
Localized Embeddings (LocEm): A multi-task model for localization,
classification, and retrieval of multiple objects in images

Shravan Kale
Computer and Information Science

University of Oregon
shravank@cs.uoregon.edu

Abstract

Embeddings are generated across different Deep Learn-
ing models to represent objects or entire images. They are
then used for tasks such as Object Retrieval by matching
against a database of other object embeddings. We pro-
pose our model LocEm, a single passthrough model that
can generate embeddings for multiple objects in images but
at the object’s location. We also repurpose the ImageNet
video dataset that includes natural augmentation contain-
ing pose and action movement variation of objects in im-
ages to create a triplet generator. Our method to create Lo-
cEm includes extending an existing object detection model
with the ability to predict embeddings and include an ex-
tended triplet loss function that encodes embeddings gener-
ated for non-object (background) entities in an image. We
evaluate our model against other models in the literature
that at most perform two of the three tasks performed by
our model, i.e., object detection, classification, and embed-
ding generation. The models are evaluated for fine-grained
categorization based on object retrieval. We keep the base
architecture and dataset constant across the models to show
that the strength of our model is derived through the final
LocEm layers and our training loss function. We also dis-
cuss the performance of our model on the variety of object
instances and methods for further improvement.

1. Introduction

In Computer Vision, object retrieval is a fundamental
task that has benefitted from the advent of Deep Learning.
The task consists of building a database of object represen-
tations and using query image representations to identify
objects. The said identification enables retrieving identical
objects, fine-categorization of objects, or identifying varia-
tions of the query object. A common representation of an
object is an embedding of any d dimension. The numeri-
cal values in the dimensions can be hand-crafted or learned,

and the embedding is used for similarity matching with a
database of embeddings.

The task of object localization, classification, and em-
bedding generation is either performed using separate net-
work models or in a combination of two tasks. The goal
of this work is to create a single-pass through model that
is able to classify and localize the embeddings of object in-
stances. Towards this effort, we have extended the Yolo [18]
model to predict embeddings localized to the object region
in an image. To evaluate the embeddings generated by our
model we apply them in the task of fine-grained categoriza-
tion. Object retireval results can be used as a heuristic for
narrowing the search space for matching embeddings yield-
ing the finer categorization. In the following sections, we
have described the details of our current work. The Sec-
tion 2 discusses the related work including the transition
from machine learning based embeddings to the newer deep
learning based embeddings. In Section 3 we discuss the
dataset and its modifications, Section 4 details the method-
ology for LocEm, Section 5 details the experiments per-
formed for the task at hand, and Section 6 tabulates the re-
sults of the experiments. The Section 8 discusses the entire
loss function used for LocEm.

Our contributions are as follows:

1. A triplet generator for a dataset of objects extracted
from videos. The objects encode natural augmenta-
tions such as pose and action movement variations.

2. A single passthrough multi-task model for localizing
embeddings for multiple objects in an image

3. A modified triplet loss function that proposes the use
of background data (embeddings) as negative pairs for
the objects in an image.

2. Related Work
The general methodology used in object retrieval con-

sists of image feature engineering followed by efficient in-
dexing and matching using query objects in images. The

1



initial advancements in object retrieval or Content-Based
Image Retrieval were led by the introduction of SIFT [10]
descriptors that generated discriminative representations
with invariance to transformations such as rotations and
scaling. The inspiration for object retrieval was drawn from
text retrieval [21], they compute SIFT descriptors over mul-
tiple regions of stable object frames of movie videos and use
them as object descriptors (embeddings). The descriptors of
these regions or visual words can be arranged and indexed
using different methods to improve the query search aspect
of retrieval systems.

Descriptors can also be generated using randomized
trees [15] and approximate nearest methods for a scalable
vocabulary of visual words. The indexing of descriptors is
achieved using an inverted file system data structure [15],
[21]. The embedding generation method (quantization) and
indexing are combined in a vocabulary tree structure [12]
where hierarchical TF-IDF is used for weighting individual
descriptors. The matching of descriptors can be improved
by using the probabilistic relationship between the visual
words [11] compared to the previously used L2 matching
[15], [12]. Another approach to matching consists of using
hamming embeddings [6] (a matching technique) and weak
geometric consistency [6] for filtering the retrieval matches
with inconsistent angles and scales of object.

Post-processing techniques are employed to further im-
prove descriptors such as spatial verification [15] to re-rank
the retrieval results. Query expansion [3], [23] is employed
by reusing relevant and retrieved (matched) objects from
the inverted file system to generate an improved descrip-
tor. Other techniques for descriptor improvements include
augmentations using feature aggregation [22] and feature
selection [25] of descriptors.

In addition to SIFT descriptors, other works included the
aggregation of lower level features of objects using a Gaus-
sian mixture model in Fisher Kernels [13], its simplification
in VLAD [7], and by using hashing techniques for com-
pression [14]. Descriptor compression techniques using di-
mensionality reduction [5], [16] have also been studied to
reduce the large dimension size of the descriptors.

The success of Convolutional Neural Networks
(CNN)[9] on the ImageNet classification task proved its ca-
pability to extract state-of-the-art features compared to the
previous descriptors techniques [10], [13]. The extracted
features are used as a general-purpose representation of
images in tasks such as fine-grained image classification
[20] and image retrieval [1] where images consist a single
object. A CNN [20] is pre-trained on ImageNet dataset,
and it’s fully connected layers are then used to train a
separate Support Vector Machine on different visual tasks.
The fully connected layers can be used as descriptors [1]
after retraining the pre-trained CNN using the test dataset.
The dimensionality of those descriptors is then reduced

using Principal Component Analysis (PCA). In contrast
to the previous techniques, the last convolutional layer’s
sum-pooling layer [17] can also be used as a descriptor for
image retrieval.

The above methods were yet outperformed by tradi-
tional methods that employed geometric verification [15]
and query expansion. A CNN’s feature extraction ability
was further improved with the introduction of R-MAC[24].
It aggregates features by max-pooling over a set of local
regions over all the channels from the last convolutional
layer. The R-MAC descriptors of images are used to match
the query images and the database images, followed by re-
ranking and query expansion. A siamese network [4] fur-
ther improves on R-MAC by retraining the CNN end-to-
end with a triplet ranking loss instead of using only the
pre-trained convolutional features. It also optimizes the
weights of R-MAC descriptor generation and employs a re-
gional proposal network to learn the regions to pool from
the siamese network.

Complementary to our work, involves the construction
of hard positive and negative image samples from camera
viewpoints that exploit the three dimensional model geom-
etry [17]. Similar to R-MAC, it uses a siamese network
as its backbone architecture and a contrastive loss to train
the network. In contrast to the average pooling layers used
in the previous models, Generalized Mean Pooling (GeM)
[17] is introduced to generate descriptors over the last layer
of the siamese network. The descriptor learning is followed
by whitening, PCA, and query expansion.

3. Dataset
The dataset used for this task is the ILSVRC2015 Im-

ageNet Videos dataset [19] created for object detection in
videos. The videos are divided into 4417 snippets, which
are further divided into a total of 1258K frames or images.
The annotations of said images consist of 1002K bounding
boxes of 30 object categories, divided between the training
and validation sets.

We use the videos dataset because it provides various im-
ages of the same object throughout a time-series. It gives us
the ability to use multiple instances of the same objects in
a triplet as a positive pair required for our task. Given the
objects are from videos, we also benefit from the natural
augmentations provided by the movement of the objects or
its stationery location with a change in stance or view. We
reduce the number of triplets generated from the multiple
instances of the same object by limiting our selection to two
instances of every object. To achieve this, we use a compos-
ite key of the dataset, which consists of the category code,
snippet id, and the tracking id of objects together identify-
ing every unique object. For every unique composite key,
we select two instances at random, generating 15806 ob-
jects/triplets from 15486 images for training and 2618 ob-

2



Anchor - Car Positive - Car Negative - Car

Anchor - Dog Positive - Dog Negative - Dog

Anchor - Horse Positive - Horse Negative - Horse

Figure 1: Samples of three triplets from the ImageNet Dataset: The blue coloured bounding boxes indicate the anchor,
positive, or negative triplet. The red colored bounding boxes indicate the other objects in image. The negative sample have a
different unique ID but the anchor and positive have the same unique ID.

jects from 2541 images for validation. The reduced dataset
of objects is only 1% of the entire dataset but is at the re-
quired scale given the available resources for training. The
multi-object images can contain objects that are not a candi-
date triplet, but we use all the objects in the selected images
for detection and classification parts of our task. The said
inclusion is necessary because our model is designed for
multi-object predictions. The addition brings our training
dataset to 47532 objects for training and 9132 objects for
validation including the two variations per object. Since the
images are in time-series we do see unique objects making
appearances in different images. In that case, we use the

additional variations for localization and classification but
only the two designated instances are used as triplet mem-
bers. Some of the samples of the dataset are given in Figure
1. All the three negative pairs in the figure are hard samples
meaning they belong to the same category but are not the
same object as the anchor and the positive object. This sam-
ple of the dataset also shows some of the challenges faced
in detection, for example, the small scale of the car, and the
extreme similarity of different horses.

3



4. Methodology

In order to create a model that is able to localize embed-
dings of objects in image space, we perform three tasks:
classification, object localization (detection), and embed-
ding generation. Classification acts as a measure of qual-
ity for object localization, and localization projects embed-
dings in a region occupied by an object. Towards that effort,
we extend an existing model called ”You Only Look Once”
(YOLOB) [18] which can only localize and classify objects
with a single pass-through of the model. We use the same
ideology of a single model for multiple tasks to localize our
embeddings. We filter the generated embeddings predicted
by our model by bounding box filtering [18] based on con-
ditional class probabilities and object probabilities.

The reduced dataset from Section 3 is used to mine
triplets (anchor, positive, and negative) where every unique
object is tagged as an anchor object/sample per epoch. For
every anchor, there is a positive sample which has the same
tracking id as the anchor object. The anchor sample and the
positive sample are the same car pictured at a different time
as seen in Figure 1. In the case a positive object is not avail-
able in the dataset, an augmentation of the anchor object is
tagged as the positive sample. Augmentations as a backup
is essential when scaling up the dataset as the frequency
distribution of categories of images is not uniform. For the
negative object, we first look for hard negatives meaning ob-
jects that are in the same category but are a different object
compared to the anchor or positive object. If hard negatives
are not available, objects of a different category are tagged
as negative samples. Since the input to our model is an en-
tire image with multiple objects, we encode the bounding
box values and classes for all triplet and non-triplet objects,
including the triplet tags into a target variable encoder used
to compute loss for the model.

S ∗ S(E + C +B(O,X, Y,W,H)) (1)

The base architecture used for LocEm as shown in the
Figure 2, is the ResNet50 architecture with pre-trained Im-
ageNet weights. We found that our model benefits from
the pre-trained weights as the video dataset from Section
3 has the same object categories as ImageNet Detection or
Classification datasets. The base architecture is followed
by a GeM layer which pools features from the Bottleneck
layer of the ResNet50. The LocEm layers consist of a
fully-connected layer with a LeakyReLu non-linear activa-
tion function and DropOut for regularization of the model.
We modify the final layer of YOLOB by adding our em-
bedding predictors of E units, as shown in Equation 1. The
input given to the model is an image of size 448x448, and
the model predicts bounding boxes B for every grid-cell of
size S. Class probability C for classes in our dataset, object
probability O, bounding box center coordinates (X, Y), and

bounding box width and height (W, H) are predicted for ev-
ery cell. Since the embeddings of objects are predicted per
grid-cell, it enables our model to predict embeddings for ev-
ery object in an image, and at their precise location in the
image.

Lle = Lloc + Lcla + Lconf + Ltrp (2)

The loss function of LocEm (Lle) in Equation 2 is the
summation of the localization loss (Lloc), classification loss
(Lcla), box confidence loss (Lconf ), and the triplet loss
(Ltrp).

Ltrp = λtrp

S2∑
i=0

1obji,γ

{
max{0, D(A,P ) +G−D(A,N)}

+max{0, D(A,P ) +G−D(A,N∗)}
} (3)

The triplet loss in Equation 3 is calculated using the L2
distance denoted by function D, a margin factor G, and the
localized embeddings of anchor A, positive P and negative
N objects. Embeddings are predicted for every cell in the
S ∗ S grid and we use the non-object (background) embed-
dings as additional negative embeddingsN∗ to calculate the
triplet loss. The N sample provides a global negative sam-
ple relative to the dataset while N∗ provides a local nega-
tive sample relative to the image space containing the an-
chor sample. The 1 denotes the presence of a triplet where
γ (triplet flag) indicates the type of the triplet and λtrp de-
notes the penalty to the loss. The other losses in Equation
2 from YOLOB are calculated using sum squared error and
described in Section 8. The triplet loss and the classification
loss are weighted equally. The target variable for input im-
ages encodes the localized ground-truth information of the
objects as shown in the Equation 1. Though in the target
variable, we replace E units with γ = 1, which acts like a
flag to identify the triplet sample masks of objects for calcu-
lating the value of the triplet loss function during the model
training phase.

The embeddings predicted for objects during the evalu-
ation of the model are stored in a database. We use FAISS
[8], a library for efficient similarity search as the database to
store the predicted embeddings. After the model has been
trained, it can predict the bounding box, the class, and the
embeddings for multiple objects in an image. To store the
embeddings in a database, they need to be uniquely identi-
fied for retrieval and fine-grained categorization. The iden-
tification is achieved by calculating the Intersection Over
Union (IoU) of the predicted boxes and the target boxes.
If the IoU is above a threshold, we can assign an id to the
embedding of the predicted box. Since the composite key

4



64

22
4

256

11
2

512
56 1024

28
142048

40
96

S*S
 * (

 B*X
 + 

C + 
be

ta)

ResNet50
GeM

Pooling
(p)

LocEm
Layers

Bo
ttl

en
ec

k 
x3

Bo
ttl

en
ec

k 
x4

Bo
ttl

en
ec

k 
x6

Bo
ttl

en
ec

k 
x3

C
on

v2
D

Max
Poo

l2D

3

44
8

Triplet Generator

Inp
ut 

Im
ag

e

LeakyReLu
DropOutFC1

Embedding
Database

Retrieval

Embeddings

Figure 2: LocEm Model

identifies unique objects in the dataset, we use the compos-
ite keys as ids for the embeddings from the predicted boxes.
The FAISS database is populated with embeddings from the
training phase and separately for the validation phase. In
either phase, after pouplating the datasbase, we use every
embedding as a query embedding to be matched with an-
other embedding, of the same unique object identifier (ID).
A match is designated as successful if the ID of the query
embedding is exactly same as the ID of the matched em-
bedding. Only the Top-1 and Top-5 results with the least L2
distance from the embedding are considered for a successful
match. The performance of the embedding generation of the
model is revealed by the validation phase as the model never
trains on the validation dataset. FAISS also provides meth-
ods to query the embedding dataset and retrieve the Top-1
and Top-5 matches based on a distance functions such as L2
distance. We use those methods for the fine-grained identi-
fication of predicted objects.

5. Experiments

We gauge the performance of our model by comparing
its class prediction and identification retrieval with those of
the other models in the literature. Since, to the best of our
knowledge, our model is the only one that is able to per-
form detection, classification, and embedding generation in
a single forward pass of a network, the comparisons were
limited to models that performed a combination of two of
the above tasks. Therefore, to create a pipeline for localized
embeddings generation system, we use the other models but
provide manual assistance for the missing tasks. This leads
to an unfair comparison for our model, but our model’s ben-
efit is that it does not require any manual assistance as it can
perform the three tasks to generate localized embeddings.
Our goal for conducting these experiments is to understand
the performance of our model, gauge its benefits and limi-
tations, to ultimately chart a course for a future of localized
embeddings in multi-object images.

For comparison, we use a ResNet50 only architecture
(RSN50), the base Yolo architecture (YOLOB), and Multi-
grain architecture (MLTGR) [2]. All the models are trained
on the same dataset and have the same augmentations.
The augmentations include flipping, scaling, blurring, and
shifting of objects along with random brightness, hue, and
saturation variations. Stochastic Gradient Descent (SGD)
is used for optimization with momentum=0.9 and weight
decay=1e−4. A variable learning rate schedule is used ex-
cept for RSN50 and MLTGR which have a predetermined
learning rate that also performed better in our tests.

The model RSN50 is used as a baseline for class predic-
tion. The final layer of ResNet50 is replaced with a softmax
layer of units equal to the classes in our dataset. The final
feature map before the softmax layer is used as the embed-
ding representation for the objects in our images. The fea-
ture map is flattened leading to a vector of size 2048, which
is used as the number of dimensions for the predicted em-
beddings. Since the model is not trained for detection, we
crop the objects from the images before they are used as in-
puts to the model. By cropping the objects, we can map the
embedding to the object and assign it to the unique identifi-
cation for retrieval and fine-grained categorization.

The MLTGR model is used as a baseline for embedding
generation. It uses a combination of cross-entropy loss and
margin loss to predict embeddings for the entire image con-
taining only one object. The embeddings are generated by
applying L2 normalization over the classification layer con-
sisting of 30 units for the categories in our dataset. The
default embedding size of 2048 units is used for our ex-
periments. The model enables classification and requires
cropped images as inputs because it does not support local-
ization. We make a few changes to the original model that
was designed to be trained on the entire ImageNet dataset.
We modify the input image size from 224x224 to 448x448
and use the same augmentations as we used for other mod-
els. We changed the augmentation list and the image res-
olution for a fair comparison. Our experiment utilizes the

5



Repeated Augmentation Sampler (RAS) provided with the
model. RAS uses augmentations of images to generate pos-
itive samples required for its Margin Loss. The positive
and negative pairs are generated from the images in a batch
used for training. The model does not require the varia-
tion in object poses or movements provided by our dataset,
but they are provided to compare the dataset’s performance
with other models. We set the number of repeated augmen-
tations to 2 but reduce the recommended batch size to 64 to
adhere to resource constraints invoked from using a higher
resolution of images. The pooling exponent required for the
model’s generalized mean pooling layer is set to the 3 as it
yields the best performance [2].

The model YOLOB is used as a baseline for object de-
tection, which is refined based on the class probabilities pre-
dicted by the same model. The final layer of the model pre-
dicts class probabilities for every grid on the image, and
we only modify the number of classes to be predicted for
our dataset. The implementation used for YOLOB1 was a
port of the darknet framework for Pytorch though we use
the ResNet50 architecture for a fair comparison. The im-
plementation modifies the final layer of YOLOB by replac-
ing its linear activation with sigmoid activation. We found
that this replacement was necessary as, without it, the pre-
trained ResNet50 predicts negative integers for the width
and height of the bounding boxes. To extract the embed-
dings of objects, we need to make a second forward pass of
the model. The second pass is required since the last fea-
ture map of its CNN encodes information about the entire
image with multiple objects, and therefore it would be im-
probable to extract embeddings for individual objects. The
objects could have been been cropped before training the
model, and its last feature map could be used as its em-
bedding in a single pass through. Though, if the model is
trained on cropped images with single objects, it defeats the
multi-object prediction design of YOLOB and the goal of
our comparison task. In the second passthrough we provide
the model with cropped out object so we can compare its
emebdding generation without an impact from its own lo-
calization performance.

To overcome the limitations of the models mentioned
above, we train our LocEm model that can learn the three
tasks simultaneously. With the same base architecture of
ResNet50, we construct the final layer as described in Equa-
tion 1. The number of bounding boxes is set to B=2, pre-
dicted for every grid-cell in a grid of size S=7. The num-
ber of classes from our dataset is C=30, and the embedding
predictors are set to E=64. By projecting the embeddings
into the units of the final layer, we can vary its dimension-
ality before training the model unlike embeddings extracted
from the CNN feature maps of other models.

Our model is trained on 64 batches consisting of 192 im-

1https://github.com/motokimura/yolo v1 pytorch

ages yielded by the generator. We gauge the training time
performance of the model by constructing a measure of con-
ditional classification accuracy in addition to the individual
losses for the three tasks. Classification accuracy measure-
ments are conditioned on the object belonging to a grid-cell
that contains the center of the object. We partially decode
the predicted tensor based on the location of objects from
the target tensor to check the classification accuracy during
validation. The object probability O and triplet flag γ unit
in the target tensor are used as flags to identify the objects.
This method of partially decoding the predicted tensor is
used for validation only while training and to avoid the cost
of decoding the entire predicted tensor.

In the model evaluation phase, we decode the entire pre-
dicted tensor. The implementation of LocEm provides a
modified YOLOB detector to detect the object bounding
boxes, its probabilities, and classes for validation. The
detector decodes the predicted tensor and applies non-
maximal suppression to filter the bounding boxes. In the
detector, we also extract the predicted embeddings based
on the object confidence conditioned on its class probabil-
ity. This modification ensures that the extracted embeddings
are localized and belong to an object with a certain confi-
dence. We use unique object ID (UID) to identify identi-
cal objects and class ID (CID) to identify objects that be-
long to identical classes. The UID matches reveal the fine-
grained categorization performance of the model whereas
the CID matches reveal the coarse-grained categorization
performance of the same model. To validate the model, we
implement the method described in Section 4 to assign the
UID or the CID to the correct object. The said method is
also used to calculate the Top-1 and Top-5 class accuracies
of the objects. For retrieval, we separately add the embed-
dings to the embedder database for the training and valida-
tion phases of LocEm. The embeddings from the respective
phase are used as query embeddings on the database of the
same phase. Every query embedding is required to find a
correct match out of the remaining dataset which is 47532
objects for the training phase and 9132 for the validation
phase. Based on the top retrieved indices post-query, the
Top-1 and Top-5 fine-grained categorization accuracy for
both the phases are calculated separately.

6. Results
This section provides the performance results of the

models discussed in Section 5 and their analysis. The fol-
lowing results in this section are the performance of the
validation dataset post-training the model and the post-
processing of the decoded tensor. The post-processing
method is part of the single passthrough model implemen-
tation. To gauge the performance of our model, we use
the mean average precision (mAP) metric that can accu-
rately represent the performance of localization and clas-

6



sification. The average precision is calculated with an In-
tersection over Union threshold of 0.5, as is standard. We
separate the classification results as directly predicted by
the model and by a secondary method using only the em-
beddings to represent the class of an object. We employ the
secondary method only to judge the representability of our
embeddings on a task other than unique object retrieval for
fine-grained categorization.

We vary the length of an embedding to find a length that
minimizes the triplet loss on a reduced dataset size. We
found that embeddings of length 64 were an optimal length
for our task and increasing the length up to 2048 led to
memory constraints. The memory constraints stem from
the factor that embeddings are predicted for every cell, in-
creasing the number of units in the final layer. The same
increase also leads to the model having to learn more val-
ues to represent an object, thereby degrading the quality of
the model. Other factors that led to a memory constraint
were increasing the size of the dataset from 2 to 4 samples
per unique object and architectures with more parameters
such as ResNet101. We also found that the performance
improvements with the GeM layer and using background
embeddings as negative embeddings realized gains to war-
rant their inclusion without any significant additional com-
putation. We arrived to the same conclusion that GeM pool-
ing outperforms [26] average pooling for encoding features.
The above-mentioned parameters of the network including
the size of the fully-connected networks and the loss func-
tion penalties were tuned using a separate slice of the train-
ing dataset. The validation dataset is only used for the eval-
uation phase.

6.1. Classification and Localization Results

Model Top-1 (%) Top-5 (%) mAP(0-1)
RSN50 77 93 -
MLTGR 74 91 -
YOLOB 71 81 0.20
LocEm 78 88 0.22

Table 1: Validation Classification and Localization Results

In the first set of experiments in Table 1, we compare
each model’s classification capability. The mAP results dis-
play the classification performance with localization perfor-
mance factored in, whereas the Top-1 and Top-5 results dis-
play classification without a penalty from the localization
performance. The distinct metrics are necessary to isolate
the classification performance of models that do not per-
form localization.

As shown in Table 1, we see that the RSN50 model has
the better classification performance in the Top-5 task with a
difference of 5%, but LocEm does equivalently well on the

Top-1 task. The single percentage point difference in the
Top-1 task is insignificant due to the rounding up of the fi-
nal results. The classification results were expected as such
since the RSN50 model is trained to perform a single classi-
fication task compared to the multi-task training of the other
models. Furthermore, the RSN50 model does not localize
the objects, and therefore it is provided with objects manu-
ally cropped from multi-object images. Both these benefits
avoid the errors in localization present in the YOLOB and
LocEm models. The MLTGR model performs similarly ex-
cept for a 3% drop in the Top-1 and 2% drop Top-5 task
compared to RSN50. The MLTGR model also uses man-
ually cropped object images, but it can perform two tasks
simultaneously, i.e., classification and embedding genera-
tion, while avoiding any localization errors. The RSN50
and MLTGR models serve to provide a baseline of classifi-
cation and embedding generation, respectively. They are,
in effect, used in a localized embedding generation sys-
tem but with assistance in the crucial task of localization.
The YOLOB model, on the other hand, suffers the same
localization errors as LocEM. However, our model shows a
marginal improvement in the mAP metric, and 7% improve-
ment in the Top-1 and Top-5 task compared to YOLOB.
This gain could be attributed to the triplet loss acting as an
additional discriminator in the overall loss function of Lo-
cEm.

The purpose of these validation classification results is
to show the impact of the multi-task losses of LocEm when
comparing with the other models. LocEm’s localization and
embedding generation losses do not significantly affect its
classification performance. Thus, its performance is com-
parable to a dedicated classification model such as RSN50
and a multi-task localization model such as YOLOB.

6.2. Fine-Grained Categorization

Model Train T1 Train T5 Val T1 Val T5
RSN50 50 65 49 68
MLTGR 56 72 59 76
YOLOB 32 41 34 48
LocEm 69 82 61 75

Table 2: Unique ID Retrieval Results (expressed as percent-
ages) for fine-grained categorization: T1 and T5 denote the
success of a match in the Top-1 and Top-5 retrieval results

In the second set of experiments in Table 2, we com-
pare each model’s unique object retrieval capability for fine-
grained categorization. The results in the table are separated
by the training or validation phase of the dataset. In each
phase, all the results factor in the location of the object em-
beddings.

Localization of objects is crucial to embedding genera-
tion as the representability of an object is also conditioned

7



on its location in the image space. We see that LocEm per-
forms better than the other models through both the training
and validation phase except for comparable performance in
Val T5 task. All the other models have access to manually
cropped-out objects and do not perform localization. We
observed that LocEm detects 93% and 70% of all the unique
objects in our experiments’ training and validation phase,
respectively. This observation highlights the trade-off be-
tween models that can perform localization as opposed to
the models that require manually cropped objects. As a
result we do not claim that LocEm outperforms the other
models. In the validation phase, uniquely identifying ob-
jects is more challenging since the model has not learned
from the validation images. The embedding generation re-
lies on the model to have learned to differentiate between
unique objects that it has never seen before. The task is
even more challenging when different objects are extremely
similar such as the horses seen in Figure 1 in Section 3.

The model YOLOB has the most performance differ-
ence compared to our model because its extracted predicted
embeddings do not represent just the object but other in-
formation that it predicts, such as bounding box and class
probabilities. The results of YOLOB highlights the impor-
tance of localized embeddings in multi-task models such as
MLTGR and LocEm. MLTGR performs better than RSN50
and YOLOB because it is dedicated to learn embeddings
via its loss function. From these experiments, we can de-
duce that models that include dedicated embedding genera-
tion using loss functions such as MLTGR’s margin loss and
LocEm’s triplet loss have a considerable positive impact on
embedding generation.

6.3. Coarse-Grained Categorization

Model Train T1 Train T5 Val T1 Val T5
RSN50 98 99 94 98
MLTGR 90 96 94 98
YOLOB 58 78 66 84
LocEm 86 92 84 91

Table 3: Class ID Retrieval Results (expressed as percent-
ages) for coarse-grained Categorization: T1 and T5 denote
the success matches in the Top-1 and Top-5 retrieval results

In the third set of experiments in Table 3, we test the
expressibility of the embeddings for a coarser task such as
classification. The results are separated into the training
and validation phases while also factoring in the location
of objects. The said task is coarser as a query object can
be matched to multiple other objects in the same category
and need not be the same as the query object. This task in-
creases the potential number of matches considerably since
more object samples exist for an entire category than for
a unique object ID. The increase in matches explains the

performance difference between the classical classification
task in Table 1 compared to matching embeddings. The
larger search space enables a more accurate classification,
albeit at the cost of a database search.

From the Table 3 results, it is evident that LocEm is un-
able to beat the embeddings from the RSN50 and MLTGR
models. Though, it must be highlighted that the LocEm em-
beddings were generated for a different task, fine-grained
categorization. The embeddings of LocEm are learned
to identify unique objects, whereas the embeddings of
MLTGR are dedicated to classification performance. The
embeddings extracted from RSN50 are also from a dedi-
cated classification model. Just as in the previous experi-
ments, only LocEm performs localization while other mod-
els are assisted with cropped-out objects. In the case of Lo-
cEm, the defined triplet pairing system is designed towards
matching unique objects together and separating them from
other objects that belong to the same category. The said
pairing system is beneficial for identifying unique objects
but leads to a distance in embeddings that belong to the
same class. In our model, the sifting of image objects into
the three categories of anchor, positive, and negative allows
the ability to define a similar pair and a dissimilar pair for
any given application. If an embedding-based classification
is the objective, then a similar pair in a triplet can be as-
signed to different objects from the same class. Matching
embeddings is beneficial when softmax does not perform
optimally for classes greater than 1000.

This experiment aims to test the representability of em-
beddings, primarily when they are generated for a different
task but tested on a new task. The embeddings generated by
LocEm can be generalized for a coarser task, without any
retraining, but with a performance trade-off.

6.4. Model Introspection

We introspect our model in order to understand the per-
formance of our model. Even though all our images of ob-
jects come from the same database, they have a consider-
able variation in certain aspects of the objects in a given
image. Since these are natural images, factors such as the
variability in object location and resolutions can play a sig-
nificant role in the predictions on different images. As seen
in Figure 3 (a), the model performs very well when there are
objects with some separation between them. But, there are
also instances such as Figure 3 (b) where multiple objects
are cluttered extremely close or are occluded. In the lat-
ter cases, bounding boxes can overlap, leading to misiden-
tification. We have also seen images where occlusions as
in Figure 3 (c) can cause the detection to fold into a sin-
gle bounding box. The bicycle object in Figure 3 (d) looks
blended in because of the scene lighting leading to a similar
color palette for the bicycle and the tree next to it. These
are similar challenges faced by the YOLOB model that also

8



(a) Objects with a seperation (b) Multiple objects in close prox-
imity

(c) Occluded objects (d) Objects blending with back-
ground

Figure 3: Variation of predicted images from LocEm. The
green coloured boxes are the predicted boxes and blue
coloured boxes are the ground-truth boxes.

struggles with occlusions and objects in close proximity.

7. Conclusion

We proposed the design for a single pass-through multi-
task model named LocEm that can detect objects, classify,
and localize embeddings of multiple objects in an image
through the previous sections. Our model design includes
modifying the triplet loss function to encode background
embeddings as an additional measure of local negative sam-
ples for objects. We defined a method to repurpose an
existing large-scale dataset, ImageNet Videos, to generate
triplets with natural augmentations such as pose and ac-
tion movement variation. In order to compare our multi-
task model with other models in the literature, we proposed
modifications to the other models to extract object embed-
dings. Even though our model does not always beat the
performance of the other models, it must be highlighted
that our model always performs a task more than the oth-
ers. Localization is crucial to the task of classification and
embedding generation. While the other models are assisted
with manual localization, the localization performance of
our model plays a significant role in the comparative re-
sults. The benefit of LocEm lies within its unique ability to
perform the three tasks in a single pass-through, on multi-
object images, and without the need for any manual assis-
tance. We do see a scope for improvements in various as-
pects of the model to help it reach its potential.

There are a few avenues of potential improvements that
could be made to our model. More samples of objects can

be included per object with additional hardware resources
so that the model has a larger image space to learn the
positive pairs. As a result, we can capture a more signifi-
cant variation in object movement and pose with more pos-
itive pairs. Since a positive object can also be used as a
negative object for another triplet, the scaled dataset could
translate to better and harder negative pairs to distinguish
between objects that look very similar. Multi-task models
provide the benefit of learning multiple tasks and balanc-
ing the weight distribution of their respective loss function
can lead to significant improvements. The cost of balancing
the weight distribution in terms of resources would not out-
weigh its benefits. An improvement to the localization per-
formance will directly influence the model embedding gen-
eration performance. Standardized box variations could be
used as a starting point in images to act as better heuristics
to predict boxes than initial weights from the model. Some
of the performance of our model can be directly attributed to
the dataset. Addressing occlusion, objects in close proxim-
ity, differentiating extremely similar objects remain an open
challenge in deep learning-based computer vision tasks.

The benefits of localizing embeddings are not limited
to the image domain. Even though we use images as an
application for our model, embeddings are generated for
other data types such as sentences and graphs. Our fu-
ture work will explore the ability to use localized embed-
ding generations in graphs to identify sub-graphs in appli-
cations and generate its embeddings. One of the challenges
in the graph domain includes localization of sub-graphs in
non-euclidean space. The said application includes codes
expressed as control flow graphs that can be used to iden-
tify sub-graphs and match with optimized versions of those
codes for execution performance improvement.

8. Related Equations

Lloc = Lxy loss + Lwh loss

Lxy loss = λcoord

S2∑
i=0

B∑
j=0

1objij [(xi − x̂i)2

+ (yi − ŷi)2)]

Lwh loss = λcoord

S2∑
i=0

B∑
j=0

1objij [(
√
wi −

√
ŵi)

2

+ (
√
hi −

√
ĥi)

2]

(4)

The LocEm loss funtion Lle in Equation 2 is the summa-
tion of the location loss Lloc, classification loss Lcla, object
confidence loss Lconf , and the triplet loss Ltrp. The first
three losses are devised in YOLOB with their explanation
in this section. The explanation for our triplet loss is pro-
vided in Section 4. The summations in Equations 4,5 and 6

9



are for all the B bounding boxes calculated per grid location
i in an SxS grid. The presence of an object for bounding box
j in grid i is indicated by a boolean 1obji,j .

The location loss in Equation 4 is the summation of the
bottom-left corner (x, y) of a bounding box, and the w
width and h height of the box. It’s calculated using sum
squared error. The square root of the width and height are
taken to address the difference in loss values of the variance
in large and small bounding boxes.

Lcla = λcla

S2∑
i=0

1obji
∑

c∈classes

(pi(c)− p̂i(c))2 (5)

In Equation 5, the classification loss is calculated for ev-
ery cell where pi is the probability of the class c conditioned
on the presence of an object in a given box. At test time the
conditional probability is multiplied with object confidence,
and the IoU score of the predicted and ground-truth box. A
max over the classes is calculated in the preprocessing step
following model inference.

Lconf =

S2∑
i=0

B∑
j=0

1objij (Ci − Ĉi)2

+ λnoobj

S2∑
i=0

B∑
j=0

1noobjij (Ci − Ĉi)2
(6)

The object confidence loss in Equation 6 is also a sum-
mation of confidence of boxes with and without an object.
To avoid the gradients being overpowered from bounding
boxes with no objects a lower penalty of λnoobj is included
and a higher penalty λcoord is included for the bounding
box location loss.

Acknowledgements
I would like to thank the following people involved in

the conception of this work. It includes, Prof. Humphrey
Shi, Prof. Boyana Norris, Prof. Daniel Lowd, Prof. Dejing
Dou, and Prof. Joe Sventek for their feedback, discussions,
suggestions, and resources. In addition, the ideas presented
in this paper stem from the many conversations with my
various colleagues in the Department of Computer and In-
formation Science, University of Oregon.

References
[1] A. Babenko, A. Slesarev, A. Chigorin, and V. Lempitsky.

Neural codes for image retrieval. In European conference
on computer vision, pages 584–599. Springer, 2014.

[2] M. Berman, H. Jégou, A. Vedaldi, I. Kokkinos, and
M. Douze. Multigrain: a unified image embedding for
classes and instances. arXiv preprint arXiv:1902.05509,
2019.

[3] O. Chum, J. Philbin, J. Sivic, M. Isard, and A. Zisserman.
Total recall: Automatic query expansion with a generative
feature model for object retrieval. In 2007 IEEE 11th Inter-
national Conference on Computer Vision, pages 1–8. IEEE,
2007.

[4] A. Gordo, J. Almazán, J. Revaud, and D. Larlus. Deep image
retrieval: Learning global representations for image search.
In European conference on computer vision, pages 241–257.
Springer, 2016.

[5] H. Jégou and O. Chum. Negative evidences and co-
occurences in image retrieval: The benefit of pca and whiten-
ing. In European conference on computer vision, pages 774–
787. Springer, 2012.

[6] H. Jégou, M. Douze, and C. Schmid. Improving bag-of-
features for large scale image search. International journal
of computer vision, 87(3):316–336, 2010.

[7] H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregating
local descriptors into a compact image representation. In
2010 IEEE computer society conference on computer vision
and pattern recognition, pages 3304–3311. IEEE, 2010.

[8] J. Johnson, M. Douze, and H. Jégou. Billion-scale similarity
search with gpus. arXiv preprint arXiv:1702.08734, 2017.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages
1097–1105, 2012.

[10] D. G. Lowe. Distinctive image features from scale-
invariant keypoints. International journal of computer vi-
sion, 60(2):91–110, 2004.

[11] A. Mikulik, M. Perdoch, O. Chum, and J. Matas. Learning
vocabularies over a fine quantization. International journal
of computer vision, 103(1):163–175, 2013.

[12] D. Nister and H. Stewenius. Scalable recognition with a vo-
cabulary tree. In 2006 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’06),
volume 2, pages 2161–2168. Ieee, 2006.

[13] F. Perronnin and C. Dance. Fisher kernels on visual vocabu-
laries for image categorization. In 2007 IEEE conference on
computer vision and pattern recognition, pages 1–8. IEEE,
2007.

[14] F. Perronnin, Y. Liu, J. Sánchez, and H. Poirier. Large-
scale image retrieval with compressed fisher vectors. In 2010
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pages 3384–3391. IEEE, 2010.

[15] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisser-
man. Object retrieval with large vocabularies and fast spatial
matching. In 2007 IEEE conference on computer vision and
pattern recognition, pages 1–8. IEEE, 2007.

[16] F. Radenović, H. Jégou, and O. Chum. Multiple measure-
ments and joint dimensionality reduction for large scale im-
age search with short vectors. In Proceedings of the 5th ACM
on International Conference on Multimedia Retrieval, pages
587–590, 2015.

[17] F. Radenović, G. Tolias, and O. Chum. Fine-tuning cnn im-
age retrieval with no human annotation. IEEE transactions
on pattern analysis and machine intelligence, 41(7):1655–
1668, 2018.

10



[18] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You
only look once: Unified, real-time object detection. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 779–788, 2016.

[19] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer
Vision (IJCV), 115(3):211–252, 2015.

[20] A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carls-
son. Cnn features off-the-shelf: an astounding baseline for
recognition. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition workshops, pages 806–
813, 2014.

[21] J. Sivic and A. Zisserman. Video google: A text retrieval
approach to object matching in videos. In null, page 1470.
IEEE, 2003.

[22] G. Tolias, Y. Avrithis, and H. Jégou. Image search with se-
lective match kernels: aggregation across single and mul-
tiple images. International Journal of Computer Vision,
116(3):247–261, 2016.

[23] G. Tolias and H. Jégou. Visual query expansion with or with-
out geometry: refining local descriptors by feature aggrega-
tion. Pattern recognition, 47(10):3466–3476, 2014.

[24] G. Tolias, R. Sicre, and H. Jégou. Particular object retrieval
with integral max-pooling of cnn activations. arXiv preprint
arXiv:1511.05879, 2015.

[25] P. Turcot and D. G. Lowe. Better matching with fewer
features: The selection of useful features in large database
recognition problems. In 2009 IEEE 12th International Con-
ference on Computer Vision Workshops, ICCV Workshops,
pages 2109–2116. IEEE, 2009.

[26] L. Zheng, H. Zhang, S. Sun, M. Chandraker, Y. Yang, and
Q. Tian. Person re-identification in the wild. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1367–1376, 2017.

11


