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Figure 1: Volume renderings of four data sets using shadows. From left to right, the data sets are Perlin Noise [34], Rayleigh-
Taylor Instability [11], Richtmyer-Meshhkov Instability [10], and Rotating Stratified Turbulence [20].

ABSTRACT

We present a parallel, distributed-memory technique that enhances
traditional ray-casting volume rendering of large data sets to high-
light the depth and perception of interesting volumetric features.
The technique introduces a lighting system that accounts for global
shadows across distributed MPI nodes while using shared-memory
parallelism within each node to compute shading information effi-
ciently. The first stage of the approach involves estimating energy
attenuation from a point light source through the global volume,
using a reduced spatial resolution representation of the volume, with
minimal global communication between nodes. It is then used in
the second stage during volume rendering to shade sample points
captured during ray-casting, generating a high-quality image. In this
work, we study the technique’s performance across varying spatial
resolutions of the estimated light attenuation using synthetic and
real-world volumetric data sets on distributed systems.

1 INTRODUCTION

Scientific visualization is instrumental in enabling scientists to un-
cover complex phenomena. Using innovative graphic methods, sci-
entists can traverse and examine volumetric data, retrieving vital
information and unveiling potentially obscured patterns. Among the
techniques available, volume rendering has proven to be very popu-
lar for visualizing volumetric data sets, as it permits the portrayal
of complex structures and the description of data attributes in an
intuitively comprehensible manner. However, depth and perception
of interesting volumetric attributes are often inadequately captured
by traditional volume rendering techniques.

Research in the graphics community has led to advancements
in photo-realistic rendering techniques that produce visually com-
pelling and immersive experiences. Path tracing and global illu-
mination, for instance, have effectively simulated realistic lighting,
shadows, and reflections. These advancements have significantly

*e-mail: mmathai@uoregon.edu
†e-mail: matt.larsen@luminarycloud.com
‡e-mail: hank@uoregon.edu

heightened the visual fidelity and realism of computer-generated
imagery across a variety of sectors, including entertainment, virtual
reality, and architectural visualization.

However, implementing photo-realistic rendering techniques on
large volumetric data sets introduces a significant challenge. As data
size and complexity expand, the computational demands become
too excessive for a single processing unit to handle. Supercomputers
are a promising environment, but many approaches were designed
only for a desktop machine and need to be rethought to work in a
distributed-memory setting. As a result, scientists’ ability to uncover
crucial insights it limited on large-scale volumetric data.

Addressing the challenges accompanying large volumetric data
sets, we propose a parallel, distributed-memory method that height-
ens traditional distributed ray-casting volume rendering by incorpo-
rating shadows from a point light source. Our technique employs
distributed-memory parallelism by utilizing multiple processing
units interconnected through MPI. The approach allows the efficient
distribution of the computational workload across multiple nodes,
thus enabling the rendering of large volumes, considering global
lighting effects and shadows.

The initial phase of our approach encompasses a method for es-
timating energy attenuation from point light source(s) through the
distributed volume. We generate a lower-resolution representation
of the input volume, called the “shadow volume,” to minimize the
inter-node communication overhead. This estimate is utilized in the
second phase, the actual volume rendering process, to shade sample
points gathered through ray-casting by estimating light contribu-
tions at sample locations, culminating in high-quality images that
emphasize depth and perception of interesting volumetric features.

In our research, we focus on investigating the performance of
our distributed-memory parallel technique across varying spatial
resolutions of the shadow volume. To validate the effectiveness
and applicability of our technique, we conduct experiments using
synthetic and real-world volumetric data sets on distributed systems.
We evaluate the performance and scalability of our approach to
showcase its potential in facilitating the exploration and analysis of
large-scale volumetric data, which in turn can enable scientists to
gain valuable insights into their data.



Figure 2: Illustration of our proposed algorithm. Section 3 contains more detail about the individual phases.

2 RELATED WORK

There are two main areas of related work: illumination models for
volume rendering and parallel volume rendering on supercomputers.
Our work considers the intersection of these two topics, i.e., how to
put shadows into the parallel volume rendering process.

2.1 Illumination Models for Volume Rendering

Illumination models for volume rendering and techniques are well
studied. Since its inception, researchers strove to improve the visual
quality of volume rendering. Volumetric path tracing [22], is the gold
standard in visual quality, but it is a brute force algorithm that lever-
ages Monte Carlo techniques to solve the rendering equation [29].
Even with modern hardware and variance reduction techniques, vol-
umetric path tracing can be cost-prohibitive (i.e., interactivity is
only achieved through progressive rendering) and complicated to
implement in a distributed-memory setting.

Shadow maps [42] have long been used to approximate direct
lighting contributions from light sources by rendering the scene from
the point of the light into a depth buffer. Direct lighting calculations
use values from the shadow map to determine if the point is in
shadow or not. Deep shadow maps [23] extended shadow maps
with a per-pixel fractional visibility function that enabled support for
shadows from semi-transparent surfaces and volumes. Deep shadow
maps were first applied to direct volume rendering by Hadwiger et
al. [16] in the context of scientific visualization. To our knowledge,
no distributed-memory implementations have been studied.

Behrens et al. [3] used discrete space shadow volumes in the
context of a slice-based [6] volume rendering technique. At each
point in the grid, the light attenuation along the path to the light
source is stored. In sliced-based approaches, shadows are calculated
by progressively attenuating the lighting, slice by slice, within a des-
ignated shadow volume. The closest work to our own, by Domonkos
and Csébfalvi [12], extends the slice-based approach to a distributed-
memory setting. Each rank locally renders both the volume slices
and the shadow slices, then proceeds with a distributed-memory
compositing phase that gathers the global information for each rank.
The slice-based shadow map approach needs to be calculated for
every frame. Both the texture slices and the shadow map must be
composited for each frame. Support for multiple lights is possible,
but the per-frame shadow overhead is a multiple of the number of
lights. To our knowledge, the this work is the only other work that

uses any shadow approximation technique in a distributed-memory
setting. Their approach, however, has some fundamental disadvan-
tages to our own. First, they calculate shadows along a series of
planes; achieving effects similar to our approach would require com-
positing hundreds of planes and thus be quite slow. Second, their
shadowing is calculated on a per-viewpoint basis, in contrast with
our approach which can amortize the shadow volume calculation
over many renderings.

2.2 Parallel Volume Rendering on Supercomputers
Distributed-memory parallel volume rendering can be image order
(over pixels), object order (over data), or a hybrid [5, 8, 30]. While
some work has considered image order [14, 39], the majority has
considered object order, as is our proposed technique. We assume
the data is partitioned into blocks, and every block is available in the
main memory of one MPI rank. These assumptions are consistent
with in situ processing. Of note, other works have considered repar-
titioning data blocks, in order to facilitate data compression [2, 41],
multi-resolution and out-of-core processing [4], and equal work-
load [24,25,28,33,40]. Other non-repartitioning works have focused
on parallel exchanges, including binary swap [26, 43] and Radix-
K [35, 37]. These latter works have often looked at massive scale,
as have some additional works focusing strictly on scalability and
barriers to scalability [9, 15, 17, 18, 36, 38].

3 ALGORITHM DESCRIPTION

3.1 Overview
Our algorithm augments ray-casted volume rendering with light
attenuation information. For each sample along a ray, our algorithm
evaluates the light attenuation at that sample – how much light makes
it through volumetric data (incorporating opacity information from a
transfer function) – and shades the sample color appropriately based
on the attenuation value. The light attenuation is effectively a three-
dimensional field, i.e., at every location in the three-dimensional
data set, the field describes how much light makes it to that location.
One possible approach for evaluating this field for a given sample is
dynamic evaluation. In such an approach, evaluating each sample lo-
cation would spawn a new calculation from the light source, through
the volume, to the sample location. That said, this dynamic ap-
proach would be inefficient in a distributed-memory parallel setting
since each calculation would likely involve coordination between



(a) Domains D1 & D2, across two MPI ranks (b) Local shadow volume of D1

(c) Local shadow volume of D2 (d) Global shadow volume of D1 & D2

Figure 3: A conceptual example of a data set with two domains, D1 & D2, both containing dense regions. Subfigure (a) shows the positions of
the dense regions, with a small sphere in D1 and a large cube in D2. Subfigure (b) introduces a light source and shows the shadow volume with
respect to D1. Importantly, this conceptual example is overly simple, as it treats the dense volumes as fully opaque; the approach introduced in
this paper handles semi-opaque volumes as well. Subfigure (c) shows the shadow volume with respect to only D2, ignoring any shadow effects
from D1. Finally, Subfigure (d) shows what our proposed approach would do for this configuration, i.e., the combination of the two. The result
is that the left face of the cube in D2 is in shadow due to the effects from D1.

many compute ranks. Instead, our algorithm uses a combination
of discretization with pre-processing. The discretization involves
representing the spatial volume as a grid of L x W x H vertices.
The pre-processing involves calculating the light attenuation at each
vertex of the grid. We refer to this combination of grid and light
attenuation field as the “shadow volume.” This approach allows
for an alternate way to calculate light attenuation at each sample
along a ray, namely identifying the shadow volume cell a sample
lies within and then interpolating a light attenuation value from the
eight vertices of the cell.

Our algorithm is exchanging accuracy for potentially improved
performance. The accuracy is reduced since our light attenuation
calculation is an approximation from the shadow volume as opposed
to an exact calculation. In terms of improved performance, the
number of grid points in the shadow volume can be significantly
smaller than the number of samples along the ray and the mesh
resolution of the input data. The reduced size compared to the input
data is particularly attractive for volume rendering large data sets on
supercomputers, minimizing the computational effort and memory
usage associated with the light ray tracing process.

Our approach occurs in two complementary phases: Shadow
Volume Generation and Rendering, with the Rendering phase in-
corporates the shadow volume from the Generation phase. Shadow
Volume Generation executes each time the light position changes or
each time the transfer function changes. In the case of time-varying
data, Shadow Volume Generation would also need to occur for each
change in time slice as well. Rendering executes each time the
camera position changes. We envision the most common use case
will be that a light is placed at a fixed position, and then the camera
position is updated repeatedly. In this use case, the shadow volume is
calculated only once, and then it is used repeatedly during rendering.
This effectively amortizes the cost of shadow volume generation
over the rendering. Figure 2 shows how the phases interact visually
and also includes sub-phases within the two phases.

3.2 Shadow Volume Generation

Similar to a standard distributed simulation, the input volume is
partitioned into domains and distributed across multiple MPI ranks.
Each MPI rank generates a shadow volume representing the locally
available domain. These ranks then exchange the attenuation values
and vertex locations at each of the six faces of the shadow volume
with every other MPI rank, to update the local shadow volumes.
The update involves accounting for light energy loss due to all other
intervening domains that lie between the light source and domain
being considered at each MPI rank, as shown in Figure 3.

The Shadow Volume Generation phase divides the creation of
the shadow volume into three sub-phases: Local Shadow Volume
Generation, Face Exchange, and Global Shadow Volume Generation.

3.2.1 Local Shadow Volume Generation

During the initial phase, each MPI rank creates a shadow volume by
tracing light rays solely within its locally available domain of the
input volume. This tracing process focuses on the domain’s specific
contribution to the attenuation of light rays and only considers the
vertices of the shadow volume grid within its own domain. As all
other domains are distributed across other MPI ranks and thus un-
available, they do not influence the attenuation calculations at this
stage. To accomplish this, the light rays originate from the desig-
nated light source location and traverse through the input volume,
considering only the cells and vertices within the domain’s bounds,
until they reach the vertices of the shadow volume grid. Along each
light ray, equidistant points are sampled within the input domain. An
assigned transfer function is utilized at these sample points to obtain
the opacity value. The light ray begins with an initial intensity of αs,
typically set to 1, and the attenuation αn at the nth sample point is
then adjusted using the following equation:

αn = αn−1 +(1−αn−1)∗α (1)



where αn is the accumulated attenuation due to n light ray sample
points, αn−1 is the previous value, and α is the opacity at the nth
sample point. Note that the attenuation values at the destination
points do not account for the rest of the volume distributed at the
other MPI ranks and, thus, not the final value.

This shadow volume approach can be used in a serial setting as
well, and Figure 4 provides an illustration to clarify how it operates,
as well as looking ahead to our distributed-memory approach.
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Figure 4: Illustrating our shadow volume approach in both a serial
setting (left) and a distributed-memory setting (right). For ease of
illustration, the figure is showing a two-dimensional scene. The
underlying data set is 12x12, and its grid is rendered with dotted
lines. The example shadow volume is 4x4, and its grid is rendered
with solid lines. When volume rendering, a ray is cast from the
camera through the data set for every pixel in the image. For this
example, only one of those rays is shown. There are many samples
evaluated along this ray, and this figure shows one of those samples,
labeled S. Consider the serial setting on the left. To calculate the
shadow volume, a ray is cast for each of its 16 vertices. This figure
shows four of these rays and labels their corresponding vertices as A,
B, C, and D. The attenuation at each of these vertices is calculated
according to Equation 1. For our shadow volume approach, the
shadowing for S will be calculated by interpolating the attenuation
values from A, B, C, and D. Of course, this figure is showing a two-
dimensional scene, and our usage is for three-dimensional scenes.
In particular, our approach would actually have a three-dimensional
shadow volume, a sample would lie in a voxel and not a pixel, and the
interpolation would involve eight values from the shadow volume,
not four. Now consider the distributed-memory setting on the right.
This figure has nine domains, eight of which are shades of gray, and
the perspective of this figure is from the MPI rank that owns the
ninth domain, located in the center and not grayed out. This MPI
rank will only calculate the attenuation for the vertices within its
domain (again A, B, C, and D). Further, it will only calculate the
attenuation occurring due to cells within its own domain. This takes
less work than the serial setting and gives a different value. That
said, the other MPI ranks will calculate their own attenuation values,
and the final attenuation values for A, B, C, and D will be updated
using those values. In the end, the attenuation values for A, B, C,
and D will only differ due to approximation error.

3.2.2 Face Exchange

During the subsequent phase, every MPI rank exchanges computed
attenuation values at the faces of the shadow volume grid with all
other MPI ranks. To facilitate this exchange, each MPI rank du-
plicates the vertex locations and corresponding attenuation values
on each of the six faces (left, right, bottom, top, front, back) and
stores them in two separate arrays. These arrays are then collectively
exchanged with all other MPI ranks utilizing an MPI Allreduce in-
vocation, ensuring comprehensive data sharing across the distributed
simulation. Additionally, the ranks exchange information regarding
the boundaries of their respective domains.

For a given shadow volume with the resolution L x W x H, the
number of attenuation values exchanged per MPI rank can be calcu-

lated by:
N = 2∗ (L∗W +W ∗H +H ∗L) (2)

Additionally, N vertex locations, each with (x,y,z) coordinates, are
also exchanged.

Finally, a reviewer pointed out that MPI Allgather could have
been more efficient than MPI Allreduce. We agree with this, but
were unable to make the change and re-run the experiments within
the revision period.

3.2.3 Global Shadow Volume Generation
During this phase, each MPI rank updates the attenuation values
within its shadow volume by incorporating potential contributions
from domains across all other MPI ranks. This is accomplished
by tracing light rays in a manner similar to the phase described in
3.2.1. The light rays are tested for intersections against the faces
of the other domains, and these intersections are then sorted in
front-to-back order based on the distance to the light source. The
attenuation values at the intersections are interpolated using the
values exchanged as described in 3.2.2 and alpha composited using
Equation 1 in the sorted order. The final shadow volume attenuation
values are then updated, again using Equation 1.

3.3 Rendering
The Rendering phase involves two sub-phases: Volume Rendering
and Compositing. During these sub-phases, the algorithm utilizes the
previously generated shadow volume to achieve the desired visual
rendering.

3.3.1 Volume Rendering
Upon the completion of shadow volume generation, parallel direct
volume rendering occurs simultaneously across all MPI ranks, em-
ploying the conventional technique of image order sampling. During
this process, camera rays are traced through the input domain, sam-
pling the field at equidistant locations along each ray. The provided
transfer function is utilized at each sample location to compute the
corresponding RGB and alpha values based on the field value at that
specific location. Simultaneously, the shadow volume is sampled
at the same location to acquire the corresponding attenuation value.
The RGB values are then shaded using a multiplication operation in
conjunction with the obtained attenuation value.

3.3.2 Compositing
In the final phase, the rendered images obtained through direct vol-
ume rendering are composited using the Direct Send compositing
algorithm as described by Eilmann and Pajarola [13]. The partial
composites that were generated in section 3.3.1 are indexed and
sorted based on the distance of each domain’s spatial center to the
camera location. The final image is divided into tiles and distributed
across all the MPI ranks, with each rank performing alpha composit-
ing based on this order and then finally collected at the root MPI
rank.

4 STUDY OVERVIEW

Our study is designed to investigate the performance impacts of
our algorithm for calculating the attenuation of light through the
volume and the use of the attenuation data during traditional volume
rendering. This section describes details about the factors used for
the study and the architectures used for testing.

4.1 Study Factors
This study has two parts. The first part considers the runtime perfor-
mance of shadow volume creation using three factors. The second
part considers the visual effects from shadow volumes, both com-
pared to other techniques and when the resolution of the shadow
volume changes. The factors used for the first part are:



(a) Rayleigh-Taylor Instability (b) Richtmyer-Meshkov Instability

(c) Perlin Noise (d) Rotating Stratified Turbulence

Figure 5: A comparison of computation costs of shadow volume generation across four data sets. The X-Axis lists the configuration (shadow
volume resolution and number of MPI ranks used), and the Y-Axis represents the runtime in milliseconds. The general trend is that the time
taken to generate shadow volumes at lower resolutions is less than the time to render.

• Data sets (4)

• Shadow volume resolutions (4)

• Number of MPI ranks (6)

4.1.1 Data Set
The time to create a shadow volume depends on the complexity of
the combination of the data set and transfer function used for the
volume rendering. In order to account for that, we test the technique
on different data sets that represent typical scenarios. The data sets
used in this study are:

• Rayleigh-Taylor Instability: This is a time step of a density
field in a simulation of the mixing transition in Rayleigh-Taylor
instability [11], with a resolution of 1024x1024x1024.

• Richtmyer-Meshkov Instability: This is a time step of the
entropy field of Richtmyer-Meshkov instability simulation
[10], with a resolution of 2048x2048x1920.

• Perlin Noise: This is a procedurally generated data set using
gradient noise with a resolution of 2048x2048x2048 [34].

• Rotating Stratified Turbulence: This is a time step of the tem-
perature field of a direct numerical simulation of rotating strat-
ified turbulence [20], with a resolution of 4096x4096x4096.

4.1.2 Shadow Volume Resolution
The shadow volume resolution determines the number of light rays
that are traced during the generation of the volume. We consider the
impact of the volume resolution by testing the following resolutions:
323, 643, 1283, and 2563.

4.1.3 Number of MPI Ranks
The shadow volumes are updated by having all MPI ranks exchange
border cells of the volume with every other rank. We consider the
scalability of our algorithm by increasing the number of MPI ranks,
using 8, 16, 32, 64, 128, and 256 ranks. The data set size is fixed
regardless of the number of MPI ranks, so scalability evaluations
consider strong scaling.



Figure 6: Scaling results of total render time at a constant shadow
volume resolution for the four data sets. The X-Axis enumerates
the number of MPI ranks utilized, whereas the Y-Axis signifies the
elapsed time in milliseconds.

4.2 Implementation Details and Machine Configuration
Our software was implemented using VTK-m [32]. VTK-m has
native many-core performance, which has been demonstrated to be
effective across many architectures [31]. Most phases of the algo-
rithm (see Section 3) utilize GPUs for shared-memory parallelism,
although data exchanges between MPI ranks are performed on the
CPU.

All of our experiments were run on the Oak Ridge Summit su-
percomputer. This machine uses NVIDIA GPUs, so our VTK-m
implementation uses a CUDA backend.

5 RESULTS

The results are organized into the two parts of the study: Section 5.1
details the runtime performance of the algorithm, while Section 5.1
considers the visual results of the algorithm.

5.1 Runtime Performance
The performance results for the Rayleigh-Taylor Instability,
Richtmyer-Meshkov Instability, Perlin Noise, and Rotating Strati-
fied Turbulence data sets are located in Figure 5. In the initial three
data sets, we observe a consistent pattern of the shadow volume
generation time escalating exponentially. This aligns with the un-
derstanding that every subsequent doubling of the shadow volume
resolution on each axis results in an eight-fold surge in the total
cell count within the shadow volume grid. For the most part, the
runtimes are quite fast, capable of 10 to 20 frames per second. Fur-
ther, when shadow volume creation is amortized over many frames,
which happens when the light source and transfer function do not
change, then the effective runtime is the runtime for just rendering
and compositing. In this case, the frame rates jump up to as much as
50 frames per second.

The most notable poorly performing experiments involve large
grid resolutions in the shadow volume (2563) with large data sets.
For example, the Rotating Stratified Turbulence data set (40963

mesh resolution) with the largest shadow volume takes almost 3
seconds to compute the shadow volume. That said, the rendering and
compositing time are mostly unaffected by the finer resolution in the
shadow volume. Therefore a scenario with repeated rendering with
the same shadow volume could still achieve interactive frame rates
(10-15 FPS depending on the number of MPI ranks), but frequent

changes in light position or transfer function would not be acceptable
for interactive use. Of course, our proposed approach has utility
beyond interactive use cases since it can be used to create imagery
for presentation graphics.

Many factors play a role in runtime, including data set, transfer
function, concurrency (i.e., number of MPI ranks), and resolution of
the shadow volume. Consider the experiments with the Richtmyer-
Meshkov and Perlin Noise, 8 MPI ranks and a 2563 shadow volume
resolution. Although both data sets are 20483, shadow volume
calculation takes 97ms for Perlin Noise and 753ms for Richtmyer
Meshkov. This is because of the interaction between data set and
transfer function — Perlin Noise is more opaque and benefits from
early ray termination, while Richtmyer Meshkov is more transparent
and does not benefit. A secondary concern with the data set is the
overall mesh resolution, as clearly, there is more work to do in our
“strong scaling” study format when the mesh resolution size grows.
With respect to concurrency, the expected behavior of improved run-
time when there are more MPI ranks mostly holds, although there
are some variations. The most notable outlier is for the Rotating
Stratified Turbulence data set, where the 2563 resolution shadow vol-
ume gets slower from 64 MPI ranks to 128 MPI ranks. The smaller
shadow volume resolutions for this data set behave more normally.
Finally, with respect to the resolution of the shadow volume, the
results follow expectations — the higher the resolution, the more
time it takes to calculate. That said, rendering and compositing time
are largely unaffected by shadow volume resolution.

Figure 6 shows the 643 shadow volume results from Figure 5 in a
different way, demonstrating that total render time settles asymptoti-
cally as the number of MPI ranks used increases. This is because
there are fewer cells per rank to process when the number of MPI
ranks increases and the input volume remains fixed.

5.2 Visual Performance
This part of the study considers visual performance. One aspect of
this part of the study is visual comparison between shadow volumes
with volume renderings using the Phong shading model or no shad-
ing at all. Another aspect is considering the effect of shadow volume
resolution.

5.2.1 Comparing With Phong Shading and No Shading

Figure 7 shows the data sets used in the performance study, and
Figure 8 shows some additional data sets. Both figures consider
the same scene (camera, transfer function, data set) with different
shading — no shading in the left column, our shadow volume ap-
proach in the middle column, and Phong shading in the right column.
The Phong shading model utilizes gradient estimation with central
differences to determine the normal at each sample point for lighting
calculations.

The images rendered using shadow volumes offer several distinct
advantages over those generated using Phong shading, particularly
in the context of distinguishing areas of interest within the volume
across most of the data sets. Moreover, there is a notable improve-
ment in accurately following the contour and shape of these regions
within the volume. Additionally, regions cast in shadow provide a
heightened sense of depth perception, as our visual system relies
on shadows to determine spatial relationships between objects. Im-
portantly, the shadows introduced by the shadow volumes do not
significantly hinder the visibility of various parts of the volume by
causing excessive occlusion.

However, it is worth mentioning that the use of the Phong shading
model can lead to a misrepresentation of the image, especially in
scenarios where the data exhibits clear, distinct patterns. In such
cases, the application of shadow volumes may prove particularly
beneficial, especially when compared to smaller data sets. The
absence of clutter and the ease of identifying the layout of the image
contribute to the enhanced perceptual experience offered by the



Figure 7: Images informing visual performance of our approach. The images are arranged in a 4x3 layout, with columns representing different
rendering approaches and rows representing different data sets. For the columns, the left column is direct volume rendering (i.e., no lighting),
the middle column is our shadow volume approach, and the right column uses Phong shading. For the rows, the first row shows the Perlin
data set, the second row shows a Rayleigh-Taylor data set, the third row shows a Richtmyer-Meshkov data set, and the fourth row shows the
Rotating Stratified Turbulence data set

shadow volumes. These advantages do not have a big impact on the
images rendered for Richtmyer-Meshkov data set, suggesting that
the complexity introduced by the shadow volumes can be distracting
when the underlying data itself possesses well-defined patterns, as
the shadow volumes may not add significant structural information.

In summary, the use of shadow volumes in volume rendering
provides notable advantages over the standard direct rendering or
the one using the Phong shading model. The ability to distinguish
areas of interest, follow contour and shape, and leverage the depth
cues offered by shadows contributes to an improved perceptual
understanding of the volumetric data. However, it is essential to
consider the nature of the data and the potential for distracting
complexity introduced by the shadow volumes, particularly when
the data exhibits clear, distinct patterns.

5.2.2 The Effect of Shadow Volume Resolution
Figure 9 shows the impact of shadow volume resolution on the qual-
ity of the shadows generated. This figure shows both renderings that
inform the difference and metrics (PSNR and SSIM) that quantify
the differences. It shows that, 323 shadow volumes, a resolution
significantly lower than that of the input volume, can still improve

depth perception (with the benefit of being much faster to compute).
However, the examples show that it does not capture the finer details
of the volume. It is also important to note that higher resolutions can
cause the image to appear darker, as each cell of the shadow volume
represents light attenuation spread over a comparatively larger area
of the input. This effect is particularly evident at the boundaries of
the input volume, as the light attenuation values at the faces start at
0.0 and accumulate deeper into the volume.

6 CONCLUSION AND FUTURE WORK

This work introduced a new approach for calculating shadow vol-
umes when volume rendering large data sets in a distributed-memory
setting. Our results focused on two aspects: runtime performance
and visual performance. Runtime was generally good, although
high-resolution shadow volumes led to penalties of several seconds
in some cases. Further, visual performance was generally good,
with images using our technique often looking for more informative
than approaches with no lighting and less cluttered than a traditional
lighting approach using Phong shading. Finally, our approach is
simple enough that it can be easily adopted in practice. In short, we



Figure 8: Additional images informing visual performance of our approach, complementing Figure 7. Where the data sets in Figure 7 also
appear in our performance study, these data sets are smaller and only used for visual performance. Like with Figure 7, the images are arranged
in a 4x3 layout, with columns representing different rendering approaches and rows representing different data sets. Once again, the left
column is direct volume rendering (i.e., no lighting), the middle column is our shadow volume approach, and the right column uses Phong
shading. For the rows, the first row shows CT scan of a chameleon [27], the second row shows a model for a Christmas tree [19], the third row
shows an isotropic turbulence simulation, and the fourth row shows the Boston teapot.

believe this approach is worthy of inclusion in production software
since it has smaller penalties for rendering time and developer time
and significant benefit in terms of improved graphics. Our imple-
mentation in VTK-m is a significant step in this direction, since
VTK-m is incorporated into both ParaView [1] and VisIt [7].

We feel this direction suggests many lines of inquiry for future
work. First, our algorithm assumes the data can be decomposed
into blocks with axis-aligned faces. Unstructured meshes and AMR
meshes do not currently fit with this algorithm and would have to
be resampled onto a block-decomposed regular grid. Second, we
have traded one type of lighting (Phong) for another (shadowing).
Another possibility is to use both, which would more closely mirror
what happens in the real world. That said, initial attempts retained
the cluttered look seen in the Phong-only images in this paper. Future
work would need to consider how these two lighting effects should
be combined in a more intelligent manner. The current work only
supports shadowing due to a point light source, which can be limit-
ing for volumes that are highly dense and may cause large sections
to be self-shadowed. Adding support for other kinds of light sources,

like area lights, can help in better illumination in these cases. Next,
this work used limited shading comparators (Phong shading and no
lighting). Comparing our approach with other volume rendering ap-
proaches that include shading (such as Exposure Render [21]) would
be useful. A limitation of the current approach is that algorithm is
acutely sensitive to any changes in the input volume and requires
the shadow volume to be recreated. This can be a hindrance to using
it for dynamic time-varying data sets. Future work could enhance
the algorithm to iteratively update the shadow volume. Finally, this
work only considered shadow volumes up to 2563. We found that ex-
periments with low numbers of MPI ranks ran out of memory. More
experiments exploring tradeoffs between cost and picture quality for
larger shadow volumes would be worthwhile. Of course, going to
higher resolutions may result in unacceptable runtimes — a grid of
2563 has 16.7M vertices and calculating the attenuation for each of
these vertices requires significant computation.



(a)
323

PSNR: 26.2 dB
SSIM: 0.938

(b)
643

PSNR: 29.1 dB
SSIM: 0.965

(c)
1283

PSNR: 36.7 dB
SSIM: 0.972

(d)
2563

PSNR: 39.9 dB
SSIM: 0.984c

(e)
323

PSNR: 27.3 dB
SSIM: 0.964

(f)
643

PSNR: 30.6 dB
SSIM: 0.973

(g)
1283

PSNR: 34.8 dB
SSIM: 0.983

(h)
2563

PSNR: 41.9 dB
SSIM: 0.994

Figure 9: A two-by-four configuration of Perlin Noise and Rayleigh-Taylor data sets. In each row, all four renderings have the same data
resolution, the same transfer function, and the same camera position. The only difference between them is the resolution of the shadow volume,
with the specific resolution for each in a sub-figure caption. All these images are compared against an image generated using a shadow volume
resolution of 5123, which is considered the reference image, and their PSNR and SSIM metrics are reported as quality metrics. Further, the
upper left of each figure shows a close-up of a specific region within the volume. This close-up shows that the shadow quality improves
somewhat as the resolution improves. That said, the main takeaway from these images is not that the shadow quality improves, but rather that
the images get brighter with lower resolution. This is because the shadow volume is being interpolated over a relatively larger region, and the
shadow value at each face is 0.0, i.e., the lack of shadowing on grid points along the face is interpolated deeper into the volume.
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