
Gradient Temporal Difference-Difference Q-Learning for Control

Matthew Trappett
University of Oregon

1585 E 13th Ave, Eugene, OR 97403
mtrappet@uoregon.edu

Rong Zhu
Institute of Science and Technology for Brain-Inspired Intelligence

Fudan University, Shanghai 200433, Peoples Republic of China
rongzhu@fudan.edu.cn

James Murray
Institute of Neuroscience, University of Oregon

1585 E 13th Ave, Eugene, OR 97403
jmurray9@uoregon.edu

Abstract

Reinforcement Learning has proven to be an effective
method for solving difficult problems formulated as se-
quential decision making tasks. While modern Reinforce-
ment Learning (RL) algorithms are robust, they are not
guaranteed to converge to a solution when using a com-
bination of function approximation, Temporal Difference
(TD) updates and off-policy learning. Gradient Tempo-
ral Difference (GTD) RL algorithms have been developed
and proven to be mathematically convergent. However,
in practice these algorithms are slow to learn. To im-
prove performance while maintaining convergence guaran-
tees, we utilize a second-order optimization constraint to
implement a new algorithm, Gradient Temporal Difference-
Difference Q-learning. We evaluate its performance against
other GTD algorithms in the linear function approximation
and actor-critic regimes on classic control environments.
Our results show that our algorithm improves performance
while maintaining mathematical stability.

1. Introduction

Reinforcement Learning (RL) is a promising tool for
solving many of today’s challenges because of its ability to
learn from trial and error and without the need of hard pro-
gramming, carefully labeled data or prior domain knowl-
edge. Due to these benefits, RL use has exploded in popu-
larity in the last decade.

RL algorithms make use of three specific techniques to
improve their applicability. First, Function approximation
(FA) is a method to represent large state spaces efficiently
in computer memory. An RL algorithm can then be applied
to larger problems without a hardware handicap. Second,
off-policy learning addresses the explore-exploit trade off,
which helps the algorithm avoid sub-optimal reward basins.
Finally, Temporal Difference (TD) Learning uses bootstrap-
ping to estimate the difference between next and current
action-values. RL agents using TD learning are sample
efficient, meaning they can learn to solve an environment
with fewer environment interactions. However, in RL the
phrase Deadly Triad refers to using these methods together
in a single RL algorithm because their combination is unsta-
ble. Many modern RL architectures make use of the Deadly
Triad successfully, however these algorithms are not prov-
ably convergent and provably unstable under certain condi-
tions [Baird, 1995].

One method to stabilize off-policy learning is to
use importance sampling ratios to reform off-policy
data to the target policy distribution [Precup, 2000,
Mahmood et al., 2014]. While these methods may be use-
ful in stabilizing RL algorithms, they do not guarantee
stability. Provably convergent and stable RL algorithms
were established by [Sutton et al., 2008] and then further by
[Maei et al., 2009, Sutton et al., 2009]. These algorithms
are derived by combining gradient descent with Q-learning
and lead to a family of algorithms called Gradient Tempo-
ral Difference (GTD) algorithms. Two most successful al-
gorithms for value estimation are GTD2 and TD with cor-



rections (TDC) [Sutton et al., 2009, Maei, 2011]. GTD2
was later extended to general prediction as GreedyGQ
[Maei et al., 2010], which is the de facto GTD algorithm for
control.

GTD methods are provably convergent and stable meth-
ods for using off-policy TD with FA but are slow to con-
verge. One promising attempt to improve convergence in
GTD algorithms, [Ghiassian et al., 2020], was to modify
the TDC algorithm by incorporating a hyper-parameter that
essentially converts the algorithm between a GTD algo-
rithm and regular TD algorithm. This method did show im-
proved performance over GTD algorithms; however, it did
not show improved performance over regular TD learning.

In this work, we implement an optimization term us-
ing second-order methods to improve convergence using
linear FA in Q-learning and Actor-Critic Learning. Our
method is called Gradient Temporal Difference-Difference
Q-Learning (GTDDQ). We evaluate our agent against the
standard TD learning algorithm, Q-learning, as well as the
GreedyGQ algorithm with linear FA in the classic control
environments Cart Pole, Mountain Car and Acrobot. We
also evaluate our algorithm using an Actor-Critic Linear FA
algorithm against the algorithms COPACQ and COPDAC-
GQ from [Silver et al., 2014] with the Mountain Car envi-
ronment using a continuous action space.

Experiments show GTDDQ performs better than or
comparable to GreedyGQ and, in Cart Pole environment,
higher rewards than Q-Learning. GTDDQ Actor-Critic also
learned a policy for continuous Mountain Car while com-
parison algorithms did not.

2. Background

2.1. Agent and Environment

We formalize RL, and specifically Q-learning, as the
problem of learning the action-values in a Markov Deci-
sion Process (MDP) framework. Action-values are the es-
timated sum of expected future rewards from taking an ac-
tion until the reaching the goal. An MDP, also called an
environment, is defined by a set of vectors: S,A,R,P . S
which represents the state space of the environment. A is
the set of possible actions from a given state. R is a vec-
tor of rewards associated with each transition from current
state to new state. P is the probability transition matrix
that describes the probability of transitioning to a new state
given a current state-action pair. The goal of an RL agent
is to learn a mapping from states to actions while trying to
maximize the cumulative reward. This mapping is called a
policy. This policy is learned by an RL agent interacting
with an environment by taking actions and observing the
returned reward and next state. The policy is then updated
after each action. Figure 1 shows a basic diagram of the
agent-environment loop for how the agent gains experience.

Figure 1: Example of the Agent/MDP interaction loop .
An agent selections an action from A and observes the
next state and resulting reward. This is repeated un-
til a goal state is reached or other terminal definition
[Sutton and Barto, 2018].

Temporal Difference Learning

One method to evaluate actions and states is to estimate
the sum of predicted future rewards given a state and ac-
tion. By comparing a current state or action value with the
next state or action value, an agent can learn which actions
maximize the total reward for an environment and solve the
task. The standard action-value method is formalized as the
Q-learning algorithm by [Watkins and Dayan, 1992] and by
the following update equations:

δt = rt + γQ̂t(st+1, a)−Qt(st, at) (1)

Qt+1(st, at)← Qt(st, at) + αδt, (2)

where Q̂ = max
a∈A

Qt(st+1, a) is the greedy action selec-

tion from state st and Qt(st, at) represents the action value
given st and at. Using differences between sequential deci-
sions, as in the TD error Equation (1), is also referred to as
bootstrapping.

Bellman Equation

We define the Bellman operator as the operator that per-
forms the update for all Q values, which is represented as
Q. The optimal action-values for an MDP will satisfy the
Bellman Equation, (3), where R is the reward vector and P
is the matrix of transition probabilities;

Q = R + γPQ =: BQ. (3)

The goal of Q-learning is to learn the action-values that sat-
isfy Equation (3).

Off-Policy Learning

Since a policy is a mapping of states to actions, various
mappings can be used. One strategy to improve an agent’s

2



Figure 2: Example of how a data point is converted into a
feature vector using tile coding. In this example the data
point will be turned into a 64 length binary vector with
four 1’s and the rest zeros. The indices that are 1’s cor-
respond the tiles highlighted on the right. The number of
tilings on the left represent the granularity while the num-
ber of tilings represent the how many indices are used in
the binary feature vector [Sutton and Barto, 2018].

performance is to introduce a second policy. The desired
learned policy is called a target policy and is the policy be-
ing optimized. A behavior policy differs from a target pol-
icy by being more stochastic than the target policy. A be-
havior policy is useful for the explore-exploit trade-off and
helps the agent escape local minima.

The extension of Q-Learning to the control setting is
called ε-Q-Learning. Control means the agent can influence
the future state of the environment, such as taking the action
with the highest action-value which advances the environ-
ment to the associated state. This exemplifies the greedy
and target policy of ε-Q-Learning. The off-policy, or be-
havior policy, randomly selects an action with probability ε
at every time step. Throughout this paper, ε-Q-Learning is
referred to as Q-Learning.

Function Approximation

When MDPs have large state spaces, it is necessary to ap-
proximate states with representations. In linear FA, the state
and action pairs are converted into state-action features:
(s, a) → φ(s, a) and, in the Actor Critic case below, state
features: (st) → φ(st). One such method, which is used
here, is tile coding, as shown in fig. 2. Tile coding involves
converting each (s, a) into a binary feature vector, where
similar pairs will have the closer representations. In linear
FA, the policy is then parameterized as a set of weights, w,
to calculate the action-values:

Qt(st, at;w) = w>φ(st, at). (4)

Deadly Triad

TD, off-policy, and FA are referred to collectively as the
Deadly Triad [Sutton and Barto, 2018] because instability
leads to divergent behavior in some MDP’s, such as Baird’s

Counterexample [Baird, 1995]. GTD algorithms are de-
rived to maintain the benefits of the Deadly Triad while still
guaranteeing convergence.

2.2. Gradient Temporal Difference Learning

Mean Squared Projected Bellman Error

GTD algorithms are derived by minimizing the
Mean Squared Projected Bellman Equation (MSPBE)
[Sutton et al., 2008, Sutton et al., 2009]:

J(w) = ‖Qw −ΠBQw‖
2
D (5)

where B is the Bellman operator and Π is the projection
operator which projects the action-values to FA space and
is defined as

Π = Φ
(
Φ>DΦ

)−1
Φ>D,

where D is a diagonal matrix whose elements are µ(s, a),
the probability that each state-action pair will be visited.
When action-values are computed by B, they no longer re-
side in the same manifold as action-values computed using
FA and so must be projected back into FA space by Π for
the error to be valid.

GreedyGQ

The first GTD algorithm adapted for control was GreedyGQ
in [Maei et al., 2010, Maei, 2011]. Full details of the
derivation and convergence proofs are found within those
works. Since our method extends from GreedyGQ, we
briefly highlight some of its derivation steps. We begin
by taking the derivative of Equation (5) with respect to the
weights:

−1

2
∇wJw

= −E
[
(γφt+1 − φt)φ

>
t

] [
E
(
φtφ

>
t

)]−1
E (δtφt)

≈ −E
[
(γφt+1 − φt)φ

>
t

]
η (6)

where φt = φ(st, at) is the feature vector at the current
time step, t, and φt+1 = φ(st+1, ât+1) is the feature vector
for the next state and highest-valued action from that state,
as is standard in Q-learning. η is a substitution used as an
approximation for the TD error, δ, updated by a second set
of weights. Stochastic gradient descent uses the gradient to
update the weights at each time step, w = w − α∇J(w),
likewise, directly sampling the factors in Equation (6) lead
to the update equations which define the GreedyGQ algo-
rithm:

δt+1(w) =rt + γQ̂(φt+1;wt)−Q(φt;wt)

wt+1 =wt − αt (γφt+1 − φt)
(
φ>t ηt

)
ηt+1 =ηt + βt

(
δt+1(w)− φ>ηt

)
φt (7)

3



where γ is a discount term, α is the learning rate for the
primary weights and β is the learning rate for the secondary
weights, η.

3. Algorithms
3.1. Modified MSPBE

Our method adds an optimization to the objective func-
tion in Equation (5) to limit the Q value update. This limit
prevents over-large action-value changes that disrupt gra-
dient descent. This constraint is implemented by taking
the difference between action-values calculated with current
weights and previous, second-order, time-step weights. Our
new objective function then becomes:

JDDQ(wt,wt−1) = J(w) + κ‖Qwt
−Qwt−1

‖2D (8)

where κ ≥ 0 is a parameter of the regularization. Finding
the minimum of Equation (8) is equivalent to

argmin
w
J(w) s.t. ‖Qwt

−Qwt−1‖
2
D < µ (9)

where µ > 0 is a parameter that grows large when κ is small
so that Equation (5) is recovered when µ→∞ and κ→ 0.

Our method is similar in idea to that of Trust Region Pol-
icy Optimization [Schulman et al., 2015], in which the au-
thors use constraint optimization with policy gradient for
learning, and [Peters et al., 2010] , which limits the infor-
mation loss by limiting the step size. Our approach is to
use a constraint on the objective function to limit the vari-
ance of the update. Thereby, avoiding updates that move the
parameters away from the minimum. We utilize the param-
eters from the previous time step and the current parameters
to approximate a limited size for the update step.

3.2. Linear Function Approximation

To derive the GTDDQ algorithm, we start from (8) and
follow the same steps as [Maei et al., 2010, Maei, 2011],
the key difference being the inclusion of the constraint term.
We call the resulting linear off-policy, FA algorithm Gradi-
ent Temporal Difference-Difference Q-learning (GTDDQ):

δt+1(w) =rt + γQ̂(φt+1;wt)−Q(φt;wt)

wt+1 =wt − αt (γφt+1 − φt)
(
φ>t ηt

)
− κt (Q(φt;wt)−Q(φt;wt−1))

ηt+1 =ηt + βt
(
δt+1(w)− φ>ηt

)
φt. (10)

GreedyGQ is recovered from GTDDQ when κ = 0.

3.3. Actor-Critic with Linear Function Approxima-
tion

Our method can also be extend to the Actor-Critic frame-
work [Peters et al., 2005]. Actor-Critic is derived from its

two eponymous parts; the actor is a policy gradient algo-
rithm [Sutton et al., 1999] which updates a set of weights,
θ, for the target policy and the critic is an action-value al-
gorithm, such as GTDDQ, to update action-values used in
the actor’s policy update. Actor-Critic can learn in envi-
ronments with continuous action spaces and can be more
robust than TD learning alone. [Silver et al., 2014] de-
rived a deterministic Actor-Critic algorithm that incorpo-
rated GreedyGQ as the critic. To explore how well our al-
gorithm extended to Actor-Critic, we used GTDDQ as the
critic in Equations 23-27 in [Silver et al., 2014] to yield fol-
lowing update Equations:

δt =rt + γQw(st+1, µθ(st+1))−Qw(st, at)

θt+1 =θt + αθ∇θµθ(st)
(
∇θµθ(st)

>wt

)
wt+1 =wt + αwδtφ(st, at)

− awγφ(st+1, µθ(st+1))(φ(st, at)
>ut)

− κφ(st, at)(Qw(st, at)−Qwt−t(st, at))

vt+1 =vt + αvδtφ(st)

− avγφ(st+1))(φ(st, at)
>ut)

− κφ(st)
(
v>t φ(st)− v>t−1φ(st)

)
ut+1 =ut + αu

(
δt − φ(st, at)

>ut
)
φ(st, at) (11)

The optimization term appears in the update terms for the
w and v weights while u are similar to η in GreedyGQ and
GTDDQ algorithms. The actor weights are represented by
θ and parameterize the deterministic policy µθ(φ) = θ>φ.
The critic weights, w are used in the updates for estimating
action-values from the features. The v weights are used to
estimate the values of the states and u are the secondary
weights used to estimate the TD error. These weights
come together to calculate theQw in the TD error equation,
specifically Qw = (a− µθ(s))>∇θµθ(s)>w + v>φ(s).

4. Experiments
4.1. Linear Function Approximation

We compared GTDDQ learning against Q-learning
and GreedyGQ algorithm to asses its performance in
the linear FA setting. We tested on the OpenAI
Gym [Brockman et al., 2016] classic control environments
Mountain Car, Cart Pole, and Acrobot. All environments
are continuous state spaces and discrete action spaces. State
spaces for each environment are as follows: Mountain Car:
x-axis position and x-axis velocity; Cart Pole: x-axis po-
sition, x-axis velocity, pole angle with cart, and pole an-
gular velocity with respect to cart; Acrobot: cosine of
first joint angle, sine of first joint angle, cosine of sec-
ond joint angle, sine of second joint angle, first joint an-
gular velocity, second joint angular velocity. For all en-
vironments state-action pairs were approximated using tile

4



coding [Sutton and Barto, 2018], e.g. if two same states,
each with different actions, were provided to the tile coder,
two different feature representations would be returned. 10
tilings were used and the resulting feature vector length is
1e6.

The goal in Mountain Car is for an under-powered car to
reach the top of a hill. The action space is no movement,
move left or move right, which applies a small amount of
force on the car in those directions. The optimal policy is to
move back and forth to gain momentum to reach the top of
the hill. A reward of -1 is given at each time step until either
the car reaches the goal, which yields a reward of 0, or until
200 time steps and the episode ends. The Cart Pole task is
to move a cart left or right to balance a pole for as long as
possible. A reward of +1 is given at each time step until 200
time steps are reached, the edge of the frame is exceeded, or
the pole breaches an angle threshold. Acrobot is a double
pendulum swing up task where the goal is to bring the free
end above a horizontal line. A reward of -1 is given until
the free end reaches the horizontal threshold, upon which
a reward of 0 is given, or 500 time steps are reached. The
action space is to apply 1 torque , -1 torque or no torque to
the actuated joint.

A hyper-parameter search was performed to find the best
learning rate for all agents, including the kappa term for
the GTDDQ algorithm. However, because the GTD algo-
rithms have learning rates for each set of weights, α and
β, we set α = β to decrease the search space size. The
learning rates searched: [0.1,0.01,0.001,0.0001,1e-05,1e-
06,0.5,0.05,0.005,0.0005,5e-05,5e-06]. The κ value search
space: [0.25, 0.5, 0.75, 1.0, 1.5, 2.0]. All learning rates
were fixed for all episodes. The exploration rate, ε or the
probability of taking a random action, was initialized at 1
and decreased linearly until holding fixed at 0.05 halfway
through the number of episodes. We searched for highest
average rewards over the last 200 episodes with a training
run of 5000 steps. Our results are shown in Figure 3.

The main results of our learning comparisons are shown
in Figure 4. Each algorithm trained 30 times and the average
and standard deviation are shown. All experiments were run
similar to the hyper-parameter search.

With regards to our hyper-parameter search in Figure
3, GTDDQ has more learning rates that performed well
compared to GreedyGQ. All three algorithms appear to
learn best around 0.05. Most interesting is how robust Q-
Learning is with regards to its learning rate. It performs
well with a wider variation of learning rates than either GTD
algorithms. Indeed, this phenomenon was apparent during
experiments because both GTD algorithms were difficult to
successfully train. However, of the two GTD algorithms,
GTDDQ was more learning-rate-robust than GreedyGQ.
The inclusion of the optimization term helps to stabilize
training and leads to a more robust algorithm.

Figure 3 shows that both GTD algorithms have a nar-
rower range of learning rates that lead to successful train-
ing than with Q-learning, which shows that GTD al-
gorithms themselves may be brittle. Algorithms such
as TRPO [Schulman et al., 2015] and Soft Actor-Critic
[Haarnoja et al., 2018] are robust to hyper-parameter val-
ues while also being powerful algorithms which has lead to
their widespread adoption. For GTD algorithms to be more
widely used, this brittle behavior must be explored and ad-
dressed.

Our general learning comparison in Figure 4 shows GT-
DDQ performing nearly as well as Q-learning and better
than GreedyGQ in the Mountain Car task. For Cart Pole
task, GTDDQ reaches the highest average rewards; more
than either Q-learning and GreedyGQ, despite a slower
learning start. GreedyGQ also performs better than Q-
learning at Cart Pole, showing how GTD algorithms may
perform better in environments with positive growing re-
ward functions. Q-learning is known to have difficulty
training due to high-variance updates with action-values.
This difficulty combined with our optimization term may
explain the performance difference. Conversely, in Moun-
tain Car and Acrobot, as the agent improves the rewards
decrease in magnitude towards zero, leading to smaller vari-
ance and reducing the need for stability guarantees. Further
testing can be done in environments with ever increasing
rewards to expound on this.

4.2. Actor Critic with Linear Function Approxima-
tion

Actor-Critic learning was done using the Continuous
Mountain Car environment in the OpenAI Gym classi-
cal control environments [Brockman et al., 2016]. Rewards
and states are as described above, however, the action space
is a continuous value between -1 and 1 representing the di-
rectional force applied to the under-powered car. Tile cod-
ing was again used but only for the state space approxima-
tion method with 10 tilings each containing 502 tiles. No
learning rates were reported in [Silver et al., 2014] and so
we set all learning rates equal to each other for all three
Actor-Critic algorithms for a smaller state search space.
The action space is continuous and action is calculated us-
ing a Gauassian policy, N (θ>φ(st), ε), where ε was de-
creasing at the same rate as linear FA experiments.

Our Actor-Critic results are tenuous, as shown in Figure
5. Despite not performing best in discrete Mountain Car,
Actor-Critic GTDDQ does learn in the Continuous Moun-
tain Car task. The Actor-Critic method is designed to off-
set the negative impacts of Q-learning by combining it with
Policy Gradient Methods. It is possible that combining
Actor-Critic with our regularization term further enhances
performance.

For all of these environments, GTD algorithms have an

5



Figure 3: Comparison of learning rate search for each
environment and agent. κ was set at 0.75 for Mountain
Car and Cart Pole and 1.5 for Acrobot.

advantage in further tuning the secondary learning rate, β,
independent of α. However, that does significantly increase
the computation and time cost of the algorithm, especially
if we were to apply GTD towards Deep RL problems. It
would be worth further investigation into whether the per-
formance outweighs the cost.

5. Conclusion
We introduce a new GTD algorithm with an optimization

term called GTDDQ. The optimization term constrains the
action-value updates which decreases the parameter size to
prevent over-stepping. We demonstrate GTDDQ’s perfor-
mance on classic control environments Mountain Car, Cart
Pole, and Acrobot. Our results show that the GTDDQ algo-
rithm is able to perform better than Q-learning at best and

Figure 4: Comparison of Linear FA RL algorithms Q-
Learning, GreedyGQ, GTDDQ, and a random agent. All
experiments were repeated and averaged over 30 trials.
Lines represent the mean and shaded area represent er-
ror of one standard deviation.

comparable to GreedyGQ at worst. Including the optimiza-
tion term improves the performance of GTD algorithms and
leads to better performance than Q-learning in increasingly
large rewards environments, such as Cart Pole. We also
show how GTDDQ can be incorporated with Actor-Critic
learning and briefly showed promising hyper-parameter re-
sults from the Continuous Mountain Car environment. We
conclude that the GTDDQ algorithm is a promising direc-
tion for improving provably convergent RL algorithms.

6



Figure 5: Learning rate search comparison for each
Actor-Critic algorithm.

6. Acknowledgments
This work benefited from access to the University of

Oregon high performance computing cluster, Talapas and
from OACISS compute resources.

References

[Baird, 1995] Baird, L. (1995). Residual algorithms: Re-
inforcement learning with function approximation. In
Machine Learning Proceedings 1995, pages 30–37. El-
sevier.

[Brockman et al., 2016] Brockman, G., Cheung, V., Pet-
tersson, L., Schneider, J., Schulman, J., Tang, J., and
Zaremba, W. (2016). Openai gym.

[Ghiassian et al., 2020] Ghiassian, S., Patterson, A., Garg,
S., Gupta, D., White, A., and White, M. (2020). Gradi-
ent temporal-difference learning with regularized correc-
tions. In International Conference on Machine Learning,
pages 3524–3534. PMLR.

[Haarnoja et al., 2018] Haarnoja, T., Zhou, A., Har-
tikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V.,
Zhu, H., Gupta, A., Abbeel, P., et al. (2018). Soft
actor-critic algorithms and applications. arXiv preprint
arXiv:1812.05905.

[Maei, 2011] Maei, H. R. (2011). Gradient temporal-
difference learning algorithms.

[Maei et al., 2009] Maei, H. R., Szepesvari, C., Bhatna-
gar, S., Precup, D., Silver, D., and Sutton, R. S. (2009).
Convergent temporal-difference learning with arbitrary
smooth function approximation. In NIPS, pages 1204–
1212.

[Maei et al., 2010] Maei, H. R., Szepesvári, C., Bhatnagar,
S., and Sutton, R. S. (2010). Toward off-policy learning
control with function approximation. In Proceedings of
the 27th International Conference on Machine Learning
(ICML-10), pages 719–726.

[Mahmood et al., 2014] Mahmood, A. R., Van Hasselt,
H. P., and Sutton, R. S. (2014). Weighted importance
sampling for off-policy learning with linear function ap-
proximation. Advances in Neural Information Process-
ing Systems, 27.

[Peters et al., 2010] Peters, J., Mulling, K., and Altun, Y.
(2010). Relative entropy policy search. In Twenty-Fourth
AAAI Conference on Artificial Intelligence.

[Peters et al., 2005] Peters, J., Vijayakumar, S., and Schaal,
S. (2005). Natural actor-critic. In European Conference
on Machine Learning, pages 280–291. Springer.

[Precup, 2000] Precup, D. (2000). Eligibility traces for off-
policy policy evaluation. Computer Science Department
Faculty Publication Series, page 80.

7



[Schulman et al., 2015] Schulman, J., Levine, S., Abbeel,
P., Jordan, M., and Moritz, P. (2015). Trust region policy
optimization. In International conference on machine
learning, pages 1889–1897. PMLR.

[Silver et al., 2014] Silver, D., Lever, G., Heess, N., De-
gris, T., Wierstra, D., and Riedmiller, M. (2014). De-
terministic policy gradient algorithms. In International
conference on machine learning, pages 387–395. PMLR.

[Sutton and Barto, 2018] Sutton, R. S. and Barto, A. G.
(2018). Reinforcement learning: An introduction. MIT
press.

[Sutton et al., 2009] Sutton, R. S., Maei, H. R., Precup, D.,
Bhatnagar, S., Silver, D., Szepesvári, C., and Wiewiora,
E. (2009). Fast gradient-descent methods for temporal-
difference learning with linear function approximation.
In Proceedings of the 26th Annual International Confer-
ence on Machine Learning, pages 993–1000.

[Sutton et al., 1999] Sutton, R. S., McAllester, D., Singh,
S., and Mansour, Y. (1999). Policy gradient methods
for reinforcement learning with function approximation.
Advances in neural information processing systems, 12.

[Sutton et al., 2008] Sutton, R. S., Szepesvári, C., and
Maei, H. R. (2008). A convergent o (n) algorithm for off-
policy temporal-difference learning with linear function
approximation. Advances in neural information process-
ing systems, 21(21):1609–1616.

[Watkins and Dayan, 1992] Watkins, C. J. and Dayan, P.
(1992). Q-learning. Machine learning, 8(3):279–292.

8


