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Abstract—The existing parallel I/O stack is complex and
difficult to tune performance due to the interplay of multiple
factors that impact the performance of data movement between
storage and compute systems. When performance is slower than
expected, end-users, developers, and system administrators rely
on I/O profiling and tracing information to pinpoint the root
causes of inefficiencies. However, there is a gap between the
currently available metrics, the issues they represent, and the
application of solutions and optimizations that would mitigate
slowdowns. An I/O specialist often checks for common problems
before diving into the specifics of each application and workload.
Streamlining such analysis, investigation, and recommendations
could close this gap without requiring a specialist to intervene
in each case. In this paper, we propose an interactive, user-
oriented visualization and analysis framework to pinpoint various
root causes of I/O performance problems and provide a set of
actionable recommendations to improve performance based on
the observed characteristics of an application. We evaluate its ap-
plicability and correctness in four use cases from distinct science
domains and demonstrate its value to end-users, developers, and
system administrators when seeking to improve an application’s
I/O performance.

Index Terms—I/O, insights, visualization, I/O optimization

I. INTRODUCTION

The parallel I/O stack deployed on large-scale computing
systems has a plethora of tuning parameters and optimization
techniques that can improve application I/O performance [1],
[2]. Despite that, applications still face poor performance when
accessing data. Harnessing I/O performance is a complex
problem due to the multiple factors that can affect it and inter-
dependencies among the layers of the stack.

When applications suffer slowdowns, pinpointing the root
causes of inefficiencies requires detailed metrics and an un-
derstanding of the stack. There is a variety of I/O performance
profiling and characterization tools, which are very helpful in
diagnosing the I/O bottlenecks in an application, but none of
these tools provide a set of actionable items to guide users in
solving the bottlenecks in the application. For instance, I/O
profiling tools collect metrics to provide a coarse-grain view
of the application’s behavior when accessing data. Darshan
[3] and Recorder [4] profilers can also trace I/O operations,
providing a fine-grain view of the transformations the requests
undergo as they traverse the parallel I/O stack. Nonetheless,
despite the availability of such fine-grain traces, there is a gap
between the trace collection, analysis, and tuning.

A solution to close this gap requires analyzing the collected
metrics and traces, automatically diagnosing the root causes of

poor performance, and then providing user recommendations.
Towards analyzing the collected metrics, Darshan [3], [5]
provides various utilities to summarize statistics. However,
their interpretation is left to the user to identify root causes and
find solutions. There have been many studies to understand the
root causes of performance problems, including IOMiner [6]
and Zoom-in I/O analysis [7]. However, these studies and tools
are either application-specific or target general statistics of I/O
logs. Existing technologies lack the provision of feedback and
recommendation to improve I/O performance of applications
or to increase utilization of I/O system capabilities [8].

To address these three components, i.e., analysis of profiles,
diagnosis of root causes, and recommendation of actions, we
envision a solution that meets the following criteria based on
a visualization approach.

1⃝ Provide an interactive visualization based on each file,
allowing to focus on a subset of ranks or zoom in to
specific regions of the execution;

2⃝ Display contextual information about I/O calls (e.g., rank,
size, duration, start and end times);

3⃝ Understand how the application issues its I/O requests
over time considering operation, request sizes, and spa-
tiality of accesses;

4⃝ Observe transformations as the requests traverse the I/O
stack (e.g., MPI-IO to POSIX);

5⃝ Detect and characterize the distinct I/O phases of an
application throughout its execution;

6⃝ Understand how the file system is accessed by the ranks
involved in I/O operations;

7⃝ Provide an extensible framework so new visualizations
and analysis could be easily integrated;

8⃝ Identify and highlight common root causes of I/O perfor-
mance problems;

9⃝ Provide a set of actionable items or recommendations
based on the detected I/O bottlenecks.

In this paper, we propose an interactive web-based analy-
sis framework named “AnonIOVis”1 to visualize I/O traces,
highlight bottlenecks, and help understand the I/O behavior of
scientific applications. Achieving this framework has several
challenges in analyzing I/O metrics for extracting I/O behavior
and illustrating it for users to explore, automatically detecting
the I/O performance bottlenecks, and presenting actionable
items to users. To tackle these challenges, we devised a

1Name of the tool is kept anonymous to facilitate double-blind review.



solution that contains an interactive component to I/O trace
analysis for end-users to visually inspect their applications’
I/O behavior, focusing on areas of interest and getting a clear
picture of common root causes of I/O performance bottle-
necks. Based on the automatic detection of I/O performance
bottlenecks, our framework maps numerous common and well-
known bottlenecks and their solution recommendations that
can be implemented by users. We demonstrate the usage
of our framework with multiple case studies and visualize
performance bottlenecks and their solutions.

The remainder of the paper is organized as follows. In Sec-
tion II, we discuss related work. Our approach to interactively
explore I/O behaviors is detailed in Section III, covering design
choices, techniques to detect I/O phases and bottlenecks, and
available features. We demonstrate its applicability with case
studies in Section IV. We conclude the paper in Section V and
discuss future efforts.

II. RELATED WORK

There are a variety of tools that have been developed for
performance analysis and visualization, as well as I/O bottle-
neck detection of HPC applications. We discuss here a few of
those tools and explain the novelty of our framework in terms
of performance visualization and tuning of I/O bottlenecks.

NVIDA Nsight [9] has been used extensively for the
performance analysis and visualization of HPC applications.
It is helpful in optimizing the overall performance of the
application by providing insights regarding different issues in
the application, such as CPU and GPU usage, parallelism and
vectorization, and GPU synchronization. TAU [10] is an inte-
grated toolkit for performance instrumentation, measurement,
and analysis. TAU captures serial and parallel file I/O, com-
munication, memory, and CPU metrics. Concerning I/O, TAU
uses library wrapping to characterize I/O performance, which
automates the instrumentation of external I/O packages and
libraries. Thus, TAU can intercept POSIX and MPI-IO calls
and instrument libraries such as HDF5. Similarly, tools such
as Recorder [4], and IOMiner [6] are being used extensively
to analyze the I/O performance of HPC applications.

The Total Knowledge of I/O (TOKIO) [11] framework
provides a view of the performance of the I/O workloads
deployed on HPC systems by connecting data and insights
from various component-level monitoring tools available on
HPC systems. By acting as an abstraction layer between these
component-level monitoring tools and high-level I/O analysis
tools, TOKIO collects data from different monitoring tools and
normalizes and indexes this data to present a single coherent
view to be used by different analysis tools and user interfaces.
Unified Monitoring and Metrics Interface (UMAMI) [12]
introduces a holistic I/O analysis approach by integrating
data across components, such as file systems, application-level
profilers, and system components, into a single view. This
single view or interface, called UMAMI, is used to provide
a complete and coherent view of the issues affecting the I/O
subsystem. Metrics for UMAMI are gathered by looking at
tools that capture application I/O behavior and storage system

traffic and collecting data related to health monitoring, job
scheduling, and topology. Both approaches focus on the global
view of the I/O system of large-scale machines rather than on
the particular I/O issues of each application.

Tools have been developed which use Artificial Intelligence
(AI) to predict and mitigate I/O contention in HPC systems.
One of these tools is Analytics for I/O (AI4IO) [13], which
uses AI to develop IO awareness in the HPC system. AI4IO
comes with two tools: PRIONN and CanarIO. PRIONN works
on predicting the resource usage of the jobs, whereas CanarIO
identifies which jobs are affected by I/O contention. Both of
these tools work together to predict I/O contention before it
happens and take the necessary steps to mitigate it. INAM [14]
presents a novel cross-stack technique to profile and analyze
communication across HPC middleware and applications. By
analyzing communication across the HPC stack, INAM de-
termines the bottlenecks and provides significant speedup by
resolving those bottlenecks. [15] presents an approach to up-
date HDF5 with new parameters for superior I/O performance.
It finds the best parameters for HDF5 by conducting controlled
experiments on different benchmark settings with multiple
repetitions. Behzad et al. [2] present an auto-tuning solution
to optimize HPC applications for I/O usage. The I/O kernel of
the application is first extracted by the auto-tuning framework.
All the possible I/O configurations are passed to the kernel,
and the best k configurations are selected. H5tuner takes these
configurations as an Extensible Markup Language (XML) file
and links it with the application. In order to deal with the large
size of the I/O parameter space, the auto-tuning framework
uses Genetic Algorithms and I/O performance modeling to
reduce the search space.

All the tools mentioned above are very effective in per-
formance visualization and detection of I/O bottlenecks in
the HPC systems, but none of these tools fill the translation
gap which exists between determining the I/O bottlenecks
and coming up with suggestions and recommendations to
get rid of those bottlenecks. Our work fills this translation
gap by not only providing interactive visualizations showing
the I/O performance of the application but also by providing
a set of actionable items or recommendations based on the
detected I/O bottlenecks. Furthermore, auto-tuning approaches
are complementary to this work, as they could harness the
provided insights and bottleneck detection to reduce the search
space of tunable parameters.

III. “AnonIOVis” FOR VISUALIZATION, DIAGNOSIS, AND
RECOMMENDATIONS

In the following subsections, we discuss the design choices
to support interactive visualizations, I/O behavior analysis, I/O
phase detection, and how we efficiently map bottlenecks to a
set of actionable items in a user-friendly way. In Fig. 1, we
show the phases of our proposed solution.

A. Extracting I/O Behavior from Metrics

Darshan [3] is a tool deployed in several large-scale com-
puting facilities to collect I/O profiling metrics. Darshan
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Fig. 1. Workflow used by “AnonIOVis” to generate meaningful interactive
visualizations and a set of recommendations based on the detected I/O
bottlenecks using Darshan DXT I/O traces.
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Fig. 2. Comparison of methods to extract and combine the I/O behavior
data from Darshan DXT traces required to pinpoint I/O issues and generate
interactive visualizations.

collects aggregated statistics with minimal overhead providing
a coarse-grain view of application I/O behavior. An extended
tracing module (DXT) [16] can also be enabled to capture fine-
grain POSIX and MPI-IO traces. Because of its widespread
use, we use Darshan log files as input to our solution.

In order to characterize an application’s I/O behavior, we
require an efficient way to analyze possibly large traces
collected by Darshan DXT in binary format. Darshan provides
a command line solution named darshan-dxt-parser as part
of the darshan-util library to parse DXT traces out of the
binary Darshan log files. The parsed data is stored in a pre-
defined textual format which could then be transformed into
a CSV file to be analyzed. Fig. 2 summarizes the time taken
to obtain the required data in such approach.

Because of the multiple conversions, these additional steps
add to the user-perceived time. As an alternative, we have
also explored the novel PyDarshan [5], a Python package that
provides interfaces to binary Darshan log files. With PyDar-
shan, we get direct access to the parsed DXT trace data in
the form of a pandas [17] dataframe. It uses a DarshanReport
object, which provides a convenient wrapper to access Darshan
logs. Fig. 2 illustrates the performance of both approaches.
However, PyDarshan also has its shortcomings when the
analysis requires an overall view of application behavior. The
package currently returns a data frame containing all trace
operations issued by rank, which in the case of “AnonIOVis”
requires an additional step to iterate over all ranks and group
data into a single dataframe for both analysis and interactive
visualization. For the trace in Fig. 2, that represents 87.3% of
the time. Thus, PyDarshan could be improved to provide direct
access to all ranks at once, avoiding costly data preparation
when looking at the full picture.
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Fig. 3. Comparison of solutions to generate the interactive plots and detect
I/O phases from Darshan DXT traces. Both approaches use the Plotly.js library
under the hood to generate web-based interactive plots.

B. Interactively Exploring I/O Behavior

I/O traces can be large for applications with longer runtime
or even for relatively short applications with a large number of
small I/O requests, making it difficult to analyze and visualize
the behavior. Static plots are limited in the information they
can represent due to space constraints and pixel resolution.
Such an approach often hides the root causes of I/O bottle-
necks in plain sight (e.g., when thousands of rank issue I/O
operations concurrently, but some of them suffer interference
at the server level, those lines are not visible in a static plot
at a regular scale).

Towards developing a modular and extensible framework
(criterion 7 in §I), we consider two solutions. Our initial
prototype to move from a static to interactive and dynamic
visualization relied on plots generated in R using ggplot2. R
is a programming language for statistical computing used in
diverse fields such as data mining, bioinformatics, and data
analysis. ggplot2 is an open-source data visualization package
for R to declaratively create graphics, based on The Grammar
of Graphics [18] schema. A plot generated using this library
could be converted into an interactive visualization by using
the open-source ggplotly graphing library powered by Plotly.
Plotly is a data visualization library capable of generating
dynamic and interactive web-based charts.

However, integrating with the data extraction discussed in
Section III-A would require the framework to combine features
in different languages, compromising modularity, maintain-
ability, and increasing software dependencies, possibly con-
straining its wide adoption in large-scale facilities. We have
opted to rely on PyDarshan to extract the data. Using the open-
source Plotly.py Python wrappers would simplify the code
without compromising features or usability. Furthermore, it
would easily allow I/O data experts to convert their custom
visualizations into interactive ones and integrate them into
“AnonIOVis”. It also brought the advantage of reducing the
total user-perceived time by 84.5% (from avg. of 69.45 to
10.74 seconds), allowing such time to be better spent on
detailed analysis of I/O behavior. Fig. 3 summarizes this
difference. Section III-C covers the I/O behavior analysis to
pinpoint the root causes of bottlenecks.

As scientific applications often handle multiple files during
their execution, which overlap in time (e.g., file-per-process or
multiple processes to multiple files approaches), “AnonIOVis”
should provide a separate visualization for each. Furthermore,
those visualizations should shine some light on the applica-
tion’s I/O behavior from multiple perspectives, i.e., criterion
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Fig. 4. Sample reports generated by “AnonIOVis” focusing on different facets of the I/O behavior: (a) operations; (b) contextual information regarding the
operations; (c) transfer sizes; and (d) spatial locality of the requests into the file. Combined, they provide a clear picture of the I/O access pattern and help
identify the root causes of performance problems.

3 : operation, data transfer, and spatiality. Fig. 4 shows the
reports of particle and mesh-based data from a scientific
simulation. Plotly also meets our criteria by allowing a user
to dynamically narrow down the plot to cover a time interval
of interest or zoom into a subset of ranks to understand the
I/O behavior (criterion 1 ).

Because of the complexity of the parallel I/O stack, the
requests issued by an application are transformed before
reaching the file system. Those transformations originate from
different mappings between the data model used by an appli-
cation and its file representation or by the application of I/O
optimization techniques such as collective buffering and data-
sieving [19] or request scheduling [20]–[22]. To shed light on
these transformations, “AnonIOVis” depicts every plot using
two synchronized facets: the first representing the MPI-IO
level, and the second, its translation to POSIX level (criterion
4 ). For each request, by hovering over the depicted interval,

it is possible to inspect additional details such as the operation
type, execution time, rank, and transfer size, meeting criterion
2 . We will provide interactive examples online, which are

now hidden for anonymity.

When visualizing an application’s I/O behavior, we are
one step closer to understanding the root causes of any
performance bottlenecks, demystifying data transformations,
and guiding users to apply the most suitable set of optimization
techniques to improve performance. We highlight that there is

a lack of a straightforward translation of the I/O bottlenecks
into potential tuning options. In this paper, we seek to close
this gap by providing a framework to bring those issues to
light, automatically detecting bottlenecks and meaningfully
conveying actionable solutions to users.

C. Automatic Detection of I/O Bottlenecks

There are a variety of tools that seek to analyze the
performance of HPC applications, as discussed in Section
II. However, few of them focus on I/O and neither provide
support for auto-detection of I/O bottlenecks in the application
nor provide suggestions on how to fix those. We summarize
common root causes of I/O performance bottlenecks in Table
I. Some issues require additional data or a combination of
metrics collected from profilers, tracers, and system logs. For
instance, Darshan’s profiler only keeps track of the timestamp
of the first and last operations to a given file, whereas its
Extended Tracing module (DXT) tracks what happens in
between, such as different behaviors or I/O phases.

“AnonIOVis” seeks to provide interactive web-based visu-
alizations of the tracing data collected by Darshan, but it
also provides a framework to detect I/O bottlenecks in the
data (from both profiling and tracing metrics) and highlights
criterion 8 those on the interactive visualizations along with
providing a set of recommendations (criterion 9 ) to solve
the issue. “AnonIOVis” relies on counters available in Darshan
profiling logs to detect common bottlenecks and classify the



insights into four categories based on the impact of the trig-
gered event and the certainty of the provided recommendation:
HIGH (high probability of harming I/O performance), WARN
(detected issues could negatively impact the I/O performance,
but metrics might not be sufficient to detect application design,
configuration, or execution choices), OK (the recommended
best practices have been followed), and INFO (details relevant
information regarding application configuration that could
guide tuning solutions). The insights module is fully integrated
with the parsing and visualization modules of the framework,
so the identified issues and actionable items can enrich the
information presented in the report.

The interactive visualizations are enhanced using multi-
layered plots, with each layer activated according to the
detected bottleneck keeping the original behavior in the
background (criterion 8 ). Furthermore, we complement the
interactive visualization with a report based on 32 checks
covering common I/O performance pitfalls and good practices,
as summarized in Table II. We briefly discuss some triggers
that are directly or indirectly embedded in the visual reports.

1) Small Requests: Scientific applications that issue a large
number of small requests often experience poor performance
[6], [7]. We consider small requests as smaller than 1MB. Ag-
gregating or buffering operations could significantly improve
performance by leveraging a small number of larger requests.
MPI-IO’s collective buffering implements such solutions that
are often not used by applications. In “AnonIOVis”, we use
a tunable threshold (defaults to 10%) to trigger this issue
(considering accesses to all files and, especially to shared-filed,
where collective I/O could be easily implemented).

2) Rank 0 Heavy-Workload: A simpler approach to ac-
cessing data in MPI-based applications is concentrating all
I/O requests into a single rank, often rank 0. Furthermore,
when using high-level I/O libraries, such as HDF5, rank 0 is
also by default responsible for managing metadata operations
unless explicitly made collective. Such scenarios force rank 0
to issue a lot of I/O requests when compared to the rest of
the workload, often causing slow runtime. A case study of the
huge impact of this unbalanced workload is further detailed
in Section IV. To trigger this issue, “AnonIOVis” checks the
number of read and write operations and the total transferred
size of each rank. Three scenarios can arise and are considered:

1) The read count, write count, and the total request size
TABLE I

ROOT CAUSES OF I/O PERFORMANCE BOTTLENECKS

Root Causes D
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O
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Too many I/O phases [7] ✓ ✓ p ✓
Stragglers in each I/O phase [23] ✓ ✓ p ✓
Bandwidth limited by a single OST I/O bandwidth [7], [24] p p ✓ p
Limited by the small data size [7] ✓ ✓ p ✓
Rank 0 heavy-workload [25] ✓ ✓ p ✓
Unbalanced I/O workload among MPI ranks [7] ✓ ✓ p ✓
Large number of small I/O requests [7] ✓ ✓ p ✓
Unbalanced I/O workload on OSTs [7], [26] ✓ ✓ ✓ ✓
Bad file system weather [7], [12] p p ✓ p
Redundant/overlapping I/O accesses [22], [27] ✓ ✓ p ✓
I/O resource contention at OSTs [28], [29] p p ✓ p
Heavy metadata load [24] ✓ p p ✓

TABLE II
TRIGGERS EVALUATED BY “AnonIOVis” FOR EACH DARSHAN LOG.

Level Interface Detected Behavior

HIGH STDIO High STDIO usage∗ (> 10% of total transfer size uses STDIO)

OK POSIX High number∗ of sequential read operations (≥ 80%)
OK POSIX High number∗ of sequential write operations (≥ 80%)

INFO POSIX Write operation count intensive∗ (> 10% more writes than reads)
INFO POSIX Read operation count intensive∗ (> 10% more reads than writes)
INFO POSIX Write size intensive∗ (> 10% more bytes written then read)
INFO POSIX Read size intensive∗ (> 10% more bytes read then written)
WARN POSIX Redundant reads
WARN POSIX Redundant writes
HIGH POSIX High number∗ of small† reads (> 10% of total reads)
HIGH POSIX High number∗ of small† writes (> 10% of total writes)
HIGH POSIX High number∗ of misaligned memory requests (> 10%)
HIGH POSIX High number∗ of misaligned file requests (> 10%)
HIGH POSIX High number∗ of random read requests (> 20%)
HIGH POSIX High number∗ of random write requests (> 20%)
HIGH POSIX High number∗ of small† reads to shared-files (> 10% of reads)
HIGH POSIX High number∗ of small† writes to shared-files (> 10% of writes)
HIGH POSIX High metadata time∗ (one or more ranks spend > 30 seconds)
HIGH POSIX Rank o heavy workload
HIGH POSIX Data transfer imbalance between ranks (> 15% difference)
HIGH POSIX Stragglers detected among the MPI ranks
HIGH POSIX Time imbalance∗ between ranks (> 15% difference)

WARN MPI-IO No MPI-IO calls detected from Darshan logs
HIGH MPI-IO Detected MPI-IO but no collective read operation
HIGH MPI-IO Detected MPI-IO but no collective write operation
WARN MPI-IO Detected MPI-IO but no non-blocking read operations
WARN MPI-IO Detected MPI-IO but no non-blocking write operations
OK MPI-IO Detected MPI-IO and collective read operations
OK MPI-IO Detected MPI-IO and collective write operations

HIGH MPI-IO Detected MPI-IO and inter-node aggregators
WARN MPI-IO Detected MPI-IO and intra-node aggregators
OK MPI-IO Detected MPI-IO and one aggregator per node

∗ Trigger has a threshold that could be further tunned. Default value in parameters.
† Small requests are consider to be < 1MB.

of rank 0 are greater than the rest of the ranks, meaning
rank 0 is issuing more I/O requests and transferring more
data as compared to the rest of the workload;

2) The read count and the total request size of rank 0 are
greater than the rest of the ranks;

3) The write count and the total request size of rank 0 are
greater than the rest of the ranks.

If detected, a message is issued to the visualization module,
and rank 0 is highlighted on the interactive graphs. A recom-
mendation is also provided to the user, which can be helpful
in mitigating the bottleneck.

3) Workload Imbalance: We apply a similar technique in
detecting unbalanced workloads between the ranks, which is
often related to how an application was designed to handle
its data [30]–[32]. Apart from the number of read and write
operations and the total request size, we also collect the total
time spent in I/O operations by each rank. We use each
metric’s mean and standard deviation to define a threshold
that filters out any outliers in the data. For this issue to be
triggered, each one of the four metrics in a given rank must be
higher than its corresponding threshold (mean plus one stan-
dard deviation), meaning this rank is handling an unbalanced
load. All identified ranks are collected and forwarded to the
visualization more to be highlighted on the interactive graph.

Figure 5 shows the unbalanced workload detected in the
sample Darshan file. Unbalanced ranks are highlighted in



contrast to the base I/O behavior of the application (faded).
“AnonIOVis” also issues a set of recommendations such as
better balancing the data transfer between the application
ranks, tuning the stripe size and count to better distribute the
data, and double checking the need to set NO FILL values if
the application uses netCDF and HDF5 to solve the detected
issue. “AnonIOVis” also identifies read and write imbalance
and a high number of random read and small write operations
in the application, suggesting the use of MPI-IO collective and
considering non-blocking/asynchronous I/O operations.

Fig. 5. Unbalanced I/O workload among MPI ranks detected by “AnonIOVis”
and highlighted on the interactive visualization.

4) Individual Operations: Collective buffering and data
sieving [19] are two optimization techniques that are used
when applications issue collective operations through the
MPI-I/O interface, creating larger and contiguous access to
the underlying storage system. “AnonIOVis” detects when
this interface is used with individual operations, triggering
a recommendation to improve performance. The interactive
visualization exposes such behavior, as depicted in Fig. 10. In
that particular case, despite collective operations being used
by the application, a bug in HDF5 was causing the library to
issue independent calls instead, harming performance. That
explains why both MPI-I/O and POSIX facets look quite
similar, highlighting that no aggregations happened.

D. Exploring I/O Phases and Bottlenecks

HPC applications tend to present a fairly consistent I/O be-
havior over time, with a few access patterns repeated multiple
times over their execution [33]. Request scheduling [20], [21],
auto-tuning [2], [34], [35] and reinforcement-learning [36],
[37] techniques to improve I/O performance also rely on this
principle to use or find out the best configuration parameters
for each workload, allowing the application to fully benefit
from it in future iterations or executions. We can define an I/O
phase as a continuous amount of time where an application
is accessing its data following in a specific way or following
one or a combination of access patterns. Nonetheless, factors
outside the application’s scope could cause an I/O phase
to take longer, such as network interference, storage system

congestion, or contention, significantly modifying its behavior.
Seeking to detect I/O phases, “AnonIOVis” adds an interactive
visualization based on DXT trace data. This visualization gives
a detailed picture of I/O phases and I/O patterns in the data and
is very helpful in extracting information related to bottlenecks
such as stragglers, meeting our criterion 5 .

Finding the I/O phases from trace data is not trivial due
to the sheer amount of data, often representing millions of
operations in the order of milliseconds. We use PyRanges
[38] to find similar and overlapping behavior between an
application’s MPI ranks and a threshold value to merge I/O
phases closer to each other. PyRanges is a genomics library
used for handling genomics intervals. It uses a 2D table to
represent the data where each row is an interval (in our case, an
operation), and columns represent chromosomes (i.e., interface
and operation), the start and end of an interval (i.e., operation).

While computing the I/O phases, we keep track of the
duration between each I/O phase that represents computation
or communication. Once we have the duration of all the
intervals between the I/O phases, we calculate the mean and
standard deviation of such intervals. A threshold is calculated
by summing up the mean and the standard deviation, and it is
used to merge I/O phases close to each other into a single I/O
phase. We do that because due to the small time scale of the
operations, we might end up with a lot of tiny I/O phases that,
from the application’s perspective, represent a single phase.
Algorithm 1 describes the merging process. We take an I/O
phase and check if the difference between the end of the last
I/O phase and the start of this I/O phase is less than equal to
the threshold value. We keep on merging the I/O phases till
they satisfy this condition.

Algorithm 1 Merging I/O phases by a threshold
end← df [end][0]
prev end← 0
while i < len(df) do

if df [start][i]− end <= threshold then
prev end← df [end][i]

end if
if df [start][i]− end > threshold OR i = len(df)− 1

then
chunk end← df [prev index : i].copy()
end← df [end][i]
prev end← i

end if
end while

Fig. 6 shows a sample I/O phases visualization, that is fully
interactive supporting zoom-in/zoom-out. The I/O phases are
generated for MPIIO and POSIX separately. Hovering over an
I/O phase displays the fastest and slowest rank in that phase
and their durations.

Understanding an application’s I/O phases allow the de-
tection of additional performance bottlenecks, as detailed by
Table I. To showcase how “AnonIOVis” could be used in



Fig. 6. Interactive I/O phases visualization in MPI-I/O and POSIX layers.

this context, we briefly cover synchronous and asynchronous
requests, stragglers, and multiple I/O phases.

1) Blocking I/O Accesses: From a scientific application’s
perspective, I/O operations can be synchronous or asyn-
chronous. Asynchronous I/O is becoming increasingly popular
to hide the cost associated with I/O operation and improve
overall performance by overlapping computation or commu-
nication with I/O operations [39], [40]. Multiple interfaces
(e.g., POSIX and MPI-IO) and high-level I/O libraries (e.g.,
HDF5) provide both blocking and non-blocking I/O calls.
In the particular case of HDF5, the Asynchronous I/O VOL
Connector [41] can explore this feature.

If we consider only the profiling data available in Darshan,
it only captures the number of non-blocking calls at the
MPI-IO level and not when they happened. To provide a
detailed and precise suggestion of when asynchronous could
benefit the application, we rely on the I/O phases and the
intervals between those to provide such recommendations. We
demonstrate a use case with a block-structured adaptive mesh
refinement application in Section IV.

2) I/O Stragglers: I/O stragglers in each phase could define
the critical path impairing performance. “AnonIOVis” has an
exclusive plot to highlight the I/O phases and the fast and
straggler in each phase. We handle each interface separately
due to the transformations that happen as requests go down
the stack. Fig. 7 depicts the stragglers in each I/O phase. The
dotted lines represent the start and the end of an I/O phase.
In each phase, the fastest and the slowest rank is shown.
Upon hovering over the rank, we can see the rank number
and its duration. Combined with this contextual information,
it is possible to detect slow ranks across the entire execution
or storage servers consistently delivering slow performance.

Fig. 7. Stragglers are identified in red for each I/O phase.

Fig. 8. Lustre data storage (OST) access over time.

Fig. 9. OST data transfer visualization generated by “AnonIOVis”.

E. Towards Exploring File System Usage

Additional logs are required to correctly detect bottlenecks
related to unoptimized file system accesses, as detailed in
Table I. Nonetheless, Darshan DXT captures some information
that could provide an initial overview of the storage servers’
use if the underlying file system is Lustre and that integration
is enabled. “AnonIOVis” provides an exclusive visualization
to explore the OST usage of the I/O requests, as depicted in
Fig. 8. Furthermore, because of file stripping, a request at the
MPI-I/O level might be broken down and require access to
multiple storage devices to be completed, which explains why
the information at both levels is not the same. “AnonIOVis”
also depicts the data transfer sizes (writes and reads) for each
OST at both the MPI-I/O and POSIX levels (Fig. 9).

IV. RESULTS

We demonstrate “AnonIOVis” to identify I/O performance
bottlenecks. Experiments were conducted in two production
supercomputing systems: Cori at the National Energy Research
Scientific Computing Center (NERSC) and Summit at the Oak
Ridge Leadership Computing Facility (OLCF).

A. I/O Systems in NERSC and OLCF

Cori is a Cray XC40 supercomputer at NERSC. It has 2, 388
Intel Xeon Haswell, and 9, 688 Intel Xeon Phi Knight’s Land-
ing (KNL) compute nodes. All compute nodes are connected
to a ≈ 30 PB Lustre parallel file system (PFS) capable of
achieving a peak I/O bandwidth of 744 GB/s. Cori’s PFS is
comprised of 244 Object Storage Servers.



On the other hand, Summit is a 4, 608 compute nodes IBM
supercomputer at OLCF. Summit is connected to a center-
wide 250 PB Spectrum Scale (GPFS) file system, with a
peak bandwidth of 2.5 TB/s. It has 154 Network Shared Disk
servers, each managing one GPFS Native RAID serving as
both a storage and metadata server.

B. I/O Bottlenecks in OpenPMD

Open Standard for Particle-Mesh Data Files (OpenPMD)
[42] is an open meta-data schema targeting particle and mesh
data in scientific simulations and experiments. Its library [43]
provides back-end support for multiple file formats such as
HDF5 [44], ADIOS [45], and JSON [46]. In the context of
this experiment, we focus on the HDF5 format to store the
3D mashes [65536 × 256 × 256], represented as grids of
[64× 32× 32] composed by [64× 32× 32] mini blocks. The
kernel runs for 10 iteration steps writing after each one. Figure
10 depicts a baseline execution of OpenPMD in the Summit
supercomputer, with 64 compute nodes, 6 ranks per node,
and 384 processes, prior to applying any I/O optimizations
alongside the triggered issues. For this scenario, OpenPMD
takes on average 110.6 seconds (avg. of 5 runs).

Based on the initial visualization and the provided report
(Fig. 10), it becomes evident that the application I/O calls
are not using MPI-IO’s collective buffering tuning option.
Furthermore, the majority of the write and read requests
are small (< 1MB), which is known to have a significant
impact on I/O performance [7]. Moreover, “AnonIOVis” has
detected an imbalance when accessing the data. This is further
highlighted in Fig. 11 when the user selects that issue in the
interactive web-based visualization.

Nonetheless, after careful investigation, we confirmed that
the application and the HDF5 library supposedly used col-
lective I/O calls, though the visualization depicted something
entirely different. “AnonIOVis” aided in the discovery of
an issue introduced in HDF5 1.10.5 that caused collective
operations to be instead issued as independent by the library.
Once that was fixed, we noticed that the application did not use
collective metadata operations. Furthermore, “AnonIOVis” re-
ported misaligned accesses which pointed us toward tuning the
MPI-I/O ROMIO collective buffering and data sieving sizes to
match Alpine’s 16MB striping configuration and the number
of aggregators. Fig. 12 illustrates the optimized behavior of
OpenPMD, dropping to 16.1 seconds, a 6.8× speedup from
the baseline execution. The complete interactive report for the
optimized execution is available in our companion repository.
C. Improving AMReX with Asynchronous I/O

AMReX [47] is a C++ framework developed in the context
of the DOE’s Exascale Computing Project (ECP). It uses
highly parallel adaptive mesh refinement (AMR) algorithms to
solve partial differential equations on block-structured meshes.
AMReX-based applications span different areas such as as-
trophysics, atmospheric modeling, combustion, cosmology,
multi-phase flow, and particle accelerators. We ran AMReX
with 512 ranks over 32 nodes in Cori supercomputer, with
a 1024 domain size, a maximum allowable size of each

METADATA ──────────────────────────────────────────────────────────────────────────────────────

▶ Application is write operation intensive (60.83% writes vs. 39.17% reads)
▶ Application is write size intensive (64.15% write vs. 35.85% read)
▶ Application issues a high number (100.00%) of misaligned file requests
↪  Recommendations:

    ↪ Consider aligning the requests to the file system block boundaries

OPERATIONS ────────────────────────────────────────────────────────────────────────────────────

▶ Application issues a high number (275840) of small read requests (i.e., < 1MB) which 
represents 100.00% of all read/write requests
↪ 275840 (100.00%) small read requests are to "8a_parallel_3Db_0000001.h5"
↪  Recommendations:

    ↪ Consider buffering read operations into larger more contiguous ones
    ↪ Since the appplication already uses MPI-IO, consider using collective I/O calls (e.g. 
MPI_File_read_all() or MPI_File_read_at_all()) to aggregate requests into larger ones
▶ Application issues a high number (427386) of small write requests (i.e., < 1MB) which 

represents 99.75% of all read/write requests
↪ 275840 (64.38%) small write requests are to "8a_parallel_3Db_0000001.h5"
↪  Recommendations:

    ↪ Consider buffering write operations into larger more contiguous ones
    ↪ Since the application already uses MPI-IO, consider using collective I/O calls (e.g. 
MPI_File_write_all() or MPI_File_write_at_all()) to aggregate requests into larger ones
▶ Application mostly uses consecutive (97.67%) and sequential (2.16%) read requests
▶ Application mostly uses consecutive (97.85%) and sequential (1.17%) write requests
▶ Detected read imbalance when accessing 1 individual files.
↪ Load imbalance of 55.23% detected while accessing "8a_parallel_3Db_0000001.h5"
↪  Recommendations:

    ↪ Consider better balancing the data transfer between the application ranks
    ↪ Consider tuning the stripe size and count to better distribute the data
    ↪ If the application uses netCDF and HDF5 double-check the need to set NO_FILL values
    ↪ If rank 0 is the only one opening the file, consider using MPI-IO collectives
▶ Application uses MPI-IO and write data using 7680 (92.50%) collective operations
▶ Application could benefit from non-blocking (asynchronous) reads
↪  Recommendations:

    ↪ Since you use HDF5, consider using the ASYNC I/O VOL connector 
(https://github.com/hpc-io/vol-async)
    ↪ Since you use MPI-IO, consider non-blocking/asynchronous I/O operations
▶ Application could benefit from non-blocking (asynchronous) writes
↪  Recommendations:

    ↪ Since you use HDF5, consider using the ASYNC I/O VOL connector 
(https://github.com/hpc-io/vol-async)
    ↪ Since you use MPI-IO, consider non-blocking/asynchronous I/O operations

Fig. 10. Interactive visualization and recommendations report generated by
“AnonIOVis” for the OpenPMD baseline execution in Summit.

subdomain used for parallel decomposal as 8, 1 level, 6
components, 2 particles per cell, 10 plot files, and a sleep time
of 10 seconds between writes. Fig. 13 shows the interactive
baseline execution and the report generated by “AnonIOVis”.

From the provided recommendations, since AMReX uses
the high-level HDF5 library, we have added the asynchronous
I/O VOL Connector [41] so operations are non-blocking and
we could hide some of the time spent in I/O while the applica-
tion continues its computation. Furthermore, as “AnonIOVis”
looks at the ratio of operations to trigger some insights, for
this particular case, we can verify that the majority of write
requests are small (< 1MB) for all 10 plot files. To increase
those requests, we have set the stripe size to 16MB instead.
Fig. 14 shows the optimized version with a total speedup of
2.1× (from 211 to 100 seconds).

As demonstrated by design choices and these two use cases,
“AnonIOVis” meets all the initial criteria (defined in §I) we set
to close the gap between analyzing the collected I/O metrics
and traces, automatically diagnosing the root causes of poor



Fig. 11. “AnonIOVis” highlights unbalanced workload on the OpenPMD
execution. It also illustrates that the application does not use collective I/O.

Fig. 12. Optimized OpenPMD execution after following the recommendations
provided by “AnonIOVis” to avoid common I/O performance bottlenecks.

performance, and then providing users with a set of actionable
suggestions. The designed solution provides a framework that
can further be extended and refined by the community to
encompass additional triggers, interactive visualizations, and
recommendations. We have also conducted a similar analysis
for h5bench [48] and the end-to-end (E2E) [49] domain
decomposition I/O kernel. The interactive visualizations and
reports will be available in a companion repository.

V. CONCLUSION

Pinpointing the root causes of I/O inefficiencies in scientific
applications requires detailed metrics and an understanding
of the HPC I/O stack. The existing tools lack detecting I/O
performance bottlenecks and providing a set of actionable
items to guide users to solve the bottlenecks considering
each application’s unique characteristics and workload. In
this paper, we sought to design a framework that could face
the challenges in analyzing I/O metrics for extracting I/O
behavior and illustrating it for users to explore interactively,
detecting I/O bottlenecks automatically, and presenting a set
of recommendations to avoid them.

METADATA ──────────────────────────────────────────────────────────────────────────────────────

▶ Application is write operation intensive (99.98% writes vs. 0.02% reads)
▶ Application is write size intensive (100.00% write vs. 0.00% read)

OPERATIONS ────────────────────────────────────────────────────────────────────────────────────

▶ Application issues a high number (491640) of small write requests (i.e., < 1MB) which 
represents 99.99% of all read/write requests
↪ 98328 (20.00%) small write requests are to "plt00001.h5"
↪ 98328 (20.00%) small write requests are to "plt00002.h5"
↪ 98328 (20.00%) small write requests are to "plt00005.h5"
↪ 98328 (20.00%) small write requests are to "plt00009.h5"
↪ 98328 (20.00%) small write requests are to "plt00000.h5"
↪ 98328 (20.00%) small write requests are to "plt00004.h5"
↪ 98328 (20.00%) small write requests are to "plt00003.h5"
↪ 98328 (20.00%) small write requests are to "plt00006.h5"
↪ 98328 (20.00%) small write requests are to "plt00007.h5"
↪ 98328 (20.00%) small write requests are to "plt00008.h5"
↪  Recommendations:

    ↪ Consider buffering write operations into larger more contiguous ones
    ↪ Since the application already uses MPI-IO, consider using collective I/O calls (e.g. 
MPI_File_write_all() or MPI_File_write_at_all()) to aggregate requests into larger ones
▶ Application mostly uses consecutive (25.41%) and sequential (32.79%) read requests
▶ Application mostly uses consecutive (0.01%) and sequential (99.98%) write requests
▶ Application issues a high number (491640) of small write requests to a shared file (i.e., < 

1MB) which represents 99.99% of all shared file write requests
↪ 49164 (10.00%) small writes requests are to "plt00001.h5"
↪ 49164 (10.00%) small writes requests are to "plt00002.h5"
↪ 49164 (10.00%) small writes requests are to "plt00005.h5"
↪ 49164 (10.00%) small writes requests are to "plt00009.h5"
↪ 49164 (10.00%) small writes requests are to "plt00000.h5"
↪ 49164 (10.00%) small writes requests are to "plt00004.h5"
↪ 49164 (10.00%) small writes requests are to "plt00003.h5"
↪ 49164 (10.00%) small writes requests are to "plt00006.h5"
↪ 49164 (10.00%) small writes requests are to "plt00007.h5"
↪ 49164 (10.00%) small writes requests are to "plt00008.h5"
↪  Recommendations:

    ↪ Consider coalescing write requests into larger more contiguous ones using MPI-IO 
collective operations
▶ Application uses MPI-IO and write data using 15360 (99.81%) collective operations
▶ Application could benefit from non-blocking (asynchronous) reads
↪  Recommendations:

    ↪ Since you use HDF5, consider using the ASYNC I/O VOL connector 
(https://github.com/hpc-io/vol-async)
    ↪ Since you use MPI-IO, consider non-blocking/asynchronous I/O operations
▶ Application could benefit from non-blocking (asynchronous) writes
↪  Recommendations:

    ↪ Since you use HDF5, consider using the ASYNC I/O VOL connector 
(https://github.com/hpc-io/vol-async)
    ↪ Since you use MPI-IO, consider non-blocking/asynchronous I/O operations

Fig. 13. “AnonIOVis” report generated for the AMReX baseline in Cori.

“AnonIOVis”, an interactive web-based analysis framework,
seeks to close this gap between trace collection, analysis, and
tuning. Our framework relies on the automatic detection of
common root causes of I/O performance inefficiencies by map-
ping raw metrics into common problems and recommendations
that can be implemented by users. We have demonstrated its
applicability and benefits with the OpenPMD and AMReX
scientific applications to improve runtime.

“AnonIOVis” is available as open-source for the scientific
community to expand the set of triggers and recommendations
(links not provided for anonymity). Due to the interactive
nature of our solution, we will also provide a companion
repository with all traces, analyses, visualizations, and rec-
ommendations generated in this work.

In future work, we will integrate additional metrics and
system logs to broaden the spectrum of I/O performance issues
we can detect and visualize by providing a global API to
consume metrics from distinct sources (e.g., Recorder’s traces



METADATA ──────────────────────────────────────────────────────────────────────────────────────

▶ Application is write operation intensive (99.61% writes vs. 0.39% reads)
▶ Application is write size intensive (100.00% write vs. 0.00% read)

OPERATIONS ────────────────────────────────────────────────────────────────────────────────────

▶ Application mostly uses consecutive (24.79%) and sequential (33.06%) read requests
▶ Application mostly uses consecutive (0.16%) and sequential (99.64%) write requests
▶ Application uses MPI-IO and write data using 15360 (99.81%) collective operations

Fig. 14. AMReX execution after using asynchronous operations enabled by
using HDF5 ASYNC-VOL connector as recommended by “AnonIOVis”.

and parallel file system logs).
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