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Abstract
The majority of previous researches address-
ing multi-lingual IE are limited to zero-shot
cross-lingual single-transfer (one-to-one) set-
ting, with high-resource languages predomi-
nantly as source training data. As a result,
these works provide little understanding and
benefit for the realistic goal of developing a
multi-lingual IE system that can generalize to
as many languages as possible. Our study aims
to fill this gap by providing a detailed anal-
ysis on Cross-Lingual Multi-Transferability
(many-to-many transfer learning), for the re-
cent IE corpora that cover a diverse set of
languages. Specifically, we first determine
the correlation between single-transfer perfor-
mance and a wide range of linguistic-based
distances. From the obtained insights, a com-
bined language distance metric can be devel-
oped that is not only highly correlated but
also robust across different tasks and model
scales. Next, we investigate the more general
zero-shot multi-lingual transfer settings where
multiple languages are involved in the training
and evaluation processes. Language clustering
based on the newly defined distance can pro-
vide directions for achieving the optimal cost-
performance trade-off in data (languages) se-
lection problem. Finally, a relational-transfer
setting is proposed to further incorporate multi-
lingual unlabeled data based on adversarial
training using the relation induced from the
above linguistic distance. Experimental results
on two practical multi-lingual IE tasks demon-
strate our method significantly outperforms
baselines across tasks and languages simulta-
neously. Additionally, by carefully designing
the multi-lingual training to utilize data from
relevant languages, we can achieve a substan-
tial boost in generalization ability with reason-
able labor cost for the additional data collec-
tion.

1 Introduction

The objective of Information extraction (IE) is to
identify and extract structure information, such

as entities, relations, and events, from natural un-
structured text. IE plays an important role in
various downstream applications, including Ques-
tion Answering, Knowledge Graph Construction,
News Analysis, etc. Solving IE tasks pose signif-
icant challenges for NLP models as they often re-
quire the understanding of complex features of nat-
ural languages. For example, to extract relations
within a sentence, models first need to learn spe-
cialized structures of the corresponding language
to identify entities mentioned in the given text.
Next, a deep understanding of context is required
to correctly classify the relations between these en-
tities. These challenges are further exacerbated in
multilingual settings, where datasets are collected
from multiple languages, each of which contains
language-specific characteristics and structures.

The rapid development around English-based
datasets has pushed machine performance to be on
par with human ability in English tasks, prompt-
ing recent works to explore NLP research in other
languages (Liang et al., 2020; Ruder et al., 2021).
However, despite advanced large-scale architec-
tures and high English results, current models no-
tably under-perform in new languages, especially
those that are considered low-resource and lack
high-quality datasets for ne-tuning. Cross-lingual
Transfer, as a result, becomes one of the most im-
portant directions in the field. Given a particular
task, the goal of Cross-lingual Transfer is to train
multilingual models over high-resource source lan-
guages that can solve textual tasks in new target
languages despite the shifts in linguistic origin.

Currently, the most popular and practical
approach for IE involves Zero-Shot Cross-
Lingual (ZSCL) transfer (Conneau et al., 2020;
Goyal et al., 2021). These methods fine-tune
Transformer-based multilingual Language Models
(mLMs), which were pre-trained using unlabeled
text from hundreds of languages, for downstream
tasks using high-resource source-language labeled



datasets (predominantly English). The resulting
models are directly used for evaluation on the
corresponding tasks in target languages. Stud-
ies have shown, however, performance of these
multi-lingual models varies substantially across
languages and tasks. Several factors have been
attributed to this phenomenon, ranging from data-
dependent statistic(e.g. dataset size, word over-
lap) (Malkin et al., 2022), to data-independent fea-
tures (e.g. phylogenetic and typological features)
(Lin et al., 2019; Dolicki and Spanakis, 2021).
Based on these previous observations, we believe
that there is a deeper connection between cross-
lingual transfer ability and the relations in the lin-
guistic landscape. Unraveling this correlation can
provide tremendous practical implications for IE.
First, it serves as a guide for data collection pro-
cess to achieve optimal cost-performance trade-
off by gathering training samples from appropri-
ate source languages for a target language. Fur-
thermore, the modeling process can also be tai-
lored such that the learned representations explic-
itly capture the linguistic relations to improve gen-
eralization across languages.

Previous papers following the above direction
define the problem as a Performance Prediction
task. In (Lin et al., 2019; Dolicki and Spanakis,
2021; Srinivasan et al., 2021), a regression model
is trained to take linguistic features of the source-
target language pairs as input to predict a trained
model performance scores on target languages.
Despite high prediction accuracy, these works are
insufficient for the following two reasons. First,
they place too much emphasis on the accuracy of
the regression model, which is trained for a spe-
cific architecture on a particular task. As the train-
ing configuration varies widely in practice, the
results obtained from the performance prediction
models may become unreliable and not applicable
in general. Another reason is that previous work
is only limited to the setting of single-transfer be-
tween two languages, in which only one source
language (predominately English) is utilized. Cur-
rent advances in translation model and data gath-
ering process have enabled the creation of datasets
in many languages, thus multiple source languages
should be considered. Intuitively, additional train-
ing data from more languages can help improve
model’s generalization on downstream tasks, and
learning from text in multiple languages may have
a positive effect on zero-shot transfer. We be-

lieve that multi-transfer setting is the next impor-
tant step for cross-lingual transfer, both to improve
model performance across languages and to pro-
vide a more complete picture of multi-linguality
in machine learning. In this paper, we focus on
what has been missing in previous works by aim-
ing to answer the following three major research
questions:

Q1: How do the relations in the linguis-
tic landscape affect an IE models cross-lingual
transfer ability? We use URIEL Typological
Database (Littell et al., 2017) to extract phylo-
genetic and typological properties of each lan-
guage. These properties, represented as multi-
dimensional binary features, are used to compute
the pair-wise linguistic distances (or equivalently
the similarity scores) between languages. We
compare the correlation between these scores and
model single-transfer performance. A source lan-
guage with a high correlation value would imply
that we can infer its ability to transfer to different
languages using only linguistic relations, without
the need to actually fine-tune models.

Q2: Can we implicitly leverage these linguis-
tic features as dataset-independent knowledge
to efficiently address the more general multi-
transfer setting? While many-to-many cross-
lingual transfer has the potential to significantly
improve single-transfer performance, it would also
require gathering data from multiple languages.
Given a set of languages and their linguistic fea-
tures as the only prior information, we aim to
find the optimal subset of source languages to
gather labeled data for zero-shot cross-lingual
multi-transfer to target languages. The goal is to
achieve the best cost-performance trade-off on all
languages, without having to fine-tune the mLMs
on an exponential number of possible language
combinations.

Q3: Can we explicitly integrate these lin-
guistic relations in the learning process to ef-
fectively improve multi-transfer performance?
We then investigate further into the possibility of
directly embedding the linguistic relations in the
fine-tuning process. The hypothesis is that, by cap-
turing these connections, the multi-lingual repre-
sentations would be able to adaptatively generalize
to not only languages that are closely related to
source languages, but also distant languages that
share little similarity with the available training
data.



The following observations are obtained from
our quantitative experiments and qualitative analy-
sis, through 3 levels of transfer settings:

1) Single-transfer (ZSCL-S) - Only 1 la-
beled source language available. It is possi-
ble to achieve a high degree of correlation be-
tween model ZSCL performances and linguistic
relations, using a combination of syntax, inventory,
and phonology features from URIEL. However, in
contrast to prior works which only focus on syntac-
tic transfer when fine-tuning, our combined metric
places the least importance on the syntax feature.
This implies that previous researches are subopti-
mal and incomplete, prompting further investiga-
tions into the problem.

2) Multi-transfer (ZSCL-M) - Multiple la-
beled source language available. We first clus-
ter languages based on the combined metric above.
Then, by selecting source languages following the
guidance from the resulting clusters, we observe
significant improvements in ZSML performances
over the naive method of randomly picking source
languages. In other words, with only the prior
linguistic knowledge, we can efficiently choose a
suitable small subset of languages for labeled data
annotations, to fine-tune a MMLM to perform best
on a given set of languages.

3) Relational-transfer (ZSCL-R) - ZSCL-M
with additional multi-lingual unlabeled data.
We leverage unlabeled data from all available lan-
guages and their linguistic relations as inputs to
graph-relational adversarial learning framework
(Xu et al., 2022b), a generalization of adversarial
language adaption (Chen et al., 2018) that can only
perform strict uniform alignment for pair-wise
transfer. By conditioning the multi-lingual repre-
sentation flexibly on the connections expressed by
the corresponding language relational-graph, we
achieve a considerable increase in transfer perfor-
mances across every language. This is only at the
small cost of collecting additional unlabeled data
from other languages.

2 Related Work

Zero-shot Cross-lingual Transfer The majority
of recent ZSCL works (Fang et al., 2021; Chi et al.,
2021) follow single-transfer setting, using compre-
hensive multi-lingual multi-task benchmarks such
as XTREME (Ruder et al., 2021), or XGLUE
(Liang et al., 2020). These datasets provide En-
glish training data for fine-tuning the pre-trained

SMILER % MINION %
ita 19.71 eng 39.76
fra 16.25 pol 13.7
deu 13.75 tur 13.7
por 11.54
nld 10.38
eng 9.57 spa 9.99
kor 5 por 4.59
pol 4.5 swe 4.59
spa 2.95
ara 2.49
rus 1.71 hin 4.58
swe 1.2 kor 4.58
fas 0.7 jpn 4.5
ukr 0.26

Table 1: Percentage distributions of training data in each task
for every language, which are separated into high, medium,
and low resource categories. The shared languages are color-
coded, with red indicating that the language belongs to a dif-
ferent category between the two tasks, whereas green indi-
cates otherwise. This study involves a total of 17 languages
including: arabic (ara), german (deu), english (eng), farsia
(fas), french (fra), hindi (hin), italian (ita), japanese (jpn), ko-
rean (kor), dutch (nld), polish (pol), portuguese (por), rus-
sian (rus), spanish (spa), swedish (swe), turkish (tur), and
ukrainian (ukr).

Figure 1: The pairwise Pearson correlation for all computed
language distances.

MMLMs, which are then evaluated on translated
test sets in different languages. As a result, En-
glish becomes the dominant source language for
transfer in following ZSCL researches (Phang
et al., 2020), which is suboptimal due to the lin-
guistic diversity of languages. Specifically, (Ke-
ung et al., 2020) discovers that model’s Engish dev
accuracy does not correlate with its performance
of other languages, and (Lauscher et al., 2020)
demonstrates the limitation of using English to
transfer to low-resource languages. Furthermore,
(Turc et al., 2021) find that other high-resource lan-
guages such as German and Russian often transfer
more effectively when the set of target languages
is diverse or unknown a priori. Our work builds on
these findings and provides a more complete view
of language relations and ZSCL performances of
mLMs.

Linguistic Diversity By probing the learned
representation of mLMs, (Pires et al., 2019; Lim-
isiewicz et al., 2020) have found syntactical infor-
mation implicitly encoded in layers of the multi-
lingual models (typically at middle-level layers of



the architectures). (Xu et al., 2022a) shows that
the pre-training and fine-tuning processes trans-
form these features and directly impact model
multi-lingual performances. Further investigation
by (Lin et al., 2019) demonstrates that distances
based on linguistic features, including phyloge-
netic and typological properties, between two lan-
guages, are correlated with cross-lingual transfer
capacity. These features can be used to further
improve transfer guide parameters sharing among
languages (Ammar et al., 2016), or data selection
(Ponti et al., 2018). Several works (Lin et al., 2019;
Srinivasan et al., 2022) specifically aim to predict
cross-lingual transfer performance directly, with-
out training, only from linguistic distances of lan-
guages. Our work follows their line of reasoning
but aims to address their limitation to restricted ex-
periment settings (one-to-one transfer, model ar-
chitectures, tasks, etc.). In particular, we focus
on building a comprehensive picture of linguistic
relations and transfer performances, in the gen-
eral zero-shot mult-transfer (many-to-many) set-
ting, for practical information extraction tasks.

Adversarial Language Learning Inspired
by domain adversarial neural network (DANN)
(Ganin et al., 2016) from domain adaptation re-
search, Adversarial Language Adaptation (ALA)
network can be used to extract language-invariant
features useful for downstream tasks across lan-
guages. Several works have successfully adopted
ALA for cross-lingual transfer setting for dif-
ferent tasks such as sentiment analysis (Chen
et al., 2018), information extraction (Nguyen et al.,
2021; Ngo Trung et al., 2021), and name tagging
(Huang et al., 2019). We generalize these works
to cross-lingual transfer with multiple source-
target languages. This is achieved through graph-
relational adversarial learning framework follow-
ing (Xu et al., 2022b), a generalization of DANN.

3 Datasets

Information extraction tasks extract structured
contextual information from unstructured text,
thus requiring models comprehension of both syn-
tactic and semantic knowledge in multilingual doc-
uments. In this paper, to demonstrate to the het-
erogeneity of ZSCL for multi-lingual IE problems
in practice, we experiment on two recent datasets
that provide training and evaluation data in a wide
range of languages.

MINION: Multi-lingual Event Detection

Figure 2: Feature importance weights of the optimal com-
bined metric for each (task, model scale) setting. Small, base,
and large models are represented by the colors red, green, and
blue, respectively.

(MINION) (Pouran Ben Veyseh et al., 2022) an-
notates event triggers for 8 typologically different
languages. The goal event detection task is to
identify the word(s) that describe the occurrence
of an event the best from a given text, also referred
to as he event trigger, and classify that event into
one of the 16 predetermined event types.

SMiLER: Samsung MultiLingual Entity and
Relation Extraction (SMiLER) (Seganti et al.,
2021) consists of annotated entities and relations
from 14 languages. Given an input text, SMiLER
not only requires models to identify two entity
mentions in the text but also predict their relation
from a set of 36 predefined relations.

The distribution of every language training set
in each dataset is presented in Table 1. After
categorizing the languages into high/medium/low
resources groups, we notice a considerable dis-
crepancy in the categories of shared languages be-
tween the two tasks This reflects the diversity of
actual multi-lingual data annotation processes for
practical tasks. Thus, instead of balancing data
across languages as in prior studies (Malkin et al.,
2022), we decide to utilize the original splits of
each dataset to demonstrate a realistic picture of
cross-lingual transfer performance.

4 Linguistic Relations

To illustrate a comprehensive picture of the lin-
guistic relations among the available languages,
we consider different base linguistic features and
how to compare them, into a total of 14 distance
metrics



Figure 3: The language-based average Pearson correlation
scores of all computed linguistic distances (including the
combined metric).

4.1 Linguistic Features

Following the standard approach, We use five dif-
ferent linguistic features provided by the URIEL
Typological Database (Littell et al., 2017), includ-
ing a phylogeny feature, a geography feature, and
three typological features (syntax, phonology, and
inventory):

Phylogeny (fam): the membership in language
families derived from the world language family
tree in Glottolog (Hammarström et al., 2022)

Geography (geo): the language location based
on Glottolog, more specifically the orthodromic
distance between the language and a fixed point
on the surface of the earth.

Syntax: the language syntactic structures de-
rive from either WALS (Dryer and Haspelmath,
2013) or Ethnologue (Lewis, 2009)

Phonology: the phonology features extracted in
a similar manner from WALS and Ethnologue

Inventory: the phonetic features derived from
PHOIBLEs phonetic inventories (Moran et al.,
2014)

Each of the above linguistic features is repre-
sented by a multi-dimensional binary vector for
every language, where a value 0 (1) in each dimen-
sion represents the absence (presence) of a partic-
ular linguistic phenomenon for that language.

4.2 Distance Metrics

To calculate the linguistic distance between lan-
guages based on the above feature vectors, previ-
ous works only consider cosine or Euclidean dis-
tance between the binary vectors. However, nu-
merous binary similarity measures have been pro-
posed and play a critical role in many problems
in various fields. These binary metrics are distin-
guished by their unique synthetic properties (neg-
ative matches, count differences, correlation, etc.),

and applying an appropriate one is the key to more
accurate data analysis results. Based on the cate-
gorization in (Choi et al., 2009) which survey over
76 binary similarity measures, we decide to focus
on the following 4 representative distances: Ham-
ming, Jaccard, Inner-product, and Anderberg.

Figure 1 show the correlations between every
pair of our considered linguistic distances (the full
detailed distance values are provided in figure 5)
in appendix A. Aside from fam and geo which
are computed using Euclidean distance, each of
the three typological features is computed using
the chosen 4 binary metrics, resulting in a total
of 14 linguistic distance metrics in the figure. We
can observe significant variations in metrics based
on different types of features from the correla-
tion heatmap. In addition, there are also notice-
able distinctions between several metrics within
the same feature types, particularly between An-
derberg and Hamming-based distances. Noted that
in the context of realistic cross-lingual transfer,
these two distances maybe provide more insight
as transfer performance is asymmetric (Hamming)
and non-zero self-distance (Anderberg). Overall,
our choice of linguistic distances ensures a high
diversity of correlation that can be computed from
the language features.

5 Zero-shot Cross-lingual Single-transfer

To answer the first research question, we eval-
uate ZSCL-S scores for every language pair of
each task, in three model scales: small (MiniLM
(Wang et al., 2020)), base (XLM-Roberta-base
(Conneau et al., 2020)), and large (XLM-Roberta-
large). Next, Pearson correlations are computed
between the transfer performances and linguistic
distances to identify the degree to which the rela-
tions in the linguistic landscape determine a mod-
els cross-lingual transfer ability.

Experimental Setup In ZSCL-S, given a pair
of source and target languages, the model is
trained using labeled data from source language.
The ZSCL-S score is then defined as the zero-shot
evaluation of the trained model on the test set of
target language.

Transfer Performance Detailed transfer scores
are provided in figures 6 and 7 in appendix A.
While the language-wise order of the transfer
scores is maintained across different model sizes,
it is not clear, however, if language identities alone
are able to determine model cross-lingual transfer



ability. This is due to the significant difference be-
tween the results of the two tasks. Even more un-
expectedly, model transfer scores do not increase
linearly with its number of parameters

5.1 Linguistic Correlation

We determined if any of the linguistic distances
defined in section 4 can explain the heterogeneity
of resulting transfer performances, across all set-
tings.

Distance-Transfer Correlation We compute
the Pearson correlation between the transfer score
and distance vector between each language pair.
The detailed results are presented figures 8 and
9 in appendix A. While there are several dis-
tances that achieve a correlation score of over
0.7, effectively predicting the corresponding trans-
fer performances, none of the linguistic relations
are highly correlated with the transfer scores for
both tasks. In particular, syntax and inventory
features have above-average correlation scores
for SMiLER, whereas only phonology-based dis-
tances are effective for the event detection task.

Combined Metric In order to achieve our ob-
jective of creating a universal metric that can be
applied across different practical settings, we de-
fine a combined metric as a weighted average
of all relevant linguistic features. For each task,
the optimal weights are the solution of a simple
constrained correlation linear maximization (the
weights are constrained to be non-negative and
sum to 1). Figure 2 compares the resulting weight
importances between the two tasks across model
scales. Similar to the above assessment, there is
a divergence between MED and SMilER on how
the linguistic features are weighted in the optimal
combined metric.

From these observations, we propose a joint
combined metric that involves all three of the
typological features as follows: dcomb =
0.4 ∗ dander-syntax + 0.2 ∗ dinner-phonology + 0.4 ∗
dander-inventory. To demonstrate the adaptability
of the new distance, we provide the mean cor-
relation scores (across all languages) of all com-
puted linguistic distances in figure 3. Not only
dcomb achieves the highest correlation with trans-
fer performances overall (above 0.6 for every set-
ting), the combined metric also greatly lessens the
score’s variability amid tasks and scales of mod-
els. This implies that dcomb has the potential to
be a general metric to approximate ZSCL perfor-

mances prior to model training. The following sec-
tions will use this combined distance for guiding
the language selection and adversarial training in
multi-transfer setting.

Figure 4: Language clustering results for languages in
SMiLER (a and b) and MINION (c and d). The graphs on
the right (b and d) are the same as the ones on the left, but
with connected medoids indicated by the new red edges.

SMALL BASE LARGE MODEL_AVG
medoids* 1.8 1.7 0.7 1.4

tur* 2.7 1.0 1.0 1.5
por* 6.0 6.1 5.8 6.0M

task_avg 3.5 2.9 2.5 3.0
medoids* 2.1 1.4 1.9 1.8

ita* 3.9 3.7 3.1 3.5
nld* 9.2 8.6 6.7 8.2
fas* 1.8 1.7 0.7 1.4

S

task_avg 4.2 3.8 3.1 3.7

Table 2: Differences in ZSCL-M scores (F1) of Inter-cluster
(medoids*) and Intra-cluster (medoid_lang]*) configurations
over Random configuration, for tasks MED (M) and SMiLER
(S).

6 Zero-shot Cross-lingual Multi-transfer

We address question Q2 by evaluating multi-
transfer performances between two sets of lan-
guages. In particular, we define a transfer con-
figuration as an experimental setting that specifies
languages inside the source and target sets, and a
transfer run as an actual experimental evaluation
of a transfer configuration. As the number of con-
figurations is exponential in terms of the number
of languages, it is computationally impossible to
evaluate every configuration, even more so for dif-
ferent tasks and model scales. Therefore, we focus
solely on the resource-constrained scenario, which
is also equivalent to the setting with the minimum
number of source languages. Based on the result
from the previous section, we propose to limit the
configuration scope using the general combined
distance metric as follows.

6.1 Language Selection
In the resource-constrained setting, our goal is to
select the minimal set of source languages Ds that



can maximally transfer to a given target language
set Dt. We further restrict our attention to trans-
fer configurations with Dt as set of closely related
languages in terms of cross-lingual transfer. As-
suming pair-wise transfer is highly correlated with
multi-transferm, these configurations can be iden-
tified by clustering languages based on the com-
bined linguistic distance dcomb.

Language Clustering We use k-means (Lloyd,
1982) to partition the available languages into clus-
ters based on dcomb. In particular, k-medoids
1, a variant of k-means is used for both clus-
tering and finding the medoids (the actual data
point/language that is the center of each cluster).
These medoid languages should be the optimal lan-
guage that transfers best to every member of its
cluster. The resulting clusterings are shown in fig-
ure 4 for both MINION (4c) and SMiLER (4a).
The minimal number of source languages (|Ds|) is
chosen to be equal to the minimal number of clus-
ters such that each cluster has at least 3 members
(so we can meaningfully evaluate multi-transfer
setting).

6.2 Experimental Setup

In ZSCL-M, source training set Ds consists of Ns

labeled datasets, and the goal is to transfer to tar-
get cluster Dt. For MINION task, Ns = 2 and Dt

can be the turkish cluster tur∗, or the portuguese
cluster por∗. For SMiLER, Ns = 3 and Dt can
be the italian cluster ita∗, the dutch cluster nld∗,
or the farsi cluster fas∗ We are interested in veri-
fying the following two hypotheses:

(1) Inter-Cluster Transfer: The best set of lan-
guages that transfer best across every cluster is the
set of every medoid language.

(2) Intra-Cluster Transfer: The best set of lan-
guages that transfer best for a given cluster is a
subset of that cluster.

6.3 Transfer Performance

Detailed results of multi-transfer performances are
provided in figures 10 and 11 in appendix A,
from which we can observe a clear improvement
over single-transfer setting owning the additional
training data. Our main interest here is how ef-
fective dcomb is in guiding the language selec-
tion for ZSCL-M. Table. 2 shows the differences
in transfer scores of Inter-cluster (medoids∗)
and Intra-cluster ([medoid_lang]∗) configura-

1https://en.wikipedia.org/wiki/K-medoids

tions over Random configuration. Specifically,
medoids∗ measures inter-cluster transfer capacity
of the set Ds consisting of every medoid from each
cluster, to the target set Dt of all considered lan-
guages. On the other hand, [medoid_lang]∗ mea-
sures intra-cluster performance of a randomly sam-
pled set Ds of Ns languages from the correspond-
ing cluster, to the target set Dt of every language
in that cluster. Finally, Random configurations are
sampled from the set of configurations that are not
part of the above two configurations. Except for
Inter-cluster configuration which only has one op-
tion, the results of Intra-cluster and Random con-
figurations are the average of their sampled trans-
fer runs.

The results from table 2 show that language
selection based on dcomb provides a considerable
boost in multi-transfer scores for every (task, con-
figuration, model scale) setting. This suggests
that these medoid languages have the potential
to achieve optimal cost-performance trade-offs in
multi-transfer setting. Notably between the two
tasks, SMiLER has higher performance increases
with only one additional source languages, despite
having almost double the number of languages in
target set. This implies that as the number of lan-
guages grows considerably larger, there may exist
a magnitude smaller set of optimal universal lan-
guages (medoids) that are able to transfer to every
language extremely well.

SMALL BASE LARGE MODEL_AVG
ZSCL-R DANN ZSCL-R DANN ZSCL-R DANN ZSCL-R DANN

medoid* 0.7 -3.7 1.4 -1.9 1.3 -2.8 1.1 -2.8
tur* 4.1 -0.5 2.7 -2.7 3.6 -0.1 3.5 -1.1
por* 0.6 -5.5 -0.3 -4.2 -0.3 -5.8 0.0 -5.2M

task_avg 1.8 -3.2 1.3 -2.9 1.5 -2.9 1.5 -3.0
medoid* 1.8 -11.8 3.2 -4.2 0.6 -1.7 1.9 -5.9

ita* 3.0 -15.1 3.9 -5.5 2.3 -5.8 3.1 -8.8
nld* 2.4 -10.9 2.8 -4.9 0.0 -5.1 1.7 -7.0
fas* -0.2 -10.6 2.1 -4.2 2.4 -2.7 1.4 -5.8

S

task_avg 1.8 -12.1 3.0 -4.7 1.3 -3.8 2.0 -6.9

Table 3: Difference between transfer performances of
adversarial training methods and ZSCL-M runs in inter-
cluster setting.

7 Zero-shot Cross-lingual
Relational-transfer

Due to limited access to multi-lingual annotators,
gathering labeled data across languages is diffi-
cult. Previous section address this by careful lan-
guage/data selection to optimize cost-effect. In
contrast, unlabeled data is easy to collect, but
leveraging it correctly for ZSCL is non-trivial.
This section investigates the effectiveness of ad-
versarial training approach for the more general
ZSCL-M setting, and the possibility of further im-

https://en.wikipedia.org/wiki/K-medoids


proving multi-lingual transfer through explicitly
integrating our transfer-correlated linguistic rela-
tions.

7.1 Experimental Setup
We follow the same setup as in ZSCL-M, but each
language is accompanied by an unlabeled dataset
which can be used for training. The model use
labeled data from the source cluster to learn the
task, whereas unlabeled data from another clus-
ter is used to help transfer source performance to
that target cluster. The goal is to bridge the perfor-
mance between 2 different language clusters with
the aid of given unlabeled text.

Adversarial Language Adaptation A typical
method use for ZSCL-S is adversarial language
adaptation (ALA) (Chen et al., 2018; Nguyen
et al., 2021) which employs a language discrim-
inator that takes an encoded representation from
mLMs as its input and predicts its origin (lan-
guage). By pushing the encoder to both minimize
the downstream loss and maximally misdirect the
language predictor (adversarial training), the re-
sulting representation can be indiscriminate with
respect to the shift between the languages while
also discriminative for the main learning task. Ap-
ply ALA for ZSCL-M setting is equivalent to ap-
plying DANN for a single joint source domain to a
single joint target domain (the union of every lan-
guages in Ds and Dt, respectively).

Zero-shot Cross-lingual Relational-transfer
We extend ALA to the case of multiple source and
target languages through Graph-relational domain
adaptation (GrDA) (Xu et al., 2022b), a general-
ization of DANN to multi-domains adaptation set-
ting by introducing a domain graph that captures
heterogeneous relations among domains. GrDA
relaxes the strict uniform alignment of DANN to
allow flexible and effective adaptation between
distant domains. We use the language cluster-
ing graphs on the right of figure 4 as domain
graphs for GrDA. Noted that additional direct
connections between medoid languages are intro-
duced (red edges) to facilitate inter-cluster transfer.
We refer to this adversarial learning process for
ZSCL that directly embeds the linguistic relations
into the representations as Zero-shot Cross-lingual
Relational-transfer (ZSCL-R).

7.2 Transfer Performance
Performances of the baseline DANN and the pro-
posed adversarial training method ZSCL-R are

provided in table. 3, which follows the same
format as table. 2. However, instead of com-
paring against Random configurations, they are
compared directly with results of ZSCL-M runs
of the corresponding configurations, but only in
terms of inter-cluster transfer. The negative re-
sults of DANN confirm that strictly aligning lan-
guage representations uniformly is not effective in
ZSCL-M setting. As the model scale gets smaller,
model’s representation becomes less expressive,
whereas the language-invariant feature of all lan-
guages is harder to capture as the number of lan-
guages grows. Thus, the adverse effect gets signif-
icantly worse on small models for SMiLER task
(-12 points on average). In contrast, ZSCL-R
provides consistent improvements over ZSCL-M
for most configurations. Due to the flexibility of
GrDA alignment, ZSCL-R performs even better
as the number of languages increases, effectively
leveraging the additional unlabeled data to help
improve inter-cluster transfer ability of models.

8 Conclusion

We explored the general cross-lingual transfer
learning setting where multiple source and target
languages are involved. Our experiments on two
practical information extraction tasks across dif-
ferent model scales and languages reveal new gen-
eral insights on cross-lingual transfer learning: (1)
There is a correlation between linguistic distances
and single-transfer performances; however, sim-
plistic measures based on syntax features are only
sufficient for syntactic-based tasks. We develop a
combined distance based on various metrics and
linguistic features that achieves a high correlation
with cross-lingual transfer score robustly across
all settings. (2) The proposed combined metric
provides useful directions for language clustering
and selection to achieve optimal cost-performance
trade-off in multi-transfer to a specific group of
languages. (3) Finally, linguistic relations can
be leveraged with unlabeled data for adversarial
training to help generalize to a new group of lan-
guages with minimum additional annotation cost.
Our findings collectively suggest multi-transfer as
a new baseline for cross-lingual learning, and pro-
vide a baseline for efficient and effective multi-
transfer together with promising directions that fu-
ture work can further improve upon.



Limitations

Compared to prior cross-lingual transfer papers
(Srinivasan et al., 2022), our work aims to demon-
strate generalization across various hyperparame-
ters and design choices that affect the results of
previous investigations on the topic. Consequently,
this has led to significant computational demands,
forcing us to limit and simplify some aspects of
our experiments to ensure manageability. This sec-
tion outlines what we have and has not been able
to addressed, and suggests promising future direc-
tions that can be followed from our findings.

First, our combined metric is heuristically de-
fined based on the transfer-distance correlation
scores. Although the optimal metric for all situa-
tions is impossible to find and likely non-existent,
we anticipate that the ideal metric won’t differ sub-
stantially across settings of tasks and model archi-
tectures, and may only vary slightly from ours.
Nevertheless, an in-depth analysis is needed on
how a significant change in the distance metric can
impact ZSML-M and particularly ZSML-R, which
is explicitly guided by the metric.

Second, We only experiment with a minimum
number of language clusters needed for an ef-
fective evaluation of multi-transfer. There is no
guarantee that this minimal cost strategy is also
the one with the best cost-performance trade-off,
which can depend on the number of languages
and task availability. Future work may investigate
this trade-off as the problem scales to hundreds
of languages, in particular validating the hypoth-
esis stated in section 6.3: the best trade-off point
(the number of clusters) is an order of magnitude
smaller than the number of available languages.

Third, the decision to connect the medoids in
the language cluster graph for ZSCL-R is the
simplest solution to create a connected language-
relation graph. This, however, also implies the
path between any two languages has a maximum
length of 3, which does not reflect the actual
relation distance among languages. Further re-
search is needed to ascertain the optimal language
relational-graph, especially in intricate scenarios
that involve many languages and tasks.

Finally, our model scale only stops at hundreds
of millions of parameters, which are no longer con-
sidered large scale by today’s standard. Further
experimentation can test if our results hold for the
current billion scale models. A more interesting di-
rection would be to investigate cross-lingual multi-

transfer performance of parameter-efficient tuning
(Chen et al., 2022) and instruction tuning (Wei
et al., 2022), which have become the standard ap-
proaches for fine-tuning these massive scale mod-
els.
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A Detailed Experimental Results

In this section, we provide detailed result val-
ues for our experiments, including: linguistic dis-
tances in figure 5, ZSCL-S scores in figures 6 and
7, transfer-distance correlations in figures 8 and
9, ZSCL-M scores in figures 10 and 11, DANN
scores in figures 12 and 13, and finally ZSCL-R
scores in figures 14 and 15.
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Figure 6: Detailed transfer performances for MINION task in ZSCL-S setting.



Figure 7: Detailed transfer performances for SMiLER task in ZSCL-S setting.



Figure 8: Detailed Pearson correlations between ZSCL-S transfer scores and linguistic distances for MINION task.



Figure 9: Detailed Pearson correlations between ZSCL-S transfer scores and linguistic distances for SMiLER task.



Figure 10: Detailed transfer performances for MINION task in ZSCL-M setting.

Figure 11: Detailed transfer performances for SMiLER task in ZSCL-M setting.



Figure 12: Detailed transfer performances for MINION task of DANN baseline.

Figure 13: Detailed transfer performances for SMiLER task of DANN baseline.



Figure 14: Detailed transfer performances for MINION task in ZSCL-R setting.

Figure 15: Detailed transfer performances for SMiLER task in ZSCL-R setting.


