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ABSTRACT
The success of Internet Data Science depends on the avail-

ability of high-quality labeled data (e.g., onset of a DDoS in

NetFlow log). Equally critical is the ability to share the data

with others, respecting the data owners’ privacy concerns.

Unfortunately, short of applying the data-to-code paradigm

(i.e., actual sharing of data), researchers lack a systematic

framework for working with or benefiting from data while

being mindful of privacy concerns. As a result, Internet Data

Science as practiced today is not amenable to leveraging the

collective domain knowledge of the community for impor-

tant ML-related activities such as (i) high-quality data label-

ing at scale, (ii) sharing of domain knowledge in a privacy-

preserving manner, and (iii) creating a viable roadmap for

their adoption by operators due to lack of capabilities to

interpret the trained ML models.

We propose a novel code-to-data approach whose goals

are to benefit data ownership, preserve privacy in collab-

orations, facilitate independent validation of each others’

findings, and enable the interpretability of trained ML mod-

els. Here, code refers to labeling functions which we view as

programmatic representations of operators’ domain knowl-

edge to identify events of interest in the network data. The

key novelty of our approach is that it entails only the shar-
ing of code and no sharing of any raw or curated data or

trainedMLmodels.We substantiate our approach by building

FLAMENCO—a novel weak supervision-based framework

to collaboratively label network data at scale while being

mindful of data owner’s privacy concerns. We demonstrate

the efficacy of FLAMENCO by labeling diverse networking

data programmatically, enabling privacy-preserving collabo-

ration among researchers using those data, and facilitating

the interpretability of models trained on those data.

1 INTRODUCTION
The success of Internet Data Science—defined as the applica-

tion of machine learning or ML for network performance

and security problems—depends crucially on the availability

of high-quality labeled datasets collected from different real-

world networks. Equally critical is the ability of researchers,

other than those that own such data, to maximally benefit

from the existence of these datasets while being mindful of

critical privacy requirements that the data owners impose

and that are unique to network data. However, except for fol-

lowing the “data-to-code" paradigm that involves the actual

sharing of raw or curated datasets, today’s researchers lack

a systematic framework for working with or benefiting from

datasets that exist outside their own networks or groups

and that the owners of this data consider as being strictly

off-limit when it comes to sharing with third parties.

To illustrate, consider an advanced volumetric DDoS at-

tack scenario faced by two enterprise networks. In this sce-

nario, the attackers targeting the two networks can be the

same or different actors, and the types of DDoS attacks seen

by the two networks can be the same or different (e.g., ampli-

fication attacks [36]). Moreover, the network infrastructures

at the two networks are likely to be different. For example,

the two networks may use firewall devices from different

vendors, and even if the devices are from the same vendor,

they can be expected to be configured differently. In any

case, the combined telemetry information (e.g., Netflow data,

firewall logs) collected at the two networks is likely to be

substantially richer than the information that each enclave

would collect separately. We posit that to obtain high-quality

labels for these advanced attacks and to train/apply high-

performance ML models to detect them, researchers should

be able to fully benefit from and readily tap into such com-

bined information sources.

Unfortunately, in view of how most of today’s networks

operate, collaboratively tackling such networking problems,

be they security- or performance-related, is by and large im-

possible. For one, by functioning essentially as autonomous

entities, today’s network researchers work on such problems

typically in isolation, mainly due to serious privacy concerns

and liability issues surrounding the data under their control.

Second, there exists no community-wide standard and/or

agreed-upon features for identifying different events of inter-

est. Finally, today’s network researchers lack the capabilities

to effectively leverage the collective domain knowledge of

the community for important ML-related activities such as

the scenario described above. Consequently, Internet Data
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Science efforts lack (i) a rigorous evaluation of newly de-

veloped research artifacts such as learning models, (ii) an

independent validation of reported research findings and

effective means for their scientific reproducibility, and (iii) a

viable roadmap for their adoption by network operators. In

short, there is an increased need for a paradigm shift whereby

the traditional but problematic “data-to-code" approach is

replaced by an approach that is specifically designed for

the sharing of domain knowledge among third parties as a

means for more accurate identification/detection of more

events of interest in the network data. This paradigm shift

should benefit data ownership, preserve privacy, and facil-

itate collaborative learning and independent validation of

each others’ findings.

In this work, we intend to democratize Internet Data Sci-

ence by arguing for and introducing a novel “code-to-data"

approach. To motivate and illustrate our approach, we con-

sider in the following the concrete use case of collaborative

data labeling. Here, “code" refers to purposefully-defined

labeling functions which we view as programmatic represen-

tations of network operators’ domain knowledge to identify

events of interest in the network data. By capturing and

leveraging this domain knowledge, and together with other

weak sources, we can generate “noisy" or “weak" labels for

the unlabeled training data. The labels are expected to be

inaccurate, hence the term “weak" labels. [11] introduced

this type of learning and gave the term weak supervision, or

weakly supervised learning. Popular form of weak supervi-

sion include distant supervision [8, 27] and crowd-sourcing

with non-expert annotators [35, 48]. We developed our ap-

proach in a weak supervised setting. The key novelty of our

approach is that it entails only the sharing of code and no shar-
ing of any raw or curated data. To substantiate our approach,

we build FLAMENCO, a new weak supervision-based frame-

work capable of supporting all activities such as (i) labeling

diverse networking datasets at scale, (ii) facilitating privacy-

preserving collaborations among researchers/operators from

different networks, and (iii) explaining the decision taken by

downstream ML models that are trained using the labeled

datasets.

With those activities in mind, we designed FLAMENCO

to consist of four primary components: data preprocessing,

label generation, label evaluation, and dataset-specific inter-

pretability tree generation.

In the data preprocessing component, FLAMENCO (i) han-

dles latency measurement data with various modality and

also Netflow data, and (ii) facilitates feature engineering.

In the label generation component, FLAMENCO generates

training labels using either automatic labeling function gen-

erator or manual labeling function generator to facilitate

user’s preference and need. In the labeling evaluation com-

ponent, FLAMENCO evaluates the quality of the training

labels in a supervised learning setting. FLAMENCO trains

a classifier using the newly labeled training set and tests

the performance to determine the quality of the training

labels. In the dataset-specific interpretability tree generation,

FLAMENCO renders a tree similar to the decision tree struc-

ture to provide explanations on the framework’s decision in

determining labels. We built FLAMENCO upon the follow-

ing points: (i) as a programmatic label generation, labeling

function encapsulates domain expertise to determine events

of interest and enables FLAMENCO to adapt to increased

network data variation and size, (ii) combining labeling func-

tions allows better learning to improve label quality and

accommodate research collaborations without exposing pri-

vacy, and (iii) labeling functions can be mapped to a tree to

visualize the decision making process in label assignment.

In addition to these, we also compared the F1 scores of the

manual labeling function generator, the trained classifier,

and the tree.

We demonstrate the efficacy of FLAMENCO by evaluating

it on two latency measurement datasets (CAIDA’s Ark [2]

and RIPE Atlas [5]) and two flow datasets (CIC DDoS NTP

[3] and Worf [4]).

On the latency measurement datasets, we show how our

framework can scale domain expertise and that the classifiers

that are trained using our labels outperform those trained

using the labels created by unsupervised learning methods.

On the flow datasets, we show how our framework support

collaboration without risking privacy, analyze the effects of

various labeling function combinations,compare the labeling

function F1 scores with that of trained classifiers, provide a

level of interpretability on the results in a form of a tree, and

compare the F1 scores of these interpretability trees with the

F1 scores of the labeling functions from which the trees are

generated.

This paper makes the following key contributions:

• Design and implementation of framework FLA-
MENCO. We propose a framework to create training la-

bels for two different network data types: (1) latency mea-

surements in the form of RTT (round-trip time) in ms, and

(2) NetFlow data, which are traffic flow data with various

features (e.g., flow duration, average packet size in the

flow, number of packets in the flow, number of bytes in

the flow) of their own. We also designed this framework

to be mindful of the privacy issue and easier to interpret.

• Application of FLAMENCO to demonstrate the la-
beling of diverse datasets, which will be done by eval-

uating our framework on four datasets: (1) CAIDA’s Ark

[2], (2) RIPE Atlas [5], (3) CIC DDoS NTP [3], and (4) Worf

[4].

• Application of FLAMENCO to enhance collabora-
tion among researchers, which will be done by showing
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how different research groups can collaborate using the

“code-to-data" approach without risking any privacy. The

code that we use will be in the form of “labeling function,"

the primary element in the data programming paradigm

[34].

• Application of FLAMENCO to explain decisions,
which will be done by rendering trees to visualize the

decision paths. We seek to improve the trust of network

operators in ML by providing explanations on how our

framework comes to a decision.

2 BACKGROUND AND MOTIVATION
In this section we will discuss the existing solutions that

address the problem of training label scarcity in ML. We will

also elaborate on why we deem these solutions inadequate

when applied in the networking domain.

2.1 State-of-the-art
2.1.1 Ground Truth Labels. The scarcity of ground truth

labels in Internet Data Science is primarily caused by the cost-

prohibitive nature of data labeling efforts [28]. The scarcity

problem is further complicated by the fact that networking

data have a high variability as they are collected from dif-

ferent layers of the protocol stack (e.g., layer 3 traceroute

measurements vs. layers 2 to 4 Netflow logs) and in different

granularities (e.g., packets vs. flows vs. logs). Furthermore,

there is a lack of consensus in the networking community

about the features that should be found in the data to describe

an event of interest. In addition to these, labeling networking

data can only be done by domain experts (e.g, network op-

erators, researchers) due to intimate knowledge of the data.

This naturally obviates techniques such as crowdsourcing

(e.g., [13, 47]) as potential candidates to address this problem.

Several works seek to address this label shortage, and

one of the approaches is weak supervision. This approach

assumes that the labelers are domain experts who act as

a resource in providing ground truth labels. Since the pri-

mary problem in creating a labeled training set is the limited

amount of labels that the domain experts can create, and thus

only a subset of the data that can be labeled, weak super-

vision leverages this limited amount of ground truth labels

to assign “weak" or “noisy" labels to the rest of the data to

create a fully-labeled training set. For example, Snorkel [33]

uses the data programming paradigm [34] to provide a way

for users—usually domain experts—to write programs (also

known as “labeling functions" or LFs) that describe the fea-

tures of interest to categorize the data into different classes.

Subsequently, Snorkel DryBell [7] was introduced to create

training labels at a massive industrial scale (6 million data

points). Since writing LFs is a burdensome task, especially

when the amount of datasets increases, Snuba [43] was intro-

duced to alleviate this burden to automatically generate LFs.

Snuba requires users to provide only a small set of labeled

data to learn from and create labels for the rest of the data.

Note that these techniques are not specific to networking,

as they are either domain-agnostic or specific to a certain

domain, such as computer vision. This lack of specificity

for the networking domain renders them unsuitable to han-

dle the networking data and their peculiarities. A domain-

agnostic framework need modifications to handle network

data, as some network data, such as latency measurements,

require different treatment for different source-destination

pair datasets. Since the task of modifying the input space

and data processing is non-trivial, these domain-agnostic

frameworks cannot readily handle network data.

There are data labeling frameworks, however, that are spe-

cific to networking. NoMoNoise [28], a recently proposed

framework to denoise latency measurements, leverages the

benefits of Snorkel [33] and the data programming paradigm

[34] in weak supervision setting to enable users to create

high-quality labels by combining and learning noisy labels

from many sources, without access to ground truth labels.

NoMoNoise, however, is limited to only one type of net-

working data, that is, latency measurement data, and is also

limited in scale, as it requires users—who are usually the

few domain experts—to study the data pattern for an event

of interest before writing the labeling functions; a task that

could become labor-intensive as the amount and variability

of datasets increase. Another framework to label network-

ing data using weak supervised learning is EMERGE [24].

Extending from NoMoNoise [28] and inspired by Snuba [43],

EMERGE generates labels to discriminate noise from good

latency measurement data and does so without requiring

users to find pattern in the data to write labeling functions,

which makes EMERGE more scalable in handling a large

amount and variety of networking data. However, EMERGE

is specific only to latency measurement data, and thus it has

limited versatility to handle other types of networking data.

To put it briefly, many have proposed solutions to address

the problem of training label shortage. The solutions vary

on the domain in which they apply; some are specific only

to certain domain (e.g., GOGGLES) or data type (e.g., [13],
NoMoNoise [28], EMERGE [24]), while some are too broad to

readily handle network data (e.g, Snorkel [33], Snuba [43]).

2.1.2 Privacy Issues. While data privacy in other domains

may not be a sticking point since not all data contain sensi-

tive information (e.g., images of dog breeds, birds, or flowers),

almost all networking data contain identifying and sensitive

information. Except for following the “data-to-code" para-

digm (i.e., actual sharing of raw or curated datasets), today’s

researchers lack a systematic framework for working with or
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benefiting from datasets that exist outside their own groups

and that the owners of this data consider as being strictly

off-limit when it comes to sharingwith third parties. Such pri-

vacy concern becomes a roadblock in collaborations among

research groups in applying ML on networking, because

they could not share the training data, the ML models, or the

models’ predictions.

Moreover, ML was also observed to have exposed secu-

rity and privacy vulnerabilities in the software systems that

adopted it [30]. Attackers who exploited these vulnerabilities

usually are interested in recovering information on the ML

algorithms used in the deployed models or on the data used

in the training set, since these data are often proprietary or

contain sensitive information protected by the data privacy

laws. The types of attack depend on the level of information

access that the attackers had on the systems. Access to ML

models and their parameters allowed attackers to determine

the statistical characteristics of the training set and generate

datasets out of the information gained from the attack [6].

Allowing access only to the ML models and their output,

as can be found in ML-as-a-service systems, can still wreak

havoc. The information about ML models and the outputs

still allows attackers to conduct myriads of other attacks. One

of the attacks is membership inference [40]. In this type of

attack, attackers could determine if a certain data point is part

of the training set. Another attack that can be launched from

MLmodel and output information is model inversion [15, 16].

This vulnerability allowed attackers to extract the training

set and gain sensitive information contained in the data.

Finally, ML models and output exposure can be exploited for

model extraction [41], which could potentially leak sensitive

information in the training set, as this attack gave attackers

access to the model, on which they could further exploit by

conducting model inversion. Considering all these risks, the

safest way to prevent privacy leaks is to withhold access to

the ML models, the training data, and the output of the ML

models.

While approaches like federated learning and multi-party

cryptographic collaborative learning are proposed to tackle

such data and privacy issues, we posit that both those ap-

proaches are susceptible to new types of attacks. For exam-

ple, federated learning in its current form has problems with

leaking information (e.g., membership inference attack) and

may therefore not be suitable for the collaborative learning

scenarios we envision in this project [32]. Similarly, multi-

party cryptographic collaborative learning is prone to con-

tamination attacks by the one or more of the participating

networks [18], dealing which is beyond the scope of this

work.

To summarize, the existing solutions are not designed with

privacy protection in mind, and this renders them unfit to

handle network data where privacy is a major concern.

2.1.3 Model Interpretability. Lastly, the lack of trans-

parency in ML models, which has eroded the trust that net-

work operators have in ML models, is a significant issue

in networking. Since these operators are accountable for

their actions and decisions, it is unsurprising if they require

interpretability in the ML models that they plan to adopt.

Recent works have also brought into attention the grow-

ing concern over the blackbox nature of many ML models,

particularly when the models’ predictions have a significant

impact on people’s lives. In 2016, a recidivism prediction algo-

rithm called COMPAS (Correctional Offender Management

Profiling for Alternative Sanctions) caused a controversy

when it was claimed to be racially biased [17, 22], although

it seemed that the claim was not fully validated [14, 39]. The

fact that such claim could have arisen, coupled with other

instances where ML predictions have shown to be wrong

[25, 46] while affecting the safety and well-being of many

[29, 44], has led to a rising hesitancy in blind acceptance of

blackbox ML predictions, and even to a growing voice to

avoid the use of blackbox ML models when interpretable

models would perform equally well [37, 38, 45]. This voice

of concern seems to not fall of deaf ears, as efforts to make

ML model’s predictions explainable have gained traction

recently, such as FICO’s Explainable Machine Learning Chal-

lenge in 2017 [1], DARPA’s program of Explainable AI (XAI)

[42], Google Cloud’s XAI tools [10], and IBM’s [21], to name

a few. The goal of these efforts is to gain understanding as

to how the model makes a prediction, including what vari-

ables it considered and the threshold values it compares to.

In achieving such a level of interpretability, trust in the ML

models would hopefully grow.

To summarize, the solutions still use ML as a black box,

and given the rise of hesitation to trust ML blindly, it presents

a problem of slow adoption of ML in the networking domain.

2.2 Limitations of State-of-the-art
These prior efforts fall short in handling the networking data

in their entirety due to the following limitations (Ls):
L1: Inability to handle diverse networking data,

which in turn leads to a general lack of agreed specificity

among the networking community on describing events of

interest. Hence, GOGGLES [13], as a framework to address

labeling problems in computer vision, would be unsuitable.

The other frameworks (Snorkel [33], Snorkel DryBell [7],

Snuba [43]) are domain-agnostic, which, some could argue,

would be suitable to solve networking problems. However,

the task of data preprocessing and finding the patterns in the

networking data is non-trivial, and thus we need a weak su-

pervision framework that is specific to networking and ready
to handle data collected from different layers of the network

stack (TTL-limited, NetFlow) and at different granularities
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(packets and flows). On the other hand, frameworks that are

too specific to only one kind of networking data would also

fall short, as in the case of NoMoNoise [28] and EMERGE

[24].

L2: Inability to scale the domain expertise to cover
larger and more datasets. Since labeling networking

data requires domain expertise, frameworks such as

CROWDGAME [47], which employs crowdsourcing, would

be ill-suited. It is also important to note that many network-

ing data, especially latency measurement data, are separated

into different datasets based on their source and destination

location, as different source and destination datasets have

different statistical profiles (e.g., RTTs in the data between

Seattle and Los Angeles would be markedly different in val-

ues from RTTs in the data between Seattle and Shanghai),

and thus each dataset requires different processing. In light

of this, while frameworks such as Snorkel DryBell [7] are

developed to handle a massive amount of data, it is still not

a readily available framework to handle a large amount of

networking data that consist of unique source-destination

data points.

L3: Lack of support for privacy-preserving collabora-
tion. The frameworks mentioned above made no mention

of data privacy as one of their chief concerns in design. As

research advances from a community effort in learning from

each other, in which collaboration is encouraged, most of the

frameworks above are ill-suited to support research collabo-

ration in the networking domain, as most of the networking

data contain sensitive information.

L4: Lack of capabilities to facilitate interpretability
in the ML-based methods. There is a general hesitancy

among network operators to adopt machine learning-based

tools due to their lack of interpretability since many of the

complex machine learning techniques, especially deep learn-

ing, are treated as blackbox and thus their inferences and

how they arrive at the results are left without explanation.

Most of the frameworks above use complex ML methods that

are hard to interpret.

3 FLAMENCO: DESIGN AND
IMPLEMENTATION

In this section we will present the requirements that a solu-

tion must meet to address the limitations discussed in §2.2.

We will also present the key intuitions upon which we build

our solution. Finally, we will describe the design and imple-

mentation of our proposed solution.

3.1 Requirements
We posit that an “ideal" framework for democratizing AI/ML

for networking should meet the following requirements (Rs):

Figure 1: Example of labeling function.

R1: Versatility to handle various networking data. An
ideal framework to label networking data should be versatile

enough in its input space to accept data from different layers

of the networking stack, which often are in the form of time

series with most variables containing numerical values, but

also stringent enough to only accept certain types of data to

ensure a smooth flow with the minimum time needed on the

data preprocessing step.

R2: Ability to scale the domain expertise to label data.
The ideal framework should have the ability to broaden the

coverage of the available domain expertise over more and

larger datasets at a low cost. This could be done by replicating

the labeling process that the domain experts performwithout

them being directly involved; a system that can mimic the

human reasoning involved to assign labels and apply them

to a large amount of data.

R3: Ability to preserve privacy. The framework should

serve as a platform that promotes collaboration between

research groups in the overall effort to democratize the use

of ML in networking research, while also preserving privacy.

The framework shares neither raw data nor ML models, but

instead only labeling techniques regarding the features and

threshold values. The labeling information can be shared

among different research groups working on the same gran-

ularity of network data (e.g., flows) to solve the same problem

(e.g., DDoS attack detection) without exposing any person-

ally identifiable information.

R4: Interpretability. The framework should offer trans-

parency in its decision-making. This can be done by provid-

ing the users a visualization in the labeling process, such

as the patterns that the system use, and why it categorizes

certain value in one class, while others in another class. The

ability to explain the logical steps in the model’s decision-

making process improves the framework’s accountability,

which hopefully would inspire a more trusting stance among

newly ML adopters in the networking community.

3.2 Key Insights
As described in § 2.1.1, it is well known that the data pro-

gramming paradigm employs labeling functions on the unla-

beled data and learns the joint probability distributions of

the noisy labels to produce ground truth labels in a scalable

way [28]. We build on this paradigm and use the following

key intuitions (Is) in this work:
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• I1: Labeling functions can capture the operator’s do-
main knowledge in identifying events of interest in
the data, and enable a scalable way to programmat-
ically label diverse networking data. This program-

matic approach answers the issue of scalability §2.2 L2
and fulfills §3.1 R2. Figure 1 shows an example of a label-

ing function. This labeling function encodes a heuristic, or

rule, that considers data with the number of packets less

than or equal to its 75th percentile to be benign (returning

1) and abstains from determining the data that do not meet

the condition (returning 0).

This example shows that labeling functions are basically

heuristics encoded in a program. Users are given the abil-

ity to write labeling functions to identify multiple events
of interest on the same dataset. For instance, a network ex-
periences two types of DDoS attacks: an NTP attack and a

SYN flood attack. In a flow dataset the SYN flag count field

would play a major role to detect a SYN flood attack, while

this field may not be important to detect NTP attack. On

this same network from which the flow dataset is formed,

the first domain expert can write labeling functions to

identify NTP attacks, while another domain expert can

write labeling functions to identify SYN flood attacks. In

this scenario, instead of putting permanent labels on the

dataset, which can create a fixed labeled dataset to identify

only one event of interest, we can actually identify two
events of interest (NTP attacks and SYN flood attacks) on

the same dataset. In this approach, our proposed labeling

technique is flexible.
When it comes to scalability, although labeling functions

are unique to specific networks, labeling functions can

still capture the network’s statistical or universal (e.g.,
ports) thresholds to be applicable to other networks. For

instance, one dataset can have a flow size average of 1000

bits, while another dataset 5000 bits. By using statistical

characteristics (e.g.,mean, standard deviation, median and

their derivation) of the first dataset to write the labeling

functions, users can apply these labeling functions to the

second dataset. This allows the labeling functions to be

applicable to many datasets, and thus solves the scalability

issue §2.2 L2.
• I2: Joining two or more labeling functions enables
better learning and provides an opportunity to col-
laborate in a privacy-preserving fashionwhere only
"code" is shared across groups instead of the data or
the trained models. This approach provides a solution

to the issue of privacy in research collaboration §2.2 L3
and meets §3.1 R3.
We aim to address two issues that are found to be the

causes of the label scarcity in the networking data: (1) lack

of agreement in the community on features to identify

certain events of interest, and (2) the risk of privacy leaks

in the research collaborative setting. Since reaching a con-

sensus involves the whole community, one way to move

towards a consensus is through collaboration between

research groups. To illustrate, a research group working

on a problem of identifying characteristics of an HTTP

flood attack can collaborate with another group who are

also working on the same problem.

Recall that labeling functions can overlap and conflict with

each other, and by combining multiple labeling functions,

we can estimate their accuracy by counting their frequency

of agreement and disagreement between them. Labeling

functions with a higher frequency of agreement with oth-

ers will be considered more accurate, while those with

low frequency of agreement with others will be consid-

ered less accurate. In generating labels, labeling functions

will vote on a label (-1 or 1), with the votes weighted by

their respective estimated accuracy. [34] showed that this

combination generated quality labels without the labor-

intensiveness of hand-labeling approach. With this benefit

of combining labeling functions, collaboration between

different research groups by sharing their respective label-

ing functions would form a richer learning material. Since

more knowledge can be shared and accumulated into a

community knowledge, we could move closer towards a

consensus.

The privacy leaks issue can be avoided by sharing only
the labeling functions between the groups; no data or ML

models are shared. Since labeling functions practically

are heuristics (or rules), sharing these labeling functions

resembles sharing rules with others, which allow a greater

community to assess and study the findings.

• I3: Labeling functions that are used to create data
labels and train ML models can also be expanded
to dataset-specific interpretability trees. Using these
trees, operators can run the data points along different

branches to “explain" the classification/prediction deci-

sions made by the trained ML models. We acknowledge

that the labeling functions produce noisy labels that might

not be as accurate as those created by hand. Our attempt

is to offer a degree of transparency in the decision-making

process. One may argue that if the tree merely visualizes

the labeling functions that the user wrote, then the tree

does not add value to the understanding on the decision-

making process. To respond, we posit the following:

• The hierarchy of the nodes are based on feature im-

portance, which can offer the user an understanding

on why the path goes in a certain direction and not

the other. A user who writes labeling functions that

are based on two different features on the same dataset

might not always be aware of the order of importance,
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and thus the visualization of these two labeling func-

tions and the path taken to arrive at the conclusion can

still add a degree of explanation.

• Since a tree represents one dataset at a time, and since

a dataset represents a network, the structure of the tree

is determined by the features and the values of those

features. This is because these features and their values

affect the threshold calculation in the labeling function

and also affect the feature importance score. The order

of importance of the features largely determines the

feature and the threshold on the tree nodes. When gen-

erating the dataset-specific interpretability tree that is

based on a labeling function combination from two dif-

ferent groups, the user of each group can readily trace

the logical path without having to remember or recalcu-

late feature importance in order to gain understanding

of the decision-making process.

We posit that the dataset-specific interpretability tree of-

fers a solution to the issue of interpretability in §2.2 L4
and fulfills requirement §3.1 R4.

3.3 Overview and Design
Building on intuitions §3.2 I1, §3.2 I2, and §3.2 I3, we intend
to revolutionize Internet Data Science by arguing for and

introducing a novel approach we term “code-to-data". To mo-

tivate and illustrate our approach, we consider in this work

the concrete use case of collaborative data labeling. In this

case, “code" refers to purposefully-defined labeling functions
that encapsulate domain expertise to identify events of in-

terest. The key novelty of our approach is that it entails only
the sharing of code and no sharing of any raw or curated

data. Our high-level objective is to facilitate the sharing of

domain knowledge across research groups in pursuit of In-

ternet Data Science in a way that benefits data ownership,

preserves data privacy, and facilitates collaborative learning

and independent validation of each others’ findings. The

overall framework pipeline is shown in Figure 2.

It is well known that data programming facilitates scal-

ing by applying labeling functions on unlabeled data and

that weak supervision produces ground truth via learning of

joint probability distributions. So we build on data program-

ming and use the intuitions discussed in §3.2, which are:

(I1) Labeling functions capture operator’s domain knowl-

edge and enable scalable data labeling, (I2) Joining labeling
functions enables better learning and opens up new ways

to collaborate in a privacy-preserving fashion where only

"code" is sent instead of the data or the trained models, and

(I3) Labeling functions can be expanded to interpretability

trees and operators can run the data points on those trees to

"explain" the decisions made by the ML models. The design

of FLAMENCO follows these intuitions and aims to provide

a framework that supports (1) generating labeling functions,

(2) improving labeling functions, and (3) understanding the

results.

To achieve this goal, we propose the design of FLAMENCO

(shown in Figure 2), a novel framework capable of supporting

all the requirements (described in § 3.1) to address training

label shortage, support collaboration that avoids privacy

leak, and provide explanations on the decision-making in

the labeling process. At its core, the FLAMENCO framework

consists of the following four components:

• a data preprocessing (§ 3.3.1) component that takes the

input data and prepares them for the next component, con-

sisting of (i) a modality detection module, (ii) a synthetic

data creation module, (iii) a threshold calculation module,

(iv) a data loader module in which the data’s statistical

features are extracted and the data are split into training,

validation, and test sets, and (v) a data preparation module

in which the data features are selected and the data split

into training, validation, and test sets;

• a label generation (§ 3.3.2) component in which the prob-

abilistic labels for the training set are generated, consisting

of (i) an automatic labeling function generation module,

and (ii) a manual labeling function generation module;

• a label evaluation (§ 3.3.3) component consisting of (i) an

end-classifier training using the training set and the newly

generated probabilistic labels in a supervised learning

setting, and (ii) platform to combine labeling functions to

improve label quality; and

• dataset-specific interpretability tree generation
(§ 3.3.4) component that will generate trees for the

datasets.

We describe each one of these components below.

3.3.1 Data preprocessing. This component takes the

input dataset in the CSV format and prepares the data in

a format acceptable for label generation. The component

consists of the following modules:

Modality detection. This module is developed to analyze

a dataset with continuous numerical values that does not

conform to the normal distribution with the goal of splitting

the bimodal or multimodal data into separate subsets. Al-

though themodule was developedwith latencymeasurement

data (e.g., RTT) in mind, it can work with any continuous

numerical data. The module works by finding the number

of peaks in the data distribution using KDE computation,

finding the lowest points between the peaks, and using these

lowest points to split the peaks into different subsets. The

purpose of splitting bimodal and multimodal data into a uni-

modal data subset is to extract the statistical characteristics

of each peak in isolation, since the statistical characteristics

of bimodal or multimodal data are different than those of the
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Figure 2: Overview of FLAMENCO. The four main components are data preprocessing, label generation, visual-
ization tree generator, and label evaluation. After labeling functions are generated by either automatic or manual
method, the labeling functions are passed to the visualization tree component. We use only one arrow from “La-
bel Generation" to “Visualization Tree Generator" to indicate that labeling functions from eithermethod can feed
into the “Visualization Tree Generator.

individual peaks. These statistical characteristics can then be

used for further analysis by other modules or components.

Synthetic data creation. This module is created to fa-

cilitate oversampling, which the user might use in dealing

with imbalanced data. The module works by finding the size

of the synthetic data, creating random values according to

user’s specified lower and upper bounds, and injecting the

synthetic data into the original data.

Threshold calculation. This module is developed to fa-

cilitate user in determining the threshold value with which

the user might want to use to separate the negative class

from the positive class. The module assumes unimodal dis-

tribution in the data and uses the statistical characteristics

of the data to calculate the threshold value.

Feature augmentation. This module is designed to han-

dle time series data with only one feature. The module will

add statistical features (count, minimum, mean, standard de-

viation, first quartile, median, third quartile, and maximum)

to the feature column. Then the module will split the data

into train, validation, test sets, and label the validation and

test sets. So in this module, the data undergo the following

process: (1) statistical feature augmentation, (2) creation of a

new column containing the calculated features, (3) training,

validation, and test split, (4) validation set labeling, and (5)

test set labeling. The outputs of this module are training fea-

ture matrix, training set, validation feature matrix, validation

set, validation ground truth labels set, test feature matrix,

test set, test ground truth labels.

Feature selection. While the feature augmentation com-

ponent is used to add the number of features, the feature

selection module is used to reduce the number of features.

The goal of this module is to select the features that can ben-

efit users in writing labeling functions. We realize that some

users may already know exactly what features they want to

include. In this case, they merely need to proceed and select

the features they wanted. However, we also realize that there

are users who would want to explore and study the features

before selecting any. This module facilitates this latter group

of users by computing the feature correlation, which the

users can use to select the features. After feature selection,

this module will split the data into training, validation, and

test sets, and allow users to create ground truth labels for the

validation and test sets. Next, the module will write the train-

ing, validation, and test sets into separate TSV files. Lastly,

the module creates a pandas DataFrame [26] containing the

statistical characteristics of the selected features and writes

these data into a CSV file. This last step is to facilitate users

in deciding threshold values for their labeling functions.

3.3.2 Label generation. The label generator compo-

nent operates in a weakly supervised setting. This compo-

nent creates the training labels by first generating labeling

functions in a programmable fashion. The labeling functions

can be generated in two ways: (1) automatically, and (2) man-

ually. This component is the essence of our framework. The

generated labeling functions will capture the experts’ do-

main knowledge and will be scalable, following intuition

§3.2 I1 (capture the operator’s domain knowledge to identify

events of interest, done in a programmable and scalable way).

The labels are expected to be weak or inaccurate. However,

with a limited availability of hand-labeled ground truth data

created by domain experts as input, a generative model will

learn and improve the label accuracy. Thus, learning occurs
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from agreement and disagreement of various labeling func-

tions and also from the limited hand-labeled ground truth

data [34]. In addition to that, the component is built upon

intuition §3.2 I2 (joining multiple labeling functions enables

better learning and promote privacy-preserving collabora-

tion).

This component consists of the following modules:

Automatic labeling function generation. This module

takes the training data and their features, validation data and

their features, and also the validation ground truth labels,

and then assigns a simple classifier (e.g., decision stump)

to each row of the training set. Each classifier learns from

the feature row associated with the data point, identifies

heuristics or rules of thumb (e.g., RTTs with value greater

than or equal to 150 ms is considered as noise), and generates

a labeling function for that data point based on the heuristics.

The process is applied to the entire rows of the training set,

creating probabilistic label for each data point.

Note that this module expects users to provide ground

truth labels for a subset of the data, which thenwould become

the validation and test sets. The ground truth labels for the

validation set is for guiding the simple classifiers in learning

the features and associating them with the classes and also

for evaluation, while the ground truth labels for the test set

is used for evaluation purposes.

Manual labeling function generation. This module

provides an interface where users can write labeling func-

tions. It will load the CSV file containing the statistical char-

acteristics of the selected features. In this module the users

can define their labeling functions and combine them. The

module will take the labeling functions and calculate the

dependencies, overlaps, and even any conflict in the labeling

functions. The module then uses this information to generate

the probabilistic labels for the training set.

The ability to combine labeling functions suits the need

for privacy-preserving research collaboration since (a) these

labeling functions act as the “code" in the “code-to-data” ap-

proach and prevent data leaks, and (b) it opens an avenue to

promote research collaboration, as different research groups

working on the same type of dataset (e.g., flows, latency mea-

surements) can share their labeling functions to improve

their label quality and move closer to reaching a community

consensus on features for various events of interests (e.g.,
detecting noise, DDoS attack). This component is designed

to meet requirement §3.1R3 (ability to preserve privacy) and
follow intuition §3.2 I2 (joining multiple labeling functions

enables better learning and promote privacy-preserving col-

laboration).

We included the automatic labeling functions generation

component alongside the manual component because we re-

alized that as the number of datasets and the diversity of the

networking data input increase, experts might still get over-

whelmed at the repetitive and laborious process of analyzing

and studying new datasets. Thus, the automatic labeling func-

tion generation component is meant to substitute the human

logic and repetitive process in studying the data and forming

the heuristics (patterns, or rules of thumb; e.g., flow packet

size greater than or equal to 100 bits is considered a DDoS

attack). The addition of the automatic labeling function gen-

eration component sets our framework to generate labeling

functions in a programmable and scalable fashion. Thus, the

automatic labeling function generator seeks to meet require-

ment §3.1 R1 (versatility to handle various networking data),
and §3.1 R2 (ability to scale the domain expertise to label

data).

We realize that a single labeling function from one fea-

ture would produce noisy labels, as these labeling functions

would often apply to only some data points and not others.

For instance, in detecting DDoS attack, one labeling function

considers data with packet size less than their 75th percentile

to be benign. While this may apply to some data, this catego-

rization cannot apply to all data. To get a more generalized

conclusion, we need multiple labeling functions.

Combining multiple labeling functions (from the same

feature and different features) is a useful if not a necessary

exercise, as different labeling functions capture different pat-

terns and different angles in analyzing the data. These label-

ing functions might agree or disagree. The accuracy of the

labeling functions are estimated based on the frequency of

their agreement and disagreement with other labeling func-

tions. The higher the frequency of agreement, the higher

the estimated accuracy, and thus the more weight assigned

to this labeling function when it comes to voting for label

assignment.

3.3.3 Label evaluation. This component takes the train-

ing set and the newly generated labels, trains a classifier on

this training set, and evaluates the classifier’s performance.

The component consists of:

End-classifier training. At this stage, the framework

trains a classifier on the training set and its probabilistic

labels in a supervised learning setting. The default classifier

is LSTM, since the majority of the networking data is time

series, and we want to preserve the time order of the data as

this sequence may carry important information.

End-classifier evaluation.We use F1 score as the evalu-

ation metric. This is because we are interested in knowing

our label quality by measuring the number of correct and

incorrect classification.

3.3.4 Dataset-specific interpretability tree genera-
tion. To meet the fourth requirement §3.1 R4 (interpretabil-

ity) and to built upon intuition §3.2 I3(labeling functions
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Figure 3: Example decision tree generated from a combination of two labeling functions for the Worf dataset.

Figure 4: Example decision tree generated from a combination of three labeling functions for the Worf dataset.

can be expanded to trees), FLAMENCO will map the user-

defined labeling functions to trees, which will serve as visual

representations of the user-defined labeling function(s). The

tree’s nodes contain a boolean statement of a feature and

a threshold (e.g, packet length >= 150, bytes <= mean +

sd) and the edges are the “True" and “False" answers to the

boolean statements. With these trees, users can trace how

our framework analyzes a data point and categorizes it to

a certain class. The decision-making process displayed by

the tree is meant to provide transparency on why the data

points with certain feature and value are categorized in one

class, while other data points in another class.

Note, however, that these trees are not the decision tree

classifiers. These dataset-specific interpretability trees sim-

ply visualize the path that a data point takes to arrive at a

classification decision according to the user-defined labeling

functions. In contrast, the decision tree classifiers follow no

user-defined functions to arrive at a decision, as the path

taken is determined by the decision tree algorithm. Thus,

our framework’s dataset-specific interpretability trees are

user-driven, while the decision tree classifiers are algorithm-

driven.

Examples of the dataset-specific interpretability trees are

shown in Figures 3 and 4. In both figures, we see the labeling

functions and the mapped features and values on the tree

nodes. Class 1 denotes benign cases, while -1 denotes attack

cases. Each level of the tree represent one feature and the

node hierarchy is determined by feature importance. In the

example depicted in Figure 3, “Packets" is at the root because

it has the highest feature importance score, while “Source

Port" is placed at level 2 in the hierarchy, since its feature

importance score is less than that of “Packets". In Figure 4,

we see that the tree contains three decision nodes that are

located at different level. Here, “Bytes" occupies level 3, since

it has a lower feature importance score than “Source Port".

3.4 Implementation
This section describes the end-to-end workings of the frame-

work. While §3.3 describes the components and the modules,

this section describes how the data move from the input

for preprocessing to the end-classifier evaluation. We will

present the data flow in two paths: (a) when the user opted

for the automatic labeling function generation, and (b) when

the user opted for the manual labeling function generation.
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Also, note that the current implementation of FLAMENCO

only supports binary classification.

3.4.1 Automatic labeling function generation. This
path starts with data preprocessing that includes modality

detection, synthetic data creation, threshold calculation, and

feature augmentation. The current implementation of the

component expects numerical data with one feature column.

In data preprocessing, the data will undergo modality de-
tection where the framework will either split the data into

different subsets, or output the same dataset without splitting.

Note also that for latency measurement data, the framework

will separate the data into different source-destination (SD)

pairs datasets.

After this, the user can calculate the threshold value
that can be used to separate the positive class from the neg-

ative class. The framework will then check the size of the

two classes in the dataset (or each subset). If the classes are

imbalanced, the user can then create synthetic data to bal-

ance the two classes and combine the synthetic data with

the original data. We used pandas and numpy for the entire

data preprocessing stage.

Next, the data are passed to the data loader module where

they undergo feature augmentation. At this step, the

framework will calculate the data’s statistical features using

tsfresh [9], and create a matrix for these features. Following

this, FLAMENCO will split the data and the features into test

(10 percent), validation (25 percent), and training sets (the

rest), and create ground truth labels for the validation and

test sets.

Since this pipeline is an automatic labeling function
generation, FLAMENCO will employ simple classifiers,

which, in the current implementation are decision stump, and

take the training data and the features, and have the classi-

fiers learn from the validation set, the validation set features,

and also the validation ground truth labels (that the user

needs to provide). After learning, the simple classifiers will

generate heuristics that are turned into labeling functions,

and finally produce probabilistic labels for the training data.

We implemented the automatic labeling function generator

using Snuba [43].

Finally, with the labeled training set, the framework will

train a classifier . We used LSTM due to the time-series

nature of our data and we wanted to preserve the time order.

We used Adam optimizer (beta1=0.9, beta2=0.999) and fine-
tuned the hyperparameters by trying out different values

for learning rate (0.0001, 0.0003, 0.0005, 0.0008, 0.001, 0.003,

0.005, 0.008, 0.01, 0.03, 0.05), number of epochs (20, 25, 30),

batch size (32, 64, 128, 256), and number of LSTM cells (32,

64, 128). We apply the following regularization methods to

guard against overfitting: L2 regularization (between 0.2 and

0.6), dropout (between 0.2 and 0.6), and early stopping (min-

imum delta=0.01, patience=2) that monitors the validation

loss. Following training, FLAMENCO will evaluate the per-
formance by measuring the F1 score. We used F1 score as

our evaluation metric because we are interested in knowing

the balance between precision and recall.

At any point after labeling function generation, the user

can plot a dataset-specific interpretability tree that is

based on the labeling functions that the simple classifiers

formed. The tree is unique for each dataset, e.g., one SD-pair
dataset will generate one tree, one flow dataset will generate

one tree.

3.4.2 Manual labeling function generation. For the
manual labeling function generation pipeline, the process

also begins with data preprocessing. After this, the frame-

work will calculate the correlation coefficient of the features,

and let the user decide on which features to select. FLA-
MENCO will then create a new pandas DataFrame with only

the selected features, and calculate the statistical profiles of

each feature column.

The new data are then split into test (20 percent of total

data), validation (20 percent of the 80 percent of data after

test data are taken), and training (the rest of the data after

taking the data for validation set). We used the stratification

method to split the data so the ratio of the classes is the

same in the training, validation, and test sets, and then order

the data based on time. We then label the validation and

test sets and create CSV files for each set, and also write the

training set into a TSV file. We employed NoMoNoise [28] to

implement our manual labeling function generation. Based

on these user-written labeling functions, NoMoNoise will

generate weak or low-quality labels and connect to Snorkel

[33] library to produce generative models with accuracies in

the form of probabilities or confidence values.

Following this, the process is the same as in supervised

learning. The user can train a classifier using the training

set and the newly generated labels, and evaluate the per-
formance using the F1 score. As in the automatic labeling

function generation pipeline, the default classifier is LSTM,

although users are at liberty to choose other classifiers. We

fine-tuned the hyperparameters by trying out different val-

ues of learning rate (0.0001, 0.0003, 0.0005, 0.0008, 0.001, 0.003,

0.005, 0.008, 0.01, 0.03, 0.05), number of epochs (20, 30, 50),

number of LSTM cells (128, 256), and batch size (64, 128, 256).

We applied regularization methods to guard against overfit-

ting: L2 regularization (between 0.2 and 0.6), and dropout

(between 0.2 and 0.6).

As in the case of automatic labeling function generation,

at any point after labeling function generation, the user can

render a tree that visualizes the decision-making process.
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The tree will be based on the labeling functions that the user

writes. Each dataset will produce its own tree.

4 EVALUATION
The overall goal of this evaluation is to demonstrate how

our framework solve the problem of training label scarcity

in network data. To achieve this overall goal we will show

that our framework has the ability to do the following:

• Handling network data types (latency measurements and

NetFlow) that differ in methods of collection and granu-

larity, and thus fulfilling §3.1 R1,
• Creating training labels programmatically and in a scalable

way, fulfilling §3.1 R2,
• Promoting research collaborations while avoiding the risk

of privacy leak, fulfilling §3.1 R3,
• Providing explanations on the decision making process,

fulfilling §3.1 R4.

4.1 Case Study 1: CAIDA’s Ark
Overview. The goal of this experiment is to demonstrate

that our framework readily process latency measurement

data and create high quality training labels in a scalable

process that can cover more datasets. In §2.2 recall that L1
and L2 discuss the limitations of the state of the art approach;

they are unable to handle diverse networking data and they

are unable to scale the domain expertise. Corresponding to

these limitations, in §3.1 we propose that the solutions to

address L1 and L2 should meet Requirements R1 and R2.
R1 describes that the solution must be versatile to be able to

process various networking data, whileR2 describes that the
solution must have the ability to scale the domain expertise

in creating labels. These experiments are designed to meet

these two requirements.

Dataset. Our traceroute data consists of a day’s worth

of measurements from five different vantage points divided

into 25 source-destination (SD) pairs datasets (five SD pair

datasets from each vantage point) and amounting to 466,061

data points. The size of the SD pair datasets ranges from 2,000

to 110,000. We intentionally look for traceroute data with

diverse statistical characteristics such as different modalities,

various values of mean, standard deviation, and quartiles.

Figure 5 shows the boxplots of two SD pairs datasets, which

represent some of the unusual statistical characteristics of the

RTT values in the 25 SD pairs datasets. On the left image, we

see that the minimum value, the 25th percentile, the median,

the 75th percentile, and the maximum value are squashed

together, and the outliers have a wide variety of values. The

middle image shows a dataset where the minimum value

and the 25th percentile overlap, a median value not far from

the minimum and the 25th percentile, and a large distance

between the median and the 75th percentile.

Figure 5: Unusual characteristics among our 25 SD
pairs CAIDA’s Ark datasets.

From these 25 SD pairs datasets, 12 datasets are either

bimodal or multimodal, with the total size of 58,201 data

points, and the other 13 datasets are unimodal. Figure 6

shows the bimodality and multimodality that we found in

our data.

Figure 6: Bimodality and multimodality in our
CAIDA’s Ark datasets.

Experiments. The goal of the experiment is to demon-

strate the efficacy of the framework in generating training

labels. Our event of interest is noise detection. The good data

class is the positive class, while the noisy data class is the

negative class. Since the data are unlabeled, and since noise
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in the RTT measurement data can be considered outliers

or anomalies, we chose to compare the quality of the labels

generated by our framework with those generated using

unsupervised learning methods commonly used in outlier

detection and anomaly detection. The methods that we con-

sidered are: (1) Local Outlier Factor (LOF), a method that

measures the local density of a data point, compares this

density with the local density of its neighbors, find density

similarities and differences in the regions, and identify the

lower density data points as outliers; (2) Elliptic Envelope

(EE), an outlier detection method that analyzes the whole

dataset, draws an imaginary ellipse around the values based

on specified criteria, and identifies the values outside the

ellipse as outliers; (3) Overly-Robust Covariance Estimation,

an outlier detection method that identifies data points whose

covariance has the smallest determinant to be put in a “pure"

data subset; (4) Isolation Forest (IF), an anomaly detection

method that employs random forests to perform recursive

partitioning of the randomly selected features and identi-

fies the shortest paths from the root to the terminal node as

anomalies.

Label generation. In this experiment we used the au-

tomatic labeling function generation pipeline. We prepro-

cessed, oversampled, and split the data into test (10 percent),

validation (25 percent), and training (65 percent) sets. We

then calculated statistical features and labeled the validation

and test sets. Next, we passed the data to the automatic label-

ing function generator and produced training labels. Next,

we also produced training labels using the four unsuper-

vised methods (LOF, EE, ORCE, IF). At this stage, we had

five different training label sets that were produced by five

different methods (our framework and the four unsupervised

methods.)

End-classifier training and evaluation. Following la-

bel generation, we trained LSTM models on the training set,

and evaluated them first on the validation set to find the

optimal hyperparameter setting, and then evaluated them on

the test set. We obtained the F1 score from this process. This

F1 score represents the label quality that our framework gen-

erated. Using the same training set, we employed the unsu-

pervised learning methods to generate labels, and used these

labels as the training labels. We then trained LSTM models

on these training data and the generated labels, evaluated

them on the validation set and fine-tuned them, and lastly

we evaluated the LSTM models on the test set. The hyperpa-

rameter setting differs for each method and for each SD pairs

dataset. We used Adam optimizer (beta1=0.9, beta2=0.999)

and tried out various values to fine-tune our hyperparame-

ters: learning rate (0.0001, 0.0003, 0.0005, 0.0008, 0.001, 0.003,

0.005, 0.008, 0.01, 0.03, 0.05), number of epochs (20, 25, 30),

batch size (32, 64, 128, 256), and number of LSTM cells (32,

64, 128). We applied the following regularization methods

to avoid overfitting: L2 regularization (between 0.2 and 0.6),

dropout (between 0.2 and 0.6), and early stopping (mini-

mum delta=0.01, patience=2) that monitors the validation

loss. We did not include the exact hyperparameter setting

here because each dataset has different hyperparameter set-

ting. Lastly, we averaged the F1 scores of the 25 SD pairs

datasets for each labeling method. At this step, we obtained

average F1 scores of LOF, EE, ORCE, IF, and FLAMENCO.

Results. Figure 7 shows the F1 scores of the LSTM trained

using the labels generated by LOF, EE, ORCE, IF, and FLA-

MENCO. From this result, we see that the unsupervised la-

beling methods achieved less than 0.5 score, while our frame-

work achieved more than 0.9 score. The unsupervised meth-

ods work by finding similarities and differences between the

data points, and grouped the data based on these similarities.

Since these methods rely on finding similarity and difference

between data points to classify, and make prior assumption

that the data conforms to a normal distribution, they might

have found a lot of variability in the data and formed many

groups based on the similarity, which would be unsurprising

since the data had high statistical variability and non-normal

distribution. On the other hand, our framework makes no

assumption about the data distribution, and instead analyzes

the data first to detect any multimodality that can skew the

profile, and, with the simple decision stump algorithm em-

bedded in the automatic labeling function generator, our

framework was able to recognize the patterns in the data

and determine the decision boundary to classify the data.

Dataset-specific Interpretability Tree. The root of the
tree (not shown) is a condition checking if the RTT value

of the incoming data point is greater than a threshold value.

This value is taken from the decision boundary that the

automatic labeling function generator discovers. Any RTT

value greater than this threshold is considered noise, while

those less than or equal to this value is considered good data.

Summary. This experiment goal is to show the efficacy of

our framework in handling traceroute data to create training

labels for noise detection. We compared our label quality

with labels created using unsupervised methods. Our frame-

work is designed to handle data with multimodal distribution.

The LSTM models that are trained using the labels created

by our framework achieved an F1 score that is up to 0.48

points higher than the F1 scores of the LSTM trained using

unsupervised methods’ labels.

4.2 Case Study 2: RIPE Atlas
Overview. The goals of this experiment are similar to those

of the experiments on CAIDA Ark. We seek to meet the

requirements §3.1 R1 (versatility) and §3.1 R2 (employing

scalable methods to create training labels). However, in this
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Figure 7: The average F1 scores of the LSTM models
trained using five methods on CAIDA’s Ark’s 25 SD
pairs datasets.

experiment we used a different type of latency measurement

data, that is, ping data.

Dataset. Our RIPE Atlas dataset [5] is collected between

the time period 2017 and 2021 from 25 ping measurements

raw datasets, with each dataset containing 10,000 probes.

From each dataset, we grouped the RTT data based on the

source-destination addresses and include the RTT data with

the same source-destination address into one dataset. While

there are over 7,000 unique source-destination pair, we found

that the most RTT values between this source-destination

addresses are below 100 data points. We took only the source-

destination pairs that have over 100 data points, which are

only 25 pairs. These 25 pairs become their own dataset with

size ranging from 100 to 450 RTT data points. Most of the

data follow unimodal normal distribution, although some

exhibit multimodalities. Figure 8 shows two multimodalities

found amoung our RIPE Atlas datasets.

Experiments. Like in the case of CAIDA Ark’s, the goal

of this experiment is to demonstrate that our framework

produces high quality training labels. The experiment pro-

cedure is similar to CAIDA Ark’s, with a slight variation in

the end-classifier training. Our event of interest is to detect

noise in the ping measurement data, with noisy data labeled

as the negative class and good data labeled as the positive

class. Also, our framework’s generated training labels are

compared with the labels created by the EE, ORCE, IF, and

LOF methods.

Label generation. The experiment is done using the

framework’s automatic labeling function generation pipeline.

Recall that “automatic" in this context refers to the substitu-

tion of human logic with simple classifiers to identify rules

for labeling function. The first step in this pipeline is pre-

processing the data, followed by checking the modality. We

set our modality detector to look for peaks with minimum

height of 10 percent of the maximum height. We found that

although our ping datasets appeared to have multimodalities

Figure 8: Multimodality in our RIPE Atlas ping
dataset.

such as depicted in Figure 8, many of those smaller peaks

had heights less than 10 percent of the maximum height,

which in many SD pairs datasets, reduced the modalities to

either two (bimodal) or one (unimodal). We separated the

datasets into subsets (in the case of non-unimodal datasets),

and oversampled the data due to the large imbalance be-

tween the two classes. We split the data into test (25 percent),

validation (20 percent), and training (55 percent). The rea-

son for the different split on this dataset is because our ping

measurements dataset is small, with each SD pair dataset

amounting to around 100 to 500 data points. When the frame-

work found bimodality or multimodality in the data, it will

split the dataset into subsets before splitting for training,

validation, and test sets. The framework treats each subset as

a unimodal dataset and will split it into training, validation,

and test data. This process causes the size of the subsets to

be even smaller, with some subsets having the size of 8 data

points.

After splitting the data into training, validation, and test

sets, we calculated the statistical features of the data, and

labeled the validation and test sets. Then we passed the

data to the automatic labeling function generator, which

then produced training labels for our training sets. We also

produced training labels using the EE, ORCE, IF, and LOF

methods, so now we had the training labels produced by five

different methods.
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End-classifier training and evaluation. Since the size
of our ping measurement SD pairs datasets is extremely

small, we employed a different end-classifier training strat-

egy.While we used LSTM for our end-classifier in the CAIDA

Ark’s experiments, we found that deep learning models are

too complex for small datasets such as our ping SD pairs

datasets, and this caused a major overfitting issue. To avoid

overfitting, we decided to use a simpler classifier. After trying

k-nearest neighbors, logistic regression, and random forest,

we settled on using random forest because it generated the

best results.

We trained the data using cross validation since it would

allow us to utilize as many data points as possible for training,

since we had so few data points. Before we performed cross

validation, we combined the training and validation sets and

also their corresponding labels, and left the test set and the

test ground truth labels intact, since we did not do cross

validation on the test set. This resulted in our combined

training and validation set having 75 percent of the total

data points, and the test set having 25 percent. For each

dataset (or subset), we had five different training label sets,

one for each method by which they were generated.

Since cross validation techniques are rarely used on time

series data due to their rearrangement of the row order, we

used scikit-learn’s TimeSeriesSplit method [31], which allows

the cross validation approach while preserving the time or-

der. The TimeSeriesSplit works like KFold cross validation;

however, instead of shuffling the indices when creating the

folds, TimeSeriesSplit created validation indices that are al-

ways greater than the training indices, thus preserving the

time order. In each cross validation iteration, we also em-

ployed hyperparameter tuning using randomized grid search,

which sought the optimal values for the number of trees (50,

100, 150, 200), maximum depth (2, 5, 10, None), and whether

or not to use bootstrapping (True or False). We used the best

parameters as the hyperparameter setting when we evalu-

ated the model on the test data. Lastly, for each method, we

averaged the F1 scores of the subsets of the same dataset to

represent the F1 score of that dataset, and then averaged the

F1 scores across the 25 SD pairs RIPE Atlas ping datasets.

Results. The final F1 scores are shown in Figure 9. In

this experiment, the F1 score of the classifiers trained using

our labels is the highest, followed by EE and IF, whose F1

scores are also above 0.9. The gap between the F1 score asso-

ciated with our framework and those with the unsupervised

methods is around 0.05. The reason for the much better per-

formance of the unsupervised methods might be the size of

the datasets, in which the number of multimodal data is not

high enough compared to the unimodal data, which these

four methods would be able to handle well.

Dataset-specific Interpretability Tree. As in the case

of the previous experiments on CAIDA’s Ark, each tree (or

stump) represents one SD pair dataset. Since in this latency

measurement data we only consider the RTTs, the visualiza-

tion tree has only one level, with the root of the tree (not

shown) is a conditional statement and the children are the

next node when the condition is met. The conditional state-

ment at the root checks if the RTT value of the incoming

data point is greater than a threshold value. This value is

taken from the decision boundary that the automatic label-

ing function generator discovers after learning. Any RTT

value greater than this threshold is considered noise, while

those less than or equal to this value is considered good data.

Summary. The goal of this experiment is to show the

efficacy of our framework in handling ping datasets. We

compared the label quality generated by our framework with

the labels generated by four unsupervised methods (ORCE,

LOF, IF, EE). The F1 score of the classifiers trained using

our framework’s labels is 0.996, which is higher than the F1

scores associated with the other four methods, although the

gap between our framework’s F1 score and that of the best

performing unsupervised method is small.

Figure 9: F1 score comparison of classifiers trained us-
ing labels generated by ORCE, LOF, IF, EE, and FLA-
MENCO on RIPE Atlas’ 25 SD pairs datasets.

4.3 Case Study 3: CIC-DDoS2019
Overview. The goal of the experiments on this dataset is

to meet requirement R3, that is, ability to preserve privacy.

As discussed, we avoid the risk of privacy leak by using

the “code-to-data" approach, with labeling functions being

the “code" in this context. The experiments on this dataset,

then, aim to demonstrate how our framework supports user-

defined labeling functions and the effects of combining label-

ing functions with different features and feature correlations

on label quality. Moreover, since the data in this dataset are

flow data, we also demonstrate that our framework is readily

able to handle another network data type besides latency

measurement.
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Dataset. In the last six months of 2020, it is reported that

the DDoS attack frequency sharply increased by 22 percent,

with the total of 10,089,687 attacks in 2020, and more than

800,000 attacks per month [20]. The same report, coupled

with another observation in the first quarter of 2021 [19],

stated that the increase of the attacks was incited by several

new UDP-based reflection/amplification DDoS vectors. With

this DDoS vector trend in mind, we decided to conduct our

experiments on a UDP-based amplification dataset, which

in this case is an NTP dataset, one of the 12 different DDoS

vectors available in the CIC-DDoS2019 dataset.

The CIC-DDoS2019 dataset was collected on January 12th,

2019 and included results from CIC FlowMeter-V3 [23], a net-

work traffic flow generator and analyzer. The dataset has 80

features including timestamp, source and destination IPs and

ports, protocols, statistical characteristics of the forward and

backward packet lengths, and ground truth labels indicating

benign and attack cases. This dataset is a network traffic flow

dataset that provides examples for benign data and the 12

different types of DDoS attacks that can be carried out on

the application layer protocols using TCP/UDP, with each

attack type stored in different CSV file. The NTP dataset we

chose has a size of 645 MB and 1,217,007 data points.

Considering the lack of agreement in the community to

describe certain events of interest (§2.2 L1), which in this

case is DDoS NTP attacks, we submit that collaboration be-

tween research groups to find common features of DDoS

NTP attack is crucial in the effort of reaching certain level

of agreement. To account for the privacy leak risk in a col-

laboration setting, we design this experiment to (1) show

that FLAMENCO can support privacy preserving collabora-

tion and (2) investigate the combination of various labeling

functions. Concretely, we propose a scenario where two dif-

ferent research groups are working together to find features

of DDoS NTP attacks that are common in their respective

NetFlow data. We investigated the kind of labeling function

combination that can benefit both groups and also the ap-

parent effects of correlation coefficient on the label quality.

To achieve the experiment goal, we divide the experiment

into two parts. In the first part, our scenario assumes that

both research groups are using the same feature (e.g., source
port, packet size) to write a labeling function, but each group

implements a different threshold to determine whether an

event is an attack or not. In most cases, each group would

apply different threshold values, as their datasets are more

likely to have different statistical features.

In the second part, the two research groups use two differ-

ent features with two different thresholds in their respective

experiments. In this scenario, the first group uses two fea-

tures that are correlated with each other, while the second

group uses two features that have little or no correlation

with each other. Here, we aim to investigate the impact of

correlation coefficients on label quality.

In both of the two experiments, we assess the labeling

function quality directly as well, before using the labels with

the training set and train a classifier with them.

Data preparation. To clean the data, we take the

DDoS_NTP dataset from CIC DDoS 2019, order the data

based on the timestamp, and remove the NaN, infinity, and

duplicate values. Since the data are imbalanced, we split the

data into training, validation, and test sets using the strati-

fication method, ensuring that all three sets have the same

ratio of positive and negative classes. The total number of

examples in the NTP dataset is 228,340.

Feature selection.We selected three out 80 features ac-

cording to two sources: (1) a previous study on the DDoS

NTP victim profiles [12], and (2) the correlation coefficients.

Among the features investigated in [12], we calculated the

correlation coefficients between each feature, and chose three

features; the first feature is correlated with the second fea-

ture, while the third feature is not correlated with the first

or the second feature. Table 1 shows the feature name, de-

scription, and correlation coefficents of the three features.

“Source Port" and “Average Packet Size" have a correlation

coefficient of -0.477, “Source Port" and “Flow IAT Min" have

correlation coefficient of 0.001, and “Average Packet Size"

and “Flow IATMin" have correlation coefficient of 0.003. The

correlation values indicate that “Source Port" and “Average

Packet Size" are moderately correlated, while both these two

features have little correlation with “Flow IAT Min". The

statistical characteristics of the features are listed on Table

2.

Label generation. According to the study done by [12],

36.2% of NTP attacks targeted port 80, 23.8% targeted port

123, 7.9% targeted port 3074, and the other 32% targeted

various ports ranging from 19 to 50557. Attacks on ports less

than 80 amount to 4.8%, between ports 80 and 123 amount

to 0.4%, between ports 123 and 3074 amount to 0.7%, and

greater than port 3074 amount to 11.1%. Since the datasets

used in that study are different than our DDoS2019 synthetic

data, we did not take the exact port numbers as threshold

values. Although port number is a universal feature, the

percentage of attacks that targets certain ports in [12] would

differ than the percentage of attacks on those ports that

might occur in our data. This is because the data used in

[12] are different than our data. Thus, the frequency of the

attack, and also the percentage of attacks that target certain

ports would also be different. Instead of taking the exact

values that [12] listed, we started with those values and

experimented with the values around the thresholds in the

paper. We settled with port number <= 6600 to detect attack

events, and port number >= 9000 to detect benign events. We

used 100 as the threshold for our second feature (“Average
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Selected Feature Description Corr. with Source

Port

Corr. with Average

Packet Size

Corr. with Flow

IAT Min

Source Port Source port 1.0 -0.477 0.001

Average Packet

Size

Average size of packet -0.477 1.0 0.003

Flow IAT Min Minimum time between two packets

sent in the flow

0.001 0.003 1.0

Table 1: Selected DDoS NTP features, description, and correlation.

Statistical Feature Source Port Average Packet Size Flow IAT Min

count 228340.000000 228340.000000 2.283400e+05

mean 3858.588740 424.622116 3.059715e+03

std 12607.206688 110.243079 2.778376e+05

min 0.000000 0.000000 0.000000e+00

25% 644.000000 436.666667 0.000000e+00

50% 781.000000 442.558140 0.000000e+00

75% 918.000000 447.600000 1.000000e+00

max 65532.000000 4025.778588 6.553614e+07

Table 2: Statistical characteristics of the selected features from the DDoS NTP dataset

Packet Size") to detect benign events, as 100 is much smaller

than the mean of “Average Packet Size", which is 424.62.

Lastly, we also used the statistical characteristics of “Flow

IAT Min" to determine the threshold value. In this case, we

used the mean as the threshold to determine attack events.

We coded these features and their corresponding thresholds

to distinguish the attack cases from the benign cases in our

labeling functions. Using these labeling functions (individual

and combined), we generated the training labels. We also

directlymeasured the label quality of these labeling functions

using the F1 score.

End-classifier training and evaluation. We chose

LSTM as our end-classifier since our dataset is a time-series

dataset and we wanted to preserve the time order in the

data. We trained the LSTM on the training set using the

probabilistic labels that were generated in the previous step.

Since our data are extremely imbalanced, we place more

weight for the minority class in the loss function of our LSTM

model. The weight is calculated as the ratio of the number

of the majority class to the number of the minority class. We

fine-tuned the hyperparamters by trying out different values

of learning rate (0.0001, 0.0003, 0.0005, 0.0008, 0.001, 0.003,

0.005, 0.008, 0.01, 0.03, 0.05), number of epochs (20, 30, 50),

number of LSTM cells (128, 256), and batch size (64, 128, 256).

We also applied regularization methods to avoid overfitting:

L2 regularization (between 0.2 and 0.6), dropout (between 0.2

and 0.6). We did not include the exact hyperparameter setting

here because each labeling function and their combinations

have different hyperparameter setting.

Results. The following listed the results of both experi-

ments.

4.3.1 Experiment 1: Combination of labeling func-
tions that are based on one feature. Table 3 shows the

individual F1 scores and the combined F1 score for the first

experiment. We chose “Source Port" to be the feature on

which we write labeling functions because “Source Port" has

the highest feature importance score. Inspired by a previ-

ous study [12], we chose the values 9000 and 6600 as the

thresholds to determine the classes; any “Source Port" value

greater than 9000 will be considered as a benign case, while

any “Source Port" value less than 6600 will be considered an

attack case.

In Table 3, we see that the F1 score of the classifier trained

with the first labeling function is 0.893, while the second one

is 0.849, and the combination is 0.897, which is higher than

both the individual scores. Note that although the labeling

functions are based on the same feature, each classifies for

a different class; the first labeling function classifies for the

attack cases, while the second classifies for the benign cases.

This could happen because by using different thresholds on

the same feature to detect attack and benign cases, we have

expanded the coverage of the labeling functions; covering

values less than 6600 and also greater than 9000, although

admittedly there are some values between 6600 and 9000

that are not covered, and the values that fall in this range are
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considered inconclusive. The improved F1 score of the com-

bined labeling function suggests a benefit of two research

groups working to detect DDoS attacks using the same fea-

ture. In this example, the labeling functions have different

thresholds that expand the labeling coverage of both func-

tions. While we are far from claiming that our proposed

privacy-preserving collaboration platform for “code-to-data"

approach will result in improved F1 score, we have demon-

strated that our proposed solution can improve the F1 score,

and by extension, can improve the label quality and thus

moves us closer to a consensus on agreed DDoS NTP fea-

tures.

Here we also present the F1 score of the labeling functions

(referred to as LF F1), which is different from the classifier’s

F1; while the F1 score of the labeling functions directly as-

sesses if the labels generated by the labeling functions match

the ground truth, the F1 score of the classifier assesses if a
classifier trained using the labels and the training set matches

the ground truth. “LF F1" indicates the F1 score of the label-

ing functions, and “Classifier F1" indicates the F1 score of

the trained classifier. Note also that the labeling function’s

direct performance and the trained classifier’s performance

are evaluated using the test set.

In Table 3, we see that LF F1 of the first and second label-

ing functions are higher than the classifier’s F1 score. While

the difference for the first labeling function is only 0.016,

the difference for the second labeling function is 0.7977. The

much higher LF F1 compared to the classifier’s indicates that

LF does not generalize well. This is because when the labels

are used on the training set to train a classifier and are eval-

uated on the test set, the F1 score is lower. This difference

may be because the two labeling functions are written to

detect only one class; one is for attack cases, while another

is for benign cases, making the labeling functions one-sided.

This could be the cause of the bias in LF. This explanation

also fits the result of the combined LF F1, which is 0.899,

compared to the classifier F1, which is 0.897. As the combi-

nation of these two labeling functions gives a perspective

from both the attack side and the benign side, it generates a

more generalized result.

LF LF F1 Classifer F1

LF_Source_Port_Less6600_Attack 0.899 0.877

LF_Source_Port_Greater9000_Benign 0.899 0.0963

Combined 0.899 0.897

Table 3: The LF F1 and classifier F1 scores of the la-
beling functions that are based on one feature of the
DDoS 2019 NTP data. The values 9000 and 6600 are in-
spired by a study done by [12] with some adjustments.

Dataset-specific Interpretability Tree. Based only on

these labeling functions, FLAMENCO can generate a tree as

shown in Figure 10. The feature and value in each labeling

function are mapped to the decision nodes of the tree. In

most cases, FLAMENCO will generate a tree where one level

represents one feature, but in this case, since the labeling

functions are for different classes, we see two decision nodes

located at different levels of the tree. By inspecting the deci-

sion tree, a data point with “Source Port" value of 123 (the

dedicated port for NTP), will be categorized as an attack,

a data point with “Source Port" 10000 will be categorized

as benign, and a data point with “Source Port" 8888 will be

considered inconclusive.

In our effort to directly assess the label quality, we also

compared the labels generated by the interpretability tree

(Tree F1) and the labels generated by the manual labeling

function generator (LF F1). We calculated the Tree F1 score

by taking each data point from the test set and traversing

the tree until the data point reaches a terminal node, which

determines the label for that data point. We compared this

label with the ground-truth label from the test set. Then

we counted the number of true positives, true negatives,

false positives, and false negatives, calculated precision and

recall, and finally the F1 score. As we see in Table 3, the

F1 score of the combined “Source Port" labeling functions is

0.899. This F1 score matches the calculated F1 score of the

interpretability tree, which is 0.894. This result seems to be

encouraging that the tree’s F1 score is consistent with the

manual labeling functions’s F1 score.

4.3.2 Experiment 2: Combination of labeling func-
tions that are based on two features. Table 4 shows the

individual F1 scores and the combined F1 scores of the la-

beling functions written using two features. The first row

shows the classifier F1 score of LF_Avg_Pkt_Less_100, which

is 0.09. Note that 100 here is not based on any statistical

feature of the data since it is arbitrarily chosen so its F1

score is low. The second row shows the classifier F1 score

of LF_Source_Port_Less_6600_Attack, which is 0.877. We

chose these two labeling functions (one is low and another

is high) because we wanted to see the effect of combining la-

beling functions with a vast difference of classifier F1 scores.

The third row shows the F1 score of the combined labeling

functions, which is higher than the individual F1 scores. No-

tice that the correlation coefficient between “Average Packet

Size" and “Source Port" is -0.477, which is considered mod-

erate. These results suggest that combining two labeling

functions that are based on correlated features can improve

the classifier F1 score.
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Figure 10: The dataset-specific interpretability tree generated fromone-featured labeling functions (“Source Port")
of the DDoS2019 dataset. The F1 score of the tree is 0.894, and the LF F1 is 0.894.

First LF F1 Second LF F1 LF F1 Trained Classifier F1 Correlation

LF_Avg_Pkt_Less100_Benign - 0.00883 0.09 -

LF_Source_Port_Less6600_Attack - 0.893 0.877 -

LF_Avg_Pkt_Less100_Benign LF_Source_Port_Less6600_Attack 0.893 0.893 -0.477

LF_IAT_Min_Less_Mean_Attack - 0.893 0.892 -

LF_Avg_Pkt_Less100_Benign LF_IAT_Min_Less_Mean_Attack 0 0.249 0.003

LF_Source_Port_Less6600_Attack LF_IAT_Min_Less_Mean_Attack 0 0.863 0.004

Table 4: The F1 scores of the labeling functions and the trained classifiers based on two features of the DDoS 2019
NTP data.

Figure 11: The dataset-specific interpretability tree generated from labeling functions based on “Source Port" and
“Average Packet Size". The F1 score of the tree is 0.897, while the LF F1 is 0.893.

Looking at the LF F1 of the labeling functions and

comparing them to the classifier F1, we see a differ-

ence of 0.08 for LF_Avg_Pkt_Less_100_Benign, a differ-

ence of 0.016 for LF_Source_Port_Less_6600_Attack, and

a difference of 0.01 for LF_IAT_Min_Less_Mean_Attack.

The combination of LF_Avg_Pkt_Less_100_Benign and

LF_Source_Port_Less_6600_Attack generates the same LF F1

and classifier F1, and the correlation between the features is

-0.477. This could indicate that correlation affects the labeling

function quality, which is consistent with the results of the

classifier F1 scores.

Next, we investigated the effect of combining label-

ing functions that are based on two uncorrelated fea-

tures. The fourth row of Table 4 shows the classi-

fier F1 score of LF_Flow_IAT_Min_Less_Mean, which

is 0.892. The correlation coefficient between “Flow IAT

Min" and “Average Packet Size" is 0.003, which is so

low that the two features can be considered uncor-

related. Combining LF_Flow_IAT_Min_Less_Mean with

LF_Avg_Pkt_Less_100 shows a classifier F1 score of 0.249,

as shown in second to the last row of Table 4. This score

is a major decrease compared to the classifier score of

LF_Flow_IAT_Min_Less_Mean (0.892), although it is slightly
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Figure 12: The dataset-specific interpretability tree generated from labeling functions based on “Average Packet
Size" and “Flow IAT Min". The F1 score of the tree is 0.728, while the LF F1 is 0.

higher than that of LF_Avg_Pkt_Less_100 (0.09). For this one

case, the results seem to suggest that combining two labeling

functions that are based on two uncorrelated features could

improve the lower-scored labeling function, while weaken-

ing a higher-scored one.

However, when we look at the LF F1 of the

combination of LF_Avg_Pkt_Less_100_Benign and

LF_IAT_Min_Less_Mean_Attack and also the LF F1 of the

combination of LF_Source_Port_Less_6600_Attack and

LF_IAT_Min_Less_Mean_Attack, we see a stark difference

between LF F1 and classifier F1. The LF F1s for both

combinations are zeros. We propose that this is caused by

the true positives that are so low or even zero, which could

result in zero precision or zero recall, which in turn would

result in a zero F1 score. Regarding the classifier F1, both

the precision and recall may not be zero, which leads to a

non-zero F1 score. The reason for a zero true positive could

be because the labeling functions are one-sided (only detect

one class), or could be because the coverage of the labeling

functions almost completely overlaps, which render one of

the labeling function redundant.

In addition to the above experiments, we also present

a case where combination of two uncorrelated labeling

functions do not affect the combined F1 score that much.

On the last row, we see that the classifier F1 score of

the combination between labeling functions with two un-

correlated features (LF_Source_Port_Less6600_Attack and

LF_IAT_Min_Less_Mean_Attack) results in a slight decrease

of the classifier F1 score of LF_Source_Port_Less6600_Attack

(from 0.877 to 0.863, and also a decrease of the F1 score of

LF_IAT_Min_Less_Mean_Attack (from 0.892 to 0.863).

Finally, the results of this experiment did not present a

clear conclusion on the effects of feature correlation in the

classifier F1 score of the combined labeling functions. Thus,

we refrain from making a definite conclusion and proceed

to the experiments on the next dataset.

Dataset-specifc Interpretability Tree. The visualiza-

tion trees generated from labeling function combinations of

row 3 and row 5 in Table 4 are shown in Figures 11 and 12.

In the tree on Figure 11, an example of flow data point with

a source port of 5555 would be considered an attack, since it

is less than or equal to 6600. A data point with source port

8888 would not be considered an attack immediately, but

would go to the right child node where its average packet

size would be checked if it is less than 100. Supposing that the

average packet size is 400 bits, the data point’s class would

be inconclusive. However, if the average packet size is 80

bits, the data point would be considered benign.

Suppose that we have a new data point with a source port

of 8888 and average packet size of 80. According to the tree

on Figure 11, the data point will go to the root’s right child,

where its average packet size will be checked if it is less than

100. Since the new data’s average packet size is 80, it will

be considered inconclusive. Note that the hierarchy of the

nodes are determined by feature importance, which in this

case the source port is of higher importance than the average

packet size. However, using the same data point, suppose

that average packet size is more important than source port.

When the average packet size is at the root, it will check if

the average packet size of the new data point is less than 100.

Since the new data points’ average packet size is 80, the data

point will go to the left child of the root, at which the data

point is considered benign.

This example shows that feature importance plays a major

role in the decision-making process. The tree offers a degree

of explanation by figuring out the tree structure and portray-

ing the nodes where the features and their thresholds assess

a data point and the paths to the results.

As in the case before, we also investigated the la-

bel consistency between the intrepretability tree and the

manual labeling function generator. In Table. 4, the F1

score of the combined LF_Avg_Pkt_Less_100_Benign and

LF_Source_Port_Less_6600_Attack (LF F1) is 0.893. The F1
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score of the interpretability tree is 0.783, which is actually

slightly lower than the F1 score of the manual labeling func-

tions generator. This is not surprising since the interpretabil-

ity tree is an approximation, which usually performs worse.

The tree’s F1 score, however, is higher when we

investigated Figure 12. In Table 4, the F1 score

of the manual labeling function generator (LF F1)

of the combined LF_Avg_Pkt_Less_100_Benign and

LF_Flow_IAT_Min_Less_Mean is 0. As discussed above, this

could be because the true positive is extremely low or even

zero, which could lead to a zero precision or recall. The F1

score of the interpretability tree, however, is 0.749. This is a

showcase where the interpretability tree generates a much

more optimistic F1 score, and thus require further work to

improve it.

F1 and prediction comparison between manual la-
beling function generators, trained classifiers, and
dataset-specific interpretability tree. We present the F1

scores of the three classifiers: a) the manual labeling function

generator in the generative model, b) the trained classifier in

the discriminative model, and c) the interpretability tree. We

consider these three as classifiers since they produce labels

for negative or positive classes given a data point. Evaluation

of the F1 scores are done on the test set. The F1 scores com-

parison is shown in Table 5. Each row shows the F1 scores of

the three classifiers for the labeling function combination.

In this Table, we see that the combina-

tion of LF_Source_Port_Less_6600_Attack and

LF_Source_Port_Greater9000_Benign generates 0.899

LF F1 score, 0.897 trained classifier F1 score, and 0.894 tree

F1 score. In this case, LF produces the highest label quality,

followed by trained classifier, and then tree. Since the F1

scores of the three classifiers are close to each other, we

wanted to investigate how different their predictions are. We

conducted the prediction comparison by taking 20 percent

of the test data, pairing up the classifiers (e.g., LF and Cls,

LF and tree, Cls and Tree), treating one of them as ground

truth, and measure the prediction difference between the

classifiers in each pair. Thus, we define prediction difference

as the fraction of predictions that are different from the

methods in each pair.

Note that since we compared the prediction difference

only when the F1 scores of the classifiers are close to each

other, we did not compare the predictions of labeling func-

tion combinations on the second and third row. We notice

that the LF F1 of the labeling function combinations on the

second and third row are zero, which indicate that their true

positives are zero. This implies that the manual labeling func-

tion generators performed poorly in predicting the positive

class. However, on the second row, the trained classifier and

the tree performed moderately well, and on the third row, the

trained classifier performed rather poorly while the tree per-

formed moderately well. Since there is a large gap between

the F1 scores of the classifiers on the second and third rows,

we did not investigate the prediction difference between the

three classifiers.

The prediction comparison results of

LF_Source_Port_Less_6600_Attack and

LF_Source_Port_Greater9000_Benign are shown in

Table 6. Each row in the second column corresponds to

the the rows in the third, fourth, and fifth columns. On the

first row we see that the prediction difference between LF

and LF is 0.0, between LF and Cls is 0.0036, and between

LF and Tree is 0.00032. On the second row, we see that the

prediction difference between Cls and LF is 0.0036, between

Cls and Cls is 0.0, and between Cls and Tre is 0.0036. On the

third row, the prediction difference between Tree and LF is

0.00032, between Tree and Cls is 0.0036, and between Tree

and Tree is 0.0.

Considering both Tables 5 and 6 for the com-

bination of LF_Source_Port_Less_6600_Attack and

LF_Source_Port_Greater9000_Benign, we see that there

is only a slight prediction difference between the three

classifiers, reflecting the F1 difference between them.

We also notice a symmetric relationship between the com-

parison pairs. The prediction difference between LF and Cls

is the same as that of Cls and LF, the prediction difference

between LF and Tree is the same as that of Tree and LF, and

the prediction difference between Cls and Tree is the same

as that of Tree and Cls.

Summary. The goal of these two experiments is to demon-

strate how our framework can support privacy-preserving

collaboration, analyze factors that can affect label quality,

and provide a level of interpretability of the results. We used

the CIC DDoS NTP dataset, which is a synthetic dataset

created for DDoS NTP detection. We combined multiple la-

beling functions to show how multiple research groups can

contribute their labeling functions in the community effort to

improve label quality while avoiding privacy leaks. We com-

bined labeling functions that are based on various features

to examine the effects of the combination on label quality. In

the first experiment, we found that combining two labeling

functions that are based on one feature can improve label

quality if the combination extends the coverage of the label-

ing functions. In the second experiment we examined the

effect of feature correlation on label quality, and the results

show that labeling function combination based on highly

correlated features can improve label quality, while the com-

bination of the labeling functions that are based on weakly

correlated features can decrease label quality. We also ob-

served a case that is similar to the latter combination, where

labeling function combination benefited one labeling func-

tion but not the other. However, the decrease and increase

21



First LF Second LF LF F1 Cls. F1 Tree F1 Figure Number

LF_Source_Port_Less_6600_Attack LF_Source_Port_Greater9000_Benign 0.899 0.897 0.894 10

LF_Source_Port_Less_6600 LF_Avg_Pkt_Less_100 0 0.893 0.783 11

LF_Avg_Pkt_Less_100 LF_IAT_Min_Less_Mean_Attack 0 0.249 0.749 12

Table 5: LF F1, trained classifier F1, and tree F1 of the labeling functions and the trees in Figure 10, 11, and 12
from the DDoS NTP dataset and evaluated on the test set. LF F1 refers to the F1 score of the manual labeling
function generator, Cls F1 refers to the F1 score of the trained classifier, and Tree F1 refers to the F1 score of the
interpretability tree.

Labeling function combination Prediction Difference LF Cls Tree

LF 0.0 0.0036 0.00032

Cls 0.0036 0.0 0.0036

DDoS LF_Source_Port_Less_6600_Attack

DDoS LF_Source_Port_Greater_9000_Benign Tree 0.00032 0.0036 0.0

Table 6: Prediction difference between LF, trained classifier, and tree on the DDoS NTP dataset. Each row in the
second column corresponds to the third, fourth, and the fifth columns (e.g., the percent of prediction difference
of LF with LF, Cls, and Tree are 0.0, 0.0036, and 0.00032, respectively.)

of the performance are small. With these results, we cannot

make a conclusion with confidence on the effect of feature

correlation on combined labeling function performance. Fol-

lowing that, we presented the summary of the LF F1, Cls

F1, and the Tree F1 in Table 5. We see that these tree F1

results rivals those of LF and Cls. Finally, we compared the

predictions of the labeling function combinations if their F1

scores are close to each other. The results of our comparison

shows a symmetric relationship between the comparison

pairs.

4.4 Case Study 4: Worf
Overview. The goal the experiments on this dataset is sim-

ilar to that of the experiments on CIC-DDoS NTP dataset.

We aim to show that our framework provides platform for

user-defined labeling functions while maintaining privacy, to

show that our framework is able to readily handle NetFlow

data, and to provide support in writing labeling function by

analyzing the effects of various labeling function combina-

tions on label quality. The difference between the CIC-DDoS

NTP dataset with theWorf dataset is that the CIC-DDoS NTP

dataset consists of synthetic data, while theWorf dataset con-

sists of real data that capture actual DDoS NTP attacks.

Worf dataset. Our Worf dataset comprises traffic traces

from the Front Range GigaPop (FRGP) network [4], a

medium-size academic and research network exchange in the

United States that connects federal research labs, nonprofit,

universities, and other educational institutions. The dataset

consists of NetFlow data capturing the events occurring on

May 24, 2020 from 06:46am - 06:51am UTC, on September

13, 2020 from 10:50pm - 11:01pm UTC, and on November 13,

2020 from 4:08pm - 04:13pm UTC, during which the network

system recognized NTP DDoS attacks. We collected traffic

traces from these three time periods for the attack profile

and also traces on November 8, 2020 from 02:00pm - 02:05pm

for the benign network profile. We chose such time period

for our benign profile because we found many other DDoS

attack types occurring around the same time as our selected

NTP DDoS attack periods. From these flow data, we sampled

300,000 data points with an equal number of positive and

negative classes.

The goals and experiment procedures are the same as in

the DDoS 2019 case (§4.3). Our first goal is to demonstrate

our framework’s support for research collaboration that pre-

serves data privacy, and our second goal is to investigate the

effects of LF combinations based on the feature correlation,

in order to promote a more fruitful collaboration. We divided

our experiments into two parts. The first experiment used

only one feature to write LFs, and then combined these LFs

and assessed the results. The second experiment used three

features for LFs, but combining only two of them at a time.

The first two features are correlated, while the third feature

has little or no correlation with the other two. The experi-

ment is to investigate the effect of correlation in combining

LFs. We structured the DDoS 2019 and Worf experiments to

be similar so we can assess how our framework performs on

two different NTP DDoS datasets: a synthetic dataset (DDoS

2019), and an “in-the-wild" dataset (Worf).

Data preparation. From the rawWorf data, we took only

the following fields: “First Seen", “Last Seen", “Duration",

“Source Port", “Bits Per Second", “Packets Per Second", “Bytes

Per Package", “Packets", and “Bytes". We removed NaNs and

duplicates, and sorted the data based on the “First Seen" field.
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Selected Feature Description Corr. with Packets Corr. with Source Port Corr. with Bytes

Packets Number of packets 1.0 0.060 0.887

Source Port Source port 0.060 1.0 -0.067

Bytes Number of bytes 0.887 -0.067 1.0

Table 7: Selected Worf features, description, and correlation.

Then we matched the “First Seen" field of our data to the

“First Seen" field recorded on the alert report to create the

ground truth labels. From this point, the procedure roughly

followed the same path as the DDoS 2019 experiment.

Feature selection.We initially planned to use the same

features as the ones we used in the DDoS 2019 experiments,

but since we found many missing values on the “Last Seen"

field (which was recorded using the same timestamp as the

“First Seen" field in the case of missing values), we decided to

exclude features that are calculated using “Last Seen", such as

“Duration", “Bits Per Second", and “Packets Per Second". Fol-

lowing the similar procedures that we used in the DDoS 2019

experiments, we needed three features. To select important

features, we computed the correlation coefficients, and, since

we also had the ground truth labels, we computed the feature

importance score, which listed “Packets", “Source Port", and

“Bits Per Second" as the top three most important features.

From these three features, we selected “Packets" and “Source

Port" but not “Bits Per Second" since its values are calculated

using “Last Seen", which are often unreliable due to the large

amount of missing values. For the third feature, we instead

selected one that is highly correlated with “Packets," since

“Source Port" appeared to have low correlation with other

features on this dataset. The last feature that we selected

was “Bytes." Table 7 shows the selected features and their

correlations.

Label generation. Although we wanted to structure our

Worf experiments to be as similar as possible to the DDoS

2019 experiments, due to the different statistical characteris-

tics of the two datasets, we could not use the same features

or apply the same threshold values on the Worf experiments.

Also, in real world collaboration scenarios, different research

groups should not include specific numerical threshold val-

ues in their labeling functions, since this could be considered

a privacy leak. Thus, we wrote labeling functions based on

the statistical characteristics of the three features. Table 8

shows the statistical features that we considered in writing

labeling functions. Besides these values, we also considered

port 123 since it is known as the designated port for NTP.

We also measured the labeling functions’ F1 score, which in

the result we will refer to as LF F1.

End-classifier training and evaluation.Weused LSTM

as our end-classifier in both experiments 1 and 2. We trained

the LSTM models using the generated training labels. We

fine-tuned our LSTM by trying out various values: learning

rate (0.0001, 0.0003, 0.0005, 0.0008, 0.001, 0.003, 0.005, 0.008,

0.01, 0.03, 0.05), number of epochs (20, 30, 50), number of

LSTM cells (16, 32, 64, 128, 256), and batch size (64, 128, 256).

We used L2 regularization (between 0.2 and 0.6) and dropout

(between 0.2 and 0.6) to guard against overfitting. Note that

different labeling function combinations have different hy-

perparameter settings.

Worf Results. The results of the two experiments are

shown in Tables 9 and 10.

4.4.1 Experiment 1: Combination of labeling func-
tions that are based on one feature. In this experiment,

our goal is to examine the effects of combining labeling

functions that are based on one feature but using different

threshold values. Out of the three selected features listed

on Table 7, we used “Bytes" since the results showed an

interesting case, which we will discuss in the following.

The statistical values for the mean and the 75th percentile

on “Bytes" can be found in Table 8. The mean is 537,300 and

the 75th percentile is 380. Looking at the results in Table

9, the classifier F1 scores for labels that classify data points

with the number of bytes less than 380 (its 75th percentile) is

0.667, the classifier F1 score for labels that classify data points

with the number of bytes less than 537,300 (its mean) is the

same (0.667), and the classifier F1 score of the combination is

also 0.667, which neither increase or decrease the individual

scores.

The result appears to disagree with the result of experi-

ment 1 in the DDoS NTP dataset where the resulting classi-

fier F1 score of one-feature labeling function combination

is 0.897, which improves upon the higher individual score

(0.849). However, upon further investigation, we see that in

the case of DDoS NTP experiment 1, the combination of the

thresholds (less than 6600 and greater than 9000) actually

expands the coverage, as one threshold covers values less

than 6600, while another covers values greater than 9000,

albeit there are values that are not covered.

This was not the case for the Worf dataset. The fact that

the F1 scores are the same for different thresholds suggests

that one of the thresholds, which in this case is 537,300, does

not add benefits to 380. A clearer picture can be examined

by looking at the tree in Figure 13.
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Statistical Feature Source Port Packets Bytes

count 300000.000000 3.000000e+05 3.000000e+05

mean 20915.958463 6.26448e+02 5.373005e+05

std 24088.129213 1.695706e+04 1.909392e+07

min 0.000000 1.000000e+00 2.500000e+01

25% 123.000000 1.000000e+00 7.600000e+01

50% 3074.000000 1.000000e+00 3.500000e+02

75% 47103.250000 1.000000e+02 3.800000e+02

max 65535.000000 8.495104e+06 9.140732e+09

Table 8: Statistical characteristics of the selected features from the Worf dataset

LF LF F1 Classifier F1

LF_Bytes_75percentile_Benign 0.523 0.667

LF_Bytes_Mean_Benign 0.667 0.667

Combined 0.667 0.667

Table 9: The F1 scores of the one-featured labeling
function (Bytes) combination of the Worf data.

Figure 13: Decision tree generated from Table 9; an LF
combination of different threshold values on “Bytes".
The F1 score of the tree is 0.712, while the F1 score of
the labeling function (LF F1 in Table 9) is 0.667.

Looking at the LF F1 scores on Table 9, we see that

LF_Bytes_Half_75percentile_Benign generates a 0.523 LF

F1, LF_Bytes_Mean_Benign generates a 0.667 LF F1, and

the combination of the two labeling functions generates a

0.667 LF F1. Comparing these F1 scores with those of the

classifer’s, we see only a slight difference between LF F1 and

classifier F1 of LF_Bytes_Half_75percentile_Benign, while a

perfect match for LF_Bytes_Mean_Benign and the combined

labeling functions (0.667). In this case, contrary to the cases

we saw in DDoS NTP, the LF F1 generates the same F1 score

as the classifier F1 for LF_Bytes_Half_75percentile_Benign.

This could indicate that the labeling functions generalize

quite well.

Dataset-specific Interpretability Tree. The tree in Fig-

ure 13 visualizes the threshold values and the conclusion that

FLAMENCO uses to label the data. Both labeling functions

aim to detect the benign case by categorizing the number of

bytes less than a certain threshold to be benign. Both labeling

functions aim to detect the benign case by categorizing the

number of bytes less than a certain threshold to be benign.

At the root, we see a condition where data with the number

of bytes less than or equal to its mean and its 75th percentile

are considered benign and values beyond this range are con-

sidered inconclusive. Since we are considering an “AND"

condition, the combination of the two thresholds applies

only to that of the lesser value, which in this case is 380

(the 75th percentile). Data with the number of bytes greater

than 380 are considered inconclusive. Moreover, When we

consider the range of the number of bytes in this dataset,

which is from 25 to around 9 billion (Table 8), 380 covers a

very small slice of values, since the rest of the values are con-

sidered inconclusive. Finding other threshold values that can

capture the ranges in this inconclusive region requires fur-

ther investigation. We realize that choosing a value between

380 and 9 billion resembles the attempt to find a needle in a

haystack. We need a more methodical approach to find the

values, which we leave for future work.

In addition to the discussion above, we also calculated

the F1 score of the interpretability tree in Figure 13 and

compared it to the F1 score of the manual labeling function

generator shown in Table 9. Our approach in calculating the

F1 score of the tree is the same as the onewe used in theDDoS

NTP experiment. We calculated the Tree F1 score by taking

each data point from the test set and traversing the tree until

the data point reaches a terminal node, which determines

the label for that data point. We compared this label with

the ground-truth label from the test set, then counted the

number of true positives, true negatives, false positives, and

false negatives. Using these numbers, we calculated precision

and recall, and finally the F1 score. The combined labeling

functions (LF F1) is 0.667. Our calculated F1 score of the tree

is 0.712. We acknowledge that this is another example where

the interpretability tree generates a more optimistic F1 score.

4.4.2 Experiment 2: Combination of labeling func-
tions that are based two features. In this second exper-

iment on the Worf dataset, our goal is similar to the first
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First LF Second LF LF F1 Trained Classier F1 Correlation

LF_Packets_75percentile_Benign - 0.0738 0.609 -

LF_Packets_Mean_Benign - 0.505 0.667 -

LF_Bytes_Half_75percentile_Benign - 0.516 0.667 -

LF_Bytes_Mean_Benign - 0.667 0.667 -

LF_Source_Port_123_Attack - 0 0.577 -

LF_Source_Port_75percentile_Benign - 0.313 0.727 -

LF_Bytes_Half_75percentile_Benign LF_Packets_75percentile_Benign 0.516 0.667 0.887

LF_Source_Port_123_Attack LF_Bytes_Mean_Benign 0.667 0.667 -0.067

LF_Packets_Mean_Benign LF_Source_Port_75percentile_Benign 0.593 0.667 0.060

Table 10: The F1 scores of the two-featured labeling function combinations of the Worf dataset.
We colored the labeling function names to make it easier to track the combination of the label-
ing functions. LF_Packets_75percentile_Benign is dark yellow, LF_Packets_Mean_Benign is light
yellow, LF_Bytes_Half_75percentile_Benign is grass green, LF_Bytes_Mean_Benign is mint green,
LF_Source_Port_123_Attack is dark pink, and LF_Source_Port_75percentile_Benign is light pink.

experiment, that is, to investigate the effects of labeling func-

tion combinations on label quality. However, since we are

also interested in examining the effect of correlation on the

label quality, we combine two labeling functions that are

based on two different features at a time. To do this, we

selected three features with different levels of correlation.

These features are the same as the ones we use in experiment

1. The selected features and their correlation are shown in

Table 7. On the table, we see that “Packets" and “Bytes"

are highly correlated (0.887), “Packet" and “Source Port" are

weakly correlated (0.060), and “Source Port" and “Bytes" are

also weakly correlated (-0.067). We then write several label-

ing functions based on these three features.

The individual and combined results can be seen on Table

10. We colored the table cells according to the features and

labeling functions for easier reading. There are two labeling

functions on each feature, making up a total of six labeling

functions. The labeling functions that are based on “Packets"

are the ones with shades of yellow, the labeling functions

on “Bytes" are those with shades of green, and the labeling

functions on “Source Port" are those with shades of pink.

On Table 10, the first six rows show the individual F1

scores of six labeling functions, while the last three rows

show the F1 scores of the combined labeling functions. Al-

most all of the individual labeling functions have an F1 score

around 0.6 and 0.7. Note that in this experiment we define

positive class as benign traffic, while negative class as mali-

cious traffic. This is because we are looking from a network

operator’s viewpoint where positivemeans benign traffic and

negative means malicious traffic that needs to be blocked.

In contrast, the labeling function that classifies traffic with

source port greater than or equal to its 75th percentile (47,103

as shown in Table 8) as benign generates a trained classi-

fier F1 score of 0.727. This labeling function covers quite a

high range of values, from 47,103 to 65,535, and thus cover-

age could be an important factor for the labeling function

performance.

Besides coverage, we are also interested in investigating

the impact of feature correlation on labeling function perfor-

mance. On Table 10, the F1 score of the combined labeling

functions are all 0.667, regardless of the correlation between

the features from which they are based. Comparing this re-

sult and the result from the second DDoS NTP experiment,

we lean towards a conclusion that feature correlation may

have little impact on the F1 score of the combined labeling

functions.

Dataset-specific Interpretability Tree. The trees that
are generated from the three labeling function combinations

are shown in Figures 14, 15, and 16.

In Figure 14, the tree portrays the combination of labeling

functions on “Packets" and “Bytes." Since “Packets" is listed

as the most important feature according to the feature impor-

tance calculation, we placed “Packets" at the root. Here, the

labeling function considers data with the number of packets

less than or equal to its 75th percentile (100) to be benign

and the values beyond this range to be inconclusive. We

propose that since the first labeling function refrains from

labeling the data with the number of packets greater than

100, we could place the second labeling function as a further

attempt to arrive at a decision. In this case, the second la-

beling function considers the data with a number of bytes

less than or equal to half of its 75th percentile to be benign,

and leave the data beyond this value to be inconclusive. We

acknowledge that we can keep adding labeling functions to

combine until there is no inconclusive result. However, in

this experiment, we wanted to keep it simple by combining

only two labeling functions at a time. Considering the tree

and the F1 scores in Table 10, we see that the individual
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Figure 14: The decision tree generated from labeling functions that are based on “Bytes" and “Packets" from the
Worf dataset. The F1 score of this tree is 0.708, while the F1 score of the labeling function (LF F1) is 0.512 (Table
10).

Figure 15: The decision tree generated from labeling functions that are based on “Source Port" and “Bytes" from
the Worf dataset. The F1 score of the tree is 0.592, while the LF F1 of the combined labeling functions is 0.667
(Table 10).

Figure 16: The decision tree generated from labeling functions that are based on “Source Port" and “Packet Size"
from the Worf dataset. The F1 score of the tree is 0.688, while the LF F1 of the combined labeling functions is
0.593 (Table 10).

First LF Second LF LF F1 Cls. F1 Tree F1 Figure Number

LF_Bytes_75percentile_Benign LF_Bytes_Mean_Benign 0.667 0.667 0.712 13

LF_Bytes_Half_75percentile_Benign LF_Packets_75percentile_Benign 0.516 0.667 0.707 14

LF_Source_Port_123_Attack LF_Bytes_Mean_Benign 0.667 0.667 0.592 15

LF_Packets_Mean_Benign LF_Source_Port_75percentile_Benign 0.593 0.667 0.688 16

Table 11: LF F1, trained classifier F1, and tree F1 of the labeling functions and the trees in Figure 13, 14, 15, and
16, all evaluated on the test set.
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Labeling function combination Prediction Difference LF Cls Tree

LF 0.0 0.0 0.2855

Cls 0.0 0.0 0.2855

Worf LF_Bytes_75Percentile_Benign

Worf LF_Bytes_Mean_Benign Tree 0.2855 0.2855 0.0

LF 0.0 0.0 0.4533

Cls 0.0 0.0 0.4533

Worf LF_Source_Port_123_Attack

Worf LF_Bytes_Greater_Mean_Benign Tree 0.4533 0.4533 0.0

LF 0.0 0.2475 0.316

Cls 0.2475 0.0 0.1164

Worf LF_Packet_Mean_Benign

Worf LF_Source_75Percentile_Benign Tree 0.316 0.1164 0.0

Table 12: Prediction difference between LF, trained classifier, and tree on theWorf dataset. The first column shows
the labeling function combinations, the second column lists the three classifiers for each labeling function combi-
nation, the third, fourth, and the fifth columns show the prediction differences that correspondwith the classifiers
in column 2.

labeling functions have F1 scores of 0.665 and 0.667, and the

combined labeling functions generate an F1 score of 0.667,

which does not improve upon the individual scores. One pos-

sible reason for this is that although the labeling functions

are on different features and covers two different ranges,

their coverage might be redundant. This result suggests that

redundant labeling function coverage might not improve the

individual labeling function performance.

The combination of the labeling functions on “Source Port"

and “Bytes", however, tells a different story. The F1 score of

LF_Source_Port_123_Attack is 0.577, and when combined

with LF_Bytes_Mean_Benign, which has a score of 0.667,

the F1 score of the combination is 0.667, which is the same

as that of LF_Bytes_Mean_Benign. Looking at the tree on

Figure 15, we see that the data with source port other than

123 are considered inconclusive by the first labeling func-

tion. As in the case of the previous combination, the second

labeling function is another attempt to classify this inconclu-

sive region. Here, the data with source port other than 123

are checked if their number of bytes is less than or equal to

its mean. If the condition is true, these data are considered

benign, and if false, the data are still considered inconclusive.

We see that the F1 score of the combined labeling functions

is the same as that of LF_Bytes_Mean_Benign. One possible

reason for this result is that the second labeling function

does not add value to the first labeling function, which could

be because the second labeling function is redundant to the

first one. On the other hand, the first labeling function brings

value to the second labeling function.

Next, we are looking at the combi-

nation of LF_Packets_Mean_Benign and

LF_Source_Port_75percentile_Benign. The F1 score

of the first labeling function is 0.667, and the score of

the second labeling function is 0.727. The combination,

however, yields 0.667, which is the same as the first labeling

function, but lower than the second. The tree in Figure

16 shows that data with the number of packets less than

or equal to their mean is considered benign, and beyond

that, the labeling function considers them inconclusive.

In this inconclusive region, the second labeling function

checks their source port and considers the data with a

source port greater than or equal to their 75th percentile

to be benign. Beyond these two conditions, the data are

considered inconclusive. In this result, the higher performing

labeling function (LF_Source_Port_75percentile_Benign)

adds no value to the lower performing labeling function

(LF_Packets_Mean_Benign) as the latter’s F1 score is the

same. The combination of these two labeling functions seem

to bring no benefit to both labeling functions. Even worse,

the labeling function combination actually performs worse

than LF_Source_Port_75percentile_Benign.

Moreover, the fact that the combined la-

beling function yields the same F1 score as

LF_Packets_Mean_Benign while decreasing the score

of LF_Source_Port_75percentile_Benign seems to suggest

that LF_Source_Port_75percentile_Benign brings redundant

information to LF_Packets_Mean_Benign, and maybe even

conflicts.

For this part of the Worf experiment, we see that LF F1

in Table 10 (grass green and dark yellow) is 0.516. The F1

score of the tree in Figure 14 is 0.707, which, again, is more

optimistic than LF F1.

Surprisingly, however, the F1 score of the tree in Fig-

ure 15 is 0.592, while LF F1 of the combination of

LF_Source_Port_123_Attack and LF_Bytes_Mean_Benign

is 0.667 (refer to Table 10). This result disagrees with the

ones we have before, where the tree consistently generates

a more optimistic F1 score.

Finally, the F1 score of the tree in Figure 16 is 0.688, while

the LF F1 of the combination of LF_Packets_Mean_Benign
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and LF_Source_Port_75percentile_Benign is 0.593, as shown

in Table 10. Here we see another example where the tree

generates a higher F1 score compared to the manual label-

ing function generator’s, which is actually consistent with

almost all cases we investigated in this paper.

yConsidering the F1 results of the three classifiers, and

especially when we are comparing only LF and Cls, we see

that the trained classifier does not improve LF F1 that much,

since some of its F1 scores are only slightly higher than that

of LF.

F1 and prediction comparison between manual la-
beling function generators, trained classifiers, and
dataset-specific interpretability tree. Similar to what

we did in the DDoS 2019 experiments, we compared the

F1 scores of the three classifiers to assess the similarity

and the difference between them. The F1 comparison is

shown in Table 11. In this table, we see that LF F1s are

sometimes the same as Cls F1s (rows 1 and 3), while Tree

F1s are always different than those of LF and Cls. Con-

sidering this table, we only investigated the labeling func-

tion combinations of LF_Bytes_75percentile_Benign and

LF_Bytes_Mean_Benign, LF_Source_Port_123_Attack and

LF_Bytes_Mean_Benign, and LF_Packets_Mean_Benign and

LF_Source_Port_75percentile_Benign since the F1 scores of

the classifiers for these combinations are close to each other.

Table 12 shows the prediction difference between the three

classifier pairs.Note that we define prediction difference as

the fraction of predictions that are different between the two

methods in each pair.

On Table 11, we see the same F1 score for LF and Cls

of the combination of LF_Bytes_75percentile_Benign and

LF_Bytes_Mean_Benign (row 1), and the combination of

LF_Source_Port_123_Attack and LF_Bytes_Mean_Benign,

and LF_Packets_Mean_Benign (row 3). The Tree F1,

however, are slightly different. The corresponding pre-

diction difference for LF_Bytes_75percentile_Benign and

LF_Bytes_Mean_Benign combination is shown in Table 12

row 1.

Reading LF along the row and matching LF along the

column gave us 0.0 prediction difference, which is to be

expected since both are the LF classifier. Continuing to read

the table this way, we see that LF on row 1 and the Cls column

have 0.0 prediction difference, which is consistent with the

F1 scores of both classifiers in Table 11. Reading LF along

the row and Tree along the column gave us 0.2855 prediction

difference. This result is also consistent with the F1 scores

of LF and Tree in Table 11 (row 1), where there is a slight

difference between both F1 scores.

Looking at the the combination of

LF_Source_Port_123_Attack and LF_Bytes_Mean_Benign in

Table 11 (row 3), the F1 scores of LF and Cls are the same

(0.667), while that of Tree is lower (0.592). As we did in the

previous labeling function combination, we investigated

the discrepancy of the classifiers’ F1 by looking into their

predictions. In Table 12, we see that LF and Cls made the

same prediction, since their prediction difference is 0.0. We

also see that the prediction difference between LF and Tree

is 0.4533, and the prediction difference between Cls and

Tree is also 0.4533. This result is expected since LF and Cls

have the same F1 score and thus their prediction difference

with Tree would also be also the same.

Next, the third labeling function com-

bination is LF_Packets_Mean_Benign and

LF_Source_Port_75percentile_Benign, whose F1 scores are

all different for the classifiers (Table 11 row 4).

Looking deeper into their predictions in Table 12, we see

that LF and Cls have a 0.2475 prediction difference, while

LF and Tree have a 0.316 prediction difference. Next, we see

that the prediction difference between Cls and LF is 0.2475,

and the prediction difference between Cls and Tree is 0.1164.

From these results, we can see a symmetric relationship

between LF and Cls, since the prediction difference between

LF and Cls is the same as that of Cls and LF, which is 0.2475.

Following this, we see the prediction between Tree and LF

and also between Tree and Cls. The prediction difference

between Tree and LF is 0.316, while that of Tree and Cls is

0.1164. Here we see another symmetric relationship since

the prediction difference between LF and Tree is also 0.316,

and the predictions difference between Cls and Tree is 0.1164.

All these results show a symmetric relationship.

Summary. The goal of these two experiments is to show

how our framework can support privacy-preserving collab-

oration, analyze factors that can affect label quality, and

provide a level of interpretability on the results. We used the

Worf dataset, which is an “in-the-wild" DDoS NTP dataset.

We supposed that different research groups contribute their

labeling functions to be combined, and we examined the

effects of feature correlation on label quality. In the first ex-

periment, we combined labeling functions that are based on

one feature, and showed that the combination of labeling

functions that have the same coverage has no effect on la-

bel quality. In the second experiment, we combined labeling

functions that are based on two features that have different

levels of correlation. We found that feature correlation has

little impact, if any, on label quality, while labeling function

coverage plays a more important role in deciding the label

quality. Regarding the interpretability tree’s F1 scores, we

see that in in many cases, Tree produced F1 scores that are

higher than the other two classifiers. This is strange since

usually a less precise approximation (like found in Tree) will

perform worse than a more precise method. We leave the

investigation of this issue for future work. Finally, in our

attempt to conduct consistency checks, we also looked into
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the prediction differences between the labeling function com-

binations, which are shown in Table 12. In all cases, we see

that the prediction difference between classifier pairs are

symmetric. Moreover, considering the F1 results on Table 4,

we see that while the tree gives a more optimistic F1 scores

than the other two methods, since the tree is only an approx-

imation, we are looking only at the LF F1 and Cls F1. We

see that in a case that LF is not zero, its F1 is as good as the

trained classifier.

5 SUMMARY AND FUTUREWORK
In this work, we propose a framework to create training

labels for network data with the ability to (1) handle the di-

versity of networking data, (2) create labels programmatically

to scale domain expertise, (3) support privacy-preserving col-

laborations in a community effort to improve label quality,

and (4) provide a level of interpretability on the results. We

show that our framework can handle latency measurement

data (traceroute and ping) that have multimodal distribution

and are used for noise detection, and synthetic and “in-the-

wild" flow data that are used for DDoS NTP detection. Our

framework allows users to create labels programmatically to

make it easier to scale domain expertise to more datasets. We

show how our framework can support privacy-preserving

collaboration by demonstrating how labeling functions are

used and what combination of labeling functions can affect

label quality. Lastly, we designed our framework to map

the labeling functions to a tree to provide a level of inter-

pretability through visualization of the decision path that

the framework use to classify the data.

We realize that there are network data types beyond la-

tencymeasurements and flow data, and to improve our frame-

work’s versatility, we plan to develop components that can

handle data from a different network layer (e.g., layer 2).
Moreover, we found that our design of labeling function

mapping to the tree is quite restrictive, as it only allows

users to write labeling functions that strictly follow certain

patterns, such as limiting one classification rule for each

labeling function and using “inconclusive" decision in each

labeling function. We seek to design a more flexible method

to allow more variations of labeling functions. With a more

flexible mapping between the labeling functions and the

trees, we expect that the treeswould generate closer F1 scores

to the F1 scores of the manual labeling function generators

(LF F1). In addition to this restrictive nature, we also realize

that forming heuristics for user-defined labeling function

can be difficult, and thus we seek to find a more methodical

way to help users in writing labeling functions.

Concretely, our future works include the following:

• Develop components to handle data from a different net-

work layer.

• Develop a more flexible mapping between labeling func-

tions and the trees.

• Modify tree structures to render a closer F1 score to the

LF F1 score.

• Develop a component that can provide a more methodical

way for users to form heuristics.
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