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Abstract—Many popular metrics used for the quantification
of the quality or complexity of a codebase (e.g., McCabe’s
Cyclomatic Complexity) were developed in the 1970s or 1980s
when source code sizes were significantly smaller than they
are today, and before a number of modern programming lan-
guage features were introduced in different languages. Thus,
the many thresholds that were suggested by researchers for
deciding whether a given function is lacking in a given quality
dimension need to be updated. In the pursuit of this goal, we
study a number of open-source high-performance codes, each
of which has been in development for more than 15 years—a
characteristic, which we take to imply good design and devise a
method for identify project-specific thresholds. As such, first, we
employ the LLVM/Clang compiler infrastructure and introduce a
Clang AST tool to gather AST-based metrics, as well as an LLVM
IR pass for collecting those based on a source code’s static call
graph. Then we perform statistical analysis to identify reference
thresholds of 22 code quality and callgraph-related metrics at the
function-level. Next, we show that the gathered function-level data
can be used to identify instances of major refactoring during the
evolution of a codebase, and lastly we demonstrate how critical
functions in source code can be identified and selected for careful
study.

Index Terms—datasets, static analysis, metrics, data mining,
llvm, clang

I. INTRODUCTION

The quality of a library or an application’s release (referred
to throughout the rest of this paper as a codebase) dictates
not only its trustworthiness among its users, but implies also
the amount of additional work needed from the software
developers in the next release of the project. Thus, quality
(as well as complexity) needs to be quantified so that the
usual tools of data science can be used to rank sections of
the codebase and locate areas that need improvement. Such
quantification is usually done either dynamically by selecting
a number of example applications which are run in order to
gather the metrics of interest, or the quantification is done
statically by directly analysing the structure of the codebase
after passing it through the syntactic and semantic stages of
the compiler.

The Software Engineering (SE) research community has
introduced several tools (see [1], and [2] for example) to
do just such a quantification, and to provide actionable rec-
ommendations to developers of their client codebases. One

approach used by many of these tools involves identifying
multiple thresholds and ranges for a number of quality metrics.
The tools then identify both those code segments with a score
lower than the threshold as lacking in the quality dimension
of interest, as well as those with a score higher than the
upper range boundary. As a consequence, the tool separates
the codebase into problematic and non-problematic territory
for their clients; who can then focus their quality-improving-
efforts only on those deficient parts.

This paper concerns itself with structural code quality (as
opposed to security-related code quality for example). And
the function-level quantification of this particular type of
quality for many tools, involves the use of metrics proposed
by McCabe [3], and/or Halstead [4]. Utilizing these metrics
seeks to quantify and infer such aspects of the function’s
quality as ranging from its difficulty to the amount of time it
should take an experienced developer to write it; all from the
total number of operands and operators used in the function.
We do not seek to question the validity of these metrics in
this paper, but instead implement the metrics as specified.
Moreover, we seek to relax the thresholds that tools, such as
those mentioned above, rely on to identify good and bad design
for our applications of interest—namely High Performance
Computing (HPC) software packages. We do this because,
despite the fact that all of the software packages we analyze
have been around for over a decade (which should imply
that, overall, they are well designed), many of the “normal”
threshold-based tools would flag most of the methods in these
applications as problematic.

The tool we propose relies on the LLVM/Clang compila-
tion infrastructure to collect function level values for both
traditional SE metrics (such as [4]) as well as many other
graph-theory-based centrality metrics. The graph-theory-based
metrics are extracted through an analysis of the source code’s
callgraph with the help of networkit [5]. Halstead metrics, on
the other hand, are collected with the help of Clang Tools [6]
by walking over an Abstract Syntax Tree1 (AST) generated
with the help of Clang’s front-end.

With our developed tool, first, we performed a case study
with three well-known HPC libraries, namely PETSC [7],Su-

1Recall that an Abstract Syntax Tree refers to the resulting structure
obtained after a source file successfully passes a compiler’s syntactic analysis.



perLU [8], and SLEPC [9] , and gathered 22 traditional
[4] metrics as well as 6 centrality metrics—borrowed from
network analysis, but which we believe can be interpreted in
software engineering terms and lead to insightful inferences.
Second, like [10] we performed a statistical analysis by
leveraging the discriminative power of the Easyfit tool [10]
to compute the threshold values of each metric. Because the
values of our metrics are unbounded in nature, we considered
only probability distributions to fit our metric data. Conse-
quently, we recommend the reference values of each metric
and label them as low, intermediate range and high.

To summarize, we sought to answer the following research
questions:

1) Since tools might need to be customised to incor-
porate project-specific needs, what is an empirical
procedure for identifying project-specific thresholds
for code quality metrics?

2) Using function-level data, how can we identify in-
stances of major refactorings of a codebase?

3) Since the development of functions has been shown
to obey power distribution laws, how can we identify
the most critical functions in source code?

As such, our contributions can be summarized as follows:
• A scalable and extensible tool for collecting code quality

metrics.
• A procedure for identifying project-specific thresholds for

code quality metrics.
• A process for identifying the most critical functions in a

source code repository.
• A comparison of the efficacy of two methods for identi-

fying the most critical functions in source codes.

II. BACKGROUND

A. Graph Centrality Metrics

This section reviews concepts related to the type of data
gathered by our tool, and is used to rank functions and
procedures based on their relative levels of influence in a
codebase.

Recall that mathematically, a static callgraph of an applica-
tion is a directed graph G = (V,E) where each element v of
the set of vertices V is a function declared in the source code,
whereas each element (f, g) of the ordered set of edges E,
represents the fact that f will call g when the source code is
compiled and run. Recall also that in the presence of aliasing
(having multiple variable names refer to the same memory
location in a program), precise computation of such a graph
is undecidable. This is because computing such a callgraph—
one in which there is an edge from a function f to a function
g if and only if f calls g—depends on a solution to the
static alias analysis problem, which is itself undecidable [11].
Consequently, modern tools for building static call graphs are
conservative; never omitting an edge between functions f and
g if the call may occur in the program, but over-approximating
and including function calls that might never occur during the
actual execution.

Recall however that, even though precise static call graph
construction is undecidable, dynamic call graphs, for a given
code-example pair, can be constructed without much difficulty.
This is because these are constructed at runtime, when all
the information which a program needs to run is known,
and thus the triggered calling context tree can be recorded.
Unfortunately, because the scope afforded by such a precise
dynamic callgraph extends only to the size of the chain of
function calls set into motion by the chosen example, the
question, of the total number of examples needed for the
generation of a callgraph which covers most of the codebase,
is inevitably raised.

Despite the contrast between static and dynamic callgraphs
however, the underlying mathematical notion remains the
same. A callgraph is a directed graph, and as such, any
techniques discovered from studying such structures can be
used on it and yield possibly interesting results. Consequently,
we review a number of directed graph centrality metrics, which
we extract from the static callgraphs generated by our tool, and
use to rank an application’s functions in accordance with their
relative influence in the graph.

1) Average Shortest Distance: The distance d(vi, vj) be-
tween any two vertices vi, vj ∈ V is defined as the number of
edges in a shortest path connecting them. As such, the average
shortest distance of vi is defined as

A(vi) =
d(vi, vj)

|V | − 1
, i ̸= j

Where d(vi, vj) = 0 if there is no path from vi to vj . A lower
value of this metric indicates that the node vi is relatively close
to every other node in the graph. Especially, A(vi) = 1 if and
only if vi is connected to every other node in the network.

2) Closeness Centrality: Related to average shortest dis-
tance, the formula for a node’s closeness centrality value is
defined so that the closer a node is to every other node, the
higher its value for the metric:

C(v) =
∑
w∈V

1

d(v, w)

Thus, if information needed to flow through a network,
nodes with a higher closeness value would be able to relay
messages using the least number of steps.

3) Betweenness Centrality: As suggested by its name,
betweenness is a measure of the relative number of shortest
paths that a node v appears on. Specifically,

g(v) =
∑

s̸=v ̸=t

δst(v)

θst

Where θst is the total number of shortest paths from s to t and
δst(v) is the number of those paths that pass through v. For
our purposes, a function with a higher betweenness value is
relatively more likely to be called by an example application.

4) Eccentricity: The greatest distance ϵ(v) between a vertex
v and any other vertex is called its eccentricity and can be
calculated thus:

ϵ(v) = max
u∈V

d(v, u).



The radius r of a graph is the minimum eccentricity, while its
diameter d is the maximum eccentricity.

A central vertex can be thus be defined as one whose
eccentricity equals the graph’s radius.

5) FanIn & FanOut: Otherwise known as in-degree and
out-degree respectively, for a directed graph G = (V,E), fan-
in of v ∈ V is a count of the number of edges for which v is
an endpoint, whereas fan-out counts the number of edges for
which v is a starting point:

FanIn(v) = |Sv| where Sv = {(w, y) ∈ E | y = v}

and

FanOut(v) = |Sv| where Sv = {(w, y) ∈ E | w = v}

B. Code Quality Metrics

1) Cyclomatic Complexity: Developed by T.J McCabe this
metric measures the complexity of the decision structure of
a program. Specifically, for the implementation described in
this paper, this is a count of the following modern control flow
directives:

• If statements
• For loops
• While loops
• ? : The conditional/ternary operator
• break
• continue
• case
2) Number of Operators: Given a function f this metric

measures the number of operators local to the function.
Specifically, this a count of all the binary, unary, and ternary
operators; summed up with all the function calls made by the
function.

3) Number of Operands: A function’s total number of
operands is calculated as the total number of its local variables
in addition to the number of its arguments.

III. PROPOSED METHODOLOGY

In the following sections, first we provide a high-level
overview of the proposed static analysis tool’s workflow. Next,
we expose a methodology for choosing project-specific quality
thresholds for a given toolkit. Finally, we use PETSc as a use
case, and demonstrate that the gathered data can be used to
answer quality-related questions with efficiency.

A. Overview of proposed tool

This section describes our static analysis tool which re-
lies on the Clang/LLVM infrastructure to collect code qual-
ity data, given an HPC application. As Figure 1 indicates,
given an HPC application and an architecture on which the
application is to be built, first a compilation database—
usually a JSON file specifying compile commands for each
source file configured to be built—is generated. This can
either be done directly using cmake [12] by turning on the
−DCMAKE_EXPORT_COMPILE_COMMANDS, or, for applica-
tions that do not support a cmake-build, by using the bear [13]
tool.

HPC application

Compilation
DB

AST

LLVM IRCallgraph
CSV

Halstead
CSV

cmake or bear

Clang

Clang Codegen

llvm opt tool

IR pass

libTooling pass

(1)

(2)

(3)

(4)

(5)

(6)

Centrality
metrics csv

networkit + panda
(7)

Fig. 1: Overview of the static analysis tool.

Once all files to be compiled, as well as their corresponding
full compile commands are known and stored in the compi-
lation database (the JSON file), this file is post processed by
our tool2. This is done so that each source file’s corresponding
Abstract Syntax Tree (AST) as well as its LLVM Intermediate
Language (LLVM IR) can be generated rather than the original
object code—see arrows (2) and (3) in Figure 1.

As a result, the next phase is a pass that takes in a clang-ast
per file, and uses clang-LibTooling to walker over it collecting
Halstead metrics into a spreadsheet which is exported—arrow
(4) of Figure 1. Similarly, the phase represented by arrow (6)
of Figure 1 is an IR pass that is written to export the file’s
callgraph into a spreadsheet which is then fed into a python
script. This script—as arrow (7) indicates— utilizes pandas
[14] and networkit to collect the callgraph’s centrality metrics
into their own spreadsheet.

Finally, the two spreadsheets—one from step (4) and the
other from step (7)—are merged together to form the overall
dataset (see section III-B for a description of the structure of
the resulting dataset).

1) Tool Constraints:

• As the numbered arrows of Figure 1 indicate, our tool
requires a few external dependencies. First, in addition
to the requirement that its source code be written in C or
C++ (step 1), the codebase should detail the process of
building it with cmake. Next, the system needs to have

2Notice that we never use the linker. We assume that our results will remain
the same pre- as well as post- linking and therefore choose to avoid the
additional time overhead.



Software Version
llvm-config 13.0.0git
opt LLVM version 13.0.0
clang clang version 13.0.0
python 3.6.9
pandas 1.1.5
networkx 2.5.1
neworkit 9.0

TABLE I: Tool Dependency Versions

a version of clang with libTooling support (steps 2 and
4). A copy of LLVM needs to be installed on the system
as well (step 3, 5, and 6), and finally, python with the
networkit, networkx, and pandas packages needs to be
installed.

• The callgraph of step 6 is generated on a local basis—
meaning that a callgraph is generated per LLVM IR
module, pre-linking.

• Because the usual callgraphs generated by clang have
one node into which all indirect calls point, we were
forced to write our own custom callgraph pass. The
custom callgraph pass we wrote is able to handle many
indirect calls, and each of the identified such calls is
counted towards the FanOut value of its parent method.
In order to do this, first, we compile source programs
so that results of the LLVM project’s implementation
of type-based alias analysis [15] are still attached to IR
instructions. Then we rely on the fact that a pointer to
the code of any function that can be called indirectly,
already has to be loaded, and as a consequence, keep
a stack of the load instructions in the LLVM IR at the
beginning of every function. When a load instruction is
encountered in the body of the function, it is pushed onto
the stack; a process which goes on until an indirect call
is encountered. When an indirect call is encountered, we
start popping instructions off the stack and comparing
the type of the popped instruction, with the type of the
indirect call. If the two types match, we stop and construct
a name for the indirect call’s pointer based on results of
type based alias analysis attached to the load instruction.
Otherwise, we keep popping off the stack. When this
heuristic fails, a “fail” node is added to the callgraph
instead.

• See Table I for the comprehensive list of software ver-
sions used in the tool as of this writing.

B. Dataset Structure

As previously mentioned, the proposed tool was used to
extract data from 3 commonly used HPC libraries. Table IV
records some demographic information about the libraries,
while Table III lays out the dataset structure.

C. HPC Toolkits

The tool traverses modern HPC software packages and
outputs a number of code quality and call graph metrics.

TABLE II: Overview of Halstead and graph theory-based
metrics.

Metric Description
mu1 The number of unique operators
mu2 The number of unique operands
N1 Total occurrences of operators
N2 Total occurrences of operands
N Length = N1 + N2
mu Vocabulary = mu1 + mu2
mu1’ Potential operator count
mu2’ Potential operand count = number of function arguments
V Volume = N ∗ log2(mu) → the number of mental

comparisons needed to write a program of length N
V ∗ Volume on minimal implementation = (2 + mu2′) ∗

log2(2 +mu2′)

L Program length = V ∗

N

D Difficulty = 1
L

I Intelligence = L′*V ∗

E Effort to write program = V
L

T Time to write program = E
18

CC Cyclomatic complexity
FanIn Total number of callers
FanOut Total number of callees
BC Betweenness centrality metric representing a node’s influ-

ence over information flow in a graph
Closeness Centrality metric that measures a node’s capability for

efficiently spreading information
ASPath Average shortest path

TABLE III: Overview of Dataset Structure

Variable Name Description
V1 Name of HPC Library
V2 Name of function

V3-V18 Used for 16 Halstead code quality metrics
V19-V24 Used for graph theory related metrics

We consider three such toolkits namely PETSC, SLEPC, and
SuperLU. PETSc (Portable, Extensible Toolkit for Scientific
Computation) is a widely used HPC software toolkit which
enables the large-scale parallel solution of partial differential
equations in applications using C, C++, Fortran, and Python.
SLEPc is a tookit built on top of PETSc for parallel com-
putation of eigenvectors and eigenvalues of sparse matrices.
SLEPc developers can use basic constructs of PETSc such
as its data structures, error checking and automatic profiling.
Finally, SuperLU is used to compute the solution of large,
nonsymmetric, and sparse systems of linear equations. All
three tookits feature parallel implementations based on MPI,
OpenMP, and CUDA. See Table IV for the descriptive statistics
of these tookits.

TABLE IV: Descriptive statistics of HPC toolkits.

HPC Pkg Num. of
Name Methods URL
PETSc 718,497 https://petsc.org/
SLEPc 210,626 https://slepc.upv.es/

SuperLU 71,552 https://github.com/xiaoyeli/
superlu dist



Fig. 2: Total Collected Functions per Version of PETSc.
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Fig. 3: Sizes of Central Functions in PETSc

IV. A PETSC USE CASE : ANALYZING THE MOST
CRITICAL FUNCTIONS

In this section, we describe how data collected by the tool
of section III-A was used to identify and generate quality
history plots for the most critical functions of PETSc. As
Figure 2 indicates, we were able to collect data for 11 versions
of PETSc, starting with PETSc-3.5 and ending with PETSc-
3.15.0.

In the following,we make a comparison between two
methods used for identifying the most critical functions
in each of the studied PETSc versions. In the first method,
first we calculated the radius of the callgraph associated with
each version’s source code, then we selected those functions
whose eccentricity equals the radius and treated those as the
most central. Next, we removed functions whose betweenness
was not at least zero, thereby keeping only those functions
which appear on at least one independent path of the callgraph.
Figure 3 displays the sizes of the resulting sets over time. As
can be seen, the more project grew, so did the number of its
most critical functions.

The second method uses PageRank [16] to sort functions
according to their influence on other functions in the callgraph.
Figure 4 displays the overlap between functions returned
by the eccentricity-based ranking and the top n pageranked
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Fig. 4: Centrality VS PageRank in PETSc

functions, where n equals the size of the set returned by the
eccentricity based ranking described above. As can be seen,
we found little to no overlap between the two sets of functions
throughout.

Next, we sought to analyze how critical the resulting
functions really were. In Figures 6 and 7, we plot the
percentage average shortest path, cyclomatic complexity, fan
in, as well as the total betweenness values, accounted for
by the resulting most critical functions using the eccentricity-
based ranking and pagerank respectively.

We find that, functions whose eccentricity equals the radius
of the callgraph in PETSc, account for around 35% of average
shortest paths on average. This means that in any random
experiment where every function in a selection of 100 PETSc
functions is called, around 35 functions in the selection will
trigger a central function on average. Therefore, for applica-
tions that use PETSc, an error in any one of those central
functions will manifest itself relatively quickly.

Perhaps surprisingly however, the influence of these func-
tions (those found via eccentricity-based ranking), seems to
dissipate when betweenness (or cyclomatic complexity) rather
than average shortest path is considered for an indicator
of frequency of use. As figure 6 indicates, their cyclomatic
complexity influence is almost non-existent and their influence
on the overall betweenness values looks negligible.

When one remembers the size of the central functions
computed via the radius of the callgraph, and considers only
that many among the top results of pagerank however, the
central functions returned account for non-negligible percent-
ages of not only fan-in and average shortest path, but also
betweenness and cyclomatic complexity.

Thus, it seems as though the PageRank algorithm finds
a much more critical set of functions than the eccentricity-
based search algorithm. However, due to the negligible overlap
between the central functions found by the two methods, and
because the eccentricity-based ranking also returns a very
critical set of functions in terms of average shortest path



and fan in, we find that using both methods rather than just
PageRank might yields better analysis results.

After investigating how critical the found functions really
were, we sought to demonstrate how the data returned by our
tool can be used to plot the histories of every function in the
source code in terms of various centrality and quality metrics,
starting with those most critical.

Figure 9 displays the history of the top 10 most central
functions in the oldest of PETSc (PETSc-3.5) found via
eccentricity-based ranking, while Figure 8 displays the history
of the top page-ranked functions in the latest version of PETSc
(PETSc-3.15). In both figures, the history in terms of the
function’s average shortest path is displayed on the left, while
the history in terms of betweenness is displayed on the right.

From the figure depicting the history of the top 10 functions
in the oldest version of PETSc, we can infer for example,
that PETSc version 3.8 retired the PetscStrcmpNoError
function. In addition, we are able to see that, even though
the total use of PetscCheckPointer on independent paths
of the callgraph of PETSc was significantly diminished (its
betweenness went down) in version 3.10, its total use in terms
of average shortest path went up significantly, suggesting that
the total number of unique functions in which valid pointer
checks were made, significantly went up.

Moreover, much like Figure 9 allowed us to visualize
and identify the moment when a given critical function was
put out of use, from Figure 8 inferences about versions in
which a number of functions were introduced can be made:
KSPCGGetObjFcn in PETSc-3.7, TaoBoundSolution,
TaoBNKRecomputePred, TaoBoundSolution,
TaoBNKPerformLineSearch in PETSc-3.9.

Furthermore, we can see that PETScError dominates
betweenness calculations, and should probably be removed
before any further inferences resulting from analyzing the
metric could be made.

Finally, Figure 10 depicts the history of the top 10
page-ranked functions in terms of each function’s quality—
measured in terms of cyclomatic complexity (left), as well
as the function’s total number of operations (right). From
the figures, functions such as TaoBNKTakeCGSteps,
KSPCGGetObjFn and TaoCreate_BNK can be identified
as functions whose active development seems to have steadied
because of their almost constant cylomatic complexity and total
number of operations since version PETSc-3.13. This is in
opposition to the remainder of the found critical functions as
development for these seems to be active and on-going.

As such, using techniques illustrated in this section, the
callgraph of sizeable application such as PETSc can be used
to identify the most critical functions in the application. Their
perceived relative influence can be investigated, and the history
both of their use and their quality in terms of various metrics
can be visualized and thereby any functions that domain
scientists might deem to require more attention, can be found.

Fig. 5: PETSc Number of Arguments and CC Trends

A. Threshold Identification

As section I mentions, each of the structural code quality
metrics needs a threshold that can be used to sort sections of a
codebase into problematic versus non-problematic categories.
For cyclomatic complexity, the default suggested by the re-
cent standard on Information Technology - Software Quality
Measurement - Automated Source Code Quality Measures
(ISO/IEC 5055:2021 [17]), is 20, while for the number of
function arguments, the number is 7. However, these numbers
may need to vary for different specialized software, especially
those whose specific problem domain might dictate unusual
numbers. For example, from Figure 5 it can be seen that the
average cyclomatic complexity value for any version of PETSc
(starting from 3.5 to 3.15) is always above the recommended,
and similary for the average number of arguments per function.
This unusual behavior leads us to conclude that any code
quality tool, should provide users with means to customize
thresholds based on their application specific knowledge. This
lead us to investigate a method by which desired subjective
metrics can be identified through statistical analysis. This
section describes the proposed method.

The process has three steps. First, the tool from section
III-A is used to gather data for the metrics of interest. Second,
a type of probability distribution from which data collected
per metric, could be considered to be a sample, is identified.
Finally, metric thresholds are recommended based on the fit
from the resulting distribution.

For the probability distribution of best fit, we used the
Easyfit tool [18]. Easyfit has a large collection of potential
probability distributions. However, due to the unbounded
nature of the values of our metrics, we only consider the
Beta, Gamma, Logistic, Cauchy, Weibull, and Exponential



distributions for potential fits.
Recall that a probability distribution is described through

either its PDF (Probability Density Function) or its CDF (Cu-
mulative Distribution Function). The PDF is often represented
as f(x) and describes the probability that a random variable
equals to the value x. Similarly, the CDF is usually represented
as F(x) and describes the probability that a random variable
is less than or equal to the value of x.

For each metric, the Easyfit tool fits our data with each
probability distribution and ranks the fits through the Kol-
mogorov Smirnov test—a non parametric test which computes
the distance between empirical and cumulative distribution
functions of sample and reference distributions respectively
[19].

Once the probability distribution for a given metric is
known, the shape of its PDF is manually used to identify
the appropriate reference threshold values for the metric.
Throughout, we take the low value to refer to the start of the
curve that fits the most data, while the high value refers to the
value from which the skewness of the curve starts. The values
inside this range, we take to be the feasible values. Tables V
through VII contain the results of our analysis, complete with
the distribution of best fit, as well as threshold values for each
metric; for all three HPC toolkits considered in our study (see
section III-C).

TABLE V: Threshold values for PETSc.

Metric Prob. Dist. Thresholds Reference Values
Low Range High

mu1 Weibull ≤ 9 10-59 ≥ 60
mu2 Gamma ≤ 10 11-219 ≥ 220
N1 Exponential ≤ 200 201-630 ≥ 631
N2 Weibull ≤ 250 251-1200 ≥ 1201
N Weibull ≤ 600 601-1900 ≥ 1901
mu Weibull ≤ 50 51-198 ≥ 199
mu1’ Cauchy ≤ 0.30 0.31-0.68 ≥ 0.69
mu2’ Beta ≤ 5 6-16 ≥ 17
V Weibull ≤ 4000 4001-14000 ≥ 14001
V∗ Beta ≤ 28 29-122 ≥ 123
L Weibull ≤0.10 0.11-0.40 ≥ 0.41
D Weibull ≤ 55 56-190 ≥ 191
I Weibull ≤ 7 8-32 ≥ 33
E Weibull ≤ 40000 40001-200000 ≥ 200001
T Weibull ≤ 25000 25001-10000 ≥ 10001
CC Weibull ≤ 400 401-800 ≥ 801
FanIn Weibull ≤500 501-1500 ≥ 1501
FanOut Weibull ≤10 11-70 ≥ 71
BC Weibull ≤16000 16001-64000 ≥64001
Closeness Beta ≤0.002 0.003-0.006 ≥0.007
ASPath Gamma ≤4 5-800 ≥801

The metric thresholds identified can then be used to pick out
code smells by looking at each method’s score and whether
it falls below, in or above the reference threshold range. For
example, in the case of PETSc (Table V), we can recognize
that 400 starts the feasible range of CC values—which most
likely refer to functions that make appropriate use of multiple
and nested if statement and loops. Similarly, any function
whose CC value is greater than 800 (High value of CC)
probably needs a developer’s attention and should probably
be split into multiple functions.

TABLE VI: Threshold values for SLEPc.

Metric Prob. Dist. Thresholds Reference Values
Low Range High

mu1 Gamma ≤ 8 9-25 ≥ 26
mu2 Exponential ≤ 50 51-180 ≥ 181
N1 Weibull ≤ 1600 1601-4000 ≥ 4001
N2 Weibull ≤ 2500 2501-9000 ≥ 9001
N Weibull ≤ 4000 4001-12000 ≥ 12001
mu Exponential ≤ 90 91-180 ≥ 181
mu1’ Gamma ≤ 0.30 0.4-0.6 ≥ 0.7
mu2’ Beta ≤ 4 5-22 ≥ 23
V Weibull ≤ 20000 20001-60000 ≥ 60001
V∗ Gamma ≤ 8 9-28 ≥ 29
L Weibull ≤0.10 0.2-0.4 ≥ 0.5
D Weibull ≤ 400 401-1500 ≥ 1501
I Weibull ≤ 2 3-7 ≥ 8
E Weibull ≤ 40000 40001-200000 ≥ 200001
T Weibull ≤ 25000 25001-10000 ≥ 10001
CC Weibull 300 301-1200 1201
FanIn Weibull ≤50 51-260 ≥ 261
FanOut Weibull ≤7 8-35 ≥ 36
BC Weibull ≤100 101-400 ≥401
Closeness Gamma ≤0.002 0.003-0.008 ≥0.009
ASPath Gamma ≤15 16-450 ≥451

TABLE VII: Threshold values for SuperLU.

Metric Prob. Dist. Thresholds Reference Values
Low Range High

mu1 Gamma ≤ 8 9-36 ≥ 37
mu2 Weibull ≤ 50 51-180 ≥ 181
N1 Weibull ≤ 2500 2501-10000 ≥ 10001
N2 Weibull ≤ 2500 2501-17500 ≥ 17501
N Weibull ≤ 4000 4001-12000 ≥ 12001
mu Weibull ≤ 50 51-180 ≥ 181
mu1’ Gamma ≤ 0.30 0.4-0.6 ≥ 0.7
mu2’ Weibull ≤ 4 5-17 ≥ 18
V Weibull ≤ 40000 40001-240000 ≥ 240001
V∗ Gamma ≤ 20 21-60 ≥ 61
L Weibull ≤0.10 0.2-0.4 ≥ 0.5
D Weibull ≤ 100 101-400 ≥ 401
I Weibull ≤ 2 3-10 ≥ 11
E Weibull ≤ 25000 25001-100000 ≥ 100001
T Weibull ≤ 1000 1001-5000 ≥ 5001
CC Weibull 50 31-1000 1001
FanIn Gamma ≤8 9-19 ≥ 20
FanOut Gamma ≤3 4-12 ≥ 13
BC Weibull ≤50 51-240 ≥241
Closeness Weibull ≤0.002 0.003-0.008 ≥0.009
ASPath Gamma ≤100 101-300 ≥301

In conclusion, the main consequences of our threhold-
finding experiments can be summarized as follows.

• Overall, we find that we cannot recommend a single
probability distribution to identify the thresholds of all
metrics.

• The above point is true both within a project for different
metrics, and across projects even for the same metric.
However, because each application’s domain is different
and might heavily influence the code’s design, we do
not find this to be a cause for concern. On the contrary,
these project-specific distributions allow us to set project-
specific thresholds allowing us to reliably detect undesir-
able trends within a project quickly.

• The Weibull distribution if most effective to fit most



of our metrics data of all the other probabilities we
considered in our study.

V. CONCLUSION

We have introduced a Clang/LLVM-based static analysis
tool to collect software quality related data from large appli-
cations. We sketched out its design that relies on compilation
databases exported by cmake to replace the compiler used in
a project with clang and use a custom written libTooling tool
and an LLVM IR custom callgraph pass to collect AST related
data, and export the project’s static callgraph respectively. We
described how pandas and networkit are then used to collect
centrality data from the callgraph.

As a use-case, we demonstrated how we were able to use the
data collected by our tool to identify the most critical functions
of multiplef versions of PETSc, using two different methods—
an eccentricity based ranking of functions, and PageRanked.
We compared results returned by both methods, and plotted
each of the resulting functions across time, which allowed to
make judgements about when different influential functions
were introduced in the project or when they were put out of
use which might point to shifts in the project’s areas of focus.

Finally, we presented a method for identifying thresholds
for each metrics, thereby simplifying the process of spotting
coding smells from such applications. We demonstrated how
we used the proposed tool to extract data from three well-
know HPC libraries, namely PETSc, SLEPc, and SuperLU,
and exposed how we used the EasyFit tool to choose the
best distribution used to fit our metrics data. Finally we
presented reference thresholds—to be used for coding smell
identification—that resulted from a manual inspection of the
shape of the distributions returned by EasyFit.

VI. RELATED WORK

The current work presented a tool based on Clang/LLVM
and explained how the tool was used to collect a number of
function-level code quality metrics, and in addition, used the
collected data to rank functions in source code according to
their relative influences, and evaluated the resulting functions
in terms of their actual influence on the rest of the code-base.

Honglei et al [20] reviews a number of software metrics
and complexity metrics, including the Halstead, and McCabe’s
metrics used in this work.

Vytovtov et al [21] collected a number of Halstead metrics
using an LLVM-based tool and sought to classify source code
sections through the K-means algorithm.

Sora et al [22] relied on PageRank in a recommender system
they designed for identifying key classes in software systems
by first modeling static dependencies in the application of
interest as a directed graph.

Zhang et al [23] used a decomposition algorithm based on
the k-core—another graph centrality metric—of a graph, to
analyze the static structure of large-scale software systems.

Paloma et al [24] propose a different method for identifying
relative thresholds for source code metrics by identifying a
value p and a value k for every metric M , such that p% of
the classes in the system have metric value M ≤ k.

VII. FUTURE WORK

As it stands, the tool introduced collects code quality metric
data at the function-level. In the future, we plan to include met-
rics at different other levels of granularity including the class-
level, the module-level, data about requirements and tests, etc.
Additionally, even though we demonstrated that some of the
centrality data collected point to interesting aspects of the
source code, we still need to investigate whether the structural
code quality metrics data collected have any relationship to
other aspects of the development process. An investigation of
such a nature is planned for the future. Furthermore, due to the
unusually large metric thresholds that were found for some of
the metrics, the manual threshold approximation used to after
a probability distribution has been identified and plotted is to
be revised, automated, and its performance on unseen data
analyzed.

Finally, we plan to investigate the relationship between the
data collected by this static analysis tool, and a corresponding
dynamic analysis tool to uncover the effect of modern dy-
namic programming language features like polymorphism and
overloading.
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Fig. 7: How Critical Are PageRank Based Central Functions
in PETSc?
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Fig. 10: Quality History of Top PageRanked Functions in the
Latest Version of PETSc.
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