
SecDeLP : Secure Decentralized Lending Platforms against Oracle
Manipulation Attacks

Sanidhay Arora

sanidhay@uoregon.edu

University of Oregon

Eugene, USA

Yingjiu Li

yingjiul@uoregon.edu

University of Oregon

Eugene, USA

Yebo Feng

yebof@uoregon.edu

University of Oregon

Eugene, USA

Jiahua Xu

jiahua.xu@ucl.ac.uk

University College London

London, UK

ABSTRACT
As an integral part of the decentralized finance (DeFi) ecosystem,

decentralized lending platforms (DLPs) have gained massive trac-

tion with the recently revived interest in blockchain technology.

However, with the traction and the novel services that are being

emerged in the DeFi space, several interesting security vulnerabili-

ties and attacks have been observed in the last few years. Oracle
manipulation attacks have been witnessed numerous times on DLPs,

and in this paper, we aim to secure DLPs from these attacks. We

propose an algorithmic solution called SecDeLP , that secures a

general DLP against oracle manipulation attacks that are performed

using flash loans. We provide a theorem to prove that if certain con-

ditions are satisfied on some specific system and input parameters

then oracle manipulation attacks using flash loans must be reverted,

hence preventing the attack. Furthermore, we present a practical

analysis using empirical data and show that the constraints used

in our solution are reasonable. Specifically, we introduce a new

input parameter in the SecDeLP algorithm that is required for each

crypto-asset available on the DLP. Next, using the past three years

of market price data of several crypto-assets, we illustrate safe-to-

use values for this input parameter. We show that our requirements

on this parameter are satisfied with a high degree of confidence.

We also show that the cost overhead for implementing SecDeLP is

minimal and practical.

CCS CONCEPTS
• Blockchain; • Decentralized Finanace Security;

KEYWORDS
Blockchain, Flash Loan, Oracle Manipulation Attack, DeFi

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2023 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Reference Format:
SanidhayArora, Yingjiu Li, Yebo Feng, and Jiahua Xu. 2023. SecDeLP : Secure

Decentralized Lending Platforms against Oracle Manipulation Attacks. In

Proceedings of ACM Conference (Conference’17). ACM, New York, NY, USA,

14 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Recently, there have been in-depth conversations regarding the

potential applications of blockchain technology, and the rise of de-

centralized finance (DeFi) has emerged as a significant force driving

blockchain adoption. In contrast to traditional finance, DeFi utilizes

transparent and unalterable on-chain smart contracts to execute

trading activity, eliminating the need for centralized intermediaries

such as banks, brokers, and custodians. As smart contracts are open-

source and self-governing, recent advancements in DeFi have led

to the identification of notable security vulnerabilities and attack

mechanisms. In total, all DeFi attacks have amassed over $1B [6]

to date with over 1M% ROI. In this paper, we focus on a specific

security vulnerability in Decentralized Lending Platforms (DLPs),
which are an integral part of the DeFi world and have incurred over

$100M [6] in losses due to certain attacks and vulnerabilities.

One of the most notable security vulnerabilities in Decentralized

Lending Platforms (DLPs) arises from the usage of price oracles.

Price oracles are sources of market price data provided by a third-

party service. Generally, this third-party service is provided by a

set of smart contracts. The DLPs use these price oracles to deter-

mine the spot price of the cryptocurrency assets available on their

platform. However, these oracles can be manipulated and hence,

the DLP can be exploited. In this paper, we focus on securing DLPs

against Oracle manipulation attacks.
Specifically, this work focuses on Oracle manipulation attacks

on DLPs that are performed using Flash loans. In the last few years,

Flash loans have emerged as a novel service in the DeFi world.

Flash loans provide a user with the ability to borrow vast amounts

of capital by only risking minimal gas fees. This ability proves to

be extremely powerful in its capabilities to manipulate the cryp-

tocurrency market. Flash loan providers, price oracles, and DLPs,

all operate on smart contracts and hence are publicly accessible

to anyone. A malicious user can easily write programs to leverage

flash loans and use the borrowed capital to manipulate a price ora-

cle. Any DLP using this manipulated price oracle can now be easily

exploited. In the recent past, we have witnessed several interesting

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Sanidhay Arora, Yingjiu Li, Yebo Feng, and Jiahua Xu

attacks being performed on DLPs with over $100𝑀 of value stolen

in crypto-assets [6].

Oracle manipulation attacks can be extremely difficult to prevent.

A notable reason for this difficulty is that these attacks happen

in a single transaction. Moreover, since multiple smart contracts

interact with each other, the complexity of financial transactions

across multiple DeFi platforms makes it even more challenging to

find security vulnerabilities. In our work, we provide an algorithm

that can be used by a DLP to prevent these attacks with a high

degree of confidence.

The key idea of our solution is to keep track of a Price-state

for each crypto-asset. This state stores (i) the last used price of

a crypto-asset and (ii) the timestamp of the block in which this

price state was last updated. We also introduce an input parameter

for each available crypto-asset in our algorithm. We then impose

certain constraints on these parameters. These constraints ensure

that the DLP only uses a price oracle if the last stored price of the

asset is within a certain threshold. We equate this threshold value

to the minimum price distortion required by an adversary to gain

a profit in the attack transaction. Since the attacker is unable to

profit, she will not be able to pay back the flash loan, and hence the

attack is prevented.

Next, we show that SecDeLP is easy to implement and the al-

gorithm requirements are practically reasonable. Specifically, we

require that a stored price state of an asset must be updated every

𝑇 blocks on the blockchain. Further, we require an input variable 𝛼

for each crypto-asset. 𝛼 represents an acceptable fractional change

in the price of an asset over a fixed period of time. The value of 𝛼

and𝑇 can be set by the DLP based on empirical data. We collect the

last three years of market data and provide an empirical analysis of

SecDeLP . We illustrate practical values for these parameters that

can be used by a general SecDeLP (Section 7). In the same section,

we show that SecDeLP is a resource and cost-efficient solution.

1.1 Our Contributions
This paper presents SecDeLP , a novel and practical solution for

DLPs to prevent oracle manipulation attacks that are performed

using flash loans. Specifically, our contributions are as follows:

• Easy-to-implement solution to oracle manipulation attack.
We propose a novel security solution for a general DLP called

SecDeLP . Specifically, we present an algorithm that can easily be

implemented in a general DLP, which prevents Oracle Manipula-

tion attacks that are performed using flash loans (Section 6). The

key idea of this solution is to prevent the adversary from paying

back the flash loan. This idea is implemented by making sure

that certain conditions and constraints on system parameters are

satisfied in the DLP’s state (Proposition 6.4).

• Oracle Independent and Agnostic. Existing solutions focused

on preventing Oracle manipulation attacks are applied on Ora-

cle’s source and not the platform using a price oracle The use of

multiple oracles is a proven technique to improve DLP’s secu-

rity. SecDeLP is an algorithm that can be applied to any general

DLP as an inherent security measure in its architecture. Hence,

SecDeLP allows the DLP to use multiple oracles without the need

to consider security issues on the oracle’s side, which is a ma-

jor benefit of using SecDeLP . SecDeLP is a theoretical solution

that reverts all attack transactions using simple and proven logic

(Theorem 6.9), and hence is reliable.

• Adaptable and steerable solution.We consider two system pa-

rameters 𝛼 and𝑇 in SecDeLP . Specifically, SecDeLP allows a DLP

to be able to quantify its security in terms of risk (𝛼) and avail-

ability (𝑇) based on these parameters (Section 7). These values

may vary for different available assets providing developers with

modularity and more control over their platform. We provide

an empirical analysis and demonstrate how to calculate these

values for different assets in real-time to ensure a high degree of

security.

• Resource and cost efficient. Finally (Section 7), we collect the

data on gas prices on the Ethereum blockchain over the last three

years and consider theworst-case scenario in terms of operational

cost. At the current price of Ethereum ($1500), this cost would be

approximately $20 per asset per minute. This cost comes down

to an operational cost of less than $1 per asset per minute in

the best-case scenario. Considering the aforementioned cases,

we found that the additional operational costs incurred by using

SecDeLP are minimal on average and negligible when compared

with the overall operational cost of a DLP.

Organization. The rest of the paper is organized as follows. In

Section 2 we discuss the background and compare our solution with

the related literature. Then, in Section 3 we explain some impor-

tant preliminary concepts of the DeFi world which are required for

understanding our work. In Section 4, we introduce a formal model

of a general DLP, including the current security model and security

control measures used by a standard DLP. In Section 5 we provide

the adversary model and model a basic Oracle manipulation attack

on a standard DLP. This model contains the necessary procedures

to capture this type of attack. Then, in Section 6 we present our

solution SecDeLP . We provide a Proof-of-concept algorithmic so-

lution for DLPs that prevents this attack. We state a proposition,

define four lemmas to prove the proposition, and finally provide

a theorem stating that SecDeLP is secure under reasonable prac-

tical requirements on system parameters. In Section 7, we do a

practicality analysis of SecDeLP based on empirical data collected

over the past 3 years. We provide empirical analysis to show that

the cost of implementing this design is minimal compared to the

overall cost required to run a DLP. Finally, in Section 8 we discuss

the state-of-the-art security measures and techniques that could be

implemented and used by DLPs.

2 BACKGROUND AND RELATEDWORK
Decentralized Finance security has been a hot research topic these

days due to the prosperous applications based on smart contracts.

Fabian in [7] highlights opportunities and potential risks of the

DeFi ecosystem. The paper provides a multi-layered framework

to analyze the implicit architecture and the various DeFi building

blocks, including token standards, decentralized exchanges, decen-

tralized debt markets, blockchain derivatives, and on-chain asset

management protocols. However, the paper does not fully address

the scalability challenges that blockchain-based financial markets

face, which can limit their ability to compete with traditional finan-

cial markets and support high transaction volumes.

SecDeLP : Secure Decentralized Lending Platforms against Oracle Manipulation Attacks Conference’17, July 2017, Washington, DC, USA

Grish et al. in [3] provide a novel and promising approach to

the security analysis of Ethereum smart contracts, which could

help developers identify and prevent security vulnerabilities in

their smart contracts more effectively. The authors evaluate their

approach on a set of real-world smart contracts and demonstrate

that their framework is able to detect a wide range of security

vulnerabilities, including reentrancy attacks, integer overflows, and

timestamp dependence vulnerabilities. However, the framework

presented in the paper is limited in its ability to handle complex

data structures, such as arrays and mappings, which are commonly

used in smart contracts. This limitation may result in false positives

or false negatives in the analysis. While the framework is able to

detect a wide range of security vulnerabilities, it may not cover

all potential attack vectors or zero-day exploits. This limitation

highlights the need for ongoing research and development of new

techniques and tools for the security analysis of smart contracts.

"The oracle problem”, had recently drawn attention to DeFi,

given the crescent number of related hacks that caused the loss

of millions of dollars held in DeFi projects. Giulio and Joshua in

[2] shed light on the pattern that identifies the oracle problem in

DeFi and outline the most promising ways to overcome the related

weaknesses. They discuss the current risks connected with the

implementation of oracles in DeFi, and how they are addressed.

The two most common solutions are decentralized price oracles

and DeFi security platforms. However, these solutions are not yet

completely adopted by the developer community and are still in

the development stages. It is interesting to note that the above-

mentioned solutions involve a third party, i.e. either the Oracle

source or a security audit platform. We develop a novel solution to

prevent oracle manipulation attacks that is theoretically sound and

does not involve other parties.

Recently, oracle manipulation attacks on DLPs have become

quite popular amassing over $100M in damages in the last 2 years.

Massimo et al. in [1] systematize the existing knowledge on DLPs.

They discuss the security and risk considerations associated with

DLPs. These include the risk of smart contract vulnerabilities, the

risk of liquidity crises, and the risk of oracle manipulation attacks

using flash loans. Although they discuss the potential vulnerabilities

and attack possibilities, they do not provide any security measures

to prevent such attacks. In our work, we present a novel solution

to prevent Oracle manipulation attacks on DLPs.

Flash loans and their ability to manipulate the market is another

important security consideration attracting many researchers’ at-

tention. We have recently witnessed many papers being published

focusing on preventing these attacks. Yixin et al. in [5] are the first

to explore the implication of transaction atomicity and flash loans

for the nascent decentralized finance (DeFi) ecosystem. The authors

also show that an adversary can maximize the attack profit effi-

ciently (in less than 13ms) due to the atomic transaction property.

They achieve this by providing an optimization framework to quan-

tify the parameters that yield the maximum revenue an adversary

can gain. They also propose “Flashshot", a prototype that is able

to transparently illustrate the precise asset flows intertwined with

smart contracts in a standardized diagram for each Flash Loan event.

While the paper provides a good overview of flash loan attacks, it

does not provide detailed information on the technical methods

used to execute the attacks. In our work, we detail the specific

methods and techniques required for an adversary to perform a

successful oracle manipulation attack. This information could be

useful for developers and researchers to better understand how to

prevent and mitigate these types of attacks. We also use a Flashot

prototype to illustrate an example of an oracle manipulation attack.

3 PRELIMINARIES
In the following, we outline the required background of blockchains

and DeFi applications for our proposed solution to prevent Oracle

Manipulation Attacks.

Oracle. An oracle is a bridge between the blockchain and the real

world. Most blockchain applications, especially in DeFi projects,

rely on certain information to trigger the execution of smart con-

tracts, but only on-chain information can be reached by smart

contracts because blockchain systems are isolated from the outside

world to guarantee safety. They act as on-chain APIs you can query

to get information into your smart contracts. For example, an oracle

might report the price of ETH/USD on Binance or the 2021 NBA

Champions. Oracles can also be bi-directional, used to "send" data

out to the real world.

Flash Loan. Flash loans are a type of under-collateralized loan that

has become popular in decentralized finance (DeFi), especially on

Ethereum. In the last three years, flash loan exploits have been used

to attack vulnerable DeFi protocols and steal hundreds of millions of

dollars. Some of the important use cases of flash loans are Arbitrage,

Wash Trading, Collateral Swapping, and Self-Liquidation.

Decentralized Lending Platform. Lending platforms are smart

contracts that allow users to borrow and lend crypto-assets at an

interest rate. The borrowed assets come from a pool in which the

creditors have deposited their investments. If this pool suffers a loss

due to bad debt, the loss is distributed among these creditors. Due to

the inability of these platforms to take action against loan defaulters

(borrowers are just public keys on a blockchain), they use over-

collateralization to keep the platform liquid. These Decentralized

Finance (DeFi) platforms allow people to lend or borrow funds from

others, speculate on price movements on assets using derivatives,

trade cryptocurrencies, insure against risks, and earn interest in

savings-like accounts.

Automated Market Maker based Decentralized Exchanges
(AMM-DEX).Most liquidity pool-based DEXs use AMMs which

pre-defines asset prices algorithmically. AMM is one of the most

innovative inventions of DeFi as it achieves high efficiency. The

majority of DEXs are AMM-based like Uniswap, Curve, Balancer,

Bancor, TerraSwap and Raydium. The functionality of an AMM

depends upon a conservation function which encodes a desired

invariant property of the system. Generally, these AMM-DEXs

provide a price-oracle service to any other third party, like DLPs.

4 STANDARD DLP MODEL
In this section, we introduce a formal model of a general DLP.

We start by introducing the current security notions and security

control measures used by a general DLP. Then we discuss the

model used by DLPs focusing on the current best security practices.

We then explain the liquidation threshold model and provide two

equations used by a DLP for security threshold calculations. These

Conference’17, July 2017, Washington, DC, USA Sanidhay Arora, Yingjiu Li, Yebo Feng, and Jiahua Xu

equations help us calculate a crucial system parameter 𝜖′, i.e. Safe
collateralization ratio, which we use in SecDeLP in Section 6.

4.1 Security Model of a standard DLP
There are two important security concepts used when modeling a

general secure DLP. They are explained below.

Collaterilzation Bound and Liquidation. A DLP design assumes

that loans are secured by collateral: liquidations thereof are incen-

tivized in order to recover loans should the borrowing users fail to

repay. However, collateral liquidation is exposed to risks. Firstly,

the incentive to liquidate is only effective, if the liquidated value of

seized collateral is higher than the value of the repaid loan amount,

implying a profit. Secondly, large fluctuations in asset prices may

reduce the relative value of the collateral such that the loan becomes

partially unrecoverable. Furthermore, an attacker with the ability to

update token prices can force users to become undercollateralized

and then seize the collateral of victims.

Safe Collaterlization. A DLP is 𝜖-collateralization safe when the

ratio of the loan value of under-collateralized loans to the total loan

value of the lending pool is below the threshold 𝜖 . If the liquida-

tion incentive is effective, a value below 𝜖 should not persist, as

users are quick to execute liquidations. The efficiency of lending

pool liquidations has been studied in [4]. Strong price volatility

is a risk to 𝜖-collateralization safety, as a sharp drop in price can

immediately reduce a previously sufficiently collateralized user to

become undercollateralized below a defined threshold. Such an

immediate drop leaves the user with no opportunity to maintain

its collateral with repayments. This model prevents an adversary

from liquidating DLP under extreme market conditions and other

exploits. The degree to which this model is secure can be quantified

by considering several factors that are explained below.

4.2 General DLP Security Factors
Overview. The security model for liquidation thresholds in decen-

tralized lending pools typically involves multiple layers of protec-

tion to minimize the risk of manipulation or exploitation. Smart

contracts are used to automate the liquidation process and ensure

that it occurs according to predetermined rules and without the

need for human intervention, which reduces the risk of fraud or

manipulation. Another key security measure is the use of oracles,

which are used to calculate the collateralization ratio and the liq-

uidation threshold, and they ensure that the liquidation process

is triggered only when the collateral value falls below a certain

threshold.

Liquidation calculation factors. The liquidation threshold for a

decentralized lending pool that uses over-collateralization on loans

is typically determined by several factors, including:

• Collateralization Ratio: The collateralization ratio is the ratio of

the value of the collateral to the value of the loan. The higher the

collateralization ratio, the lower the risk of default, and therefore

the lower the liquidation threshold.

• Volatility of the Collateral Asset: The more volatile the collateral

asset, the higher the risk of its value falling below the loan value,

and therefore the lower the liquidation threshold.

• Loan Duration: The longer the loan duration, the higher the risk

of the collateral asset’s value changing, and therefore the lower

the liquidation threshold.

• Pool Reserves: The amount of reserves held in the lending pool

can also affect the liquidation threshold. If the pool has a higher

reserve ratio, it can absorbmore losses before needing to liquidate

loans, and therefore the liquidation threshold can be set higher.

• Market Conditions: Market conditions, such as changes in inter-

est rates, liquidity, or demand for the collateral asset, can also

affect the liquidation threshold.

Intuitively, the liquidation threshold is a balance between mini-

mizing the risk of default and maximizing the pool’s profitability.

Decentralized lending platforms often use complex algorithms to

calculate the liquidation threshold based on these factors, as well

as other relevant data points.

4.3 Liquidation Threshold Calculation
The algorithm used for calculating the liquidation threshold in

decentralized lending pools varies depending on the platform and

its specific features, but there are some common approaches.

One common algorithm used for calculating the liquidation

threshold is the "safe" or "minimum collateralization ratio" approach.

In this approach, a safe collateralization ratio is established based

on the volatility of the collateral asset and the desired level of risk

for the lending pool. The liquidation threshold is then set at a level

that ensures that the collateralization ratio does not fall below the

safe level. For example, if the safe collateralization ratio is 150% and

the loan value is $1, 000, the liquidation threshold would be set at

$666.67 (i.e., 1/150% of $1, 000).

Another common algorithm used for calculating the liquidation

threshold is the "dynamic" approach, which adjusts the liquidation

threshold based on changes in the value of the collateral asset. In

this approach, the liquidation threshold is initially set at a safe

level, but it is then adjusted downward as the value of the collateral

asset declines. For example, if the safe collateralization ratio is 150%

and the value of the collateral asset falls by 20%, the liquidation

threshold would be adjusted downward by 20% to maintain the safe

collateralization ratio.

In addition to these approaches, some platforms may use more

complex algorithms that take into account factors such as the loan

duration, the market conditions, and the pool reserves to calcu-

late the liquidation threshold. It’s worth noting that the specific

algorithm used for calculating the liquidation threshold can have

a significant impact on the risk profile of the lending pool, so it’s

important to carefully evaluate the algorithm and the underlying

assumptions before participating in the pool.

4.4 𝜖-collateralization-safe DLP model
The state of a DLP can be described mathematically using a set of

variables and equations that represent the various parameters and

interactions within the platform. Table 1 provides a description of

the state parameters required to calculate the liquidity threshold.

We define two equations to model the state of the DLP which

can be used to determine the security thresholds. Table 2 provides

the summarized equations. The purpose of each equation is stated

below.

SecDeLP : Secure Decentralized Lending Platforms against Oracle Manipulation Attacks Conference’17, July 2017, Washington, DC, USA

Table 1: Liquidation Threshold Parameters

Notation Meaning
𝑆 Total value of the pool’s reserves (in some currency, e.g., USD)

𝑇 Total value of outstanding loans

𝜖′ Total collateralization ratio (as a decimal, e.g., 1.5 for 150%)

𝐶 Total value of collateral assets held by borrowers

Name Equation
Total collateralization ratio 𝐶/𝑆 ≤ 1/𝜖′

Loan-to-value ratio 𝑇 /𝐶 ≤ 1/𝜖′
Table 2: Security threshold equations

• Total collateralization ratio. It is a measure of the total

value of the collateral held compared to the total value of the

pool reserves. This equation ensures that the total value of

collateral assets held by borrowers is greater than or equal

to the safe collateralization ratio.

• Loan-to-value ratio. It is a measure of the total value of

outstanding loans (𝑇) to the total value of collateral assets

held by borrowers. This equation ensures that the total value

of outstanding loans is less than or equal to the maximum

loan-to-value ratio allowed by the safe collateralization ratio.

These equations can be used to monitor the state of the platform

and ensure that it remains solvent and secure. If any of these equa-

tions is violated, it may indicate that the platform is at risk of default

or insolvency, and corrective measures may need to be taken. With

this, we now define a 𝜖-collateralization-safe DLP below.

Definition 4.1 (𝜖-collateralization-safe DLP). A DLP D is 𝜖 collat-

eralization safe if the total collateralization ratio and loan-to-value

ratio are less than or equal to the inverse of collateralization ratio

𝜖 , i.e.

𝐶/𝑆 ≤ 1/𝜖
and,

𝑇 /𝐶 ≤ 1/𝜖.

5 ADVERSARY MODEL
In this section, we define a basic model of blockchains and the

adversary. We then model a general oracle manipulation attack and

provide the formal attack steps.

5.1 Basic Blockchain and Adversary Model
We model the interaction between users and the blockchain as a

state transition system. We assume one computationally bounded

and economically rational adversary A. The adversary is not re-

quired to provide its own collateral to perform the attacks described

below. We assume that the adversary is financially capable to pay

any transaction fees associated with the network. Now, consider A
(or equivalent) creates a set 𝑀 of𝑚 malicious smart contracts. It

is reasonable to assume that the adversary A and all𝑚 malicious

smart contracts can interact with each other according to the ad-

versary’s wish. Since smart contracts can be programmed to create

other smart contracts from them, the set 𝑀 also contains all the

Notation Meaning
S𝑖 𝑖𝑡ℎ state of the blockchain

T𝑖 𝑖𝑡ℎ sub-transaction; T𝑖 : S𝑖−1 → S𝑖
T Attack transaction: (T1, · · · ,T𝑛)
𝑛 Number of sub-transactions in T
𝜏𝑖 𝑖𝑡ℎ transaction-step

Table 3: Adversary Model Notations

Notation Meaning
F (𝑋,A) Take $X worth of flash loan in asset A
S(A,B) Swap: Send asset A to get B
D(A, cA) Deposit A as collateral to get cA
B(cA,C) Borrow C using cA
P(𝑋,A) Repay $X flash loan in A

Table 4: Transaction-steps (𝜏𝑖)

smart contracts created by other malicious smart contracts at any

point in time as well.

Notations. Let the initial state of the blockchain be denoted by

S0. To execute an attack, A initiates a transaction T by calling a

malicious smart contract belonging to𝑀 . A transaction is defined as
an indexed-sequence of 𝑛 atomic state-transition-functions, i.e. T =

(T1, · · · ,T𝑛). Atomic state transitions are indivisible and irreducible

series of state-change operations on the blockchain such that either

all occurs, or nothing occurs. Here, T𝑖 : S𝑖−1 → S𝑖 represents
an atomic state transition function, i.e. it is a definite series of

operations on the blockchain state. Let T𝑖 be referred to as 𝑖𝑡ℎ

sub-transaction. The state of the blockchain after transaction T
is S𝑛 , i.e. T : S0 → S𝑛 . Now consider an equivalent k-indexed-

sequence 𝜏 = (𝜏1, 𝜏2, · · · , 𝜏𝑘) of the transaction T , i.e. 𝜏 : S0 → S𝑛 .
Here, 𝜏𝑖 is an indexed sequence of sub-transactions (or atomic state

transition functions), i.e. 𝜏𝑖 = (T𝑥 , · · · ,T𝑦) where 0 < 𝑥 < 𝑦 ≤ 𝑛
and 𝑥,𝑦 ∈ Z+. Trivially, 𝜏 must be mutually exclusive, topologically

sorted, and completely exhaustive for a given transaction T . S𝑦
denotes the state of the blockchain after the transaction step 𝜏𝑖 , i.e.

S𝑦 = 𝜏𝑖 (S𝑥−1) where 𝑖 < 𝑥 < 𝑦 ≤ 𝑛. Notations used in the basic

adversary model are summarized in Table 3.

Transaction-steps. Table 4 summarizes a short description of the

crucial transaction steps that are necessary for the oracle manip-

ulation attack. D(A, cA) is the step in which a borrower deposits

an asset A as collateral on a DLP, D. The depositor gets cA, which

is an asset (usually created by the DLP) that represents the de-

posited amount of 𝐴 as collateral on D. Here ’c’ in cA denotes a

Conference’17, July 2017, Washington, DC, USA Sanidhay Arora, Yingjiu Li, Yebo Feng, and Jiahua Xu

Figure 1: Oracle Manipulation Attack Example

collateralized-asset. The next required transaction step in topologi-

cal order is B(cA,C). In this transaction step, the adversary (as the

borrower) takes out a loan in asset C. This asset could potentially

be any asset available on the DLP D for users to borrow. In this

step, A must use a collateralized asset provided by the DLP, in this

case, cA. The adversary can then borrow an asset C within the

borrowing limit available to her. This borrow limit is determined

by two factors, which are (i) the value of the deposited collateral

cA, and (ii) 𝜖 , the collateralization ratio set by the DLP D. Typically
𝜖 ∈ [1.25, 5] for a general DLP.

5.2 Understanding Oracle Manipulation Attack
Oracle manipulation attacks using flash loans can be performed out

on lending platforms that use oracles to determine the value of the

collateralized assets used to secure loans. In this type of attack, the

attacker can manipulate the price oracle of a collateralized asset

by using flash loans. This manipulation is done by executing a

large trade on a DEX that provides the oracle used by the DLP.

The attacker can use the flash loan to borrow a large amount of

cryptocurrency that is used as collateral for loans on the lending

platform. The attacker then uses the borrowed cryptocurrency to

execute trades on a DEX that relies on the same oracle used by

the lending platform. By executing a large number of trades in

a short period of time, the attacker can manipulate the price of

the collateral, causing it to appear more or less valuable than it

actually is. Once the price of the collateral has been manipulated,

the attacker can use it to secure a loan on the lending platform,

borrowing a larger amount of funds than would have been possible

without the price manipulation. The attacker can then use these

funds to execute profitable trades on the DEX, profiting from the

price difference.

Formal attack steps. Consider a DLP D using a price oracle PA
provided by a Decentralized Exchange DEX to determine the price

of an asset A. The adversary A initiates a transaction T , with a

sequence of 𝑘 transaction steps. The reasoning and the critical steps

that are necessary for the attack are described below in topological

order:

F (𝑋,A); Take $𝑋 worth of flash loan in asset A as 𝜏1.

S (A,B); This transaction-step must use a small fraction of the

total $𝑋 worth of flash loan.

D (B, cB); A plans to manipulate the price of B by distorting

the price of the pair A/B on DEX, which is used in the price

oracle PB.

SecDeLP : Secure Decentralized Lending Platforms against Oracle Manipulation Attacks Conference’17, July 2017, Washington, DC, USA

S (A,B); A manipulates/distorts the price of the asset pair A/B.
This price is then instantly fetched by D as the price oracle

PB which then directly determines the price of cB (linearly

proportional). Note that the majority of flash loan amount

goes in this swap.

B (cB,C);A redeems the collateral cB (and other equivalents) at

the liquidated/distorted price to borrow an asset C with 𝜖 as

collateralization ratio. Note that A can only gain a maximum

profit of 𝐺 = $𝑋 · ((1 + 𝜃) · 𝜖 − 1), where 𝜃 is the fractional

price distortion.

S (B,A); This step is basically reverting the swap in which

adversary manipulated the price, getting back the flash loan

amount 𝑋 to payback the loan.

P (𝑋,A); Payback the flash loan in asset A.

Attack Example. Figure 1 shows an illustration of a simple Oracle

Manipulation Attack on a DLP. Considering the price of assets A,B,
and C to be $100, $10, and $1, respectively. Here, the timeline of

transaction steps are shown from top to bottom. The parameters

shown on the right are the amount of liquidity reserves of asset pool

A/B on the Decentralized Exchange (DEX). Here, the adversary

must use a small fraction of the flash loan amount in ‘Swap1‘, to

ensure that it has enough funds remaining to distort the oracle

price. The total liquidity available for the asset B must be close to

this value to maximize returns on a successful attack. In the end,

the adversary gains 990𝐾 amount of asset C shown in red. Here the

price of B relative to A is provided by the DEX as an oracle. This

price is determined by the amount of liquidity present in the DEX’s

pool. Here, price of B is directly proportional to reserve of B over

reserve of A. Notice that, in this example, the adversary distorts the

price by 9.2 Million percentage or 9.2 × 10
4
times. The collateral

provided to the DLP, 500cB, remains there as shown in green. This

amount is negligible compared to the profit of the adversary. Hence,

it can be ignored and be left as a locked collateral in the DLP.

It is worth to note that flash loan providers might require a small

fraction of fee to use their service. Typically this fee is less than

0.1% of the total value of flash loan borrowed. Considering that

this fraction is negligible to the price-distortion and adversaries’

Return-On-Investment (ROI), this fee is neglected for simplicity.

6 SECDELP : SECURE DLP SOLUTION
In this section, we present our security solution, SecDeLP . We

first provide some important prerequisite concepts in DLP security.

Then we give an overview of SecDeLP with the some practical

requirements to enable SecDeLP . We then proceed by presenting

the SecDeLP algorithm. First, we present a proposition, then define

four lemmas, and then use these lemmas to provide a Theorem. This

theorem states that SecDeLP is secure against oracle manipulation

attacks.

6.1 Prerequisites
Before explaining our solution, we first need to look at two prereq-

uisite concepts to understand SecDeLP . These concepts must be

applied to ensure the security of a DLP.

Definition 6.1 (Availability). It refers to the degree to which a

system or resource is accessible and usable by authorized users

when they need it.

Availability means that the system is operational and can be used

to perform the functions for which it was designed, and that data

and other resources are available for authorized use. It is one of the

three key pillars of information security, along with confidentiality

and integrity. The most common metric is uptime percentage, which
represents the portion of time the service is operational during the

measurement period.

Definition 6.2 (Price Conservation). The mechanism that is em-

ployed in DLP which ensures that for any transaction, the value

removed in one asset equals the value added in the other asset.

Price conservation is an important property in Automated Mar-

ket Maker (AMM) based Decentralized Exchanges (DEXs) that helps

to ensure the stability and accuracy of the price of assets traded

on the exchange. Price conservation is maintained in AMM-based

DEXs through the concept of constant product formula, which is a

mathematical formula used to calculate the price of assets in the

liquidity pool. The formula ensures that the product of the number

of tokens in each asset’s balance remains constant, which helps to

maintain the price stability of the assets.

Price conservation example. For example, in a simple AMM-

based DEX like Uniswap, if the balance of ETH and USDT in a

liquidity pool is 10 ETH and 10000 USDT respectively, then the

product of these two balances must always remain constant, i.e., 10

ETH × 10000 USDT = 100000. If a trader buys 1 ETH, the balance of

ETH decreases to 9, and the balance of USDT increases to 11111.11,

so that the constant product of the two balances remains 100000.

Price conservation ensures that the price of assets is accurate and

reflects the actual supply and demand of themarket, which is crucial

for fair and efficient trading.

6.2 Overview and assumptions

Overview. The algorithmic solution is to add the following to the

DLP architecture: (i) store the last used price of all assets, and (ii)

store the block index in which the price was last updated. Then,

only update this price once-per-block based on certain conditions,

C1, C2, and C3. Once updated, use the price oracle as intended
only if C4 and C5 conditions are true. C1 ensures that the price is

updated once-per-block. C2 ensures that the adversary is unable

to distort the price by more than a certain threshold in a single

block, or equivalently, in the malicious transaction T . C3 ensures

that all legitimate transactions are executed and only the attack is

prevented. Finally, the conditions imposed on using the price oracle,

i.e. C4 and C5 prevents the attacker from reconfiguring the price-

distortion transaction-step into any other equivalent transaction-

step. The above-mentioned conditions ensure that SecDeLP D is

secure against oracle manipulation attacks performed using flash

loans.

Practical requirements. The price of all assets is constantly chang-
ing for each transaction on the blockchain. The approximate time to

add a new block to the blockchain, or block-time, is determined by

the specific blockchain protocol. Consider 𝛼A to be the acceptable

fractional change in the price of asset A per block. We require that

the price state of all assets must be updated at least every 𝑇 blocks

on the blockchain, where𝑇 ∈ Z+. Hence, both𝑇 and 𝛼 must directly

Conference’17, July 2017, Washington, DC, USA Sanidhay Arora, Yingjiu Li, Yebo Feng, and Jiahua Xu

Notation Meaning
P State that stores the last updated block index and the price of an asset

B.id Index of the current block for any 𝜏𝑖
𝜖 Collateralization ratio set by D
𝛼A Acceptable fractional price distortion of asset A per block

𝑇 Maximum number of blocks after the price of any asset is updated

𝜃 Maximum allowed price-distortion of an asset in one block

PA Price of asset A provided by the oracle

Table 5: SecDeLP Algorithm Notations

Algorithm 1 SecDeLP Algorithm

Input: 𝛼A, 𝜃 , 𝑇 ⊲ Acceptable fractional change of asset A in one

block, maximum allowed fractional change in price, maximum

number of blocks before P is updated

Output: 𝑈𝑠𝑒 (PA) ⊲ 𝑇𝑟𝑢𝑒 if price oracle is safe to use else it is

𝐹𝑎𝑙𝑠𝑒

1: if 𝑅𝑒𝑐 (PA) then ⊲ 𝑅𝑒𝑐 (PA) = 𝑇𝑟𝑢𝑒 if price oracle is recieved,
else it is 𝐹𝑎𝑙𝑠𝑒

2: if P.id == B.id − 𝑡 & |1 − PA/P.A| < 𝜃 & 𝛼𝐴 · 𝑡 < 𝜃

then ⊲ 𝑡 ∈ [1..𝑇]
P←< B.id, PA >

3: end if
4: if P.id == B.id & |1 − PA/P.A| < 𝛼A then

𝑈𝑠𝑒 (PA) ← 𝑇𝑟𝑢𝑒

5: end if
6: end if

depend on the block-time
1
, and should be determined accordingly.

Later, in Section 7, we illustrate practical values for these param-

eters based on the past three years of market data. We also show

that these requirements are practically feasible and cost-efficient.

The notations used in SecDeLP are summarized in Table 5.

6.3 SecDeLP Algorithm
The algorithmic solution for D to prevent this attack is given in

Algorithm 1. It is summarized as follows:

(1) Store a state P =< id,A > for each asset A. P.A stores the

price of A, and P.id stores the index of the block in which P
was last updated.

(2) Input the values of 𝛼 for each asset available on the DLP.

Here 𝛼Adenotes the acceptable price distortion of asset A
per block.

(3) Input the value of 𝑇 , which denotes the maximum number

of blocks before a price state P must be updated.

(4) Let PA denote the oracle’s price of asset A. Let B.id denote

the index of the current block. And, let 𝜃 = 𝜖 − 1 where 𝜖 is

the collateralization ratio set by D. Now, consider an integer

variable 𝑡 ∈ [1..𝑇].
(5) When PA is received, update the state P if and only if:

C1 P.id = B.id − 𝑡 ,
C2 |1 − PA/P.A| < 𝜃 , and
C3 𝛼A · 𝑡 < 𝜃 .

1
The average time it takes to add one block on the blockchain

(6) Once P is updated, use PA as intended if and only if

C4 P.id = B.id, and
C5 |1 − PA/P.A| < 𝛼A.

SecDeLP additional benefits. SecDeLP takes into account the sys-

tem parameter 𝜖 which can be chosen accordingly for each different

collateralized asset. This ability provides the platform developers

greater control over 𝜃 for different assets. Specifically, users will be

able to quantify the security, i.e. risk (𝜃) and availability (𝑇 and 𝛼),

associated with each asset separately. There is also an additional

benefit in creating a design for the lending platform in contrast to

any applying any solutions on the decentralized exchange or the

oracle source. It gives the ability to securely use multiple sources

of oracles without having to worrying about security issues on

the oracle source’s side. The design makes the lending platform

more modular, more inclusive of assets with smaller market cap-

italization, and better at risk analysis and control over security

assumptions regardless of the source of price oracle.

6.4 SecDeLP Theorem
In this subsection, we provide a theorem to show that SecDeLP

is secure against oracle manipulation attacks. First, we provide a

definition of a secure DLP below.

Definition 6.3 (Secure DLP). A SecDeLPD is secure against oracle

manipulation attacks performed using flash loans if the profit 𝐺

gained by an adversaryA from a transactionT is negative i.e.𝐺 < 0

or the attack transaction T is unsuccessful.

Now, we state a proposition to prove that SecDeLP ensures that

certain conditions hold true for a DLP. We later show that these

conditions are necessary to secure a DLP from oracle manipulation

attacks performed using flash loans.

Proposition 6.4. SecDeLP ensures that: (C1) the price state of an
asset is updated at most once per block; (C2) the adversary can not
pay back the flash loan in the transaction T ; (C3) the price change
in all assets on the DLP is conserved over the last 𝑇 blocks; (C4 and
C5) and the adversary is unable to reconfigure the price-distortion
transaction-step into any other equivalent transaction-step.

To prove this proposition, we now define four lemmas and con-

sequently prove them.

Lemma 6.5. The condition C1 ensures that the price state P of any
asset is updated at most once per block in the blockchain.

Proof. According to the algorithm, the price state P is updated

if and only if three conditions are satisfied, that is if C1, C2, and C3

SecDeLP : Secure Decentralized Lending Platforms against Oracle Manipulation Attacks Conference’17, July 2017, Washington, DC, USA

are true. All transactions in the same block must share the same

index B.id. Consider a block B consisiting of 𝑛 transactions, i.e

B = (T1, · · · ,T𝑛). Now trivially,

∀𝑖, 𝑗 ∈ [1..𝑛],T𝑖 .id = T𝑗 .id = B.id (1)

where, T𝑖 .id denotes the index of the block stored in the transaction

T𝑖 in that block.

Due to the constraint 𝑡 ≥ 1, the price state Pwill only be updated

when the index of the current block is greater than the index of the

block where it was last updated, i.e.,

P.id < B.id. (2)

The constraints in equations 1 and 2 ensure that the price state P
will not be updated more than once for any subsequent transaction

in the same block. Therefore, C1 ensures that the price state P is

updated at most once for a single block. Hence proved. □

Lemma 6.6. The condition C2 ensures that the adversary A can
not pay back the flash loan.

Proof. Let the amount of the flash loan be $𝑋 . For a price dis-

tortion of a fraction 𝜃 ′, A can gain a maximum profit 𝐺 , where

𝐺 = $((1 + 𝜃 ′)/𝜖 − 1) · 𝑋 .

Here, 𝜖 is the safe collateralization ratio. It is trivial that considering

the upper bound on𝐺 to be the flash loan amount, i.e. $𝑋 , makes it

infeasible for the adversary to pay back the loan. Hence, we get the

upper-bound on 𝜃 , i.e.

𝜃 ′ <= 𝜖 − 1.

In SecDeLP , we take 𝜃 = 𝜖 − 1, where 𝜃 represents the upper

bound on the price-distortion in one block. Hence, we get the

condition C2 i.e. ����1 − PA
P.A

���� < 𝜃,
which ensures that price cannot be manipulated more than or equal

to 𝜃 · PA in a single block. Therefore, the adversary cannot distort

the price to gain enough profit to pay back the flash loan in the

same transaction T . Hence proved.
□

Lemma 6.7. The condition (C3) ensures that the price change over
𝑇 blocks is conserved for legitimate transactions.

Proof. The condition C3 illustrates that the average maximum

allowed distortion per block over the last 𝑡 blocks is upper-bounded

by the maximum distortion allowed in the current block, i.e.

𝛼A · 𝑡 < 𝜃 .

Since the price state was updated exactly 𝑡 blocks prior to the

current block and 𝛼A is the acceptable distortion per block, the

price change over time is conserved for legitimate transactions.

Hence, proved. □

Lemma 6.8. The conditions C4 and C5 ensure that the adversary
A can not re-configure the price distortion transaction step into any
other equivalent transaction-step.

𝜖 𝜃 (%) 𝛼5 𝛼10 𝛼15 𝛼20 𝛼25
(%)

5.00 400 80.0 40.0 26.667 20.0 16.0

2.50 150 30.0 15.0 10.0 7.5 6.0

1.67 67 13.2 6.6 4.4 3.3 2.64

1.42 42 8.4 4.2 2.8 2.1 1.68

1.25 25 5.0 2.5 1.667 1.25 1.0

Table 6: Illustration of the safe upper-bound values of 𝛼 for
different values of 𝜖 and 𝑇 . Calculated using C3: 𝛼 ×𝑇 < 𝜃 .

Proof. We know from Lemma 6.5 that C1 ensures that price

state P can only be updated once per block. Once updated, the

condition C4, i.e.
P.id = B.id,

trivially ensures that the price oracle P is only used if it is received

in the current block. Next, the condition C5, i.e.����1 − PA
P.A

���� < 𝛼A,

ensures that the price received by the oracle is within the acceptable

price distortion of a single block, that is 𝛼A. Trivially, any subse-

quent sub-transactions can only distort the original updated price

to an upper-bound limit of 𝛼A due to C5. Because the adversary
A can not distort the original price by more than the acceptable

price distortion of 𝛼A in a single transaction, it makes it impossible

to reconfigure the transaction T and distort the price enough to

pay back the loan, similar to Lemma 6.6. Since the loan can not

be paid back, the transaction will not execute. Hence, it prevents

the adversary from re-configuring the price-distortion step. Hence

proved. □

Trivially, proposition 6.4 is true from lemmas 6.5, 6.6, 6.7, and 6.8.

We now state the Theorem below.

Theorem 6.9. A SecDeLP D, using 𝜖 as collateralization ratio and
P as a price oracle, assuming that the price for all assets is updated at
least every 𝑇 blocks, and considering 𝛼 to be the acceptable fractional
change to a price in one block, D is secure according to definition 6.3.

Proof. We know that C2 ensures that the adversary cannot

pay back the flash loan (from 6.6). This inability is accomplished

by restraining the price distortion up to the minimum threshold

required to gain a profit (same as Lemma 6.6) i.e., 𝐺 < 0. We

know from Lemma 6.7 that the price change on D is conserved,

hence there is no value being lost from D. This proves that the
adversary cannot gain any profits from the transaction T . Secondly,
the transaction T is reverted in case the adversary is unable to pay

back the flash loan. This reasoning shows that SecDeLP D is secure

according to the Definition 6.3. Hence proved. □

6.5 Calculating the input parameters
In the SecDeLP algorithm, we require parameter inputs of 𝛼 and

𝑇 . These input values must be set by the DLP. To calculate these

values, we first observe that the value of𝑇 would impact the overall

operational costs of the DLP. This impact could be in the case where

the DLP has to manually update a price state. Now trivially, this

value depends on the block time of the specific blockchain the DLP

is operating. Later, in Section 7 we illustrate that a reasonable range

Conference’17, July 2017, Washington, DC, USA Sanidhay Arora, Yingjiu Li, Yebo Feng, and Jiahua Xu

Coin Market Capitalization x̄ 𝜎 Upper CI of 𝜃 ′

BTC $505𝐵 0.106 0.090 0.1069

ETH $210𝐵 0.149 0.128 0.1504

BNB $39𝐵 0.270 0.293 0.285

XRP $27𝐵 0.124 0.249 0.1767

ADA $9.7𝐵 0.166 0.175 0.1802

SOL $6.1𝐵 0.235 0.232 0.252

DOT $5.5𝐵 0.175 0.208 0.198

ICP $2𝐵 0.199 0.257 0.252

MKR $620𝑀 0.166 0.214 0.178

ZRX $148𝑀 0.202 0.284 0.211

PERP $27𝑀 0.166 0.194 0.188

Table 7: Per-minute Price Change Statistics: 𝜃 ′

of time to update a price state is from every one to five minutes.

We later discuss the additional costs related to this parameter in

Section 7.

Now we calculate the maximum allowed values of 𝛼 . First, note

that because of the condition C3 that is 𝛼×𝑡 < 𝜃 , and the constraint
𝑡 ≤ 𝑇 , 𝛼 × 𝑇 < 𝜃 must also be ensured at all times by the DLP.

We consider the Ethereum platform for our calculations as it is the

largest platform for DLPs today. On the Ethereum blockchain, the

block-time is roughly 12 seconds, which means that every minute 5

new blocks are added on average. As mentioned above, we consider

a minimum time to update a state in a range of one to five minutes.

From this range, we get the range of 𝑇 as [5..25]. Now, we can

calculate the maximum allowed values of 𝛼 for this range of values

of 𝑇 using C3. Since 𝜃 = 𝜖 − 1, we consider a range of values of

𝜖 that is typically used by a standard DLP, i.e. 𝜖 ∈ [1.25, 5.0]. We

now illustrate the safe upper-bound values of 𝑎𝑙𝑝ℎ𝑎 on the above-

mentioned ranges of 𝑇 and 𝜖 in Table 6. These values represent

the upper-bound on theoretically safe-to-use values as proven in

Thereom 6.9.

In the next section, we show that these upper-bound values for

𝛼 are well over a two-factor margin than what is required in the

real-world setting. We also discuss the worst-case scenario for a

DLP in terms of both operational cost and risk. The worst case

for operational cost comes when the required 𝑇 is low (less than

5 blocks on Ethereum). The worst case in terms of security arises

when the collateral ratio set by the DLP is low (𝜖 < 1.25). We show

that our required values are within a secure range of values with a

high degree of confidence.

7 SECDELP : PRACTICALITY ANALYSIS
In this section, we present the practical analysis of SecDeLP . The

aim of this section is to show that the SecDeLP requirements are

reasonable in a real-world setting. We first show that SecDeLP is

secure with a high confidence value. We do this by providing an

empirical analysis of the market data collected over the past three

years. Next, we provide an analysis of additional operational costs

incurred by using SecDeLP in a standard DLP.

7.1 Are SecDeLP requirements practical?
Data Collection. We collected the per-minute OHLCV (Open-

High-Low-Close) price data of 12 crypto-assets from January 1st,

2020 to June 1st, 2023. This amounts to roughly 1.75 million data

points for each crypto-asset. We choose a market-capitalization

value ranging from $25 Million (PERP) to $500 Billion BTC. This
range accounts for over 99% of the total cryptocurrency market

capitalization value. Table 7 provides some statistics on the market

price data of various cryptocurrency assets. These assets are sorted

based on their market capitalization value shown in USD. We start

by calculating the fractional change in price per minute for each of

these assets. We denote this value by 𝜃 ′. 𝜃 ′ denotes the fractional

price change in the spot price of these assets, where 𝜃 ′ =
���𝐻−𝐿𝑂

���)
(𝐻 is the high price, 𝐿 is the low price, and 𝑂 is the open price).

Here, 𝑥 shows the mean value of all 𝜃 ′, and 𝜎 shows the standard

deviation. We then use this data to calculate a confidence interval

of 𝜃 ′.
Empricial analysis.We aim to show that the maximum allowed

values of 𝛼 illustrated in Table 6 are practically reasonable. First, we

calculate the Confidence Interval (CI) of 𝜃 ′, i.e. CI of the per-minute

price change of these assets. In frequent statistics, a confidence

interval is a range of values that is likely to contain the value of an

unknown population parameter. A confidence interval is the mean

of your estimate plus and minus the variation in that estimate. The

formula is given as follows:

𝐶𝐼 = 𝑥 ± 𝑧 𝜎√
𝑛
,

where 𝑛 is the total number of samples, and 𝑧 is the confidence

value. Using 𝑧 = 1 − 0.10
10
, we calculate the Upper bound of the

confidence interval on 𝜃 ′ for all the assets. This provides us with an

upper-bound value for an acceptable price change per minute, with

a high confidence value. Since 𝛼 is the acceptable price distortion

per block, we can take the average of this upper bound over the

number of blocks per minute to get a lower bound on 𝛼 . Let 𝛼 ′

denote this lower bound value, where 𝛼 ′ = 𝜃 ′/blocks-per-minute.
Now we show that the lower-bound on 𝛼 , that is 𝛼 ′ is much

less than the upper-bound on 𝛼 in the worst-case scenario. From

a security and practical perspective, the worst-case scenario for

the DLP is when the collateralization ratio is high and a price state

update is required every minute. In this case, the upper-bound on

SecDeLP : Secure Decentralized Lending Platforms against Oracle Manipulation Attacks Conference’17, July 2017, Washington, DC, USA

Figure 2: Probability Density Function of 𝜃 ′ for 12 crypto-assets

𝛼 would be when 𝜖 = 1.25 and 𝑇 = 5 (considering on Ethereum

blockchain) that is 𝛼 < 1% (from Table 6). We can estimate the

range of values of 𝜃 ′ from Figure 3, which illustrates the Cumulative

Density Function (CDF) of 𝜃 ′ and Figure 2, which illustrates the

Probability Density Function (PDF) of 𝜃 ′. We calculated these values

using the historical data with a confidence value of 1 − 0.110
. Here,

notice that most of the values of 𝜃 ′ are well within the range of

[0.01, 0.5]. Further, the range of values of 𝜃 is a factor of two less

than the upper-bound required on 𝛼 even in the worst-case scenario.

Considering Ethereum, if we calculate the value of 𝛼 ′ from this

range of 𝜃 ′, we get the range [0.002, 0.1]. This range is less than
the upper-bound by at least a factor or one. Hence, this illustration

shows that SecDeLP requirements on its input parameter of 𝛼 are

practical.

Discussion. Figure 4 shows an illustration of the confidence in-

terval upper-bound on 𝜃 ′ using 𝑧 = 1 − 0.110
vs the market capi-

talization of 12 crypto-assets. This figure shows that the market

cap is not necessarily related to price volatility. Here we have a

market capitalization value range of 4 orders, and yet we observe

that 𝜃 ′ ∈ [0.1, 0.3] with high confidence. This is an interesting ob-

servation as one could consider investigating the factors that affect

price volatility for a better understanding of this upper bound value

of 𝜃 ′. Another point worth mentioning here is that the standard

deviation and the mean values of 𝜃 ′ are all within a factor of one.

This observation indicates that, even over a period of three years,

and even with orders of magnitute of difference in market capital-

ization of various crypto-assets, the change in price falls within a

range of [0.01, 0.5] with high confidence.

7.2 SecDeLP additional cost analysis
Cost of running a standard DLP. The cost of running a DLP on

Ethereum can be significant and can vary depending on a number

of factors. Some of these factors are platform’s size, complexity,

and the technology stack used. It’s important for developers and

operators to carefully consider these factors before launching a plat-

form and to stay informed about the current state of the Ethereum

network to ensure that the platform remains secure, scalable, and

cost-effective. Here are some potential costs that a DLP may face:

• Development andmaintenance costs.This includes the cost of
developing and maintaining the smart contracts, user interfaces,

and other components of the platform. These costs can include

expenses for tools and infrastructure.

• Gas fees. DLPs built on the Ethereum blockchain require trans-

actions to be executed on the blockchain, which incurs gas fees.

These fees can be substantial during periods of high network

congestion and can be a significant ongoing cost for the platform.

• Security costs: As decentralized lending platforms handle signif-

icant amounts of value, they need to invest in security measures

to protect against hacks and other security threats. This can in-

clude expenses for security audits, bug bounties, and insurance.

Conference’17, July 2017, Washington, DC, USA Sanidhay Arora, Yingjiu Li, Yebo Feng, and Jiahua Xu

Figure 3: Cumulative Density Function of 𝜃 ′ for 12 crypto-assets

• Compliance and Operation costs. This includes regulation
and operational expenses such as utilities, administrative staff,

etc.

SecDeLP additional cost. The cost of operations for the Lending
platform using SecDeLP includes minimal additional expenses com-

pared to the costs mentioned above. The two major cost additions

are (i) the cost of running a program to constantly monitor the

prices of each asset on their platform, (ii) the cost of updating the
state P every time an asset is updated later than 𝑇 blocks. The cost

of running a program is reasonable with little to no extra expense.

However, the cost of updating a state on the blockchain can be ex-

pensive. To analyze the cost, we first define the worst-case scenario

i.e. the costliest possible case to maintain security.

In the worst-case scenario, there are no transactions on the DLP,

and hence no price updates. In this case, the DLP would have to

make sure to update the state P, i.e. price of every asset stored in the
DLP smart contract, every 𝑇 blocks. This cost depends on the gas

fee of the network. On the Ethereum blockchain, gas fees are paid

in Ether, and can vary widely depending on network congestion

and other factors. During periods of high demand, gas fees can

become very expensive, which can increase the cost of running a

decentralized lending platform. Hence, empirical analysis of the

gas prices is useful in determining the operational costs for this

scenario.

Empirical Analysis. Gas required to update one uint256 state

variable on Ethereum is around 2× 10
4
. Total Transaction Gas used

to update a state variable is within the range [30000, 10
5]. Gas Price

range = [10, 100] Gwei, where 1 Gwei is 10
−9

ETH. The maximum

cost to update the price for one asset is maximum gas used times

the maximum gas price. This amount comes in the order of 10
7

Gwei, or 0.01 ETH. At the current market price of around $1600,

this value is less than $20. These costs should be feasible in any

practical scenario.

8 DISCUSSION
Lending platform users should also be aware of the potential risks

and exercise caution when using the platform. To defend against

oracle manipulation attacks, lending platforms use several mech-

anisms to ensure the accuracy and integrity of their oracle data.

However, each of these mechanics have their own limitations. These

mechanisms include:

• Multiple oracle sources. Lending platforms can use multiple

independent oracle sources to obtain pricing data for collateral

assets, which reduces the risk of a single point of failure or ma-

nipulation. The platform can then use an algorithm to take a

weighted average of the prices obtained from each oracle to ar-

rive at a more accurate price. One limitation of using multiple

oracle sources is that it can increase the complexity and cost of

maintaining the platform. Each additional oracle source requires

SecDeLP : Secure Decentralized Lending Platforms against Oracle Manipulation Attacks Conference’17, July 2017, Washington, DC, USA

Figure 4: Confidence Interval Upper bound of 𝜃 ′ (in %) vs Market Capitalization value (in USD)

additional infrastructure and maintenance costs, which can be

prohibitive for smaller platforms or those with limited resources.

Moreover, if all of the oracle sources are compromised or manip-

ulated in the same way, using multiple sources may not provide

effective protection against oracle manipulation attacks.

• Price feeds and averaging. Lending platforms can also use

price feeds and averaging mechanisms to smooth out any out-

liers or anomalies in the oracle data. For example, the platform

can discard any prices that deviate significantly from the median,

or use a moving average to smooth out short-term fluctuations

in the market. A limitation of using price feeds and averaging

mechanisms is that they can be susceptible to algorithmic or

statistical attacks. For example, an attacker may be able to ma-

nipulate the median or moving average by introducing a large

number of fake transactions or orders. Additionally, price feeds

and averaging mechanisms may not be effective in cases where

the market experiences sudden and significant price changes.

• Timelock mechanisms. Some lending platforms use timelock

mechanisms to delay the execution of loan liquidations or other

transactions until after the oracle data has been verified and con-

firmed by multiple sources. This can prevent attackers from ex-

ploiting temporary price fluctuations or manipulating the oracle

data. However, they can also introduce delays and inefficiencies

into the platform. For example, if a timelock mechanism delays

the execution of loan liquidations, it may leave the platform

vulnerable to losses due to price fluctuations during the delay

period. Moreover, timelock mechanisms may not be effective

against attacks that occur rapidly or in a coordinated manner.

• Staking and reputation systems. Lending platforms can also

use staking and reputation systems to incentivize oracle providers

to provide accurate and reliable data. For example, the platform

can require oracle providers to stake a certain amount of tokens or

reputation points to participate, and penalize them for providing

inaccurate or manipulated data.A limitation of using staking and

reputation systems is that they can be susceptible to sybil attacks

or other forms of manipulation. For example, an attacker may be

able to create multiple fake oracle providers or manipulate the

reputation system by colluding with other providers. Moreover,

staking and reputation systems may not be effective in cases

where the incentive structure is not aligned with the interests of

the platform or its users.

Overall, defending against oracle manipulation attacks requires

a combination of technical and economic mechanisms to ensure

the accuracy and integrity of the oracle data. By implementing

these mechanisms, lending platforms can reduce the risk of losses

due to oracle manipulation and provide a more secure and reliable

platform for borrowers and lenders. At the same time, DLPs should

carefully consider these limitations when designing their defense

strategies and take a multi-layered approach to ensure the security

and integrity of their platform.

Conference’17, July 2017, Washington, DC, USA Sanidhay Arora, Yingjiu Li, Yebo Feng, and Jiahua Xu

REFERENCES
[1] Massimo Bartoletti, James Hsin-yu Chiang, and Alberto Lluch-Lafuente. “SoK:

Lending Pools in Decentralized Finance”. In: CoRR abs/2012.13230 (2020). arXiv:

2012.13230. url: https://arxiv.org/abs/2012.13230.

[2] Giulio Caldarelli and Joshua Ellul. “The Blockchain Oracle Problem in Decen-

tralized Finance—A Multivocal Approach”. In: Applied Sciences 11.16 (2021). doi:
10.3390/app11167572.

[3] Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. “A Semantic Frame-

work for the Security Analysis of Ethereum Smart Contracts”. In: Principles of

Security and Trust. Ed. by Lujo Bauer and Ralf Küsters. Cham: Springer Interna-

tional Publishing, 2018, pp. 243–269. isbn: 978-3-319-89722-6.

[4] Daniel Perez et al. “Liquidations: DeFi on a Knife-edge”. In: Financial Cryptog-
raphy and Data Security: 25th International Conference, FC 2021, Virtual Event,
March 1–5, 2021, Revised Selected Papers, Part II 25. Springer. 2021, pp. 457–476.

[5] Kaihua Qin et al. “Attacking the DeFi Ecosystem with Flash Loans for Fun and

Profit”. In: CoRR abs/2003.03810 (2020). url: https://arxiv.org/abs/2003.03810.

[6] Rekt News. 2021. url: https://rekt.news/leaderboard/.
[7] Fabian Schär. “Decentralized Finance: On Blockchain- and Smart Contract-Based

Financial Markets”. In: Review 103.2 (Apr. 2021), pp. 153–174. doi: 10.20955/r.

103.153-74. url: https://ideas.repec.org/a/fip/fedlrv/91428.html.

https://arxiv.org/abs/2012.13230
https://arxiv.org/abs/2012.13230
https://doi.org/10.3390/app11167572
https://arxiv.org/abs/2003.03810
https://rekt.news/leaderboard/
https://doi.org/10.20955/r.103.153-74
https://doi.org/10.20955/r.103.153-74
https://ideas.repec.org/a/fip/fedlrv/91428.html

	Abstract
	1 Introduction
	1.1 Our Contributions

	2 Background and Related Work
	3 Preliminaries
	4 Standard DLP Model
	4.1 Security Model of a standard DLP
	4.2 General DLP Security Factors
	4.3 Liquidation Threshold Calculation
	4.4 -collateralization-safe DLP model

	5 Adversary Model
	5.1 Basic Blockchain and Adversary Model
	5.2 Understanding Oracle Manipulation Attack

	6 SecDeLP : Secure DLP Solution
	6.1 Prerequisites
	6.2 Overview and assumptions
	6.3 SecDeLP Algorithm
	6.4 SecDeLP Theorem
	6.5 Calculating the input parameters

	7 SecDeLP : Practicality Analysis
	7.1 Are SecDeLP requirements practical?
	7.2 SecDeLP additional cost analysis

	8 Discussion

