
Performance Portability of Sparse Tensor Decomposition Operations

S. Isaac Geronimo Anderson
University of Oregon

igeroni3@uoregon.edu

Jee Choi
University of Oregon
jeec@uoregon.edu

Abstract—We leverage the Kokkos library to study the per-
formance portability of parallel sparse tensor decompositions
on CPU and GPU architectures. Real-world multi-way data
can be represented using a multi-dimensional array, or tensor,
and tensor rank decomposition can reveal latent information
within data. Tensors storing real-world data are often large and
sparse, necessitating space-efficient storage and time-efficient
parallel algorithms. CANDECOMP/PARAFAC via Alternating
Poisson Regression Multiplicative Update (CP-APR MU) is a
memory bandwidth–bound algorithm which calculates tensor
rank decomposition for count data, and which is composed
of simple array operations. We compare the performance of
Kokkos implementations of three kinds of kernels (simple array
operations, MTTKRP, and CP-APR MU) to platform-specific
implementations on CPUs and GPUs.

Our result shows that with a single implementation Kokkos
can deliver performance comparable to hand-tuned code for
simple array operations that make up tensor decomposition
kernels on a wide range of CPU and GPU systems, and superior
performance for the MTTKRP kernel on CPUs, but exhibits
comparable to lower performance in the case of the CP-APR
MU kernel on CPU systems.

1. Introduction

Tensors are the higher-order generalization of matri-
ces, and tensor decompositions (or factorizations) provide
a useful tool for analyzing latent relationships in multi-
way data [1]. Many real-world data analysis applications
in various areas—e.g., in healthcare, cybersecurity, social
networks, and more—give rise to multi-way data that can
be naturally represented by sparse tensors.

Performance–portability analyses for parallel tensor de-
composition have been conducted at the application level
with software such as SparTen [2] and GenTen [1],
which respectively decompose sparse tensors via the CAN-
DECOMP/PARAFAC Alternating Poisson Regression (CP-
APR) and CANDECOMP/PARAFAC Alternating Least
Squares (CP-ALS) algorithms. Here we explore the per-
formance portability of parallel tensor decomposition at
the level of essential array operations by implement-
ing a set of proxy benchmark kernels using the Kokkos
C++ performance-portable library [3]. With the emergence
of drastically different parallel architectures, performance
portability is critical in achieving optimal productivity on
heterogeneous computing systems.

CP-APR and CP-ALS are algorithms for computing the
canonical polyadic decomposition model, which approxi-
mates a tensor as a sum of R rank-one tensors [1]. CP-
APR is used similarly to CP-ALS with the distinction that
CP-APR is more effective at modeling data with a Poisson
distribution, while CP-ALS models data with a Gaussian
distribution [4]. Two key performance bottlenecks in tensor
decomposition are the matrixized tensor times Khatri-Rao
product (MTTKRP) used in CP-ALS, and the multiplicative
update (MU) operation used in the CP-APR MU algorithm.
The MTTKRP and MU kernels are composed from simple
array operations, and these array operations form the basis of
this study. We start by evaluating parallel performance with
simple array operations from the STREAM benchmark [5],
and then extend the evaluation to the MTTKRP kernel, and
finish by evaluating the multiplicative update (MU) kernel.

Contributions. We make three key contributions to-
wards performance portable sparse tensor decomposition
operations:

1) Augmentation of existing STREAM and MTTKRP im-
plementations using Kokkos for portability.

2) Evaluation of Kokkos and manually-tuned benchmarks
on several CPU and GPU architectures.

3) Analysis of the performance portability of tensor de-
composition algorithms on multiple architectures.

These contributions collectively provide insight into the
performance portability relationships between fundamental
array operations and sparse tensor decomposition operations
on a variety of systems and processor organizations, and
they provide a case study of Kokkos as a means for lever-
aging these systems.

2. Background

This section summarizes tensors (§2.1) and tensor rank
decomposition (§2.2); We direct the reader to Kolda and
Bader [6] for their essential and detailed discussion of
tensors, tensor decompositions, and related algorithms.

2.1. Tensors and Sparse Tensors

Real-world multi-way data can be represented using
a multi-dimensional array, or tensorial array, commonly
referred to simply as a tensor [6]. For example, consider a
three-dimensional tensor S whose dimensions are user, song,
and year; this tensor can store entries which are the number

of minutes a particular user has spent listening to a par-
ticular song in a particular calendar year. Formally, tensors
are N -dimensional arrays, where each array element has
a corresponding N -tuple index i “ pi1, i2, . . . , iN q. Each
index coordinate ik fixes an element’s location along the kth

dimension, with k P t1, 2, . . . , Nu and ik P t1, 2, . . . , Iku.
Low-dimensional tensors include vectors, where N “ 1,
and matrices, where N “ 2. Thus a length I1 vector has
I1 indexed elements, and an I1 ˆ I2 matrix has I1 rows
and I2 columns for indexing its I1I2 elements. In general,
an N -dimensional (or N -mode) tensor with dimensions
I1 ˆ ¨ ¨ ¨ ˆ In represents

śN
k“1 Ik distinct coordinates each

with a corresponding element. This paper uses additional
definitions and notation as listed in Table 1.

TABLE 1: Notation used in this paper
.

Notation Definition
i, ik Scalars (italic letters)
a, i Vectors and tuples (bold lower-case letters)
B,Φ Matrices (bold upper-case letters)
X ,M Sparse tensors and tensor models (script letters)
R Rank, the desired number of model components
nnz Number of non-zero values in a sparse tensor
Xi The i-th non-zero value in a sparse tensor X

coordn,X ,i The n-coordinate for Xi

λ Weight vector
Λ Diagonal weight matrix pdiagpλqq

Apnq Mode-n model factor matrix
B Intermediate representation of Apnq

Π Intermediate calculation matrix
Φ Intermediate calculation matrix

Xpnq Mode-n flattening of X
ϵ Minimum divisor to prevent divide-by-zero
τ Convergence error tolerance

κmin Inadmissible zero minimum
κadj Inadmissible zero adjustment value
1 All-ones vector
m Element-wise division
˝ Element-wise multiplication

max˝ Element-wise maximum

Sparse tensors are tensors where most elements are zero,
and are analogous to sparse matrices. Real-world tensors
are often large and sparse. For example, consider a three-
dimensional tensor S whose dimensions are user, song, and
year. If there are many songs and many users, it is likely that
not every user has listened to every song in every year, which
means that many entries in S would be zero. Explicitly
storing zero-valued entries in a sparse tensor data structure
is both undesirable and unnecessary; undesirable due to the
high memory requirement of storing real-world tensors in
general, and unnecessary because any non-explicitly–stored
sparse tensor entries can simply be assumed to have the
value zero. For these reasons, many real-world tensors are
stored as sparse tensors [7].

2.2. Tensor Rank Decomposition

Tensor rank decomposition is similar to the matrix
singular value decomposition, and can reveal latent infor-
mation in data. Tensor rank decomposition is often re-

ferred to as canonical polyadic decomposition (CPD) or
CANDECOMP/PARAFAC (CP). Computing CP for an N -
mode tensor X yields an N -mode, rank-one tensor sum M
approximating (or modeling) X . The model M comprises
R addends (with R as a parameter), where each addend
is the outer product of N vectors (see Figure 1). Models
are commonly represented using Kruskal format [8], written
X « M “ Jλ;Ap1q, Ap2q, . . . , ApNqK, where Apkq P RIkˆR

(called a factor matrix) stores normalized versions of the R
vectors associated with the k-th mode, and λ P RR (called
the weights vector) stores the norms of the R vectors. This
is because models represented in terms of their components
often require less memory storage than explicitly storing the
fully-evaluated tensor sum. (To see why, consider an n ˆ n
rank-one matrix which can be stored more efficiently as two
vectors as opposed to storing a matrix.)

≈X +⋯+
a1 aR

b1 bR

c1 cR

Figure 1: Three-dimensional (N “ 3) tensor rank decom-
position.

2.2.1. CP-APR. The primary algorithm for computing
CP on a tensor containing sparse count data is CAN-
DECOMP/PARAFAC via Alternating Poisson Regression
(CP-APR), due to how a Poisson distribution suitably de-
scribes the random variation in such data [4]. There are three
methods for computing CP-APR:

(i) Multiplicative Update (MU)
(ii) Projected Damped Newton for Row-based sub-

problems (PDN-R)
(iii) Projected Quasi-Newton for Row-based sub-problems

(PQN-R)

PDN-R and PQN-R are Newton-based methods which re-
quire fewer iterations to converge than MU because they
use second-order information to solve independent row sub-
problems, while MU uses a form of scaled steepest-descent
with bound constraints over all rows during each itera-
tion [9]. Each row sub-problem can be solved in parallel
with PDN-R and PQN-R, but MU iterates towards a solution
using dense matrix operations which can be implemented in
parallel to achieve better overall performance than PDN-R
and PQN-R on parallel systems. The main focus of our work
is on parallel performance, so we focus on MU exclusively.
(For a detailed discussion of the CP-APR MU algorithm,
see [4].)

3. Sparse Tensor Storage Formats

This section presents an overview of the canonical and
state-of-the-art sparse tensor storage formats, respectively
coordinate (COO) (§3.1) and Adaptive Linearized Tensor
Order (ALTO) (§3.2).

3.1. Coordinate (COO)

COO is the canonical sparse tensor storage format [8],
and is similar to the sparse matrix storage format of the
same name. Given an N -mode sparse tensor, COO lists each
non-zero element with its corresponding N -dimensional co-
ordinate, typically sorted by coordinates in lexicographical
order. The two primary advantages to using the COO storage
format are that it is intuitive, and that it straightforwardly
allows iterating over non-zero entries and their correspond-
ing coordinates. Performing a calculation on a sparse tensor
stored in COO format involves iterating over each non-zero
entry and using the corresponding coordinates for the entry
to perform a desired operation. For example, consider a
matrix-vector product using a 2-mode sparse tensor X and
a dense (non-sparse) vector y and storing the result in dense
vector z: For each non-zero element v with coordinates
pi, jq in X, the mode-1 (row) coordinate i determines the
participating row in z, and the mode-2 (column) coordinate
j determines the participating row in y. Thus, the simplest
approach iterates over each non-zero element v in X, iden-
tifies its coordinates pi, jq, then multiplies v by yj and adds
the result to zi.

The COO non-zero element list for an N -mode sparse
tensor with V non-zero elements is easily represented in a
computer program using one length-V value array and N
length-V coordinate arrays, such that index i in each of the
arrays identifies the value and corresponding coordinates for
the i-th non-zero element. This representation uses pN`1qV
storage and allows straightforwardly iterating over the non-
zero element list by iterating over the V array indices for all
N`1 arrays simultaneously. Additionally, the representation
allows parallel operation by dividing the V array indices
between two or more processors.

The primary drawback to using COO is its explicit co-
ordinate storage footprint. Consider a 3-mode sparse tensor
X with dimensions I1 ˆ I2 ˆ I3 and V non-zero elements.
The storage for X using COO is 4V , because we must
store three coordinates and one value for each of the V
non-zero elements. This means that the COO storage for X
increases as V increases. V increases as the sparsity of X
decreases, up to the bound of I1I2I3 (i.e., a dense tensor).
As V approaches I1I2I3, the COO storage for X approaches
4 pI1I2I3q, which exceeds the amount of storage required for
storing X as a dense tensor (e.g. in multidimensional arrays)
by a factor of 4. For COO to be at least as storage-efficient
as multi-dimensional arrays, it must satisfy the condition
pN ` 1qV ď

śN
k“1 Ik “ñ V ď

śN
k“1 Ik{pN ` 1q, where

the the sparse tensor has N dimensions and V non-zero
entries. This means that COO storage efficiency requires
the sparsity of a tensor not to exceed 1{pN ` 1q.

A secondary drawback to COO is that iterating over
the non-zero elements necessarily implies an ordering with
respect to the non-zero element coordinates. State-of-the-
art memory systems require regular memory accesses for
maximizing cache utilization and achieving the best overall
memory system performance. Thus, accessing a sparse ten-
sor’s non-zero entries in a different order than the order
in which they are stored in memory leads to irregular
memory accesses, which leads to poor cache utilization
and poor overall memory system performance. Sparse ten-
sor calculations like CP-APR MU require iterating over a
sparse tensor’s non-zero entries mode-wise, for all modes,
which effectively results in irregular memory accesses for
all modes except one of the modes.

As a simple example of the non-zero entry ordering
issue, consider a 2-mode sparse tensor X (equivalently, a
sparse matrix) with non-zero entries stored in coordinate
lexicographical order or, equivalently, row-wise order. The
first-mode coordinates are taken to be the row coordinates,
so iterating over the non-zero entries is effectively row-
wise iteration over the non-zero entries in X . (This row-
wise iteration is common in such basic linear algebra op-
erations as the matrix-vector product.) If the second-mode
coordinates are taken as column coordinates, then the current
lexicographical ordering for the non-zero entries prohibits
efficiently iterating over the non-zero entries column-wise.
(An example of a column-wise iteration is the transposed-
matrix times vector product.) Iterating over the non-zero
entries column-wise in this scenario is inefficient because
ordering the non-zero entries row-wise in memory gener-
ally means that the non-zero entries will not be ordered
column-wise in memory, and iterating over the non-zero
entries column-wise in this situation is what causes irregular
memory accesses and reduced memory system performance.

Additionally, iterating over the non-zero entries column-
wise in COO format is not even possible without sorting
the non-zero entries by their column coordinates. In gen-
eral, achieving a different ordering entails sorting the non-
zero elements for each desired ordering. One approach for
achieving this capability entails storing the non-zero ele-
ments in arbitrary order, then sorting the elements by mode,
and storing the sorting results into N additional permutation
arrays. This permutation array approach increases the COO
storage requirement to p2N ` 1qV for a sparse tensor
with N modes and V non-zero elements. For COO with
permutation arrays to be at least as storage-efficient as using
multi-dimensional arrays, the sparse tensor must satisfy the
condition that the sparsity does not exceed 1{p2N ` 1q,
where the sparse tensor has N dimensions. Thus, the COO
format is an intuitive storage format with potential memory-
performance and storage-footprint challenges for algorithm
designers.

3.2. Adaptive Linearized Tensor Order (ALTO)

The state-of-the-art sparse tensor storage format is
ALTO [10], which maps N -dimensional coordinates to lin-
ear indices such that non-zero elements near to each other

in a sparse tensor are near to each other in memory. Given
an N -mode sparse tensor X , ALTO essentially maps the
coordinates for each non-zero element v in X to the set
of natural numbers N by recursively dividing the multi-
dimensional space occupied by the tensor into halves until
locating v. Once v is located, the recursive division and
subsequent choice of halves forms a bit sequence of choices
which can be interpreted as a natural number. This natural
number is the ALTO index for v.

Compared to COO, ALTO has lower memory usage due
to storing a single linear index value for each non-zero entry,
instead of N coordinate values. ALTO’s lower memory us-
age leads to higher memory bandwidth utilization, because
storing one index value per non-zero entry instead of N co-
ordinate values reduces the required memory value accesses
by N ´ 1 per non-zero entry. This reduction in required
memory accesses per non-zero entry frees crucial memory
bandwidth and cache storage for other practical purposes,
such as accessing additional non-zero entries or operand val-
ues during sparse tensor computations. The higher memory
bandwidth utilization with ALTO is also due to the non-zero
entries being near each other in memory when they are near
each other in the N -dimensional tensor, thereby maintaining
access locality. Another advantage compared to COO is that
ALTO has dimension-agnostic storage requirements: ALTO
stores V linear indices in a one-dimensional data structure
and their V corresponding non-zero entries, meaning that
ALTO requires 2V storage for an N -mode sparse tensor X ,
irrespective of N .

ALTO Workload Partitioning and Scheduling. The
ALTO approach differs from other sparse tensor storage
formats which structure (partition) a given sparse tensor
into coarse-grained storage units, because coarse-grained
storage formats may not be amenable to balanced parallel
workload scheduling. Coarse-grained sparse tensor storage
formats partition a given sparse tensor into storage units
containing more than one non-zero value, such as a blocks
of non-zero values [11], or forests of height-N trees whose
leaves are non-zero values [12]. These coarse-grained sparse
tensor storage formats often partition a given sparse tensor
into storage units of varying size due to the irregular spar-
sity patterns of real-world sparse tensors. A parallel sparse
tensor calculation over storage units of varying size leads to
workload imbalances of varying degree, which diminishes
the overall effectiveness of parallel calculation because the
storage unit assigned to one parallel process may be much
larger than the storage unit assigned to another parallel pro-
cess. This scenario over-burdens the former parallel process
with work while starving the latter for work, hence the latter
parallel process is not utilized to its full potential.

The ALTO sparse tensor storage format aims to expose
fine-grained parallelism opportunities by partitioning a given
sparse tensor in storage units at the granularity of individ-
ual non-zero values, each paired respectively with a one-
dimensional coordinate encoding of their N -dimensional
coordinates. This granularity level is similar to that of the
COO sparse tensor format, which also structures a given
sparse tensor in storage units of non-zero values, each paired

with their respective N -dimensional coordinates. The ad-
vantage to structuring a given sparse tensor in storage units
of individual pairs of non-zero values with their respective
N -dimensional coordinate linear encodings (their respective
linear indices) is that this allows sparse tensor calculations
to be performed in parallel over storage units which are
as fine-grained as possible. This enables a sparse tensor
calculation to partition the set of all ALTO storage units into
relatively balanced subsets which are amenable to relatively
balanced parallel workloads.

4. CP-APR MU Algorithm

This section starts with an algorithmic overview of CP-
APR MU (§4.1), continues into sparse tensor implemen-
tation details (§4.2), and finishes with a discussion on
performance considerations and optimization opportunities
(§4.3). For the mathematical derivation of the CP-APR MU
algorithm, see Chi and Kolda [4].

4.1. CP-APR MU Algorithm Overview

A program listing for the general CP-APR MU algo-
rithm is shown in Algorithm 1, using the notation shown
in Table 1. The CP-APR MU algorithm takes an N -mode
input tensor X and iterates towards an approximate model
tensor M in two nested stages, called outer and inner,
where the outer iteration updates each of the factor matrices
in round-robin fashion, and the inner iteration calculates
successive updates to the current factor matrix. In each
iteration of the outer stage, CP-APR MU updates the N
model factor matrices, Ap1q,Ap2q, . . . ,ApNq, as follows: If
at least one outer iteration has completed, then the algorithm
searches through the current model factor matrix Apnq,
1 ď n ď N , for values which are smaller than a minimum
value parameter κmin. This is because values near zero
may interfere with solution convergence. These values are
called inadmissible zeros, and if an inadmissible zero is
detected, it is shifted by an adjustment value parameter, κadj.
After adjusting for inadmissible zeros, Apnq is scaled by
the weight vector λ, resulting in the current working model
factor matrix B. The last step before entering the inner
iterative stage is to calculate the intermediate ΠJ matrix as
a chained column-wise Kronecker product over all model
factor matrices excluding Apnq.

In each iteration of the inner iterative stage, the current
model factor matrix Apnq, 1 ď n ď N , undergoes a series
of multiplicative updates. Each multiplicative update in the
series requires calculating the intermediate Φ matrix as an
element-wise division between the mode-n flattening of X
(i.e., Xpnq) and the matrix-matrix product of B and Π,
all followed by a matrix multiplication by ΠJ. Then, B
is compared element-wise with Φ against the convergence
tolerance τ : If the convergence tolerance is satisfied, then
the inner stage ceases immediately. Otherwise, B is mul-
tiplied element-wise by Φ (i.e., the multiplicative update)
and the inner iterative stage repeats. After satisfying the

convergence tolerance, or otherwise completing the maxi-
mum desired iterations in the inner iterative stage, the outer
iterative stage returns updated weights to λ from B and nor-
malizes Apnq using the updated λ. The algorithm concludes
when all N tensor modes have converged simultaneously, or
otherwise after completing the maximum desired iterations
in the outer iterative stage.

Algorithm 1 CP-APR MU calculation.
Given an N -mode tensor X P RI1ˆI2ˆ¨¨¨ˆIN , and an initial
guess for a model M “

␣

λ;Ap1q,Ap2q, . . . ,ApNq
(

:
1: for (maximum outer iterations) do
2: is converged Ð true
3: for n Ð 1, 2, . . . , N do
4: S Ð 0
5: if (completed at least one outer iteration) then
6: if Apnq

i,r ă κmin and Φ
pnq

i,r ą 1 then
7: Si,r Ð κadj

8: end if
9: end if

10: B Ð
`

Apnq ` S
˘

Λ
11: ΠJ Ð ˚k‰nA

pkq

12: for (maximum inner iterations) do
13: Φ Ð

`

Xpnq m max˝ pBΠ, ϵq
˘

ΠJ

14: if maxi,r
ˇ

ˇmin
`

Bi,r, 1 ´ Φ
pnq

i,r

˘
ˇ

ˇ ă τ then
15: break
16: end if
17: is converged Ð false
18: B Ð B ˝ Φ
19: end for
20: λ Ð 1JB
21: Apnq Ð BΛ´1

22: end for
23: if is converged “ true then
24: break
25: end if
26: end for

4.2. CP-APR MU Sparse Tensor Implementation

Most real-world tensors contain a massive amount of
multidimensional data, which would have a storage foot-
print on the order of exabytes (e.g., 3.2 ˆ 1020 bytes for
LBNL-Network [7]) if explicitly stored as a dense multi-
dimensional array. This storage requirement is infeasible on
most computing systems. In addition, these data are sparse,
meaning that the majority of the points in the multidimen-
sional space have the value zero. Thus it is practical to store
only the non-zero values of a tensor (e.g., 13.5 ˆ 106 bytes
for LBNL-Network) with their corresponding coordinates.

State-of-the-art implementations of sparse CP-APR MU
iterate over the non-zero values of a given input sparse ten-
sor. This is because sparse tensor storage formats generally
do not prescribe a mapping from coordinates to values, as
is the case with the sparse tensor storage formats described
previously (COO and ALTO). Instead, each of these sparse

tensor storage formats stores metadata with the non-zero
values for the purpose of retrieving the coordinates corre-
sponding with each non-zero value: For COO, the metadata
are simply the coordinate N -tuples corresponding with each
non-zero value. For ALTO, the metadata are linear indices
representing encoded versions of the coordinate N -tuples
corresponding with each non-zero value.

Each format stores metadata for calculating the coor-
dinate of a non-zero value along with the non-zero value
itself. This means that the coordinate for a given non-zero
value cannot be retrieved without first locating the non-zero
value in the sparse tensor storage format. The calculations
for CP-APR MU depend on accessing all of the coordinates
corresponding with each of the non-zero values. Thus, the
most direct way to access all of the coordinates stored in one
of the sparse tensor storage formats described previously
is to iterate over the stored non-zero values and retrieve
the coordinate corresponding with each non-zero value. The
CP-APR MU algorithm then accesses participating rows
and columns in the working model factor matrix B and
the intermediate calculation matrices Π and Φ, because
these are stored densely (e.g. as typical two-dimensional
arrays). Note that only the rows of Π which correspond
with coordinates for non-zero values in the sparse tensor
are required for calculating CP-APR MU, so typically only
those rows are calculated.

Program listings for sparse CP-APR MU Π and Φ
calculations are shown in Algorithms 2 and 3, respectively.

Algorithm 2 Sparse CP-APR MU mode-n Π calculation.

1: for k Ð 1, 2, . . . , N do
2: if k ‰ n then
3: for i Ð 1, 2, . . . ,nnz do
4: row Ð coordn,X ,i

5: for r Ð 1, 2, . . . , R do
6: Πi,r Ð Πi,r ˚ A

pkq
row,r

7: end for
8: end for
9: end if

10: end for

Algorithm 3 Sparse CP-APR MU mode-n Φ calculation.

1: for i Ð 1, 2, . . . ,nnz do
2: row Ð coordn,X ,i

3: temp Ð 0
4: for r Ð 1, 2, . . . , R do
5: temp Ð temp ` Brow,r ˚ Πi,r

6: end for
7: temp Ð Xi{maxptemp, ϵq
8: for r Ð 1, 2, . . . , R do
9: Φrow,r Ð Φrow,r ` temp ˚ Πi,r

10: end for
11: end for

4.3. Performance Analysis and Optimization

The CP-APR MU Φ calculation is shown in Equa-
tion 4.3:

Φpnq Ð
`

Xpnq m pmax pBΠ, ϵqq
˘

ΠJ (1)

The Xpnq matrix is a flattened representation of the sparse
tensor X , but Xpnq need not be stored explicitly because we
can access all of its elements by accessing them in the sparse
tensor X . The ΠJ matrix is a chained Khatri-Rao product of
size

ś

k‰n IkˆR, which if stored explicitly would require as
much storage as a densely-stored tensor X . If X is too large
to store densely, then ΠJ is also too large to store explicitly.
As a concrete example, consider a four-mode tensor S of
size 1000 ˆ 1000 ˆ 1000 ˆ 1000. The ΠJ matrix for S is
size 109 ˆ R, which requires 109 ˆ 10 ˆ 4 bytes “ 40GiB
storage when using R “ 10 and storing single-precision
floating-point values. Conveniently, computing MU on a
sparse tensor X does not require the entire ΠJ matrix. This
is because computing MU on a sparse tensor X requires only
the rows of ΠJ which correspond with nonzero entries in
X [4], reducing the storage requirement greatly: Suppose
S has 1 M non-zero elements. The necessary rows of Π
require 1 ˆ 106 ˆ 10 ˆ 4 bytes “ 40MiB storage (single-
precision), which is a 1000-fold reduction in memory stor-
age requirements when compared with forming the entire
ΠJ matrix. State-of-the-art MU implementations calculate
only the necessary rows of ΠJ [2], which allows computing
MU on larger inputs than would be possible otherwise (due
to memory space constraints).

The sparse tensor storage formats typically store non-
zero elements with their corresponding coordinates as a
list. For this reason, sparse tensor decomposition algorithms
typically iterate over the list of non-zero elements, rather
than iterating in a coordinate-centric fashion. Calculating
Φpnq in parallel can manifest race conditions, particularly
when using sparse tensor storage. This is because two non-
zero elements which share the same coordinate for mode
n will correspond with updating the same row in Φpnq, so
these updates must be serialized to maintain correctness. A
well-known strategy for serializing updates to shared data is
by using atomic operations, which help to ensure exclusive
access to the shared data. This atomic operation strategy
helps in maintaining program correctness, but diminishes
the benefits of parallel execution due to serialization. For
example, if two threads are assigned many non-zeros which
update the same row in Φpnq, then processing those non-
zeros is effectively sequential. A variation on this approach
entails sorting the non-zero elements by mode n (ignoring
the remaining coordinates) so that those which update the
same row in Φpnq are stored contiguously. This means that
a thread can skip atomic operations for the portions of its
assigned non-zero elements which are known not to share a
row coordinate in Φpnq with any other thread. For example,
if a thread is assigned non-zero elements which update row
r´1, r, r`1 in Φpnq, then all non-zeros in X which update

row r are solely processed by this thread, meaning that
this thread can avoid atomic operations for row r. Sorting
will be required for each mode n in order to use this
atomic-avoiding approach, because Φpnq is calculated for
each mode. High performance MU implementations perform
the sorting in advance, storing permuted indices in separate
arrays for each mode, or use other approaches to reduce
parallel contention [2], [10].

5. Methods

We first describe the methods we use in evaluating paral-
lel performance. As a first step, we chose STREAM for two
reasons: (i) the MTTKRP and MU are bandwidth-bound, as
are the STREAM operations, and (ii) STREAM operations
can be used as building blocks for the MTTKRP and for
MU.

5.1. CP-ALS and MTTKRP

We will limit the following discussion to three-
dimensional (three-way) tensors, although the discussion
generalizes to arbitrary dimension. Given a three-way tensor
X of size I1 ˆ I2 ˆ I3, the CP-ALS algorithm computes
a rank-R model tensor M, consisting of factor matrices
A P RI1ˆR, B P RI2ˆR, and C P RI3ˆR, that approximates
X . Using typical tensor notation, X « M “ JA,B,CK.
In CP-ALS, MTTKRP is often the performance bottleneck,
consuming over 90% of the total compute time [1].

MTTKRP consists of a few simple operations. For a
sparse tensor stored in COO format and factors stored as
dense matrices, given a non-zero element in X with indices
pi, j, kq and value v, the following operations are required
(with temporary variable T):

T p:q Ð Bpj, :q ˚ Cpk, :q element-wise product (2)
T p:q Ð v ˚ T p:q scale (3)

Api, :q Ð Api, :q ` T p:q element-wise add (4)

where Api, :q, Bpj, :q and Cpk, :q correspond to the rows
of the factor matrices. This is repeated for every non-zero
element in X . A program listing for sparse tensor mode-1
MTTKRP is shown in Algorithm 4.

Algorithm 4 Sparse tensor mode-1 MTTKRP calculation.
Input: A three-dimensional sparse tensor X P RI1ˆI2ˆI3 ,
and matrices B P RI2ˆR and C P RI3ˆR.
Output: A matrix A P RI1ˆR.

1: for i Ð 1, 2, . . . ,nnz do
2: i1 Ð coord1,X ,i

3: i2 Ð coord2,X ,i

4: i3 Ð coord3,X ,i

5: for r Ð 1, 2, . . . , R do
6: Ai1,r Ð Ai1,r ` XiBi2,rCi3,r

7: end for
8: end for

5.2. CP-APR MU and Phi (Φ)

The CP-APR algorithm is similar to CP-ALS, except
that it is better suited for modeling count-based data. In the
MU variant of CP-APR, calculating a matrix Φpnq for each
tensor mode n is often the performance bottleneck, as shown
in Figure 2.

0%

20%

40%

60%

80%

100%

Delicious NELL-1 NELL-2 Uber LBNL Mean

%
 T

o
ta

l T
im

e

Tensor

SparTen CP-APR MU Time Component Analysis
for Φ, Π, KKT, MU Functions

Φ Π KKT MU

Figure 2: Execution time analysis for SparTen CP-APR MU
kernels on five tensors from FROSTT [7]. The four kernels
are for computing Φ, Π, KKT conditions, and multiplicative
update (MU).

Computing the Φ matrix consists of a few simple op-
erations. For a three-way sparse tensor stored in COO
format and factors stored as dense matrices, given a non-
zero element in X with indices pi, j, kq and value v, the
following operations are required (with temporary variable
t):

t Ð sum pApi, :q ˝ Bpj, :q ˝ Cpk, :qq (5)
three-way dot product

Φpi, :q Ð Φpi, :q ` v{t ˚ pBpj, :q ˝ Cpk, :qq (6)
scaled element-wise product sum

where Φpi, :q, Api, :q, Bpj, :q, and Cpk, :q correspond to the
rows of the matrices. This is repeated for every non-zero
element in X .

5.3. Challenges

We can see from the above equations that MTTKRP and
MU exhibit low arithmetic intensity (i.e., they are memory
bandwidth-bound). Additionally, the last steps (Equations 4
and 6) introduce a race condition when multi-threaded,
making the kernel sensitive to how work is distributed
among threads on a parallel system. For example, if two
threads work on non-zero elements with the same i index,
the updates to Api, :q and Φpi, :q need to be serialized.

However, we can also see that these operations are
similar to those found in the STREAM benchmark, which
also features element-wise product and element-wise add.
Therefore, we use the STREAM benchmark as a proxy
for the MTTKRP and MU kernels, and the MTTKRP and

MU kernels as proxies for the full CP-ALS and CP-APR
algorithms, respectively. We based our MTTKRP on the
Parallel Sparse Tensor Algorithm Benchmark Suite (PASTA)
MTTKRP [11], and our MU on SparTen [2].

5.4. Implementation

Implementing Kokkos parallel constructs within an ex-
isting code base is a straightforward process of refactoring
only targeted code regions to utilize the parallel code ex-
ecution and data management in the Kokkos programming
model. We first identify parallel regions in the code, such
as those within existing OpenMP #pragma statements, and
replace them with Kokkos parallel_for dispatch while
incorporating the loop body into a C++ lambda expression.
The next step is to refactor nested parallel regions and
to store data in abstractions called Views, after which the
code is completely portable to any back-end supported by
the Kokkos library. Nested parallel regions map to SIMD
instructions when compiling with Kokkos for CPU and to
thread blocks for GPU targets. Note that OpenMP 4.5+
supports offloading to GPU devices [13], but we use Kokkos
for performance portability due to its ability to handle data
layout efficiently for both dense and sparse operations.

In the case of MU, we chose to compare SparTen [2]
with ALTO [10], whose key differences are as follows:
SparTen is implemented using Kokkos and using the COO
sparse tensor storage format, and it computes the Π matrix
explicitly in each outer iteration of CP-APR MU. ALTO is
implemented using OpenMP and using the ALTO storage
format, and it computes Π values on-the-fly as needed for
the Φ computation. As mentioned previously, the Π matrix is
often quite large and its values must be recomputed in each
outer iteration of the CP-APR MU algorithm. Computing
Π values on-the-fly reduces the overall memory footprint
due to not explicitly storing the Π matrix, so we opted
to implement on-the-fly calculation in SparTen. Similarly,
we implemented the COO storage format for CP-APR MU
in ALTO. Note that ALTO offers a choice of two kernel
implementations for computing Φ: An atomic operation–
based kernel (like SparTen) which prevents race conditions
when updating Φ in parallel, and a pull-based accumula-
tion kernel which uses a two-stage approach for avoiding
conflicting parallel updates entirely. We implemented the
COO storage format for both kernels, herein referred to
as Atomic Edition (AE) and Pull-based Edition (PE), re-
spectively. We refer to the modified versions of ALTO and
SparTen respectively as COO-format ALTO (COO ALTO)
and reduced-footprint SparTen (RF SparTen). Our intent
with these modified versions is to isolate Kokkos as the key
distinguishing component by providing a fair comparison
between the MU kernels and storage formats in SparTen
and ALTO.

6. Experimental Results

Now we provide details on our test kernels (§6.1) and
test systems and data (§6.2), and our analysis (§6.3).

6.1. Test Kernels

For measuring baseline system memory performance we
employ a tuned version of the STREAM benchmark, which
aims to measure main memory performance by exhausting
the cache hierarchy with simple operations on large arrays.
These include simple copy, scale, add, and triad operations.
For a more representative tensor decomposition-related ker-
nel, we use our enhanced PASTA sparse matrixized tensor
times Khatri-Rao product (MTTKRP) benchmark. Finally,
for a fully representative tensor decomposition kernel, we
use our reduced-footprint CP-APR MU Φ calculation.

We demonstrate the performance portability of our
Kokkos-enhanced STREAM and MTTKRP benchmarks,
and our reduced-footprint CP-APR MU, by comparing their
performance against (i) hand-tuned benchmarks written in
their native languages (e.g., CUDA), and (ii) peak system
memory bandwidth (for STREAM and MTTKRP) on a
range of different systems using both synthetic and real-
world data, including 3-D and 4-D tensors.

6.2. Test Systems and Data

We evaluate our kernels on the nine systems shown in
Table 2, which includes five CPU systems and four GPU
systems. For the kernels in the STREAM benchmark, we
use up to 500M elements per array. For the MTTKRP and
MU kernels, we use the real-world sparse tensors from the
FROSTT [7] website shown in Table 3.

TABLE 2: Test Systems

Type Name # Cores
CPU IBM POWER9 20
CPU Intel Xeon Gold 6140 2 ˆ 18
CPU AMD EPYC 7401 2 ˆ 24
CPU AMD EPYC 7452 2 ˆ 32
CPU Fujitsu A64FX 48
GPU AMD Vega MI25 4096
GPU AMD Vega MI50 3840
GPU Nvidia V100 5120
GPU Nvidia A100 6912

TABLE 3: Test Data

Tensor Dimensions NNZ
Chicago-crime 6.2K ˆ 24 ˆ 77 ˆ 32 5.3M

NELL-2 12.1K ˆ 9.2K ˆ 28.8K 76.9M
NIPS 2.5K ˆ 2.9K ˆ 14.0K ˆ 17 3.1M
Uber 183 ˆ 24 ˆ 1.1K ˆ 1.7K 3.3M

6.3. Analysis

Figure 3 shows the achieved bandwidth from various
STREAM operations, and Figure 4 shows the speedup over
hand-tuned benchmarks (i.e., STREAM for CPUs and GPU-
STREAM for GPUs). We achieve performance compara-
ble to hand-tuned code (0.64ˆ–1.66ˆ speedup) for all

STREAM operations, demonstrating that for simple kernels,
Kokkos offers a good portability on different architectures.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

%
 P

ea
k

B
an

d
w

id
th

Test Systems

STREAM-Like: Kokkos % of Peak Bandwidth

Copy

Scale

Add

Triad

Figure 3: Kokkos-enhanced STREAM, percentage of system
peak obtained.

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Sp
ee

du
p

Test Systems

STREAM-Like: Kokkos Speedup vs. C++/HIP/CUDA

Max

Geomean

Min

Figure 4: Kokkos-enhanced STREAM speedup over hand-
tuned code (logarithmic scale).

Similarly, Figures 5–6 show the achieved bandwidth
and speedup for the MTTKRP benchmark. We achieve
superior performance on CPUs, and lower (0.76ˆ–0.91ˆ

speedup) but comparable performance on Nvidia GPUs.
Speedup numbers on AMD GPUs are missing due to PASTA
supporting only Nvidia GPUs, which further illustrates the
advantage of using Kokkos—there is no need to implement
yet another kernel for a different system. The lower per-
formance for AMD GPUs likely comes from the lack of
hardware atomic operation units for double-precision data.

Figures 7, 8, and 9 show runtimes for the CP-APR
MU Phi (Φ) kernel for our reduced-footprint SparTen (RF
SparTen), and for both of our COO-format ALTO (COO
ALTO) implementations, respectively. Figures 10–11 show
the speedup of COO ALTO AE (using atomic opera-
tions) vs. RF SparTen, and COO ALTO PE (using pull-
based accumulation) vs. RF SparTen, respectively. Our RF
SparTen achieves lower to comparable performance to our
COO ALTO AE on CPUs (0.47ˆ–0.96ˆ speedup), but
RF SparTen performance falls behind that of COO ALTO
PE on CPUs, due to the latter avoiding expensive atomic
operations. Speedup numbers are missing for the IBM and

0.01%

0.10%

1.00%

10.00%

%
 P

ea
k

B
an

d
w

id
th

Test Systems

PASTA MTTKRP: Kokkos % of Peak Bandwidth

Chicago-crime

NELL-2

NIPS

Uber

Note: Vertical
axis is log scale.

Figure 5: Kokkos-enhanced PASTA MTTKRP, percentage
of system peak obtained (logarithmic scale).

0.00
1.00
2.00
3.00
4.00
5.00
6.00

Sp
ee

du
p

Test Systems

PASTA MTTKRP: Kokkos Speedup vs. C/CUDA

Max

Geomean

Min

No data
due to no
AMD GPU
support in
PASTA
reference.

Figure 6: Kokkos-enhanced PASTA MTTKRP speedup over
hand-tuned code.

Fujitsu CPUs due to issues regarding lacking support at the
instruction level (bit-wise scatter-gather) for ALTO’s coordi-
nate linearization and delinearization. While our augmented
COO ALTO does not use the (linearized) ALTO format
during computation, it uses the ALTO format generation
process for partitioning and scheduling the nonzeros stored
in COO format. Speedup numbers are missing for GPUs
due to ALTO supporting only CPUs, and although SparTen
(via Kokkos) has the advantage of supporting GPUs, due to
time constraints we did not conduct GPU experiments with
SparTen for this work.

Our results show that Kokkos demonstrates good per-
formance portability for essential sparse tensor decompo-
sition kernels across the range of CPU and GPU sys-
tems tested when compared with algorithmically similar
platform-specific hand-tuned code. That is, the Kokkos ker-
nel implementations perform comparably to the platform-
specific kernel implementations except in the case where the
platform-specific kernel also uses a substantially different
algorithmic design.

7. Conclusion

Our efforts in this study demonstrate the feasibility of
writing performance portable tensor decomposition algo-

1

10

100

1000

IBM
POWER9

Intel Xeon
Gold 6140

AMD EPYC
7401

AMD EPYC
7452

Fujitsu
A64FX

Ti
m

e
(s

)

Test Systems

RF SparTen MU (Phi) Runtime

Chicago

NELL-2

NIPS

Uber

Geomean

Figure 7: Reduced-Footprint (RF) SparTen CP-APR MU Phi
(Φ) kernel runtime (logarithmic scale).

0.1

1

10

100

1000

IBM
POWER9

Intel Xeon
Gold 6140

AMD EPYC
7401

AMD EPYC
7452

Fujitsu
A64FX

Ti
m

e
(s

)

Test Systems

COO ALTO AE MU (Phi) Runtime

Chicago

NELL-2

NIPS

Uber

Geomean

No
Data

No
Data

Figure 8: COO-format ALTO CP-APR MU Phi (Φ) kernel,
Atomic Edition (AE) runtime (logarithmic scale).

0.01

0.1

1

10

100

IBM
POWER9

Intel Xeon
Gold 6140

AMD EPYC
7401

AMD EPYC
7452

Fujitsu
A64FX

Ti
m

e
(s

)

Test Systems

COO ALTO PE MU (Phi) Runtime

Chicago

NELL-2

NIPS

Uber

Geomean

No
Data

No
Data

Figure 9: COO-format ALTO CP-APR MU Phi (Φ) kernel,
Pull-based Edition (PE) runtime (logarithmic scale).

rithms using the Kokkos Core library that can achieve hand-
tuned performance on a range of systems using a single
implementation. We achieve comparable performance on
CPUs and GPUs for simple array operations and supe-
rior performance on CPUs for the MTTKRP kernel. How-
ever, additional tuning is required on GPUs for the more
complicated MTTKRP kernel due to the large number of
threads required to saturate performance and the use of

0.1

1

10

IBM
POWER9

Intel Xeon
Gold 6140

AMD EPYC
7401

AMD EPYC
7452

Fujitsu
A64FX

Sp
ee

du
p

Test Systems

Phi: RF SparTen Speedup vs. COO ALTO AE

Chicago

NELL-2

NIPS

Uber

Geomean

No
Data

No
Data

Figure 10: COO-format ALTO CP-APR MU Phi (Φ) kernel,
Atomic Edition (AE) speedup vs. reduced-footprint SparTen
CP-APR MU Phi (Φ) kernel (logarithmic scale).

0.01

0.1

1

IBM
POWER9

Intel Xeon
Gold 6140

AMD EPYC
7401

AMD EPYC
7452

Fujitsu
A64FX

Sp
ee

du
p

Test Systems

Phi: RF SparTen Speedup vs. COO ALTO PE

Chicago

NELL-2

NIPS

Uber

Geomean

No
Data

No
Data

Figure 11: COO-format ALTO CP-APR MU Phi (Φ) ker-
nel, Pull-based Edition (PE) speedup vs. reduced-footprint
SparTen CP-APR MU Phi (Φ) kernel (logarithmic scale).

expensive atomic operations. We see that Kokkos main-
tains comparable performance portability in the case of the
application-level CP-APR MU Phi (Φ) kernel, provided that
the comparison is between two similar algorithms. While
the Kokkos implementation of the CP-APR MU Phi (Φ)
kernel fell behind that of the ALTO pull-based accumulation
kernel, this was likely due to the Kokkos implementation us-
ing computationally expensive atomic operations while the
ALTO pull-based implementation did not. Our claim is that
the choice of algorithm has a larger effect on performance
than does the choice of using Kokkos vs. platform-specific
hand-tuned code, and that a Kokkos implementation has the
advantage of being portable.

One possible direction of future work is comparing
performance for the CP-APR MU kernel on IBM and Fujitsu
CPUs (and on GPU systems) between a Kokkos imple-
mentation and a platform-specific implementation. Another
possible direction is investigating whether a CP-APR MU
pull-based accumulation kernel implemented using Kokkos
would be performance portable.

Acknowledgment

Portions of this work were funded during an internship at
Sandia National Laboratories, a multimission laboratory managed
and operated by National Technology and Engineering Solutions
of Sandia, LLC., which is a wholly owned subsidiary of Hon-
eywell International, Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-NA-
0003525. These funded portions were published in the IEEE High
Performance Extreme Computing 2021 Proceedings, and copies
are accessible under identifier SAND2021-10690 C on OSTI.gov.

References

[1] E. T. Phipps and T. G. Kolda, “Software for sparse tensor
decomposition on emerging computing architectures,” SIAM Journal
on Scientific Computing, vol. 41, no. 3, pp. C269–C290, 2019.
[Online]. Available: https://doi.org/10.1137/18M1210691

[2] K. Teranishi, D. M. Dunlavy, J. M. Myers, and R. F. Barrett, “Sparten:
Leveraging kokkos for on-node parallelism in a second-order method
for fitting canonical polyadic tensor models to poisson data,” IEEE
High Performance Extreme Computing Conference, vol. 0, no. 0, p. 0,
2020.

[3] H. C. Edwards and C. R. Trott, “Kokkos: Enabling performance
portability across manycore architectures,” in Proc. Extreme Scaling
Workshop, 2013, pp. 18–24.

[4] E. C. Chi and T. G. Kolda, “On tensors, sparsity, and nonnegative
factorizations,” SIAM Journal on Matrix Analysis and Applications,
vol. 33, no. 4, pp. 1272–1299, 2012.

[5] T. Deakin, J. Price, M. Martineau, and S. McIntosh-Smith, “GPU-
STREAM v2.0: Benchmarking the achievable memory bandwidth of
many-core processors across diverse parallel programming models,”
in Proc. ISC High Performance, 2016, pp. 489–507.

[6] T. G. Kolda and B. W. Bader, “Tensor decompositions and applica-
tions,” SIAM Review, vol. 51, no. 3, pp. 455–500, 2009.

[7] S. Smith, J. W. Choi, J. Li, R. Vuduc, J. Park, X. Liu, and
G. Karypis. (2017) FROSTT: The formidable repository of open
sparse tensors and tools. [Online]. Available: http://frostt.io/

[8] B. W. Bader and T. G. Kolda, “Efficient matlab computations
with sparse and factored tensors,” SIAM Journal on Scientific
Computing, vol. 30, no. 1, pp. 205–231, 2008. [Online]. Available:
https://doi.org/10.1137/060676489

[9] S. Hansen, T. Plantenga, and T. G. Kolda, “Newton-based optimiza-
tion for Kullback-Leibler nonnegative tensor factorizations,” Opti-
mization Methods and Software, vol. 30, no. 5, pp. 1002–1029, April
2015.

[10] A. E. Helal, J. Laukemann, F. Checconi, J. J. Tithi, T. Ranadive,
F. Petrini, and J. Choi, “Alto: Adaptive linearized storage of sparse
tensors,” in Proceedings of the ACM International Conference on
Supercomputing, ser. ICS ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 404–416. [Online]. Available:
https://doi.org/10.1145/3447818.3461703

[11] J. Li, Y. Ma, X. Wu, A. Li, and K. Barker, “Pasta: A parallel sparse
tensor algorithm benchmark suite,” arXiv:1902.03317, 2019.

[12] S. Smith, N. Ravindran, N. D. Sidiropoulos, and G. Karypis,
“SPLATT: efficient and parallel sparse tensor-matrix multiplication,”
in 2015 IEEE International Parallel and Distributed Processing Sym-
posium, IPDPS 2015, Hyderabad, India, May 25-29, 2015, 2015, pp.
61–70. [Online]. Available: https://doi.org/10.1109/IPDPS.2015.27

[13] J. M. Diaz, S. Pophale, K. Friedline, O. Hernandez, D. E. Bernholdt,
and S. Chandrasekaran, “Evaluating support for openmp offload
features,” in International Conference on Parallel Processing Com-
panion, 2018.

