edges(meta-edges) are
connections between any two SCCs. These meta-edges
are created by applying lemma 1 to reduce multiple
edges that connect the vertices from two different SCCs
to one representational meta-edge that connects both the
SCCs. This can be visualized in P1 of Figure 3 where
edge {2,8} is transformed to meta-edge {A,B} after
phase 1. The vertices are contained within the two SCCs
represented as a green circles in Figure 3. The term
partial comes from the fact that each process creates
its own meta-graph only with the view of its allocated
subgraph rather than the original graph.

Algorithm 1 defines the pseudo-code for phase 1. At
line 1, we perform the initial SCC on the subgraph. Line
2 to 8 explains how we create the partial meta-graph.
The partial meta-graph is represented as a list of meta-
edges(ME[]) and meta-nodes(MN[]).

2) Phase 2 : Communication and complete meta-
graph: After each process creates its partial meta-graph,
they enter phase 2. Internally, phase 2 is a collection
of three sub-phases, namely, initial communication,
complete meta-edge creation, and final communica-
tion. During the initial communication sub-phase, the
partial meta-graph in the form of meta-nodes and meta-
edges from every process is exchanged with every other

4

Figure 3: Example workflow of DistSYNC. The original graph on the left is partitioned across processes P1, P2
and P3. The yellow vertices represent ghost vertices. The green circles represents SCCs containing vertices. Thin
red arrows indicate inter-process edges. The solid white arrows represent the flow of execution. The subgraph at
each process is transformed to a partial meta-graph in phase 1 and goes through the communication phase 2 where
it is transformed to a complete meta-graph. This in-turn goes through phase 3 to give the global SCC as shown in
the last blue circles.

process using an AllToAll collective operation. It is to
be noted that only the meta-graph is exchanged and not
the original graph, so the data communicated is much
smaller.

Algorithm 2 Phase 2

Input: list of partial meta-edges ME and meta-nodes
MN

Output: list of complete meta-edges ME’ and meta-
nodes MN’

1: Gather ME and MN at all procs
2: for each node  ∈ MN do
3: for each node y ∈ MN do
4: if e{, y} ∈ ME then
5: ME′[] ← e{, y}
6: MN′[] ← 
7: MN′[] ← y
8: end if
9: end for

10: end for
11: Gather ME’ at all procs

Once they finish initial communication, every process
overlaps the collected partial meta-graph from the other
processes to create a complete meta-graph. For instance,
in Figure 3, process P1 already has its partial meta-graph,
which is the meta-edge {A, B}. After initial communica-
tion, P3 establishes that vertex 8 in its external SCC E is
also a ghost vertex that belongs to external SCC B at P1.
As a result, SCC B is renamed as SCC E, and the meta-
edge {A, E} is created at P3. Likewise, P2 creates meta-
edge {C, A} and P1 creates meta-edge {E,C}. Now,
these new meta-edges are once again exchanged with

every other process. This is the final communication in
the second phase.

Since we aren’t creating any new meta-nodes but
rather just new meta-edges, every process already holds
the list of all possible meta-nodes after initial commu-
nication. So for the final communication, we perform
an AllReduce operation that fills these missing meta-
edges rather than an AllToAll collective operation as
implemented during the initial communication. After
phase 2, every process will maintain the complete meta-
graph, which is the same for all processes. As we can see
in Figure 3, all processes have the same meta-graph with
three meta edges {C,A}, {A,E} and {E,C} after phase 2.
Phase 2 uses bulk synchronous communication, so every
process needs to reach this phase before executing it.

Algorithm 2 explains the working of phase 2 where
at step 1, we gather the meta-nodes and meta-edges at
all processes. Steps 2-8 is a nested for loop that checks
every 1to1 combination of meta-nodes to see if that
process has that meta-edge. At step 8, we once again
gather the new meta-edges

3) Phase 3: Final SCC: This is the last phase of
the DistSYNC algorithm. With each process holding
the complete meta-graph after phase 2, we once again
compute SCC using the complete meta-graph as the
input. This produces output mapping of meta-nodes to
their allocated Global component. This is visualized in
Figure 3 where phase 3 at all processes take in the three-
node meta-graph and produce just a single component
which is the final result. We need to remember that
this is not a vertex to SCC ID mapping but rather a
meta-node to SCC ID mapping. To get the SCC ID
for a specific vertex, we first need to lookup the vertex
to meta-node mapping that is maintained after phase 1

5

and then lookup the appropriate global SCC ID for that
meta-node. The execution of phase 3 is the same for all
processes as all of them have the same complete meta-
graph as input and produce output. By performing this
phase redundantly at all processes, we make sure that
all of them maintain the final view of their vertex to
global SCC mapping. Since the size of the meta-graph
is much smaller than the original graph, this is not a
relatively intensive computation and can be redundantly
done at all processes without too much overhead rather
than them separately and performing one more round of
bulk synchronous communication.

Algorithm 3 Phase 3

Input: Meta-graph G”(MN’,ME’)
Output: Global SCC result

1: Perform final SCC on G”

Algorithm 3 explains the working of phase 3 with
only a single step that performs SCC on the complete
meta-graph that we obtain from phase 2.

IV. IMPLEMENTATION

This section will go step by step through three phases
of the DistSYNC algorithm and explain how we im-
plemented it along with its design choices and choice
of data structures for the most efficient approach. We
also include subsections for analyzing the computation,
communication, and space complexities based on the
design choices. The scaling of the application across dis-
tributed processes is done using MPI 3.2. Each process
is enabled with multi-threaded execution using shared
memory OpenMP directives.

A. Partitioning

This step may not be a part of the three phases of
DistSYNC, but it is essential that the graph is partitioned
efficiently by avoiding load imbalance and minimizing
inter-process communication. For partitioning the input
graph, we use ParMetis [12] , a multi-way partitioning
library. ParMetis internally uses the Kernighan-Lin al-
gorithm [13] to allocate partitions to vertices based on
minimizing the number of inter-process edges, thereby
reducing the communication load.

B. Initial SCC computation

Initially, each process needs to compute the local
SCCs of its allocated subgraphs. For computing the
initial SCCs, we use Multistep [9], a shared memory im-
plementation that uses a combination FW-BW-Trim and
their novel BFS coloring algorithm. It is implemented in
C++ with OpenMP directives, and we created a wrapper
module to interface Multistep within our framework.
It takes in an edge list representation of the allocated

subgraph and produces a vector with indices representing
the vertex IDs and SCC IDs as values. It is to be noted
that Multistep only accepts continuous vertex IDs, but
that isn’t possible in our implementation as the original
graph is partitioned based on communication overhead.
To overcome this, we map the actual vertex IDs to
continuous counterparts and re-map them when we query
for results.

C. Partial meta-graph creation
As explained in subsection III-A, meta-graphs are

graph abstractions with global SCC IDs as the meta-
nodes and the representative edges between pairs of
components, if any, as the meta-edges. A partial meta-
graph is one where the SCC IDs are allocated to vertices
with only the view of the allocated subgraph and not
the full-sized original graph. The meta-nodes are stored
using a vector representation with their size equal to the
number of local components.

For implementing lemma 1 to create a representative
edge from a list of all existing edges between any two
meta-nodes, we use unordered sets. As we scan through
the list of edges, we insert it into unordered sets in
{SCC(v1),SCC(v2)} format where v1 and v2 are the
source and destination vertices of an edge. Inserting to
unordered sets ensures uniqueness by hashing elements
so the first edge scanned between a given pair of SCCs
is the representative meta-edge between the pair.

D. Initial and final communications
The initial communication uses an AllToAll collective

operation to exchange the partial meta-graphs. This is
done in MPI using MPI AllGather and MPI AllGatherV
functions. First, the vector of all the partial meta-nodes
along with its respective number of outgoing meta-edges
is gathered from each process. Using this information,
we can allocate appropriate buffer sizes based on the
number of all meta-edges. Then, we gather the list of
meta-edges for every meta-node from each process. We
send the number of meta-edges and meta-edge values
in two separate operations rather than clubbing them
together as it enables us to access meta-edges of each
meta-node in parallel. A single thread can be in charge of
reading all the meta-edges of a single meta-node based
on offsets in receiving buffer derived from the sizes.

By reading the initial messages, each process creates a
bit vector where the indices represent a 1to1 combination
between all meta-nodes and its values being a single
bit indicating the presence or absence of a meta-edge
between the two meta-nodes. Only the processes that
own the two meta-nodes will know if there is a meta-
edge between them and will have a value of 1 for that
position. Every other process will mark that position as
0. In order to communicate the presence of this meta-
edge with all other processes, we perform a final round

6

of communication within phase 2 using MPI Allreduce
function with AND operation to flip all the 0 bits to 1
if any of the processes has a 1 for that position.

This bit-vector is created in parallel at each process
using shared memory OpenMP directives. The indices of
the bit-vector are the same across all processes as they
are created in the order of meta-nodes received during
initial communication.

E. Complete meta-graphs and recomputing SCC

These are the final two operations where we first
create the complete meta-graph by scanning the bit-
vector and creating a collection of meta-edges of the
form {meta-node1, meta-node2} for the respective
indices that have a 1-bit value. The process of creating
complete meta-graphs are embarrassingly parallel due
to the way we structured the MPI buffers. The output
edge list from phase 2 acts as the input for our SCC
recomputation. The recomputation is once again done
using the Multistep library, producing a vector of
meta-nodes as indices and global SCC IDs as the value.
This is the final output of the entire application.

Phase Time Space Comm
1 V+E V -
2 MN2 MN2 + ME MN2 + ME
3 MN+ME MN -

Table I: Big O notations of time, space and communi-
cation complexities of each phase at a single process.
V and E denotes the number of vertices and edges of
the allocated subgraph while MN and ME denotes the
number of meta-nodes and meta-edges

F. Complexities

In this subsection, we analyze the time, space, and
communication complexities of each phase of DistSYNC
given in table I. Communication only happens in phase
2 where each process exchanges the meta-edges, which
is O(ME), and a bit-vector with 1to1 combinations of
meta-nodes which is O(MN2).

The time complexity of phases 1 and 3 are to the order
of the number of vertices + edges and number of meta-
nodes + meta-edges, respectively. The time complexity
for phase 2 is O(MN2) as we are creating the 1to1 bit
vector. Lastly, the space complexity of phases 1 and 3
is O(V) and O(MN), respectively, as computing SCC
results in storage of vertex to SCC ID map while phase
2 is O(MN2 + ME) to store the bit-vector and meta-
edges.

V. EXPERIMENTAL EVALUATION

In this section, we will discuss the type of experiments
we ran and analyze the experimental results. We will

look into speedups and memory utilization along with
properties of the benchmark graphs and improvements
made by enabling GPU threads. We ran the distributed
experiments on Intel Xeon dual E5-2690v4 processors
with 28 cores per node. The GPU computations were
offloaded to dual NVIDIA Tesla K80 GPU nodes with
24GB memory.

A. Performance

We used three real-world graphs; Flicker(FL), Live-
Journal(LJ), Wikipedia(WE), along with one synthetic
RMAT graph as our benchmark. The RMAT was
generated with the probability (a=0.45, b=0.15,c=0.15,
d=0.25) and scale-free degree distribution. Figure II
describes the properties of our benchmark graphs, in-
cluding the number of SCCs and the size of the largest
SCC. It also shows the total time taken for running those
benchmarks on iSpan for baseline comparison and our
hybrid DistSYNC implementations. The graph properties
give us an idea of how big the meta-graphs are going
to be. Larger SCCs would mean more vertices can be
clubbed under a single meta-node and, in turn, reduce
the total number of meta-nodes.

FL LJ WE RMAT
0

50

100

150

200

250

Ti
m

e
(m

s)

Figure 6: Runtime for creating complete meta-graphs
with GPU(blue) and serial execution(red)

Figure 4 shows the comparison of speedups for hybrid
DistSYNC and iSpan with respect to single-threaded
Tarjan’s implementation. The only available distributed
memory implementation is iSpan, so we use it as a
baseline. The speedups for DistSYNC range from 1.3x
to 3.1x times over sequential, while speedups for iSpan
range from 1.2x to 4.1x over sequential. Using the timing
data from Figure II and the speedup plots from Figure 4,
we can see that the performance of DistSYNC is heavily
dependent on the number of SCCs. For instance, the
number of SCCs in LiveJournal is around 972 thousand,

7

Table II: Properties of benchmark graphs and execution time for iSpan and DistSYNC with GPU parallelism

Graph #Nodes #Edges #SCC Largest SCC size iSpan(ms) DistSYNC(ms)
Fl 2,302,926 33,140,017 485,572 1,605,184 137 196
LJ 4,875,572 68,475,391 971,233 3,828,682 450 518
WE 16,777,215 134,511,383 12,381,433 3,045,754 540 1084
RMAT24 18,268,993 172,183,984 14,459,547 3,796,073 760 1226

(a) Flicker (b) LiveJournal

(c) Wikepedia (d) RMAT

Figure 4: Speedups for DistSYNC(red) and baseline iSpan(blue) with respect to single threaded Tarjan’s implemen-
tation.

while Wiki has over 14 million even though the Wiki
graph is only a little over twice its size in terms of the
number of edges. And the size of the largest SCC is
almost the same. With bigger SCCs, an entire collection
of vertices can be represented with just one integer meta-
node ID, proving both beneficial for performance and
memory utilization. This explains why the speedup of
Wiki is significantly less compared to LiveJournal.

Although the number of meta-nodes is only propor-
tional to the number of SCCs and not exact as that would
depend on how we partition the graph and if vertices
of one SCC are partitioned across multiple processes,

making many local SCCs and meta-nodes. Computing
phase 1 initial SCCs aren’t impacted too much by the
number of meta-nodes as they internally apply the trim
step explained in section II taking care of small-sized
SCCs.

Figure 6 shows us the time taken to fully build the
complete meta-graph at phase 2, comparing execution
with GPU enabled and sequential. Building the complete
meta-graph is a computationally-intensive process as we
have to build a vector with all 1to1 pairs of all meta-
nodes, but because of how we structured the buffers that
receive the meta-nodes and edges during communication,

8

(a) Flicker (b) LiveJournal (c) Wikepedia (d) RMAT

Figure 5: Average memory utilized per process as number of processes increase

this is a pretty parallelizable operation. We can observe
speedups ranging from 5.3x for Flicker up to 12.5x for
RMAT.

B. Memory utilization

A significant reason for using distributed memory
systems apart from performance is to reduce the memory
utilized when processing large graphs. Real-world graphs
can get so big that shared memory implementations be-
come unfeasible. Figure 5 shows us the average memory
utilized per process as we scale the number of processes.
These measurements were taken using memcheck from
Valgrind. It should be noted that we use memcheck to
track only the heap allocations made by the application
and not stack allocations.

We can see that the memory utilized per process
increases with more partitions as we reduce the original
graph into smaller subgraphs. The reduction in size is
initially much greater, but as we add more partitions,
this reduction tapers off. This is because creating more
partitions tends to crack large SCCs and distribute those
vertices across processes making multiple meta-nodes
eventually increasing the size of the meta-graph.

VI. CONCLUSION AND FUTURE WORK

This paper introduces DistSYNC, a hybrid algorithm
leveraging distributed, multithreaded CPU and GPU
parallelism for identifying Strongly Connected Com-
ponents(SCC) in distributed networks. We have also
supported the algorithm with implementation details of
a hybrid framework. We show that our approach can
offer performance speedups up to 3.1x and memory
reductions up to 2.6x over a sequential single process
implementation. In the future, we aim to extend our
approach with point-to-point communication rather than
bulk synchronous communication, which we are using
now. This would enable us to perform asynchronous
execution. We also aim to extend this approach for dy-
namic networks that change over time. Doing so would
enable us to compute SCCs over just the changeset rather
than recomputing the entire network for every batch of
updates.

REFERENCES

[1] L. Zhang and J. Gao, “Incremental graph pattern matching
algorithm for big graph data,” Scientific Programming, vol. 2018,
2018.

[2] S. Allesina, A. Bodini, and C. Bondavalli, “Ecological subsys-
tems via graph theory: the role of strongly connected compo-
nents,” Oikos, vol. 110, no. 1, pp. 164–176, 2005.

[3] G. M. Slota, S. Rajamanickam, and K. Madduri, “High-
performance graph analytics on manycore processors,” in 2015
IEEE International Parallel and Distributed Processing Sympo-
sium. IEEE, 2015, pp. 17–27.

[4] J. H. Reif, “Depth-first search is inherently sequential,” Informa-
tion Processing Letters, vol. 20, no. 5, pp. 229–234, 1985.

[5] L. K. Fleischer, B. Hendrickson, and A. Pınar, “On identifying
strongly connected components in parallel,” in International
Parallel and Distributed Processing Symposium. Springer, 2000,
pp. 505–511.

[6] S. Hong, N. C. Rodia, and K. Olukotun, “On fast parallel
detection of strongly connected components (scc) in small-
world graphs,” in Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analy-
sis, 2013, pp. 1–11.

[7] Y. Ji, H. Liu, and H. H. Huang, “ISpan: Parallel identification
of strongly connected components with spanning trees,”
in Proceedings of the International Conference for High
Performance Computing, Networking, Storage, and Analysis,
ser. SC ’18. IEEE Press, 2018. [Online]. Available:
https://doi.org/10.1109/SC.2018.00061

[8] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM
journal on computing, vol. 1, no. 2, pp. 146–160, 1972.

[9] G. M. Slota, S. Rajamanickam, and K. Madduri, “Bfs and
coloring-based parallel algorithms for strongly connected com-
ponents and related problems,” in 2014 IEEE 28th International
Parallel and Distributed Processing Symposium. IEEE, 2014,
pp. 550–559.

[10] G. Li, Z. Zhu, Z. Cong, and F. Yang, “Efficient decomposition
of strongly connected components on gpus,” Journal of Systems
Architecture, vol. 60, no. 1, pp. 1–10, 2014.

[11] M. Stuhl, “Computing strongly connected components with
cuda,” Master’s thesis, Masaryk University, 2013.

[12] G. Karypis and V. Kumar, “Parallel multilevel series k-way
partitioning scheme for irregular graphs,” Siam Review, vol. 41,
no. 2, pp. 278–300, 1999.

[13] B. Hendrickson and R. W. Leland, “A multi-level algorithm for
partitioning graphs.” SC, vol. 95, no. 28, pp. 1–14, 1995.

9

