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Abstract. Searchable encryption is an essential component of cryptog-
raphy, which allows users to search for keywords and retrieve records from
an encrypted database at cloud storage while ensuring the confidentiality
of users’ queries. While most existing research on searchable encryption
focuses on the single domain setting, we propose the first Multi-Domain,
Easily-Deployable, Efficiently-Searchable Encryption (M-EDESE) sys-
tem that allows users to query keywords cross domains with high ef-
ficiency and preserved privacy without additional cooperation from the
cloud storage. In the multi-domain setting, a user who belongs to a do-
main can query keywords from another domain under an inter-domain
partnership. Any party can participate in the M-EDESE system as a
domain without global coordination other than agreeing on an initial set
of global reference parameters. Each domain maintains a set of users and
acts as an individual multiple-user searchable encryption system while
maintaining its own database. M-EDESE enables easy deployment with-
out any requirement for cloud storage setup, thus it is compatible with
the existing cloud storage platform. In addition, the M-EDESE system
facilitates instant user revocation within each domain and instant part-
ner revocation across domains. We provide a concrete construction of
M-EDESE and security proofs on query privacy, unforgeability, and re-
vocability. We also conduct a rigorous experimental evaluation of the per-
formance of M-EDESE in a real-world setting, showing that M-EDESE
is highly efficient for querying an open-sourced database.

Keywords: Keyword · Multi-Domain · Easily deployable and efficiently
searchable encryption

1 Introduction

Secure searching service is a key component of secure cloud data services and
cloud-based apps, such as Gmail, Facebook, and Outlook. Many searchable en-
cryption schemes have been proposed to provide such secure searching service
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(e.g., [2,3,4,5,6,7,8,9,10,11,12]). One practical scheme, named easily deployable
and efficiently searchable encryption (EDESE), was proposed by Billy Lau et al.
[3]. EDESE is widely compatible and highly efficient for ease of deployment.

Rigerous research has been conducted on EDESE (e.g., [2,4,6,8,14,18]) follow-
ing the initial work [16]. The initial EDESE was designed for single-user settings.
To extend EDESE to multi-user settings, PEKS was proposed by Boneh et al.
in 2004 [6], which is the first public-key-based searchable encryption satisfying
EDESE requirements. Then, MuED was introduced by Bao et al. [17], which
improves query generation performance significantly in multi-user settings. Re-
cently, CP-ABSE was proposed by Yin et al. [18], which increases the scalability
of EDESE in multi-user settings based on attribute-based searchable encryption.
Most of the existing EDESE schemes, regardless of being designed in single-user
settings or multi-user settings, work in single autonomous domains, in which
all users are managed by a single authority. In practice, however, industrials
need a secure searching service in multi-domain settings so that users in one au-
tonomous domain can search for useful information from collaborative domains
(e.g., in supply chain management).

To fill this gap, we propose a multiple domain searchable encryption based
on EDESE, called Multi-Domain, Easily Deployable, Efficiently Searchable En-
cryption (M-EDESE). M-EDESE leverages the easy deployment of EDESE to
allow users to query encrypted keywords among multiple domains. In particular,
M-EDESE achieves the following advantages.

– Secure Searching across Multiple Domains. M-EDESE enables secure
keyword searching across multiple domains. It allows any single domain to
be enrolled at any time without a re-initialization of the whole system. Any
domain can establish a unilateral searching collaboration relationship with
other domains. In this unilateral relationship, the host domain provides a
searching service to the partner domains such that any authorized user under
a partner domain can query encrypted keywords from the host domain. Each
domain in M-EDESE is fully autonomous in managing its own users and
deciding on its own partners.

– Easy deployment. Easy deployment is an essential achievement of EDESE
as required in many EDESE applications such as ShadowCrypt [2] and Mime-
sis Aegis [3]. M-EDESE inherits the easy deployment property of EDESE in
the multiple domains setting. Any domain in M-EDESE can work directly
with any cloud storage without making any changes to the keyword searching
services provided by the cloud storage.

Besides the above achievements, M-EDESE offers secure searchable encryp-
tion with query privacy, query unforgeability, and revocability.

– Query Privacy. Query privacy is a foundational secure requirement for
all searchable encryption [12]. It requires that no server providing searching
services can determine the underlying keyword of any query issued by a
user following searchable encryption, even though the server can observe all
access patterns of users’ queries to the data in its storage. Furthermore, it
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requires that no sensitive information about users’ queries can be derived by
the server from its observed information.

– Query Unforgeability. In M-EDESE, queries are generated by a user’s
secret key, which is distinct from others’ keys. It is a basic requirement
that neither user nor server can generate a legitimate query on behalf of a
user without the corresponding secret key [17]. In the multi-domain setting,
M-EDESE should also guarantee that neither the user nor the server can
generate a legitimate query from any domain without the corresponding
secret key of the domain.

– Revocability. M-EDESE provides effective user revocation and partner re-
vocation. User revocation allows a domain the capacity to manage its users
while partner revocation provides a host domain to manage its partner do-
mains. A revoked user is not allowed to access the searching services provided
by their host domain or any of its partner domains. If a partner domain is
revoked by a host domain, then all users belonging to the revoked partner
domain can no longer access the searching services provided by the corre-
sponding host domain.

In this paper, we demonstrate a detailed construction of M-EDESE (section
3) and present the formal proofs regarding query privacy, query unforgeability,
and revocability (section 4). Then, we provide our evaluations on M-EDESE’s
performance (section 5) and conclusion (section 6).

2 Preliminaries

M-EDESE is constructed based on two preliminaries, including bilinear maps
and BLS short signature.

2.1 Bilinear Maps

Let G1,G2, and GT be three cyclic multiplicative groups of prime order p. A
bilinear map is a function e : G1 × G2 → GT and is said to be an admissible
bilinear map if the following properties hold.

1. Bilinearity: for all g1 ∈ G1, g2 ∈ G2, and a, b ∈ Zp, e(g
a
1 , g

b
2) = e(g1, g2)

ab.

2. Non-degeneration: if g1 is a generator of G1 and g2 is a generator of G2, then
e(g1, g2) is a generator of GT .

3. Computability: there exists an efficient algorithm to compute e(g1, g2) for
any g1 ∈ G1, g2 ∈ G2.

We say that (G1,G2,GT ) are bilinear map groups if there exists a bilinear
pairing function e : G1 ×G2 → GT .
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2.2 BLS Short Signature

Boneh et al. proposed a short signature scheme based on the bilinear map [15].
The BLS short signature consists of three functions: keygen, sign, and ver-
ify. We recall the brief definition of the BLS short signature as follows: Let
(G1,G2,GT , e) be defined as the above (section 2.1), g1 be a generator of G1,
h : {0, 1}∗ → G2 be a collision-resistant hash function. A user’s key pair is
generated by the keygen algorithm, which runs as (x, y) ← (x ∈ Z∗

p, y = gx1 ).
Then, the signature on a message m is defined as σ = h(m)x that is generated
by the signing algorithm using a user secret key x. The signature verification is

to check e(g1, σ)
?
= e(y, h(m)). The BLS short signature implements existential

unforgeability if h is modeled as a random oracle, which means the adversary
can not forge an eligible signature on behalf of a target user without its secret
key.

3 System Construction

We will use the notations as shown in Table 1 in the construction of M-EDESE.

Table 1. Notations

Symbol Descriptions

GP the global parameters generated by the coordinator domain’s KGC
uid user identity
didp partner domain’s identity
didh host domain’s identity

MKdid a master key corresponding to the domain did
QKuid a query key corresponding to the User uid
SKuid a search key corresponding to the User uid

DT
didh
didp

a delegation key generated by a partner domain didp and sent to a
host domain didh

PSK
didh
didp

a domain search key corresponding to the partner domain didh for
the domain didp

PQK
didh
didp

a domain query key corresponding to the partner domain didh for the
domain didp

Ikw an index associated with the keyword kw
Ikw,did an index associated with the keyword kw owned by the domain did
USKL a list of user search keys
PQKL a list of domain query keys
PSKL a list of domain search keys

3.1 System Architecture

M-EDESE System mainly consists of seven entities: Host Domain (HD), Partner
Domain (PD), Data User (DU), Data Owner (DO), Key Generation Center
(KGC), Operational Center (OC), and Cloud Storage Provider (CSP). These
entities are defined below.
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– Host Domain (HD) and Partner Domain (PD). Host Domain provides
a searching service for its Partner Domain after establishing a collaboration
relationship. PD needs to apply to the HD before building a relationship.
Both PD and HD can revoke their users. In addition, HD can also revoke its
PDs.

– Key Generation Center (KGC ). Each domain maintains a key genera-
tion center (KGC). KGC only accounts for its domain and generates all keys
for the entities in the domain. Moreover, KGCs of PD and HD interact with
each other to agree on the establishment of a collaboration relationship.

– Data Owner (DO) and Data User (DU ). Data Owner encrypts key-
words into query tokens and uploads them with associated encrypted files
to the cloud storage via the domain’s operational center which is mentioned
later. Data User can generate query tokens to query keywords from its HD’s
data and the corresponding PDs’ data on the cloud storage.

– Operational Center (OC ). Each domain maintains an operational center
(OC) online. In its operations, an operational center receives user query
tokens and domain query tokens and transfers them into indexes. Besides,
OC can revoke its HD users and PDs.

– Cloud Storage Provider (CSP). Cloud Storage provider (CSP) stores
encrypted files and associated encrypted keywords (named indexes in M-
EDESE) for any domain and provide keyword searching services based on
exact match (which is the same as the search services provided by existing
cloud service providers on plaintext data). The storage and searching services
provided by CSP can be accessed by all entities. Apart from all indexes and
encrypted files, the global public parameters are stored on CSP with integrity
protection.

3.2 Algorithm

The M-EDESE system involves 6 algorithms, consisting of initial setup, user
enrollment, collaboration establishment, data uploading, search, and revocation.
Below are their definitions.

Initial Setup. This process setups the entire base environment, which includes
keys of involved domains and a set of global parameters GP . The initial setup
consists of a global setup phase and a domain setup phase.

– Global Setup Phase:

1. The coordinator, one of KGCs, chooses a bilinear map e : (G)1 ×G2 →
GT , and let g1, g2 be the generators of G1,G2, respectively.

2. It chooses a collision-resistant hash function: H : {0, 1}∗ → G2.
3. The coordinator publishes the global public parameters GP to CSP with

integrity protection, where GP = {g1, g2,G1,G2,GT , e,H}.
4. Since GP is public shared on CSP, we assume all entities already obtain

it before any operation.
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– Domain Setup Phase: Each domain did performs the following operations:
1. Its KGC randomly chooses xdid ∈R Z∗

p as this domain’s master key
MKdid and stores it in the KGC’s local storage.

2. Meanwhile, the domain’s OC initializes 3 lists USKL,PSKL, and PQKL
to maintain its users’ search keys, the PDs’ search keys, and the PDs’
query keys.

User Enrollment. When a user uid registers in the M-EDESE system under
the domain did, the KGC of the domain did firstly randomly chooses yuid ∈R Z∗

p

as the user’s query key QKuid. Then, the KGC computes kuid = g
xdid
yuid
1 as the

user’s search key SKuid, where xdid is the domain’s master secret key. After that,
the KGC uses a secure communication channel to send SKuid to the domain’s
OC and send QKuid to the user uid. Once the OC receives SKuid, it updates
its list USKL with the pair of (uid, SKuid).

Data Uploading. The data uploading process allows DU to upload an en-
crypted file and a set of associated indexes to the encrypted keywords for the file
into CSP. When a DU uid uploads to CSP an encrypted file E (e.g., encrypted
by AES) and a set of the indexes cooresponding to a set Skw of n keywords
kw1, kw2, · · · , kwn which are associated with E, DU performs the following op-
erations.

1. The DU computes Sq = {qi : qi = H(kwi)
yuid}i∈[1,n].

2. Then, the DU sends the tuple (uid,E, Sq) to the OC of the domain to which
the DU belongs.

3. After receiving (uid,E, Sq), the OC firstly retrieves the DU’s search key
SKuid from the list USKL by uid.

4. Secondly, the OC computes SI = {Ii : Ii = e(kuid, qi)}i∈[1,n].
5. Finally, the OC uploads the pair of (E,SI) to the CSP.

Collaboration Estabilishment. When a domain didp or its users need to
access the searching service from another domain didh, the domain didp must
establish a collaboration relationship with domain didh as PD PD while domain
didh acts as HD. Assuming that the involving domains can verify each other’s
signatures using a signature system (e.g., PKI), they establish a collaboration
relationship through the following steps.

1. At first, PD’s KGC randomly chooses sdidh

didp
∈R Z∗

p as the PD’s query key

PQKdidh

didp
and computes ddidh

didp
= 1

xdidps
didh
didp

, d′
didh

didp
= g

s
didh
didp

1 , where xdidp is

PD’s master secret key.
2. Secondly, PD’s KGC produces a digital signature σp on DT didh

didp
, where

DT didh

didp
= (ddidh

didp
, d′

didh

didp
).

3. PD’s KGC sends the pair of (σp, DT didh

didp
) to HD’s KGC.
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4. After receiving (σp, DT didh

didp
), HD verifies the signature σp firstly. If it is valid,

it proceeds to the next step; otherwise, does nothing.
5. HD’s KGC computes zdidh

didp
= xdidh

ddidh

didp
, z′

didh

didp
= d′

didh

didp
.

6. Then, HD’s KGC sends PD’s search key PSKdidh

didp
to HD’s OC, and HD’s

OC stores it into PSKL, where PSKdidh

didp
= {zdidh

didp
, z′

didh

didp
}.

7. HD’s KGC also produces a digital signature σh on DT didh

didp
and sends to PD’s

KGC.
8. PD’s KGC verifies the signature σp. If it is valid, it proceeds to the next

step; otherwise, does nothing.
9. Afterward, PD’s KGC sends PQKdidh

didp
to PD’s OC, and PD’s OC stores it

into PQKL.

Finally, regarding this collaboration relationship, HD’s OCmaintains PD’s search
key in PSKL while PD’s OC maintains its query key in PQKL.

Search. In M-EDESE, there are two search cases. One is search within a single
domain, and the other is search across domains. The first processes of these two
cases are the same: DU with uid produces a user query token q for a queried
keyword kw.

– The DU computes the user query token as q = H(kw)yuid , where yuid is
DU’s query key.

Then, the subsequent processes are different. Search within a single domain only
requires the domain’s OC’s cooperation, while search across domains needs both
HD’s and PD’s OCs’ operation.

– Within Single Domain:
1. The DU sends uid and q to the OC of the domain which owns the DU.
2. The OC obtains DU’s search key kuid from its USKL and generates

index Ikw = e(kuid, q).
3. Then, the OC queries Ikw from the corresponding CSP to retrieve the

list of encrypted files associated with it.
4. Finally, the OC returns the retrieved list of encrypted files to the DU.

– Cross Domain:
1. Besides uid and q, the DU sends the id didh of the queried HD to the

OC of the PD didp which owns the DU.
2. The OC obtains DU’s search key kuid from its USKL by uid and obtains

the PD’s query key PQKdidh

didp
from PQKL by didh.

3. Next, the OC computes Ikw,didp = e(kuid, q), r
didh

didp
= I

s
didh
didp

kw,didp
, σr =

H(rdidh

didp
)
s
didh
didp , and rq = (rdidh

didp
, σr), and sends rq and didp to the OC

of the queried HD.
4. After receiving rq and didp, HD’s OC obtains the PD’s search key

PSKdidh

didp
first from its PSKL.
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5. Then, HD’s OC verifies e(g1, σr)
?
= e(z′

didh

didp
,H(rdidh

didp
)). If they are iden-

tical, go to the next step; otherwise, do nothing.

6. HD’s OC computes Ikw,didh
= (rdidh

didp
)
z
didh
didp and queries it from the CSP

to retrieve a list of encrypted files.
7. Finally, HD’s OC sends the retrieved list to the DU via the PD’s OC.

Revocation. A domain’s OC in M-EDESE can revoke any of the domain’s
users and partner domains.

– User Revocation: The OC revokes a user by deleting the search key from
USKL indexed by uid. As the OC no longer possesses the user’s search key,
the user can not query the OC’s domain anymore.

– Collaboration Revocation: HD’s OC revokes PD’s search key from
PSKL that is indexed by didp and informs the PD. Then, PD’s OC deletes
its search key regarding the HD from its PQKL indexed by didh. Since HD’s
OC no longer stores PD’s search key, the process of searching across domains
is blocked.

4 Security Analysis

In this section, we prove that M-EDESE satisfies the requirements for query
privacy, query unforgeability, and revocability.

4.1 Query Privacy

We will use notations defined below to prove that M-EDESE satisfies the re-
quirement of query privacy.

Given an encrypted file ei, we use id(ei) to denote the identifying formation
that is uniquely associated with ei, such as its database position or its memory
location.

Given a user query token qkw sent by the user uid with the queried domain
didh and its reply rs(qkw), which is the output of the search process taking qkw
as input and is a set of encrypted files associated with qkw, we define Ω(qkw) be
a tuple of (uid, didh, id(rs(qkw))), where id(rs(qkw)) represents the identifying
information of each encrypted file in rs(qkw), let Qt = {q1, · · · , qt} be a sequence
of t user query tokens sent from users to the OC in the domain didh, and let
RSt = {rs(q1), · · · , rs(qt)} be the corresponding replies, where t ∈ N and is
polynomial bounded.

Similarly, given a domain query token rqkw sent by a querier domain didp to
a queried domain didh and its reply rs(rqkw), we define Ω(rqkw) = (didp, didh,
id(rs(rqkw))), where id (rs(rqkw)) represents the identifying information of each
entry in rs(rqkw), let RQl = {rq1, · · · , rql} as a sequence of l domain query
tokens sent from OCs of the domain didh’s PDs to the domain didh’s OC, and
RS′ = {rs(rq1), · · · , rs(rql)} be the corresponding replies, where l ∈ N is poly-
nomial bounded.
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An adversary is an honest but curious OC, and we name the domain to
which the adversary OC belongs as the adversary domain. We define V as
the view of an adversary over t user query tokens and l domain query tokens
as the transcript of the interactions between the adversary and users/PDs of
the adversary domain, together with some common knowledge. We have V =
(D,USKL,PSKL,PQKL, Qt, RQl, RSt, RS′

l), where D = (I, ED), USKL =
{USK1, USK2, · · · }, PSKL = {PSK1, PSK2, · · · }, PQKL = {PQK1, PQK2,
· · · }, D is the encrypted database, I is the set of generated indexes based on
keywords, ED is the set of encrypted files involving a ciphertext space E.

Following the notation from [21], the trace of the t user query tokens and l
domain qeury tokens is defined to be: T = (|D|, Ω(q1), · · · , Ω(qt), Ω(rq1), · · · ,
Ω(rql), |U |, |P |, |H|), which contains all the information that we allow a sim-
ulator (outsider observer who can only observe the communications between
entities during search processes) to obtain. Note that |D| = (|I|, |ED|), |I| is the
number of indexes based on keywords, |ED| denotes the number of encrypted
files, |U | equals the number of entries in USKL, representing the number of
the adversary domain’s users, |P | equals the number of entries in PSKL, which
is the number of the adversary’s PDs, and |H| equals the number of entries in
PQKL, which represent the number of the adversary’s collaborating HDs.

Definition 1. An M-EDESE achieves query privacy if for all database D, for all
t, l ∈ N, for all PPT algorithm A, there exists a PPT algorithm (the simulator)
A∗, such that for all view V and trace T , for any function f :

|Pr [A(V ) = f(D,KWt,KW ′
l)]

−Pr [A∗(T ) = f(D,KWt,KW ′
l)]| < v(κ),

where the probability is taken over the internal coins of A and A∗.

The notion of query privacy requires that all information on the original
database and the queried keywords that can be computed by the adversary from
the transcript of interactions it obtains (i.e., V ) can also be computed by the
simulator from what it is allowed to know (i.e., T ). In other words, a system
satisfying query privacy does not leak any information beyond the information
we allow the adversary to have.

Proof. To construct a PPT simulator A∗ such that for all t, l ∈ N, for all
PPT algorithm A, all functions f , given the trace T , A∗ can simulate A(V )
with non-negligible probability. More specifically, we need to show that A∗(T )
can generate a view V ∗ which is computationally indistinguishable from V , the
actual view of A.

Recall that T and V definitions are as follows,

1. Given t = 0 and l = 0, which imply Q = ∅, RQ = ∅, RS = ∅, and RS′ = ∅,
A∗ builds V ∗ = (D∗ = (I∗, ED∗) , USKL∗, PSKL∗, PQKL∗) as follows.
– To construct D∗, for 1 ≤ i ≤ |I|, 1 ≤ j ≤ |ED|, it selects I∗kwi

∈R G∗
T

and E(mj)
∗ ∈R E.
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– Then, it computes USKL∗ = {k∗uidi
: k∗uidi

∈R G∗
1, uidi ∈R N}i∈[1,|U |],

PSKL∗ = {(z∗didj
, z′

∗
didj

) : z∗didj
∈R Z∗

p, z
′∗
didj
∈R G∗

1, didj ∈R N}j∈[1,|P |],

and PQKL∗ = {s∗did
′
k : s∗did

′
k ∈ Z∗

p, did
′
k ∈ N}k∈[1,|H|], where didj is

a PD’s identity of the A domain and did′k is a collaborator domain’s
identity of the A domain.

It is easy to check that V ∗ and V are computationally indistinguishable when
E(·) is a pseudorandom permutation and H is a pseudorandom function,
which is demonstrated below.

– If E(·) is a pseudorandom permutation, ED∗ and ED are computation-
ally indistinguishable, because a real E(m) and a simulated E(m)∗ ∈R E
are both random values in the ciphertext space E.

– If H is pseudorandom function, a real index Ikw = e(g1,H(kw))x and a
simulated index I∗kw are computationally indistinguishable due to they
are both random elements in the group G∗

T .

– A real user search key kuid = g
x

yuid
1 and a simulated user search key

k∗uid are computationally indistinguishable as both of them are random
elements in the group G∗

1.
– A real domain search key (zdid = x

xdids(did)
, z(did) = g

s(did)
1 ) and a simu-

lated partner search key (z∗did, z
′∗
did) are computationally indistinguish-

able as both of z are random elements in the group Z∗
p and both of z′

are random elements in the group G∗
1.

– A real domain query key sdid and a simulated domain query key s∗did

are computationally indistinguishable as both of s are random elements
in the group Z∗

p.

2. Given t > 0, l > 0, and a function select(i,N) which is defined to return the
i-th entry in the set N , A∗ builds V ∗ = (D∗ = (I∗, ED∗), USKL∗, PSKL∗,
PQKL∗, Q∗

t , RQ∗
l , RS∗

t , RS′∗
l ) as follows. Recall that Ω(rq) = (didp, didh,

id(rs(rq))), A∗ obtains A domain identity didA = didh from Ω(rq1) con-
tained in T . Next,A∗ setups five sets UID = ∅, DID = ∅, X∗ = {x∗

i }i∈[1,|P |+|H|],
Y ∗ = {y∗j }j∈[1,|U |], and S∗ = {s∗k}k∈[1,|P |], s.t. x

∗
i , y

∗
j , s

∗
k ∈R Z∗

p. Then, it com-
putes the below equation, where x∗ is regarded as the A domain’s master
secret key. Then, it proceeds following operations.

x∗ =

|P |+|H|∏
i=1

|U |∏
j=1

|P |∏
k=1

x∗
i y

∗
j s

∗
i

– To construct ED∗, A∗ performs the same operations as the case of t = 0
and l = 0 to obtain the ED∗ = {E(mi)

∗}i∈[1,|ED|].
– Next, it computes PSKL∗ = {(z∗i , z′

∗
i ) : x

∗
i = select(i,X∗), si = select

(i, S∗), z∗i =
x∗
i

x∗s∗i
, z′

∗
i = g

s∗i
1 }i∈[1,|P |], USKL∗ = {k∗j : y∗j select(j, Y

∗), k∗j =

g
x∗
y∗
j

1 }j∈[1,|U |], and PQKL∗ = {s∗did
′
k : did′k ∈R N, s∗did

′
k ∈R Z∗

p}k∈[1,|H|].
– To construct Q∗

t , recall that from Ω(q1), · · · , Ω(qt) contained in T , A∗

can determine which user query tokens ask the same keyword and which
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user query tokens are issued by the same user. Hence, regarding to each
Ω(qi) = {uidi, didi, id(rs(qi))} where i ranges from 1 to t, it computes
q∗i as follows.
(a) A∗ finds out j ∈ [1, |UID|] such that uid′j = uidi, where uid

′
j ∈ UID.

If no such j value exists, it computes UID = UID ∪{uidi} and sets
j = |UID|.

(b) If there does not exist 1 ≤ k < i such that id(rs(qk)) = id(rs(qi)),
which means qi and qk ask the same keyword, A∗ selects a random
element wi ∈ G∗

2; otherwise, it sets wi = wk.
(c) Then, A∗ sets yj = select(j, Y ∗) as the user uidi’s query key and

calculates q∗i = w
y∗
j

i .
– To construct RQ∗

l , A∗ acts similarly to constructing Q∗
t . A∗ also can de-

termine which domain query tokens and user query tokens ask the same
keyword with respect to Ω(q1), · · · , Ω(qt), Ω(rq1), · · · , Ω(rql). Accord-
ing to each Ω(rqi) = {didi, didA, id(rs(rqi))} where i ranges from 1 to
l, it computes rq∗i as follows.
(a) A∗ finds out j ∈ [1, |DID|] such that did′j = didi, where did

′
j ∈ DID.

If no such j value exists, it computes DID = DID ∪ {didi} and
j = |DID|.

(b) If there exits 1 ≤ k < i such that id(rs(rqk)) = id(rs(rqi)), which
means rqi and rqk ask the same keyword, A∗ sets wi+t = wk+t;
otherwise, it proceeds to the next step.

(c) If there exits 1 ≤ k ≤ t such that id(rs(qk)) = id(rs(rqi)), which
means rqi and qk ask the same keyword, A∗ sets wi+t = wk; other-
wise, it selects a random element wi+t ∈ G∗

2.
(d) A∗ computes xj = select(j,X∗) and sj = select(j, S∗) as the querier

domain’s master secret key and query key, respectively. Then, it cal-

culates r∗i = e (g1, wi+t)
s∗jx

∗
j , σ∗

i = H(r∗i )s
∗
j and sets rq∗i = (r∗i , σ

∗
i ).

– To construct I∗, A∗ initializes I∗ = ∅. Then,
(a) For each Ω(qi) = {uidi, didi, id(rs(qi))}, where 1 ≤ i ≤ t, A∗ knows

the queried domain didi and the underlying keyword wi which is cho-

sen for constructing qi. If didi = didA, it computes I∗i = e (g1, wi)
x∗
;

otherwise, A∗ computes I∗i = e (g1, wi)
x∗
j , where j is the index of

didi in DID obtained via the operation in step (a) of constructing
RQ∗

l with input didi. If I
∗
i /∈ I∗, it computes I∗ = I∗ ∪ {I∗i }.

(b) For each Ω(rqi), where 1 ≤ i ≤ l, A∗ computes I∗i = e (g1, wi+t)
x∗
,

where wi+t is the chosen keyword for constructing rqi and x∗ is
regarded as A domain’s master secret key. If I∗i /∈ I∗, it computes
I∗ = I∗ ∪ {I∗i }.

(c) If |I∗| < |I|, A∗ calculates the rest set as I ′∗ = {I∗i : I∗i ∈R
G∗

T }i∈[|I∗|+1,|I|], and concatenates it with I∗ as I∗ = I∗ ∪ I ′
∗
.

– To construct RS∗
t , A∗ sets up RS∗

t = ∅. Then, for each Ω(qi) where
1 ≤ i ≤ t, A∗ sets rs(qi)

∗ = ∅. Since A∗ knows identities ids of ciphertext
entries (e.t. E(m)) from Ω(qi), it collects ciphertexts from ED∗ whose
identities are in ids and puts these ciphertexts into rs(qi)

∗. After that,
rs(qi)

∗ is put into RS∗
t .
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– Constructing RS′∗
l is the same as constructing RS∗ excepting retriev-

ing ids from Ω(rqi)
∗, where i ranges from 1 to l. Each iteration pro-

duces a rs(rqi)
∗ with respective to i. Finally, A∗ simulates RS′∗

l =
{rs(rqi)∗}i∈[1,l].

We show that V ∗ is computationally indistinguishable from V by comparing
them component by component as follows.
– If E(·) is a pseudorandom permutation, ED∗ and ED are computation-

ally indistinguishable, since a real encrypted data E(m) and a simulated
E(m)∗ ∈R {0, 1}|E(·)| are both random in the same domain {0, 1}|E(·)|.

– For Qt and Q∗
t , comparing an user query token generated by A as q =

H(kw)y and a simulated user query token generated by A∗ as q∗ = wy∗
,

where w ∈R G∗
2, q and q∗ are computationally indistinguishable if H is a

pseudorandom function, since both yi and y∗i are randomly chosen from
Z∗
p.

– For RQl and RQ∗
l , a domain query token generated by A as (r =

e(g1,H(kw))sx, σ = H(r)s) is calculated from the random elements s, x
in Z∗

p. Similarly, a simulated domain query token generated by A∗ as

(r∗ = e(g1,H(w))s
∗x∗

, σ = r∗s
∗
) is also fielded from the random ele-

ments s∗, x∗ in Z∗
p. If H is a pseudorandom function, both r and r∗ are

random elements in the group GT , while both σ and σ∗ are random ele-
ments in the group G∗

2. Hence, a domain query token is computationally
indistinguishable from a simulated domain query token.

– Comparing a real user search key k = g
x
y

1 and a simulated user search

key k∗ = g
x∗
y∗

1 , they are computationally indistinguishable as y and y∗

are random elements from Z∗
p.

– For PSKL and PSKL∗, an actual domain search key (z = x
x′s′ , z

′ = gs
′

1 )
is computationally indistinguishable to a simulated domain search key
(z∗ = x∗

x′∗s′∗ , z
′∗ = gs

′∗

1 ), since all of x′, s′, x′∗, s′
∗
are random elements

in Z∗
p.

– For PQKL and PQKL∗, a real domain query key s is computationally
indistinguishable from a simulated domain query key s∗, since both s
and s∗ are randomly chosen from Z∗

p.
– It is easy to see that I∗ and I are computationally indistinguishable due

to the elements of them being random in the group GT , which is exactly
resulted from the pseudorandom function H.

– Since the above components are computationally indistinguishable and
the reply result sets are generated from those components, RSt and RS∗

t

are computationally indistinguishable. So do RS′∗
t and RS′

t.
Finally, based on the above indistinguishability results, the conclusion is
yielded that A and A∗ are computationally indistinguishable.

4.2 Query Unforegeability

Query unforgeability is defined for searchable encryptions in multi-user settings
[17]. Particularly, M-EDESE is in a multi-domain setting, in which domains can
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be regarded as special users. Hence, we need to discuss the query unforgeability
at both the user level and the domain level.

A user query token (or domain query token) is a user’s legitimate query (or a
domain’s legitimate query) if it is indeed generated by the M-EDESE algorithm
(search or upload process) with corresponding secret keys. Hence, in a nutshell,
query unforgeability is that for any user uid or domain did, no adversary is
able to compute a user query token q and a domain query token rq without
compromising the corresponding user query key QKuid and the corresponding
domain query key PQKdid respectively.

In the multi-user setting and the multi-domain setting of M-EDESE, we
consider one type of adversaries and two types of victims respectively.

– Adversary A: A is a collusion of malicious users and malicious domains
(including their users, OCs, and KGCs).

– Victim: A victim is either Vuid or Vdid.
• Vuid is an honest user whose identity is uid in a partial honest domain
(KGC is fully trusted) whose identity is did.

• Vdid is an honest OC with fully trusted KGC in a domain did.

Adversary A can observe a set of information from malicious domains and their
users. For a malicious domain didi, A obtains Kdidi

= (didi, UQKL′, USKL,
PSKL,PQKL,MKdidi

), where UPKL,PSKL,PQKL are the completed lists,
and UQKL′ is a part of user query keys under domain didi. If the domain didi
is partial honest, which means only its OC is malicious, we have MKdidi = ⊥. A
also contains the collusion of malicious users under honest domains. A obtains
QKuidj

from such a malicious user whose identity is uidj . In addition, A can
observe all search and data upload interactions between all entities. Therefore,
the acknowledge of A is defined as K = ({Kdidi

}i∈[1,n], {QKuidj
}j∈[1,m]) from n

malicious domains and m malicious users.
Regarding two types of victims, two games are defined below. Both chal-

lengers of these two games simulate the execution of our M-EDESE and provide
an oracle O, which answers adversary A’s queries on the executions of user
enrollment, data uploading, collaboration establishment, and search with the
acknowledge K of A.

Game 1: A intends to forge a user query token q on behalf of Vuid.
Game 2: A intends to forge a domain query token rq on behalf of Vdid.
We construct a BLS short signature from the above two games. The BLS

setups with (g1,H∗, e, x, gx1 ), where e is a bilinear map, g1 is the generator of
G1, H∗ is a pseudorandom hash function H∗ : {0, 1}∗ → G2, x is the secret
signing key, and gx1 is the corresponding public key. Lest B be a PPT adversary
attempting to forge a short signature with respect to gx1 . The proof requires
demonstrating to construct the BLS short signature scheme, which provides the
signing oracle O(x).

– Game 1:A observes a set of user query tokensQT = {H(kw1)
yuid ,H(kw2)

yuid ,
· · · } from Vuid through data uploading and search oracle. It can also obtain
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SKuid = g
xdid
yuid
1 . Since SKuid has an unknown value xdid in the exponential

of SKuid, it is regarded as a random value. B regards QT as the BLS signa-
tures under the signing key x = yuid. Hence, B can simulate a BLS from the
knowledge of A with (g1,H∗ = H, e, x = yuid, g

yuid

1 ).

– Game 2: A obtains a set of domain query tokens RQ = {(rkwi
= e(g1,

H(kwi))
s
didi
did xdid , σkwi

= H(rkwi
)s

didi
did )}i∈[i,∗] from Vdid through the search

oracle. In addition, A obtains a set of PSKdidi
= {zdidi

=
xdidi

xdids
didi
did

, z′didi
=

g
s
didi
did

1 } from malicious domains. Hence, A can compute rkw′ = (e(g1,H
(kw′))xdidi )

1
zdidi . However, A can not infer σkw′ since its exponential sdidi

did is
unknown value. For σkwi , B regards it as the BLS signature on the message
m = rkwi under the signing key sdidi

did . Hence, B can simulate a BLS from the

knowledge of A with (g1,H∗ = H, e, x = sdidi

did , g
s
didi
did

1 ,m ∈R GT ).

The simulation by B is perfect in Game 1 and Game 2. Hence, if A forges a
legitimate user or domain query token based on a kw on behalf of Vuid or Vdid,
she would also forge a valid BLS short signature on the kw.

4.3 Revocability

Revocability is a necessary requirement for any multi-user system. It is desirable
to achieve user revocation and collaboration revocation in M-EDESE regarding
its multi-user and multi-domain setting. Revocability enables an honest domain
to revoke search abilities of its certain users and its certain PDs. Since the indis-
tinguishability of indexes implies the fault of the searching process, it is effective
to show revocability based on index indistinguishability. M-EDESE enables user
revocability and collaboration revocability as defined below.

User Revocability. We construct the following game such that an adversary’s
advantage in attacking user revocability is winning the game. An adversary
A performs in two phases. In phase 1, A acts as an authorized user and can
access the search and data uploading oracle. At the end of phase 1, A chooses
two never queried keywords kw′

1, kw
′
2. The current knowledge of A contains

{(kwi, qi, Ii)}i∈[1,n] and {kw′
1, kw

′
2, QK}. After that, in phase 2, A is revoked

and given I ′b based on one of kw′
1, kw

′
2. A guess the value of b′. If b = b′, A wins

the game.
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Definition 2. An M-EDESE system achieves user revocability if the below in-
equality holds for all PPT algorithms.

|Pr[b′ = b :

(GP,QKs, SKs,MKs)← Initial Setup&Enrollment;

({(kwi, qi, Ii)}i∈[1,n], kw
′
1, kw

′
2, QK)← Phase 1O(A);

Revoke(A);
b ∈R {1, 0}, I ′b ← Search(QK, kw′

b, SK);

b′ ← A({(kwi, qi, Ii)}i∈[1,n], kw
′
1, kw

′
2, QK)

]− 1

2
| < ϵ.

Proof Sketch. To guess b′ in the game, A needs to compute I ′kw′
1
= e(g1,H

(kw′
1))

xdid′ . It is a hard discrete log problem as the exponential xdid′ is unknown
for A. As a consequence, from A perspective, I ′kw′

1
and I ′kw′

2
are independent of

kw′
1 and kw′

2, respectively. Hence, the advantage of the adversary winning the
game is negligible.

Collaboration Revocability. We construct the same game for collaboration
revocability proof except that at the end of phase 1, the acknowledge of A is
{(qi, rqi, Ii)}i∈[1,n] and {kw′

1, kw
′
2, q

′
1, q

′
2, PQKL,USKL}.

Definition 3. An M-EDESE system achieves collaboration revocability if the
below inequality holds for all PPT algorithms.

|Pr[b′ = b :

(GP,QKs, SKs, PQKs, SQKs,MKs)← Initial Setup&Enrollment;

({(qi, rqi, Ii)}i∈[1,n], q
′
1, q

′
2, kw

′
1, kw

′
2, PQKL,USKL)← Phase 1O(A);

Revoke(A);

b ∈R {1, 0}, I ′b ← Search(QK, kw′
b, SK, PQKdid′′

did′ , PSKdid′′

did′ );

b′ ← A({(qi, rqi, Ii)}i∈[1,n], q
′
1, q

′
2, kw

′
1, kw

′
2, PQKL,USKL)

]− 1

2
| < ϵ.

Proof Sketch. A can easily compute rq′1 by calculating r′1 = e(SK, q′1)
sdid

′′
did′

and σ′
1 = H(r′1)s

did′′
did′ . Recall that I ′1 = r′1

zdid′′
did′ and zdid

′′

did′ = xdid′′

xdid′s
did′′
did′

, it requires

zdid
′′

did′ to compute I ′1 from rq′1, which contains the unknown value xdid′′ . Similar
to user revocability, from the A’s perspective, I ′1 and I ′2 are independent of kw′

1

and kw′
2 respectively. Therefore, the advantage of the adversary winning the

game is negligible.
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5 Evaluation

In this section, we evaluate both the complexity and runtime performance of
M-EDESE.

5.1 Complexities

We analyze the time complexities of data uploading processes on the user side
and on the OC side. When a user uploads n keywords and an encrypted file, the
time complexities of data uploading processes on both user and OC sides are
O(n), which is independent of the number of users and domains. Specifically,
the user side computes a hash function and an exponential operation in G2 for
n times, while the OC side calculates a pairing operation for n times.

Then, we analyze the time complexities of search processes on the user side
and on the OCs side. When a user queries a keyword, the time complexity of user
query token generation on the user side is O(1) no matter how many domains
are queried, while the time complexity of the search process on the OCs side is
O(m), where m is the number of queried domains. OCs finally perform a pairing
operation for (2m+ 1) times, an exponential operation for (2m+ 1) times, and
a hash function for m times.

5.2 Experiments

We ran experiments on three algorithms, including user query generation, sin-
gle domain index generation, and cross-domain index generation. We did not
measure the time consumption on the CSP side since it is as fast as plaintext
searching. In our experiments, we ran keyword search queries on a well-known
opensource dataset, the Enron email database [20] and extracted a total of 5000
most frequent keywords from 30,109 emails.

We evaluated the performance of EDESE using different bilinear pairings,
including SS512 (type A), MNT224 (type D), and BN256 (type F) pairings. All
of them are equivalent to or exceed 80-bit security. We implemented M-EDESE
based on Java programming language with version 1.8 and JPBC library [19] on
a PC running 64-bit Windows 11 with 3.61 GHz Intel (R) Core (TM) i7-12700K
and Memory 32GB RAM 3200MHz.

Table 2. Performance of query and index generations of M-EDESE in ms

Algorithm SS512 MNT224 BN256

User query generation 4.72 14.25 4.96

Single domain index generation 5.69 14.29 20.43

Cross-domain index generation 4.96 70.7 93.24

From table 2, M-EDESE using SS512 type pairing runs faster than using
the other two pairings. This is reasonable since SS512 is at the lowest security
strength among these three types of pairings, while BN256 is at the highest
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security strength. Considering that user query generation is performed by each
individual user while both single domain index generation and cross-domain
index generation are performed by OCs, the bottleneck of M-EDESE is the
performance of OCs because each OC serves multiple users and performs index
generations for all received user queries. In practice, such bottlenecks can be
alleviated by leveraging powerful servers instead of PCs.

6 Conclusion

In this work, we proposed M-EDESE as a new secure keyword searching solution
that is easily deployable and efficiently searchable in multi-domain settings. We
presented a concrete construction of M-EDESE with formal security proofs. We
also provided theoretical and experimental evaluations on M-EDESE showing
that it is promising in practice.
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