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Abstract We present a high-order finite difference method for earthquake cycle
simulations within complex geometries that incorporates full dynamic effects
and is provably stable. The method is developed for the two-dimensional anti-
plane strain problem where a rate-and-state frictional fault is embedded in a
heterogeneous elastic half-space. To overcome challenges imposed by the large
range of spatial and temporal scales, we use the fault slip rate as a threshold for
switching between two different numerical solvers. During the interseismic phase,
we use a quasi-static approximation where large linear systems of equations
must be solved to allow for large time steps. Previous approaches to simulating
the co-seismic phase enforced a rate-and-state friction law that resulted in a
stiff system of equations that required a special, semi-implicit time-stepping
method. Here, we apply a newly developed non-stiff method that is compatible
with the interseismic method and allows for traditional explicit time stepping
methods. Our simulations are verified by rigorous convergence tests and code-
comparison exercises, and are an important step towards advancing earthquake
cycle simulations incorporating more realistic physics.
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1 Introduction and Literature Review

Simulations of multiple earthquake cycles on complex geometries will allow geo-
physicists to answer questions about how stress fields from previous earthquakes
will affect future earthquakes on the same fault and neighboring faults, and to
make hazard assessments using information about earthquake recurrence times.
Historically, solving multi-cycle models at high resolution has been computa-
tionally infeasible due to the range of spatial and temporal scales, so modelers
have resorted to addressing different phases of a cycle individually, or to us-
ing approximations over large domains. Previous models could be divided into
two categories: dynamic rupture simulations and earthquake simulators. Dy-
namic rupture simulations model co-seismic behavior where fault mechanics are
coupled with momentum balance in the off-fault volume, producing rupture dy-
namics over timescales of seconds in regional domains. Alternatively, earthquake
simulators, which are commonly used for hazard analysis, run simulations for
tens of thousands of years, over hundreds of thousands of km, but make many
simplifying physical assumptions (see for instance Richards-Dinger and Dieterich
(2012)). As Lapusta and Rice (2003) point to, the main reason for this division
becomes obvious when considering the different spatial and temporal scales that
must be resolved in a single simulation. In the spatial domain, fault depths and
lengths range from tens to thousands of kilometers, while nucleation zones are
realistically only a few meters. Temporally, tectonic loading occurs at rates of
millimeters per year, resulting in ruptures that occur at hundred to thousand
year increments, yet slip velocities during rupture occur at rates of meters per
second, and ruptures last for tens of seconds. A back of the envelope calcula-
tion shows that numerically resolving the smallest spatio-temporal scales in a
simulation over the largest scales of interest is completely computationally in-
feasible. Hence, we can investigate short co-seismic periods through dynamic
rupture simulation, or large scale (but with simplified physics) through earth-
quake simulators.

More recently, the Sequences of Earthquakes and Aseismic Slip (SEAS)
project has been attempting to address these shortcomings by running simula-
tions on regional sized faults over thousands of years, while maintaining accurate
modeling principles. Over the past two decades, many SEAS type simulations
have been developed such as Lapusta et al. (2000), Barbot (2019), Segall and
Bradley (2012) etc. Many of these simulators use the boundary element method
(BEM) to discretize the governing physical equations, and BEM is considered
the defacto method for solving many SEAS like problems. However, the BEM
method can only solve problems in isotropic linear elastic volumes, ultimately
limiting the modeler to simpler problems, when it is known that anisotropy and
inelasticity play a crucial role in earthquake cycles (Best Mckay et al. (2019),
Erickson et al. (2017)). As an alternative, Erickson and Dunham (2014) lays the
ground work for a Finite Difference (FD) framework for SEAS problems, which
do not suffer from these limitations. They spatially discretize a quasi-static ap-
proximation of the dynamic problem using Summation-by-Parts (SBP) FD op-
erators and impose boundary conditions through simultaneous-approximation-
terms (SATs). Their approximation neglects inertial terms and instead estimates
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the kinetic energy lost out of the fault with a radiation damping term. For time-
stepping, they derive an adaptive method that allows for large time-steps to be
taken during periods of slow tectonic loading. While their method overcomes
the limitations of the BEM method, Thomas et al. (2014) show that there are
significant discrepancies between simulations with full dynamics and radiation
damping approximations, especially when additional physics such as flash heat-
ing is added in the dynamic phase. It is therefore important that FD solvers
incorporate full dynamics as well.

In order to simulate full dynamic effects in the co-seismic period a two-solver
approach can be taken. During the interseismic period when wave effects are
unimportant a quasi-dynamic solver like the one in Erickson and Dunham (2014)
can be used, and a dynamic solver can be switched to right before rupture. Duru
et al. (2019) takes this approach, using Erickson and Dunham (2014), and then
in the co-seismic period impose a rate-state friction law through a Neumann
boundary condition using SATs. Rate-and-state laws give traction on a fault in
terms of slip velocity, and in 1D a linearized law reduces to:

∂u

∂x
= −αu̇, (1)

where traction is ∂u
∂x , slip rate is u̇, and α is a time-varying coefficient. As Koz-

don et al. (2021a) point out, α can range over many orders of magnitude during
an earthquake, ultimately leading to numerical stiffness. Duru et al. (2019) ad-
dresses this stiffness with a custom time-stepping scheme in which fault condi-
tions are integrated implicitly, and the volume is integrated with a second-order-
accurate explicit scheme. Kozdon et al. (2012) takes an alternative approach by
considering characteristic variables on the boundary, namely

u̇− ∂u

∂x
= R

(
u̇+

∂u

∂x

)
, R =

1− α
1 + α

, (2)

where the incoming characteristic is u̇ − ∂u
∂x and the outgoing characteristic is

u̇ + ∂u
∂x , and −1 ≤ R ≤ 1 is the reflection coefficient. They first show that non-

linear friction laws can be rewritten in terms of characteristic variables, and
then remove the stiffness from the characteristic formulation with the equations
of motion in first order form. Another advantage of the characteristic formulation
is that it supports Neumann (R = 1), Dirichlet (R = −1), and non-reflecting
(R = 0) boundary conditions, all with the same equation, which proves useful
for earthquake simulations. While the removal of the stiffness in Kozdon et al.
(2012) is a step in the right direction, it is only done for the first order form of
the equations where stress and velocity must be integrated. This does not allow
for a seamless transition between solvers, since Erickson and Dunham (2014)
take a displacement-based approach. The first order stress/velocity formulation
also requires more variables to be integrated. Kozdon et al. (2021a) revisits the
characteristic formulation and removes the stiffness from the second order form.
This allows for a generic explicit time-stepper of arbitrary-order accuracy on the
dynamic problem, and an easy transition between the quasi-static and dynamic
problems.
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The main contribution of this work is the merging of the quasi-static time-
stepping approach in Erickson and Dunham (2014), a new spatial discreteiza-
tion of the quasi-static problem from Kozdon et al. (2021b), and the dynamic
approach of Kozdon et al. (2021a) to simulate multiple earthquake cycles with
high-order accuracy on complex geometries. In section 2, we introduce 1D SBP-
operators. In section 3, we show that a characteristic formulation in 1D of the
dynamic problem is non-stiff. In section 4, describe the governing equations of a
2D cycle simulation. In section 5, we explain how the governing equations of a
2D simulation can be transformed to solve the problem on complex geometries.
In section 6, we introduce 2D SBP-operators. In section 7, we describe our solu-
tion method to the multi-cycle problem. In section 8, we present the results of
our simulations, and in section 9 we give some conclusions.

2 1D Summation-By-Parts (SBP) Operators and Simultaneous
Approximation Terms (SATs)

SBP operators are finite difference operators that discretely approximate deriva-
tives, and mimic integration-by-parts identities. In conjunction with boundary
enforcement through SATs, these operators allow for a discrete energy estimate
that can be used to prove discrete stability as an analogue to the stability of a
continuous problem.

Let the domain 0 ≤ r ≤ 1 be partitioned with N + 1 equally spaced nodes so
that the distance between each node is h = 1/N . We denote the projection of a
function u on the resulting grid points as uT =

[
u0, u1 · · ·un+1

]
. We also define

the restriction operator eTk , which takes a grid function to its value at r(hk), as a
vector of zeros except for a one at index k. While sometimes these operators are
useful, sometimes they are cumbersome, so we use them interchangeably with
eTk u = uk. A first derivative operator D1 is called SBP if:

D1 = H−1Q ≈ ∂

∂r
(3)

and

Q+QT =


−1

0
. . .

0
1

 , (4)

where H is diagonal and defines a norm ||u||2H = uTHu. It also has the nice
property of being a quadrature approximation. This definition gives the identity:

uTD1v = uNvN − u0v0 − uTDT
1 v, (5)

which is the discrete analog to the integration-by-parts identity:∫ 1

0

u
∂v

∂r
dx = uv|10 −

∫ 1

0

∂u

∂r
v (6)
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.
A variable coefficient C(r) second derivative operator DC

2 is called SBP if:

DC
2 = H−1(−AC + CNeNb

T
N − C0e0b

T
0 ) ≈ ∂

∂r

(
C(r)

∂

∂r

)
, (7)

where AC is a symmetric positive definite matrix with standard center differ-
ence operators and a damping operator for spurious oscillations. Mattsson and
Nordström (2004) give a full explanation of the advantages of using AC over the
application of a first derivative operator twice. bTk computes an approximation
to the first derivative at grid point k, and is not necessarily the first and last
row of D1 (Mattsson and Parisi (2010)). (7) then leads to the identity

uTHDC
2 v = CN (eTNu)bTNv − C0(eT0 u)bT0 v − uTM

Cv (8)

,
which is the discrete analog to the continuous identity∫ 1

0

u
∂

∂r

(
µ
∂v

∂r

)
dx = uv|10 −

∫ 1

0

∂u

∂r
µ
∂v

∂r
. (9)

SATs are used to enforce boundary conditions weakly. Instead of injecting
boundary data over the nodal values, these nodal values relax towards the bound-
ary data over timescales that decrease with grid spacing. These terms in 1D cor-
respond to inhomogeneous ODEs in time that depend on a penalty parameter
which determines stability.

3 Dynamic 1D Example Problem

In order to show that the method in Kozdon et al. (2021a) produces a non-stiff
system of ODEs, we apply both a standard SBP-SAT discretization and the new
method to the 1D wave equation with characteristic and Neumann boundary
conditions:

ρü =
∂

∂x

(
µ
∂u

∂x

)
x ∈ [0, 1] (10a)

u̇+ τ = R(u̇− τ) x = 1 (10b)

τ = 0 x = 0 (10c)

u(x, 0) = I(x) x ∈ [0, 1] (10d)

Where dots denote derivatives in time, µ and ρ are spatially varying param-
eters, u is the particle displacement, 0 ≤ R ≤ 1 is the reflection coefficient, τ is
the traction computed as τ = nµ∂u∂x where n is a normal direction (-1 or 1), and
I is an initial condition.

(10b) is a characteristic boundary condition. We will refer to u̇ + τ as the
incoming characteristic, and u̇−τ as the outgoing characteristic for the following
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reason. For the moment, assuming µ and ρ are constant in space, a diagonaliza-
tion of (10a) in first order form leads to a system of advection equations, one
moving the quantity u̇+ τ into the domain, and the other moving u̇− τ out of
the domain. Therefore (10b) can be thought of as enforcing that some fraction
R of the outgoing characteristic is sent back in the domain. We also note that
with spatially variable µ and ρ, u̇+τ and u̇−τ are not the exact characteristics,
so (10b) becomes an approximation to a true characteristic boundary condition.

As mentioned earlier, for different values ofR we can produce different bound-
ary conditions. Namely, R = 1 is a free-surface condition, R = 0 is a non-
reflecting condition, and R = −1 is a zero-Dirichlet condition. This is extremely
important since our multi-cycle simulation uses all three conditions.

A traditional SBP-SAT discretization of this problem is detailed in Mattsson
et al. (2009), namely

ρü = Dµ
2u−H

−1α0e0(µ0b
T
0 u) + αNeN ((1 +R)(µNb

T
Nu) + (1−R)u̇N ) (11)

In Mattsson et al. (2009) they derive bounds on α0 and αN for stability,
which in the case of a characteristic boundary condition on the right side forces
αN = −1

1+R . Plugging this value into (11) produces a term with 1−R
1+R , so that

when R is close to -1 a very large negative eigenvalue exists, leading to numerical
stiffness.

The method from Kozdon et al. (2021a) also uses SBP operators, but enforces
boundary conditions with flux terms τ∗ and u∗. Fluxes act very similarly to
SATs, but through the two degrees of freedom given by the fluxes conditions
on both traction and displacement can be imposed simultaneously. Using this
method, the resulting discretization is

ü = Dµ
2u+H−1eN (τ∗N − b

T
Nu) +H−1e0(τ∗0 + bT0 u)

−H−1bN (u∗0 − eTNu) +H−1b0(u∗0 − eT0 u).

This formulation allows us to simultaneously impose conditions on both traction
τ and displacement u through the fluxes on the boundaries. We enforce that the
fluxes satisfy (10b), and that the outgoing characteristic is maintained:

u̇∗i + τ∗i = Ri(u̇
∗ − τ∗) (12a)

u̇∗i − τ∗i = u̇i − τi, (12b)

where i = 0, N , and the numerical traction τi is computed with the boundary
derivative and a penalty parameter, namely

τi = nib
T
i u+ α(u∗i − ui). (13)

Solving the linear system (12) for the fluxes results in:

u̇∗i =
1 +Ri

2

(
u̇i − τi

)
(14a)

τ∗i =
1−Ri

2

(
u̇i − τi

)
. (14b)
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To enforce the Neumann condition (10c) we set R0 = 1, and to impose (10b)
we make RN = R. Additionally, we note that imposing characteristic boundary
conditions results in another set of equations (14a) which must be integrated to
yield u∗.

In Figure 1a, we show the eigenvalues of the semi-discrete systems of both
methods when RN = .99. The removal of the large negative eigenvalue in the
standard discretization signals that the new method produces a non-stiff system.
Additionally, sweeping through the values of R in Figure 1b shows that the
method produces small eigenvalues regardless of the value of R.

(a) Spectrum of 33 node second-order discretization with
RN = −.99

(b) The same discretization as (a), but varying R from
-.99 to 1

Fig. 1: Comparison of the eigenvalue spectra between the Kozdon et al. (2021a)
and the modified Mattsson et al. (2009) methods.

4 2D Earthquake Problem

The new dynamic method furnishes a non-stiff system of ODEs, even when a
rate-state law is imposed (Kozdon et al. (2012)), making it feasible to add a
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fully dynamic phase to a cycle simulation. In this next section we describe an
anti-plane cycle problem.

We consider a homogeneous, isotropic, linear elastic half space (x, y, z) ∈
(−∞,∞) × (−∞,∞) × (0,∞). The y = 0 plane is taken to be Earth’s free
surface, and a strike-slip fault is embedded in the x = 0 plane. We make the
simplifying assumption of anti-plane strain, which means that non-zero displace-
ments u(x, y, t) only occur in the z direction. Secondly, due to the anti-symmetry
of the solution over the x = 0 plane we consider only the positive half space.
The problem is then formulated as an initial-boundary value problem (IBVP)
governed by conservation of momentum:

ρü =
∂σxz
∂x

+
∂σyz
∂y

(x, y) ∈ (0,∞)× (0,∞), (15)

where ρ is the density of the volume material. We enforce Hookes law which
relates stresses σxz and σyz to strains with shear modulus µ:

σxz = µ
∂u

∂x
σyz = µ

∂u

∂y
. (16)

Along the fault we impose a rate-and-state friction law down to a depth of
W kilometers, below which we impose a slow slip condition, as can be seen in
Figure 2. Together these conditions form a boundary condition on x = 0:

τ(y, t) = F (V, ψ) x = 0, 0 ≤ y ≤W (17a)

ψ̇(y, t) = G(V, ψ) x = 0, 0 ≤ y ≤W (17b)

V (y, t) = Vp x = 0, y ≥W, (17c)

where τ is defined by a background stress τ0 added to stress caused by defor-
mation ∆τ on the fault. Equation (17a) relates the shear stress on the fault τ
to frictional strength F via an experimentally motivated friction law. The slip
velocity is V = 2u̇(0, y, t) and ψ is a state variable. ψ evolves according to (17b).
F and G take the forms

F (V, ψ) = σna sinh−1

(
V

2V0
e
ψ
a

)
(18a)

G(V, ψ) =
bV0
Dc

e
f0−ψ
b − |V |V0 (18b)

Here, σn is the normal stress on the fault, V0 is a steady state background slip
rate on the fault, a and b are parameters determined by the material properties
of the rock, and Dc is a characteristic slip distance over which the fault returns
to steady state sliding after a perturbation in slip velocity.

The sign of b− a determines if the fault is velocity strengthening (b− a < 0)
or weakening (b − a > 0) (Segall (2010)). Within velocity strengthening zones
rupture is inhibited as the fault strength increases with slip. The opposite is true
of velocity weakening zones. In order to facilitate rupture at the surface and slow
slip at depth, we make a vary along the fault with:
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a(y) =


a0 0 ≤ y < Hw

a0 + (amax − a0)(y −Hw)/Ht H ≤ y < Hw +Ht

amax Hw +Ht ≤ y < W

(19)

For the values of all the parameters above see Table 1.

Parameter Value
ρ 2.67 Mg/m3

µ 32.038 Gpa
σn 50 MPa
a0 .010
amax .025
b0 .025
Dc .008 m
Vp 10−9 m/s
V0 10−6 m/s
f0 .6
Hw 15 km
Ht 3 km
W 40 km

Table 1: Parameter values for BP1

Fig. 2: The strike-slip fault is embedded vertically; anti-plane shear motion is
assumed, defining the computational domain with four faces.
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5 Domain Transformation

Some sections of the domain in (15) require higher spatial resolution that oth-
ers. In Rice et al. (2001) they derive a length scale h∗ that must be resolved for
rupture to occur. Since rupture occurs at depths above 18km, it is computation-
ally efficient to apply a grid stretching below these depths, where h∗ does not
need to be resolved. To do this we apply a coordinate transformation between
the physical domain x(r, s) and y(r, s) and a logical domain r(x, y), s(x, y) ∈
(−1, 1) × (−1, 1). All finite difference computations are done on the logical do-
main, and are transformed back to the physical domain if need be. Letting J
denote the Jacobian determinant

J =
∂x

∂r

∂y

∂s
− ∂y

∂r

∂x

∂s
, (20)

the isotropic problem (15) in physical space can be recast as an anisotropic
problem in the computational domain under a transformation as:

Jρü =
[
∂
∂r

∂
∂s

]
C

[
∂u
∂r
∂u
∂s

]
, (21)

where C is a now a (2× 2) matrix-valued function. For a full proof of (21) and
for the explicit form of C see appendix A.

Dirichlet, Neumann and characteristic boundary conditions will need to be
imposed on the computational domain to simulate BP1. Dirichlet conditions are
unaffected by a coordinate transformation, but Neumann boundary conditions
such as:

τ = σxzn1 + σyzn2 = gn (22)

where n is the normal vector along a physical face, becomes

τ̂ = n̂TC

[
∂u
∂r
∂u
∂s

]
= SJgn (23)

in logical space, where n̂ is the normal vector along the computational face and
SJ is the surface Jacobian. SJ satisfies the relationships:

SJn1 = J
∂r

∂x
n̂1 + J

∂s

∂x
n̂2 (24a)

SJn2 = J
∂r

∂y
n̂1 + J

∂s

∂y
n̂2 (24b)

.

Characteristic boundary conditions have a traction term in them and there-
fore also use (23) as seen later.
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6 2D SBP Operators

In this section we describe the construction of the 2D operators. Describing 2D
operators poses some notational complications. We therefore hold the following
conventions: vector subscripts indicate an indexing into that vector. For matrix
operators a subscript denotes the direction in which that operator acts. A nor-
mal superscript denotes a grid line if there is a colon, otherwise it denotes the
face f that matrix is acting on. If there are parentheses around the superscript
it denotes that the matrices’ construction is dependent on the superscripted
function. The operators are usually constructed via the Kronecker product:

A⊗B =

a11B . . . a1nB
...

. . .
...

am1B . . . amnB

 (25)

We describe the second derivative operators on the block (r, s) = [−1, 1] ×
[−1, 1], where faces 1 and 2 are the right and left faces, and faces 3 and 4 are the
top and bottom faces (see Figure 2). We let the domain be discretized with (N+
1)×(N+1) evenly spaced grid points a distance of h = 2/N apart. The projection
of u onto the grid is again denoted uT =

[[
u00 . . . u0N

]
. . .
[
uN0 . . . uNN

]]
,

where ukl ≈ u(kh, lh) and is stored as a vector with r being the fastest index.
We define the face restriction operators as:

L1 = I ⊗ eT0 L2 = I ⊗ eTN L3 = eT0 ⊗ I L4 = eT0 ⊗ I (26)

where I is the (N + 1)× (N + 1) identity matrix. More generally, the restriction
to a single grid line in the r and s directions, respectively, are

Ll: = eTl ⊗ I L:l = I ⊗ eTl . (27)

In order to constructACrr
rr andACss

ss we must construct individual one-dimensional
second derivative matrices for each grid line with varying coefficients C and place
them in the correct block. Expanding a single second derivative matrix with the
Kronecker product and the identity matrix only works in the constant coefficient
case.

To do this it is useful to define Cij = diag(cij) where cij is the projection
of Cij(r, s) onto the grid, and denote the coefficients along the individual grid
lines as

C :l
ij = diag(Cij(0, hl), . . . , Cij(hN, hl)) Ck:

ij = diag(Cij(hk, 0), . . . , Cij(hk, hN)).
(28)

The interior second derivative operators can then be defined as the sum of 1D
operators along each grid line:

A(Crr)
rr = (H ⊗ I)

[
N∑
l=0

(
L:l
)T
A

(C:l
rr)

2 L:l

]
(29a)

A(Css)
ss = (I ⊗H)

[
N∑
k=0

(
Lk:
)T
A

(Ck:
ss)

2 Lk:

]
(29b)
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Operator Dimensions
ek, bk (N + 1)× 1

Q, D1,D2,H,C: (N + 1)× (N + 1)

L:,Bf (N + 1)× (N + 1)2

A
Cij
ij , D

Cij
ij , Cij (N + 1)2 × (N + 1)2

Table 2: Dimensions of Operators

and the mixed derivative operators as:

A(Crs)
rs = (I ⊗QT )Crs(Q⊗ I) (29c)

A(Csr)
sr = (QT ⊗ I)Csr(I ⊗Q) (29d)

.
The boundary derivatives parallel to a face f are given with the one-dimensional

first derivative operators D1,

B1
s = eT0D1 ⊗ I (30a)

B2
s = eTND1 ⊗ I (30b)

B3
r = I ⊗ eT0D1 (30c)

B4
r = I ⊗ eTND1 (30d)

and those perpendicular to the boundary using the boundary first derivative
operators b0 and bN from the second derivative operator:

B1
r = I ⊗ bT0 (31a)

B2
r = I ⊗ bTN (31b)

B3
s = bT0 ⊗ I (31c)

B4
s = bTN ⊗ I. (31d)

The full 2D second derivative operators with boundary closures are then
defined as:

D
(Cij)
ij = (H ⊗H)−1

−A(Cij)
ij +

2i∑
f=2i−1

n̂fi (Lf )THCfBf
j

 . (32)

To better clarify how the operators work we list the dimensions of each
operator in table 2.

7 Numerical Method

We implement two solvers, one for the interseismic period and one for the co-
seismic period and link them together through a specified switching criterion.
At the end of a phase, each solver passes their “final” data to the other solver
as initial data, until the simulated time period has ended.
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7.1 Quasi-Static Solver for Interseismic Period

The necessity of using a quasi-static solver during the interseismic period can be
seen by considering the wave speed cs =

√
µ/ρ = 3.464 m/s. In order to fully

resolve wave propagation a time-step on the order of h/cs seconds is needed.
This is an upper bound not taking into account the time-stepping method or grid
transformation. This is computationally infeasible for simulations of thousands of
years. Therefore, during the interseismic period, where wave propagation effects
matter little, we neglect inertial terms in (15) and approximate the stress drop
on the fault due to kinetic energy lost to the volume with a radiation damping
term ηV , where η = µ/2cs. These considerations result in the following time
dependent boundary value problem:

0 =
[
∂
∂r

∂
∂s

]
C

[
∂u
∂r
∂u
∂s

]
(r, s) ∈ (0, 1)× (0, 1) (33a)

τ̂ = SJ [F (V, ψ) + ηV − τ0] f = 1, 0 ≤ s ≤ s(0,W ) (33b)

ψ̇ = G(V, ψ) f = 1, 0 ≤ s ≤ s(0,W ) (33c)

V = Vp f = 1, s(0,W ) ≤ s (33d)

∂u

∂t
= Vp/2 f = 2 (33e)

τ̂ = 0 f = 3 (33f)

τ̂ = 0 f = 4 (33g)

(33h)

Here, (33g), (33f), and (33e) correspond to the surface of the Earth, a free surface
at depth, and a remote slow loading condition, respectively.

First, focusing on the problem at any single time-step, we discretize (33a)
subject to Dirichlet and Neumann boundary conditions. This requires a diver-
gence operator and enforcement of boundary conditions through SAT terms.
SAT terms are both dependent on u, and boundary data. We therefore decom-
pose the SATs into bf vectors which contain any boundary data, and the K
matrix where we insert any u dependent coefficients from the SAT vectors. This
results in the system of linear equations:

0 = (D(Crr)
rr +D(Crs)

rs +D(Csr)
sr +D(Css)

ss +K)u+

4∑
f=1

bf , (34)

where the sum of D
(Cij)
ij ’s approximates the divergence. For the explicit form

of bf and K and a stability proof see Kozdon et al. (2021b), and Erickson and
Dunham (2014). (34) is a system of linear equations which is solved for particle
displacements u within the domain. This linear system solve, using a Cholesky
decomposition, is embedded in the full time-stepping algorithm.

To evolve the system forward in time we integrate the boundary conditions
governing the fault then add them back into bf . The full time-stepping algorithm
can be summarized as follows:
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1. Use the current slip on the fault δ = 2u (initially δ = 0) to set a displacement
boundary condition on face 1. Also, compute the boundary conditions (33g),
(33f), and (33e) using (23).

2. Generate the linear system (34) where each of the boundary conditions in 1
determines the form of bf and solve it for u.

3. Use these new displacements to compute τ̂ in (33b). Then solve (33b), a
nonlinear equation, at every point along the fault for V . We do this using a
bracketed Newton method.

4. Integrate V and (33d) using an explicit adaptive RK4 method to give a new
slip δ along the fault. Repeat for the next time-step.

7.2 Dynamic Solver for Co-Seismic Period

Right before rupture we switch to a dynamic solver; the method is similar to
the one laid out in section 2, but is extended to two dimensions with the fault
on face 1 again. The full problem during the dynamic phase is:

Jρü =
[
∂
∂r

∂
∂s

]
C

[
∂u
∂r
∂u
∂s

]
(r, s) ∈ (0, 1)× (0, 1) (35a)

τ̂ = SJ [F (V, ψ)− τ0] f = 1, 0 ≤ s ≤ s(0,W ) (35b)

ψ̇ = G(V, ψ) f = 1, 0 ≤ s ≤ s(0,W ) (35c)

V = Vp f = 1, s(0,W ) ≤ s (35d)

Ẑu̇+ τ̂ = Rf (Ẑu̇− τ̂) f = 2, 3, 4 (35e)

.

Off-fault boundaries are handled with characteristic conditions (35e), where
Ẑ =

√
µρ is the shear impedance. We impose (R2, R3, R4) = (0, 1, 0), so that

face 3 is a free surface, and faces 2 and 4 are non-reflecting.

A discretization of (35a) using the method from Kozdon et al. (2021a) yields
the system:

Jρü = (D
(Cij)
ij )u

+

4∑
f=1

(H ⊗H)−1(Lf )THf (τ̂ ∗f − n̂fiC
f
ijB

f
ju)

−
4∑

f=1

(H ⊗H)−1(Bf
j )T n̂fiC

f
ijH

f (u∗f −Lfu)

, (36)
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where summation over i and j is implied. We again enforce the same conditions
on the fluxes for characteristic conditions as we did in 1D on faces 2, 3, and 4:

u̇∗f =
1 +Rf

2

(
Lf u̇− τ̂ f

)
(37a)

τ ∗f =
1−Rf

2

(
Lf u̇− τ̂ f

)
(37b)

.
The numerical traction τ̂ f on a face is computed with

τ̂ f = n̂fiC
f
ijB

f
ju+ (n̂fiC

f
ij n̂

f
i Γ

f )(u∗f −Lfu), (38)

where Γ f is a matrix storing penalty parameters for face f derived in Koz-
don et al. (2021a) and (Almquist and Dunham 2020), and we again assume
summation over i and j. To enforce the rate-state friction law we impose that
the traction flux obeys the friction law, and that the outgoing characteristic is
maintained along all points of face 1. At a single node this amounts to:

τ∗1 = S1
J [F (2u̇∗1, ψ)− τ0] (39a)

Ẑu̇∗1 − τ∗1 = ẐL1u̇− τ̂1. (39b)

To solve this system for u̇∗1 we root-find (with a bracketed Newton method) on
the equation:

0 = SJ [F (2u̇∗1, ψ)− τ0] + τ̂1 + Ẑ(u̇∗1 − L1u̇). (40)

For state evolution (35c) we enforce that

ψ̇ = G(2u̇∗1,ψ). (41)

We then apply a generic RK4 method to (36) u̇∗1, (37a), and (41) to step forward
in time.

7.2.1 Convergence of scheme

Since the addition of the dynamic solver is new and un-tested, we use the method
of manufactured solutions (MMS) to verify our code base (Roache (1998)). MMS
works as follows: We assume an analytic solution to the problem with added
boundary and volume source terms (not included in the model). We then com-
pute what those source terms would be in the formulation (35), and add it in
as sources in our numerical scheme. We can then compute the error between
our analytic solution and our numerical solution with the source terms. Our
manufactured solution is:

ue(x, y, t) = γ sin(π(x+ y − t))− (γπ/L+ ε)t+ (γπ/L+ ε)x (42)
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N errh = ||∆u||H rate
(

log2

(
errh/2
errh

))
second-order
16 9.831847e-02 NA
32 1.706659e-02 2.526288
64 3.241969e-03 2.396233
128 7.988851e-04 2.020810
256 1.991652e-04 2.004022
fourth-order
16 2.431269e-02 NA
32 1.719735e-03 3.821451
64 5.624746e-05 4.934255
128 3.920012e-06 3.842858
256 1.960141e-07 4.321829
sixth-order
16 8.394578e+00 NA
32 4.916485e-04 14.059543
64 7.509679e-06 6.032732
128 2.079501e-07 5.174442
256 3.160370e-08 2.718072

Table 3: error and convergence rates for the dynamic scheme

Source values can be directly added to the volume and the off-fault bound-
aries through source vectors. To inject MMS values into the fault we notice that
given (42) we can solve (18a) for an exact state equation:

ψe = a log

(
2V0
2u̇e

)
sinh

(
τe
aσn

)
(43a)

ψ̇e =
τ̇e
σn

coth

(
τe
aσn

)
− aüe

u̇e
(43b)

(43c)

This allows us to add the source term:

Sψ = ψ̇e −G(2u̇e, ψe) (44)

to (41), so that if our code is working state ψ will evolve with ψ̇e, forcing
the solution of (40) to return values of 2u̇e.

We test our code on complex domains using a transfinite interpolation. We
also remove the slow slip condition from face 1, make a = .01, and run our
simulation for .1 seconds. More on the coordinate transformation can be found
in appendix A. We compute the error between u and ue, using the L2 norm:

||∆u||H =
√

(∆u)TJ(H ⊗H)∆u (45)

Where ∆u = u − ue and ue is evaluated at the grid points. Errors and
convergence rates for second, fourth and sixth order operators are shown in
Table 3.
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7.3 Switching Between Solvers

The two-solver method poses two problems when switching from one to the
other: (1) how can the initial conditions for one solver be calculated from the
final conditions of the other? (2) What is a good criteria for when to switch?

The dynamic solver needs initial conditions on particle displacement and
velocity, as well as state. The static solver needs initial conditions on slip and
state. Therefore, when switching from static to dynamic, a standard backwards
difference in time is used to compute particle velocity, and the other data is
already available. When switching from dynamic to static, slip on the fault can be
computed as twice the particle velocity, and the other data is already available.

We tried a few switching criteria, and found the simulation was not very
sensitive to different schemes. In the end, a threshold for switching of max(V ) =
.01 m/s was used. Since it is desirable to not switch back and forth many times
in the same cycle we also require that a period of 50 years must be surpassed in
the inter-seismic phase for a switch to occur, and a period of 6 seconds in the
co-seismic phase must be surpassed.
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8 Results

(a) Quasi-static BEM simulation from Junle Jiang’s
Modeling group (Erickson et al. (2020)) with a 25m grid
spacing

(b) Cumulative slip on fault in one of our simulations where N = 850,
l = .05, r̄ = s̄ = .78, and L = 160km. See appendix A for the full domain
transformation.

Fig. 3: Comparison of cumulative slip profiles between a (a) quasi-static BEM
simulation and (b) our fully dynamic FD simulation. Both simulations run for
1500 years.

We run all of our simulations in the programming language Julia and all the codes
are available at https://github.com/totorotoby/BP1-FD. The results of our
simulation match BEM simulations of BP1 almost exactly as seen at https:

//strike.scec.org/cvws/cgi-bin/seas.cgi. While this is not the most ex-
citing result, it is a good verification exercise before tackling more complicated
problems that BEM simulators cannot consider.

In figure 3, we plot cumulative slip on the fault. Blue contours are plotted for
every year, while red contours (during rupture) are plotted every second. Since

https://github.com/totorotoby/BP1-FD
https://strike.scec.org/cvws/cgi-bin/seas.cgi
https://strike.scec.org/cvws/cgi-bin/seas.cgi
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slip velocities in quasi-static simulations are unrealistically low, our simulation
only has 12 events, while the BEM simulation has 17.

Ruptures nucleate at around a depth of 12km at approximately the transition
between the velocity weakening and strengthening zones. There are a few critical
physical length scales within this zone that must be resolved numerically. In Rice
et al. (2001) they derive a length scale h∗ that must be resolved for rupture to
occur, and other even smaller spatial scales that need to be resolved are in Day
(1982). h∗ in BP1 is approximately 2km and it is recommended in Erickson et al.
(2020) that h∗ is resolved with 80 nodes, for a grid spacing of 25m. With our
domain transformation we run our simulation with 850 nodes in each direction,
and grid spacing of 50m in the critical nucleation zone, and see almost the exact
same results as dynamic BEM models. We match results with about a quarter
the number of total recommended grid points.

9 Conclusion

We have developed a two-solver method for earthquake cycle simulations in com-
plex geometries. Both solvers use the SBP-SAT framework, and are provably
stable. The method, during co-seismic periods, produces a non-stiff set of equa-
tions which can be integrated using an explicit time-stepper. The method during
the inter-seismic period uses an adaptive time-stepping algorithm, which allows
for large time steps. In conjunction these methods produce a computationally
efficient scheme.

We verify the accuracy and stability of the new co-seismic solver with the
method of manufactured solutions, and clarify the strategy for switching between
solvers at the beginning and end of earthquakes.

This new method is applied to a anti-plane strike-slip problem. There is
quantitative agreement between the new method, and previously established
boundary element methods, even when we simulate on a coarser mesh than we
expected to be necessary.

The new method is now being applied to simulate rupture patterns on a fault
embedded in a generic sedimentary basin. We hope that this method will help
understand when surface ruptures occur within sedimentary basins.
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A Coordinate Transformation Equations

The entries of C in (21) are (Almquist and Dunham (2020)):

Cij(r, s) = J

(
∂i

∂x
µ
∂j

∂x
+
∂i

∂y
µ
∂j

∂y

)
(46)

The Coordinate Transformation used in the simulation pictured in Figure 3b is:

x(r, s) = ξ tanh((r − 1)/l) +
ξ tanh((−2)/l) + L

2
(r − 1) + L (47a)

y(r, s) = ξ tanh((s− 1)/l) +
ξ tanh((−2)/l) + L

2
(s− 1) + L (47b)

where:

ξ =
L/2− Lr̄ − L

2 tanh((r̄ − 1)/l + tanh(−2(r̄ − 1)/l)
(48)

The coordinate transformation for convergence tests in table 3 uses a transfinite interpo-
lation to generate the necessary terms in (46)(Farrashkhalvat and Miles (2003)). The physical
domain is defined by a rhombus with points (x1, y1) = (0, 0), (x2, y2) = (2, 1), (x3, y3) =
(1, 2), (x4, y4) = (3, 3).
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