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Abstract

We present a new abstract domain for analyzing the floating-point
error accrued during a computation. We model the floating-point error
as a step function over an interval of possible values a variable can take.
This model accurately mimics the discrete nature of floating-point error
by taking into account the specific properties of floating-point numbers
for closer approximations of the error. We discuss the application of this
domain to some specific properties and how it allows for tighter fixpoint
approximation. We implement a tool utilizing the step function domain
that can analyze functions written in a subset of C. We show promising
experimental results that improve on state-of-the art tools for certain
output values.

1 Introduction

Floating point numbers are a ubiquitous, imperfect representation of the real
numbers. This imperfection causes the results of a floating-point computation to
diverge from the infinite-precision, exact result. The deviation of a floating-point
program from an exact result can cause internal issues such as branch instability
or incorrect calculations which can lead to significant issues. Understanding the
potential round-off error a program can incur allows programmers to foresee
and fix these issues.

An example of real-world impact caused by floating-point error is the patriot
missile system bug that failed to intercept a scud missile [24]. The system’s clock
counted in tenths of seconds stored as an integer. During calculations the system
converted the clock time to floating-point by multiplying by the unrepresentable
0.1. This caused an accumulation of rounding errors making the system unable
to track an incoming missile and caused the deaths of 28 people.

Dynamic approaches to tracking floating-point error involve calculating the
error of a variable alongside an execution [3, 10]. These techniques are effective
at detecting error but they incur a significant runtime overhead; slowing execu-
tion by a factor of 30 or worse. Dynamic techniques are also unable to state an
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upper bound on the error for all executions leaving the potential for unknown
cases to incur significantly more error. For applications where the cost of a bug
is large this is unacceptable.

Many static approaches to analyzing floating-point error accumulation have
been developed. Techniques that symbolically transform the program and then
optimize for the minimum sound error produce tight error bounds but do not
work with control flow [16, 25]. Libraries built with proof assistants can provide
very tight error bounds but require manual steps to link a functional model
to the program [9, 15]. The above techniques provide precise analysis but all
require manually specifying the program in either a domain-specific language
or a proof assistant. This manual step requires specific training and can in-
troduce discrepancies between the program and the specification. Abstract
Interpretation-based techniques can handle control flow and are more auto-
mated, however, their analyses are shown to be less precise than the previous
approaches [6, 12].

Embedded systems are a particularly suitable domain for static analysis.
Embedded systems are often used in safety-critical computers such medical
devices and avionics where software errors can have dangerous consequences.
Embedded software must conform to the capabilities of the hardware it is run-
ning on. Often, embedded software cannot use standard libraries which have
been the focus of intensive previous analysis. Functionality is reimplemented
requiring a new analysis. Performing the analysis manually adds a significant
overhead to the development time for embedded systems. Automatic analyses
allow non-specialists to run the analysis, providing a quicker feedback loop and
less effort during development.

We base our approach on abstract interpretation as the analysis does not
require translating programs into a specification language and can handle control
flow. We ameliorate the precision issue with a novel abstract domain that
mimics the discrete nature of floating-point numbers. We model the floating
point error as a piece-wise step function over possible values a number can take
during runtime. This step-function model follows the behavior of floating point
error such as how the worst-case rounding error is proportional to the magnitude
of the number.

Figure 1 shows the discrete nature of floating-point rounding error for a sine
approximation. The error (y axis) increases as the output of the function (x axis)
increases. Significant increases in error are seen whenever the output crosses a
power of 2. We use the sine approximation from the FPBench community
benchmarks [7].

This approach allows us to take into account particular properties of floating-
point numbers such as the well-known Sterbenz’s theorem, and accurately give
rounding errors for values that can cross a binade. The domain also allows for
tight fixpoint analysis of loops through the definition of widening and narrowing
operators.
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double sin_dbl(double x) {

return (x - (x*x*x) / 6.0 +

(x*x*x*x*x) / 120.0 -

(x*x*x*x*x*x*x) / 5040.0;

}

Figure 1: Floating-Point error for an approximation of sin(x) from FPBench [7]

The contributions of this paper are:

• The definition of a new step-function abstract domain.

• Analysis of fixpoint convergence for the abstract domain.

• Incorporation of specific floating-point properties into the analysis.

• An implementation of a static analyzer based on the abstract domain.

• Experimental evaluations comparing the accuracy this domain to other
abstract-analysis-based tools.

Section 2 gives some necessary background on floating-point numbers. Sec-
tion 3 defines the language under analysis and the concrete reachability seman-
tics. Section 4 defines abstract domain and abstract semantics. Section 5 incor-
porates special properties of floating-point numbers into the analysis. Section 6
defines the lattice over the abstract domain and shows the Galois connection
demonstrating the soundness of the analysis. Sections 7 and 8 describe an imple-
mentation and empirical comparisons to other tools. Section 9 discusses other
static analysis technique for analyzing floating-point error. Finally, Sections 10
and 11 conclude with future research directions.
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2 Background

Floating-point error arises from the inability of the format to represent all reals
in its domain. Floating-point numbers are represented by: mβe where e is the
integer exponent, and m is the significand represented in radix β (typically 2
in computers) [20]. As there can be multiple representations of a floating-point
number, the canonical representation is the representation with the smallest
exponent. The precision of a format refers to the number of significant digits of
the significand. A format is defined by its maximum and minimum exponents,
radix, and precision. When a value cannot be represented in a format it must
be rounded to one that can be represented. The IEEE-754 standard [1] defines
a few different rounding schemes. In practice, the most common is round-to-
nearest but a programmer can specify if they wish to always round up, down,
or towards zero. This analysis focuses on the round-to-nearest rounding mode
but it can easily be extended to work with other rounding modes.

Rounding error can be bounded by the “unit in the last place” function,
ulp(r). The ulp function represents the distance between the two floating point
numbers nearest to r [19]. It is the difference when the mantissa is incremented
or decremented. Regardless of the rounding mode, the introduced error can
always be bounded using the ulp function: |r − R(F (r))| ≤ ulp(r) where R :
R→ F and F : R→ F convert between the real and floating-point numbers.

The ulp function’s output depends on the input’s exponent value. As the
exponent increases each increment of the mantissa will produce a larger change
in value. The set of values that are canonically representable with the same
exponent is called a binade. In a radix 2 format, binade boundaries lie on
powers of 2. The effect of the binade’s exponent on the error are what produce
the step function behavior seen in Figure 1. Each significant increase in error
occurs on the boundary of a binade.

3 Language and Concrete Semantics

Abstract interpretation [4, 5, 23] is a framework for static analysis that relies on
defining an abstract domain to overapproximate all possible states of the pro-
gram. In this section we define a model of the computation that contains the
properties we are interested in, referred to as the concrete reachability semantics.
In Section 4 we will define the abstract domain and semantics which overap-
proximate the reachability semantics. From the abstract semantics an abstract
interpreter can be built that provides bounds on the desired properties.

The concrete reachability semantics define the precise set of states a program
can reach. These semantics take in a set of possible program states and return
the exact set of possible states after running the program. The semantics defined
below are not automatically computable but serve as a model for the abstract
domain to overapproximate. The syntax an concrete semantics are defined in
Figure 2 and will be described in detail below.

We are analyzing a small imperative language based on the C language shown
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A ::= x | f | i | A+A | A−A | A ∗A | A/A

B ::= true | false | !B | A ≤ A | A < A | A == A | A > A | A ≥ A

S ::= x = A | S;S | if B then S else S | for(S;B;S){S}

(a) Syntax

JAK : M→ V
JxKm = m x

JfKm = (f, 0)

JiKm = i

JA1 ⊙A2Km = JA1Km⊙ JA2Km

JBK : P(M)→ P(M)

JtrueKM = M

JfalseKM = ∅
J!BKM = {m | m ∈M ∧m /∈ JBKM}
JA1#<A2KM = {m | m ∈M ∧ JA1Km #< JA2Km}

(b) Concrete reachability semantics of expressions

JSK : P(M)→ P(M)

Jx = AKM = {m[x 7→ JAKm] | m ∈M}
JS1;S2KM = JS2K(JS1KM)

Jif B then S1 else S2KM = JS1K(JBKM) ∪ JS2K(J!BKM)

Jfor (S1;B;S2){S3}KM = J!BK
[ ⋃
i→∞

(JS2K ◦ JS3K ◦ JBK)i(JS1KM)

]
(c) Concrete reachability semantics of statements

Figure 2: Syntax and Reachability Semantics

in Figure 2a. The language has variables x, double-precision floating-point
values f , integer values, i, and arithmetic expressions A. We include integer
values as they are commonly used in loop conditions. Boolean expressions B
consist of true, false, numerical comparisons, and negation !B. Statements S
allow for assignment, composition using semicolons, and control flow with for-
loops and if-statements. For-loops work as in C with the first S being the
initialization statement, B being the loop condition, the second S being the
increment statement, and the final S being the loop body.

The concrete reachability semantics of expressions are given in Figure 2b.
The reachability semantics model the exact set of all possible states a program
can be in. Program states are modeled as memory M : X → V which maps
variable names, X, to values V. Values may be integer and double-precision
floating-point values. Floating-point values are modeled as a tuple (f, ϵ) where
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f is the floating-point value and ϵ is the rounding error of that value as a
positive real number. The semantics of arithmetic expressions JAK returns the
integer or floating-point value (with error incurred) V = (F × R) ∪ Z of the
expression given a specific program state. For brevity the set of arithmetic
operations are written as ⊙ ∈ {+,−, ∗, /} and boolean operations are written as
#< ∈ {≤, <,==, >,≥}. The language only considers double-precision floating-
point numbers but the analysis can easily be extended to include single-precision
floating-point numbers as well.

The semantics of boolean expressions JBK takes as input a set of possible
program states and returns the subset of those states that satisfy the condition
in the expression. In this way the semantics of boolean expressions acts as a
filter that can be used during control flow to ensure only the appropriate states
are evaluated in a particular branch. For true this is all input states and for
false this is the empty set. Negation (!B) includes all states in the input that do
not satisfy the condition. Comparisons (A1#<A2) filter the input set by states
that can evaluate the comparison to true.

Figure 2c shows the concrete reachability semantics of statements JSK. As-
signment (x = A) updates the variable x in every state. Composition (S;S)
gives the possible states after executing the first statement then the second
statement. For if-statements the input set of states may contain states that
satisfy the condition and others that do not. The semantics filters the states
using the semantics of boolean expressions on the condition and the condition’s
negation. Then, the appropriate branch is explored and both sets are combined
with a union. For loops we first calculate the possible states after the initializa-
tion statement S1, then filter by the loop condition and evaluate the loop body.
The loop body will iterate a different number of times depending on the input
state. We calculate the output states by taking the union of the loop body ,
filtered by the loop condition, for an infinite number of iterations. Finally the
states are filtered by the negation of the loop condition to model exiting the
loop.

The concrete reachability semantics define the exact set of states that a pro-
gram can reach after executing. They capture the floating-point values and error
of variables. The floating-point error propagation for the concrete semantics is
left undefined as, by Rice’s theorem [4], these semantics cannot be computed au-
tomatically. To provide automatic analysis we must approximate these concrete
semantics through a more amenable abstraction.

4 Abstract Domain and Semantics

To automatically compute the possible output states of a program, we abstract
the program states and provide a semantics for the abstraction that are com-
putable. The abstraction overapproximates the set of all reachable states in
real-world executions. It is important that the overapproximation is sound, that
is, it conservatively captures all reachable states, while possibly including some
unreachable ones as well. Without soundness the analysis could underapprox-
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imate the error and becomes unreliable. The abstraction of program memory
relies on abstract memory M♯ : X→ V♯ which maps variables to abstract values
in an abstract domain. These abstract values describe the value of the variable
for sets of possible states in the concrete semantics. Section 4.1 describes the
abstract domain and Section 4.2 describes the abstract semantics.

4.1 Abstract Domain

We track floating-point error alongside a variable’s possible values in a tuple
called a segment :

S = (I× E).
The first element of the tuple, I is an interval that contains all possible val-
ues the variable can take. The second element, E is an overapproximation of
the floating-point error represented as a positive float. Including the variable’s
possible values allows our error tracking to take into account the magnitude of
the variable as well as certain properties of floating-point numbers as it will be
explained in Section 5.

The analysis is improved by splitting the interval of values into multiple
segments each with its associated error. This is because the maximum rounding
error increases by a factor of two between binades. The multiple segments can
be seen as a piecewise-step function of the error, with each segment being a
separate “step” of the function. We define the step function domain as:

P : P(S)

Before computing the abstract semantics of a program, first the program’s
values must be converted to appropriate values in the abstract domain. We de-
fine an abstraction function αF : (F×R)→ P that maps floating-point constants
(and associated error) to a single-segment step function. We form the interval
by rounding the number down and up to the nearest representable numbers.
The rounding error is overapproximated with the ulp function.

αF(f, ϵ) = ([F↓(f);F↑(f)],
1

2
ulp(f)) (1)

where F↓ : F→ F and F↑ : F→ F convert a real value to a float rounding down
and up respectively. Parameters have unknown values so their range of values
is specified by the user.

Integers are also included as values in our language so we must abstract
those as well. We define another abstraction function αZ : Z → I that maps
integers to the domain of intervals I.

αZ(i) = [i; i] (2)

The abstract domain is then:

V♯ : P ∪ I

With the program values converted to the abstract domain we proceed to define
the abstract semantics.
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JAK♯ : M♯ → V♯

JxK♯M ♯ = M ♯ x

JfK♯M ♯ = αF(f)

JiK♯M ♯ = αZ(i)

JA1 ⊙A2K♯m♯ = JA1K♯M ♯ ⊙P JA2K♯M ♯

JBK♯ : M♯ →M♯

JtrueK♯M ♯ = M ♯

JfalseK♯M ♯ = ⊥M♯

J!BK♯M ♯ = M ♯[x 7→ F¬(A1#< A2)(x) | x ∈M♯]

JA1#<A2K♯M ♯ = M ♯[x 7→ F(A1#< A2)(x) | x ∈M♯]

(a) Abstract semantics of expressions

JSK♯ : M♯ →M♯

Jx = AK♯M ♯ = M ♯[x 7→ JAK♯M ♯]

JS1;S2K♯M ♯ = JS2K♯(JS1K♯M ♯)

Jif B then S1 else S2K♯M ♯ = JS1K♯(JBK♯M ♯) ∪M♯ JS2K♯(J!BK♯M ♯)

Jfor (S1;B;S2){S3}K♯M ♯ = J!BK♯
[ ⋃
i→∞

(JS2K♯ ◦ JS3K♯ ◦ JBK♯)i(JS1K♯M ♯)

]
(b) Abstract semantics of statements

Figure 3: Abstract Semantics

4.2 Abstract Semantics

Figure 3 defines the abstract semantics J·K♯ over the same syntax as in Figure 2a.
The abstract semantics are similar to the concrete with the main difference being
the change in types. The semantics of arithmetic operations now produces an
abstract value from an abstract memory. The semantics of boolean expressions
filters abstract memory rather than a set of states. The semantics of statements
produces a new abstract memory that approximates the effect of the statement
on the input abstract memory. We will describe the semantics of each of these
syntactic forms in turn.

4.2.1 Arithmetic Expressions

The main difference between the concrete and abstract semantics for arithmetic
expressions is the change in values. This requires us to abstract constants and
define new operators for our abstract domain ⊙P. For arithmetic operators over
the interval abstraction of integers, interval arithmetic [13, 17] suffices. When
mixing intervals and step functions the step function is “cast” to an interval
by taking the union of all of its segment’s intervals. After the cast we apply
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err+(i1, e1, i2, e2) = e1 + e22 +
1

2
ulp(↑ i1+ ↑ i2)

err−(i1, e1, i2, e2) = |e1 + e2|+
1

2
ulp(↑ i1+ ↑ i2)

err∗(i1, e2, i2, e2) =↑ i1e2+ ↑ i2e1 + e1e2 +
1

2
ulp((↑ i1) ∗ (↑ i2))

err/(i1, e2, i2, e1) =
(↑ i1)e2 + (↓ i2)e1
(↓ i2)2 − (↓ i2)e2

+
1

2
ulp(↑ i1/ ↓ i2)

Figure 4: Operator Error Propagation

interval arithmetic. The rest of this section will focus on arithmetic operators
over step functions.

The general idea for abstract arithmetic operators is to apply the operator
to each pair of segments from both values and then merge any overlapping
segments.

X ⊙P Y = mergeP({x⊙S y | ∀x ∈ X, y ∈ Y }) (3)

Where ⊙P is an arithmetic operator for step-functions and ⊙S is an arithmetic
operator for segments.

We define segment operators by using interval arithmetic on the underlying
intervals while propagating error using an error function.

(i1, e1)⊙S (i2, e2) = (i1 ⊙I i2, err⊙(i1, e1, i2, e2))

Where ⊙I is the arithmetic operator for intervals.
To define the functions that propagate existing errors we modify the analysis

in [27] to work on segments. The error of the result comes from two sources: the
propagation of the error from the two operands, and the rounding error from
an unrepresentable result. When overapproximating these sources of error it is
important to pick the values in the interval that produce the largest error. To
this end, it is convenient to define functions ↑: I→ F and ↓: I→ F which select
the value in the interval with the largest and smallest magnitude respectively.

↑ [l;u] = max(|l|, |u|)

↓ [l;u] =

{
0 if l < 0 < u

min(|l|, |u|) otherwise

Where l and u are the lower and upper bound of the input interval.
Rounding error is be bounded by the ulp function. As we are focused on

the rounding-to-nearest rounding mode we need to find 1
2ulp(x) where x is the

resulting value with the largest magnitude. If we were concerned with other
rounding modes we could bound the error with ulp(x) instead. x is acquired
by selectively using the bound on the operand intervals with the largest (or
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Figure 5: A Merge Operation

smallest) magnitude. As an example, for multiplication we select the largest
magnitude boundary of both variables to multiply together giving us a rounding
error of 1

2ulp(↑ i1∗ ↑ i2) where i1 and i2 are the intervals being multiplied.
Note that a preexisting error term does not need to be involved as the interval
analysis is already sound, so the value cannot lie outside the interval. In the
case of division if the interval contains 0 then the error is unbounded and the
NaN value is assigned to the expression.

To propagate existing errors through an operation we notice that two values,
with associated errors, will produce a third value with a new error. By selecting
values with the maximum magnitude we bound the expression and solve for the
error of the result.

In the example of addition, we know that (i1, e1) + (i2, e2) = (i3, e3). We
select any two arbitrary values x1 ∈ i1 and x2 ∈ i2 and they will produce
x1+x2 = x3 ∈ i3. By adding the errors to these values we get (x1+ e1)+ (x2+
e2) = (x3 + e3). We cancel out the xs to end up with e1 + e2 = e3. Similar
reasoning can be used for the rest of the operations. The error functions are
listed in Figure 4.

When performing the arithmetic operations on step functions defined in
Equation 3, output segments may overlap. As an example, if

X = {([2; 4], ex1), ([4; 8], ex2)} Y = {([1; 3], ey)}

then

X −P Y = {([−1; 3], err−(x1, y1)), ([1; 7], err−(x2, y1))}

where xi and yi is the ith element of X or Y respectively. In this example,the
output has two segments with intervals that overlap between 1 and 3.

To remove this redundancy we perform a mergeS : S × S → P operation
by creating a set consisting of the segment with larger error and any non-
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overlapping portions of the segment with lower error.

mergeS(s1, s2) =

{
{s1} ∪ s2/s1 if err(s1) > err(s2)

{s2} ∪ s1/s2 otherwise

Here, err(s) projects the error from the segment and s2/s1 : S → P(S)
returns all (possibly discontinuous) portions of s2 that don’t overlap with s1.

Figure 5 illustrates the merge operation with two segments x and y being
merged into a step function z.

The merge operation is naturally be lifted to operating on a step function,
mergeP : P→ P, by merging all overlapping segments.

mergeP(sf ) = {mergeS(s1, s2) | ∀s1, s2 ∈ sf ∧ overlap(s1, s2)}

The overlap predicate is true if the intervals of s1 and s2 overlap.
With the arithmetic operators of step functions and the abstraction function

defined the abstract semantics are in place for arithmetic expressions.

4.2.2 Boolean Expressions

The abstract semantics of boolean expressions operate on a single abstract mem-
ory instead of a set of memory states as in the concrete semantics. The semantics
restrict the values in the abstract memory to values that satisfy the condition.
For true we return the input memory and for false we return the empty memory
⊥M♯ which maps every variable to the empty set.

Comparisons involve the FB : P→ P function which removes any section of
the domain of its input that cannot satisfy the comparison B. As an example,
for X ≤ Y , X is limited to the set of segments that are less than Y ’s upper
bound, written Y +, and any segments that cross Y ’s upper bound are now
bounded by Y +:

FX≤Y (X) ={s | s ∈ X ∧ s+ ≤ Y +} ∪
{([s−;Y +], err(s)) | s ∈ X ∧ s− ≤ Y + ∧ s+ > Y +}

When using strict inequalities the upper bound of the domain becomes Y + −
ulp(Y +):

FX<Y (X) ={s | s ∈ X ∧ s+ < Y +} ∪
{([s−;Y + − ulp(Y +)], err(s)) | s ∈ X ∧ s− < Y + ∧ s+ ≥ Y +}

For negation we negate the condition we are filtering on. Comparing step func-
tions to constants is similar.

4.2.3 Statements

The main difference between the abstract semantics of statements and the con-
crete semantics is the union operator now must be defined over abstract memory.
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We also must handle the problem of calculating the infinite union found in the
for loop semantics. Assignment is slightly different and now only updates the
single abstract memory instead of all input states.

To calculate the abstract semantics of if-statements we must take the union
of both branches. The union of abstract memory is the union of all their values.

M ♯
1 ∪M♯ M ♯

2 = [x 7→M ♯
1x ∪V♯ M ♯

2x | ∀x]

For the union of abstract values we define the union of two step functions is
the union of all their segments merged. The union of intervals is defined in the
standard way as the interval that contains both operands:

X ∪P Y = mergeP(X ∪ Y )

[a−; a+] ∪I [b−; b+] = [min(a−, b−);max(a+; b+)]

Calculating the infinite union in the for-loop body relies on finding a fixpoint
of the semantic function for the body f(i) = (JS2K♯ ◦ JS3K♯ ◦ JBK♯)(i) ∪ i. To
do this we iterate the semantic function of the loop body f0(i) = i, fn+1(i) =

f(fn(i)). If the iteration stabilizes, fn(i) = fn+1(i), then we have found the

least fixed point. If the function f is monotone over a lattice then a least fixed
point exists by Kleene’s Fixed-Point Theorem. In our case the lattice is over
abstract memory as expanded on in Section 6.

In practice, the step function lattice is large, and finding the fixpoint through
iteration is slow. A common strategy in abstract interpretation for quickly con-
verging on a fixpoint is to extrapolate the iterates to a coarse approximation, and
then refine through interpolation. Extrapolation is achieved through widening.
Widening identifies any constraints that are unstable and approximates them
with their extreme case. Interpolation is achieved through narrowing. Nar-
rowing attempts to replace the approximation of unstable constraints through
downward iteration. Both widening and narrowing operators are defined on the
step function domain.

4.2.4 Widening

To speed up the fixpoint convergence a widening operator is defined. Rather
than taking the union of subsequent iterates of the transfer function we apply a
widening operator to extrapolate any unstable constraints on the approximation.

As an example, for the error domain the widening operator (∇E) is defined
as:

e1∇Ee2 = Le1 ≤ e2 ? e1 :∞M

The expression Lb ? x : yM acts as a ternary operator and takes value x if b is
true and value y if b is false. e1 is the current iterate and e2 is the next iterate.
If the bound on the error is increasing then the operator extrapolates the error
bound to infinity.
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For step functions the unstable constraints can be the upper or lower bounds
of the domain or the error of any segment. If the bounds on the domain are
expanding then we add a new segment to the bottom or top of the interval that
extrapolates this instability. The new segment pushes the bounds to −∞ or ∞
depending on the bound and has infinite error. If any of the existing segments
has an unstable error bound then the error bound is pushed to infinity as well.

Definition 1 Step Function Widening
The widening operator for step functions ∇P : P× P→ P is defined as:

sf 1∇Psf 2 = L(∪
I
sf 1)

− ≥ (∪
I
sf 1)

− ? ∅ : ([−∞; (∪
I
sf 2)

−],∞)M ∪

L(∪
I
sf 1)

+ ≤ (∪
I
sf 1)

+ ? ∅ : ([−∞; (∪
I
sf 2)

−],∞)M ∪

{(i1, e1∇Ee2) | ∀(i1, e1) ∈ sf 1, (i2, e2) ∈ sf 2. overlap(i1, i2)}

We write ∪
I

: P → I for the union of all intervals in the step function,

representing the domain of the step function, with (∪
I
sf )− and (∪

I
sf )+ are the

lower and upper bounds of the resulting interval respectively.
The first two terms in the union determine if the lower or upper bound

on the domain is unstable and add a new segment pushing the bound to its
extreme. The last term checks each segment to see if its error bound is unstable
and pushes unstable bounds to infinite error.

4.2.5 Narrowing

Widening provides improved performance but the loss of precision is substantial.
To recover precision, we can interpolate by narrowing. The narrowing operator
attempts to improve bounds that have been pushed to infinity during widening
by comparing the bounds to subsequent iterations of the loop body semantics.
Continuing to iterate the loop body semantics has desirable effects because the
loop condition filters portions of the domain.

For error, the narrowing operator ∆E will only modify error bounds that
have been pushed to infinity:

e1∆Ee2 = Le1 =∞ ? e2 : e1M

The narrowing operator for step functions attempts to replace any lower and
upper bound segments widening produced as well as any unstable error bounds.
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Definition 2 Step Function Narrowing
The narrowing operator for step functions ∆P : P× P→ P is defined as:

sf 1∆Psf 2 =

L(∪
I
sf 1)

− = −∞ ? ↓P sf 2 : ∅M ∪

L(∪
I
sf 1)

+ =∞ ? ↑P sf 2 : ∅M ∪

{Lerr(s1) =∞ ? (i1, e1∆Ee2) : s1 | ∀(i1, e1) ∈ sf 1. i
−
1 ̸= −∞∧ i+2 ̸=∞ ∧

(i2, e2) = max({s | s ∈ sf 2, overlap(s, s1)})}

Where ↑P and ↓P select the segments with the lowest and highest bounds on
their domain respectively.

The first term examines the lower bound of the step functions domain for
a widened bound (∪

I
sf 1)

− = −∞ and replaces it with the value of the next

iteration. The second term does the same for the upper bound. The third term
examines each segment in sf 1 for an extrapolated error bound and attempts to
improve it with the subsequent iteration.

Widening and narrowing allow for the analysis to converge on a fixpoint for
loops in a reasonable amount of time at the loss of precision.

With the abstract semantics in place for arithmetic expressions, boolean
expressions, and statements we can provide overapproximations for the domain
and error of floating-point values. Next, we will discuss how the analysis can be
improved by taking advantage of specific properties of floating-point numbers.

5 Splitting Properties

Floating-point operations do not produce error uniformly. The rounding error
is heavily dependent on the binade the result lands in. There are also special
cases of operations that produce no error at all. The step function domain can
handle these cases by creating new segments when it is possible to increase the
accuracy of the error analysis. This section discusses techniques for improving
the error analysis by taking into account these scenarios.

5.1 Binade Splitting

As discussed before, a floating-point numbers exponent has a significant impact
on its rounding error. We can improve our analysis by splitting an operations
result along binade boundaries into segments. As each binade has a different
maximum rounding error, smaller binades can be given a more precise error
bound.

For the analysis to take this into account we update the arithmetic operators
on segments. The idea is to calculate the output interval, then split the interval
along all binade boundaries. The resulting subintervals can then be mapped
to output segments with error functions slightly modified from the operators
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defined in Figure 4. First we define the split : I→ P(I) function.

split([a−; a+]) =

{[2n; 2n+1 − ulp(2n+1)] | n ∈ Z ∧ a− < 2n ∧ a+ > 2n + 1} ∪
{[a−; 2n − ulp(2n)] | n = exp(a−)} ∪
{[2n; a+] | n = exp(a+)}

Here exp(f) : F→ Z gives the exponent of the floating point value f . The first
term finds all subintervals that span an entire binade. The second and third
terms are intervals formed from the lower and upper bounds of input interval
and their nearest binade boundary.

To propagate error to these split intervals we slightly modify the error oper-
ators in Figure 4. The propagation component stays the same but now we can
improve the bound on the rounding error of the operation by taking the upper
bound of the output interval, io.

err+(i1, e1, i2, e2, io) = e1 + e22 +
1

2
ulp(↑ io)

err−(i1, e1, i2, e2, io) = |e1 + e2|+
1

2
ulp(↑ io)

err∗(i1, e2, i2, e2, io) =↑ i1e2+ ↑ i2e1 + e1e2 +
1

2
ulp(↑ io)

err/(i1, e2, i2, e1, io) =
(↑ i1)e2 + (↓ i2)e1
(↓ i2)2 − (↓ i2)e2

+
1

2
ulp(↑ io)

Now we update the arithmetic operators on segments to take into account this
splitting.

(i1, e1)⊙S (i2, e2) = {(i, err⊙(i1, e1, i2, e2, i)) | i ∈ split(i1 ⊙I i2)}

The updated segment arithmetic operators are then used in Equation 3 to
provide an improved bound on the error. While taking advantage of the round-
ing error of binades was the main motivation for splitting the values domain,
splitting the domain is also used to take advantage of other properties of floating-
point numbers.

5.2 Sterbenz’s Lemma

An example of a special case is Sterbenz’s Lemma:

Theorem 1 (Sterbenz [26]) ∀x, y ∈ F with x, y ≥ 0

x

2
≤ y ≤ 2x =⇒ x− y is exact.

This theorem states that floating-point subtraction of two positive floats x and
y incurs no rounding error when y is within a certain interval of x. This theorem
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can be extended [16] to account for negative numbers by changing the condition
to:

x

2
≤ y ≤ 2x or 2x ≤ y ≤ x

2
(4)

To take advantage of this property, any section of the domain where the
condition holds can be treated as a separate segment. When performing the
subtraction x− y first the intervals in which the condition in Equation 4 holds
are calculated using interval arithmetic on x. We define the sbenz : I → I
function which produces the interval in which Sterbenz’s lemma would hold.

sbenz (i) = [min (↑ i/[2; 2], ↓ i ∗I [2; 2]) ;
max (↑ i/[2; 2], ↓ i ∗I [2; 2])] (5)

In the interval where Sterbenz’s lemma holds we only consider error propagation,
and not rounding error.

errsbenz (e1, e2) = e1 + e2

We can now perform subtraction taking into account Sterbenz’s lemma by split-
ting the right hand operand using Equation 5 then applying err− and errsbenz
to the appropriate segments.

(i1, e1)−S (i2, e2) ={(i1 −I is, errsbenz(e1,e2))|is = i2 ∩I sbenz (i1)} ∪
{(i1, e1)−S (i, e2) | ∀i ∈ (i2/sbenz (i1))}

We write i1 ∩I i2 for the interval formed from the overlap of i1 and i2. The first
term in the union performs the exact subtraction on the portion of the interval
where Sterbenz’s lemma holds. The second term performs a standard segment
subtraction for all other portions.

6 Correctness

To ensure the abstract domain soundly approximates the concrete reachability
semantics we show that the domain forms a lattice and that the abstraction
function forms a Galois connection between the abstract and concrete domain.

The tuple (P,⊑P,⊔P,⊓P, {([−∞; +∞],+∞)}, ∅) forms a complete lattice over
the domain of step functions. We define the order relation on the lattice as:

sf 1 ⊑P sf 2 ≜ ∪
I
sf 1 ⊑I ∪

I
sf 2 ∧

∀s1 ∈ sf 1,∀s2 ∈ sf 2. overlap(s1, s2) =⇒ err(s1) < err(s2)

Where ⊑I is the order on intervals based on inclusion. The first conjunct ensures
that the domain of the lesser step function is contained in the domain of the
greater. The second conjunct ensures that the error of the lesser step function
is always lower than the error of the greater. The least upper bound ⊔P =
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mergeP ◦∪ is the merge operation after a union of the step functions. The
greatest lower bound ⊓P = antimergeP ◦∩ is an “antimerge” operation after
taking the intersection of the step functions. The antimerge operation is the
same, as a merge except it prioritizes the segment with the lesser error.

antimergeS(s1, s2) =

{
{s1} ∪ s2/s1 if err(s1) < err(s2)

{s2} ∪ s1/s2 otherwise

antimergeP(sf ) = {antimergeS(s1, s2) | ∀s1, s2 ∈ sf ∧ overlap(s1, s2)}

The top element is the single segment set containing the top interval and error
{([−∞; +∞],+∞)} and the bottom element is the empty set.

To show that the abstract domain soundly overapproximates the concrete
reachability semantics we describe the Galois connection formed by the ab-
straction function αP defined in Equation 1 and the concretization function
γP : P → (F × R) converts a step function to the set of concrete values it
describes.

The concretization function for step functions γP : P → P(F × R) produces
the set of all floating-point values and errors described by the step function.
All segments in the step function are concretized to produce this set. The
concretization of a segment γS : S → P(F × R) is all tuples where the first
element is a floating-point number contained in the interval and the error is
less than the error of the segment. The concretization functions for intervals,
segments, and step functions are defined below.

γI([a
−; a+]) = {f | a− ≤ f ≤ a}

γS((i, e)) = {(f, ϵ) | f ∈ γI(i), ϵ < e}
γP(sf ) = {(f, ϵ) | ∀s ∈ sf .(f, ϵ) ∈ γS(s)}

As the concrete and abstract semantics are defined over memory and abstract
memory, we show a connection between the different memories. We can abstract
concrete memory by creating a function that abstracts the set of values a variable
can take into a step function.

αM(M) = ∀x ∈ X x 7→
⊔
P
{αP(mx) | ∀m ∈M}

Where αP selects the appropriate abstraction function for the type of the vari-
able and the

⊔
P is the least upper bound of the set of abstract values. The

concretization of abstract memory forms the set of all program states that have
variables approximated by the abstract memories abstract values:

γM♯(M ♯)) = {m | ∀x ∈ X,m ∈M ♯. m x ∈ γP(M
♯x)}

The pair (αM(M), γM♯) form a Galois connection (M,⊆) −−−−→←−−−−
αM

γM♯

(M♯,⊑M♯).

In the Galois connection concrete memory is ordered by the subset relation and
abstract memory is ordered pointwise by each variable. That is, M ♯

1 ⊑ M ♯
2 if

each variable in M ♯
2 is larger than each variable in M ♯

1 .
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x = {[0; 1.57079632679489656] , 0.0}

(a) The specification file - sine.spec

double sine(double x) {

return x - (x*x*x) / 6.0 +

(x*x*x*x*x) / 120.0 -

(x*x*x*x*x*x*x) / 5040.0;

}

(b) The code file - sine.c

var ,type ,low ,high ,err

y,flt ,1.7192e -02 ,2.6568e -02 ,4.8992e-16

y,flt , -1.9073e -06 ,3.9062e -03 ,4.9078e-16

...

y,flt ,1.1465e+00 ,1.1473e+00 ,1.14174e-15

y,flt ,1.0619e+00 ,1.1465e+00 ,1.14217e-15

(c) The output file - sine.csv.
Numbers have been truncated to four significant digits

Figure 6: The input and output files when analyzing sin(x)

The Galois connection between the abstract and concrete domain shows that
the abstraction soundly overapproximates the concrete reachability semantics.

7 Implementation

We implemented the step function abstract domain in OCaml. The analyzer
accepts a C source file, the name of a function to analyze, and a specification
file containing preconditions for each parameter of the function. The analyzer
will determine the range of values and the error for each variable declared in
the specification file and the function. Figure 6 shows the input and output files
from an analysis of a sine approximation.

The specification file is written by the user to provide bounds on the function
parameters value and error. The file contains variable names and associated
segments that provide the bounds. Variables are separated by a newline. The
segment is written as ([lb ; ub], err) where lb and ub are the lower and
upper bound on the variables value and err is the upper bound on the error
for the variable. Multiple segments can be included by enclosing them in curly
braces and separating with commas. An example specification file is shown in
Figure 6a. The input x ranges from 0 to π/2 with no error.
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Figure 7: Step-functions vs Fluctuat on sin(x)

The C code is ingested using the CIL project [21], a tool to parse C into an
intermediate language representation in OCaml. CIL’s intermediate represen-
tation is then transformed to the internal representation described in Section 4.
We chose CIL as it is a mature project that has been used as the basis for other
static verification tools such as Frama-C. While C uses zero and nonzero values
for true and false, these are converted to standard OCaml booleans during this
transformation. The programs values are then abstracted to step functions using
the abstraction functions 1 and 2 . OCaml does not natively support floating-
point rounding modes so we defined C functions that allow for the specification
of the rounding-mode and linked them using OCaml’s foreign function interface.

Figure 6c shows the output file of an analysis. The output is a csv file where
each row is a segment containing with the lower bound (low), upper bound
(high), and error (err). The var column specifies which variable in memory
the segment belongs to. The type column specifies if the variable is a floating-
point value or an integer.

8 Evaluation

Preliminary experiments have been run to compare the analyzer to other com-
parable tools. We focus on automatic tools that can handle control flow. Cur-
rently we only compare against the abstract interpretation based static analyzer
Fluctuat.

Comparison benchmarks are taken from FPBench [7] a suite of floating-point
benchmarks contributed by the community. Note that these functions differ
from the typical library functions one would find in a math.h implementation. In
particular the sine function is a Taylor series approximation of sine [8]. Absolute
error is calculated as the difference in result when using the double C type, with
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a precision of 53 bits, and a 200 bit precision representation. Higher precision
calculations are done using the multiple precision library MPFR [11]. 400,000
samples are taken to produce the absolute error.

Figure 7 compares Fluctuat with the step-function analyzer on FPBench’s
implementation of sin(x). The y axis is the absolute floating-point error and
the x axis is the output of the function. Each blue dot near the bottom of the
graph represents the observed absolute error for some sample input of x. The
green line shows the error of the segments of step-function analyzer and the
red horizontal line shows the error produced by Fluctuat. The step function
domain performs worse on larger outputs but nears Fluctuat’s approximation
as the output gets smaller eventually providing a more precise bound on the
error.

The step function approach shows promise. While less precise for larger
values the bounds are closer to reality for smaller values. The lack of precision
for larger values is somewhat expected. The step-function abstract domain uses
interval arithmetic to calculate the range of values a variable can be in. Intervals
are less precise than Fluctuat’s model of zonotopes. As a consequence the error
must be overapproximated for a larger set of possible values. Possibilities for
replacing interval arithmetic with a more precise value domain are discussed as
a future research direction in Section 10.

9 Related Work

Many models for floating-point numbers have been proposed and implemented.
Precisa [27], Astree [6], and Fluctuat [12] are tools that implement their models
as abstract domains in the abstract interpretation framework. FPTaylor [25]
and an approach by Lee et al. [16] symbolically change the floating-point num-
bers in a function to forms that include explicit error terms, then determine
the maximum error by optimizing over the function parameters. PRECiSA,
VCFloat2 [15], and Gappa [9] require the user to define the model and then
provide tight error bounds automatically.

These models utilize constraints that do not necessarily hold for floating
point numbers. Fluctuat uses an abstract domain based on affine arithmetic
that depends on linear forms and provides a poor abstraction for non-linear
operators. Astree utilizes several abstract domains such as octagons and interval
linear forms that both rely on linear relationships between variables, another
poor fit for non-linear operators. [18, 17]. The Gappa proof assistant supports
automatic error tracking using interval arithmetic [9]. Since interval arithmetic
can only provide a course approximation, Gappa contains a database of rewriting
rules that tighten the approximation. However, Gappa’s analysis can get stuck
and require manual hints from the user.

Proof assistants allow users to automatically generate machine-checkable
proofs of bounds on their floating-point error using bespoke functional models
of their code. Defining these functional models is a manual process that can
prove difficult and requires skilled technicians. PRECiSA [27] is an abstract
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interpretation-based tool that focuses on the detection of branch instability
using the abstract domain of conditional error bounds. This abstract domain
uses an infinite-precision real number representation to compare the floating-
point control flow. Users must write a model of their desired program in the PVS
proof assistant before running the analysis. VCFloat [15] is a Coq extension that
automatically computes round-off error bounds on floating point expressions.
Users must write a functional model of their code in Coq, and then prove the
model accurately represents their program using a tool such as the Verified
Software Toolchain [2].

Some techniques symbolically change the floating-point values in a program
to a model that explicitly contains error terms then the error bound is deter-
mined by optimizing for the maximum error over the possible values of the
parameters. FPTaylor [25] performs the symbolic transformation and then ap-
proximates and simplifies the function using Taylor series while approximating
the error terms with interval arithmetic. FPTaylor’s, symbolic approach applies
a general transformation of floating point terms that does not take exactness
properties of floating point numbers such as Sterbenz’s lemma. Lee et al. [16]
utilize the exactness properties of floating point numbers by defining inference
rules that take advantage of the tighter error bounds provided by particular
cases. Their model uses a linear form for the error terms which does not align
with quadratic error terms. This difficulty is handled by approximating the
quadratic terms with a linearization function. This work is implemented in
Mathematica and does not provide a tool for analyzing new codebases. Both of
these techniques focus on straight-line code and cannot handle control flow.

Finding an accurate model is essential to producing a tight analysis. Requir-
ing users to define a model can significantly slow the pace of software develop-
ment due to the difficulty involved. Abstract interpretation-based approaches
easily allow for the reuse of a well-defined model on new code bases. The step
functions abstract domain accurately represents the discrete nature of floating-
point error and can take advantage of particular properties of floating-point
numbers to improve the precision of the analysis.

10 Future Work

There are some clear directions to continue developing the step functions ab-
stract domain. The underlying value approximation (interval arithmetic) is
known to be imprecise. Function calls are noticeably absent from the language
being analyzed. The analysis could give the expected error for inputs in addition
to the outputs.

The domain relies on the non-relational interval arithmetic as an overapprox-
imation of a variables potential values. There are more precise abstract domains
that take into the account the relationship between two variables. Examples of
these are the zonotopic abstract domain used in Fluctuat [12] and the octogon
abstract domain used in Astreé [6]. Incorporating these domains would require
splitting the error function over a more complicated value space. An improved
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approximation of variable values would improve the error analysis as it depends
on the maximum magnitude of numbers to approximate the round-off error.

Backward error analysis is a technique that allows the user to specify an
error threshold and then determines the inputs that will meet that threshold [4].
Backward error analysis provides information to the developer on how they need
to constrain their program’s inputs to meet the desired error threshold. Adding
backwards error analysis requires defining a backwards reachability semantics
that takes in a set of output values and computes the set of states that can
produce that output. These semantics would then need to be abstracted with
the step-function domain.

Function calls have a presence in every programming language. Adding sup-
port for function calls would allow the analysis to handle a much broader set of
program. Function calls introduce new challenges as they complicate the control
flow of the program. Typical approaches to handling function calls in abstract
interpretation include abstracting the call stack [14] and computing the effect a
function has on inputs [22]. The first technique does not require special consid-
eration of the step-function abstract domain while the second technique requires
finding relationships between inputs and outputs that can be determined from
the specifics of step-functions.

11 Conclusion

In this paper we presented a promising new abstract domain for analyzing
floating-point error, step functions. The domain provides a more granular error
analysis for floating-point code by mimicking the behavior of floating-point er-
ror. Evaluations show that the granular analysis improves upon existing static
analysis tools for certain outputs.
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