
Resource-Efficient Performance Monitoring on Sage
Continuum Edge Devices

Cameron Durbin

December 6, 2024

1 Introduction

Geohazards such as earthquakes, wild-
fires, and floods pose significant risks to
critical infrastructure, the economy, and hu-
man safety. Monitoring these hazards al-
lows for timely prediction and preparation,
reducing potential disaster impact. Sage
Continuum, a cyberinfrastructure project
funded by the National Science Foun-
dation, focuses on geohazard monitoring
through geographically distributed edge de-
vices. This paper zeroes in on the ARM64-
based NVIDIA Xavier NX devices within
this infrastructure, which play a crucial role
in collecting, processing, and transmitting
sensor data like images and LiDAR scans.

To facilitate application scheduling
and deployment, Sage Continuum employs
the Waggle Edge Stack (WES) through a
lightweight containerization platform based
on Kubernetes. A key challenge is ef-
ficiently monitoring system performance
on these resource-constrained edge devices
without compromising real-time respon-
siveness. Traditional methods are often too
heavy for constrained environments; thus,
this study seeks a lightweight solution to
monitor system health while operating un-

der the limited resources of the ARM64-
based edge devices.

Linux kernel’s virtual filesystems,
procfs and sysfs, provide an effective
method for capturing system performance.
These filesystems expose real-time metrics
such as CPU usage, memory availability,
and power consumption, making them well-
suited for lightweight monitoring. This pa-
per explores the tradeoff between perfor-
mance and accuracy on the edge devices.

2 Background

2.1 Edge Computing

Edge computing emerged in response
to the rapid growth of mobile applications
and cloud services. Edge devices such as
smartphones, wearables, and industrial IoT
sensors, process data closer to its source,
reducing the computational strain on cen-
tralized cloud servers. Real-time applica-
tions benefit from this architecture, as do
use cases that require low latency and lo-
calized data processing [1].

Sage Continuum uses edge computing
in sensor-equipped nodes. Such sensors in-
clude air quality detectors, weather sys-

1



tems, LoRaWAN gateways, and thermal
cameras. For Sage Continuum, edge com-
puting minimizes bandwidth usage and en-
ables timely hazard predictions, transmit-
ting only critical insights to its central sys-
tem. [2].

2.2 System Monitoring Using Virtual
Filesystem

The Linux kernel’s virtual filesystems,
procfs and sysfs, provide an interface to
monitor system behavior without requiring
additional modules or tools.

procfs

Procfs, mounted at /proc, offers in-
sights into low level processes and the op-
erating system. Each subdirectory corre-
sponds to a running process, with numer-
ical IDs representing individual processes.
Real-time information about CPU time and
interrupts, context switches, and other met-
rics are exposed through this filesystem [3].

This study focuses on two key files in
procfs:

• /proc/stat: This virtual file pro-
vides aggregate CPU statistics across
all cores as well as individual core data.
It reports runtime in jiffies (1/100th
of a second) making it well-suited for
monitoring CPU usage.

• /proc/meminfo: This virtual file pro-
vides detailed information about the
system’s memory usage, including met-
rics such as total and available mem-
ory, free memory, cached data, and
swap usage. It is a key resource for
monitoring and analyzing memory per-
formance and availability.

sysfs

Sysfs exposes hardware devices and
their attributes[4], making it ideal for mon-
itoring power consumption. It is mounted
at /sys and offers real-time insight into the
power usage of various components through
the Inter-Integrated Circuit (I2C) bus[5].
This study focuses on power management
data exposed by /sys/bus/i2c/, particu-
larly the VDD IN voltage and current at-
tributes for detailed energy consumption
analysis.

2.3 Tradeoff Between Performance
and Accuracy

System health monitoring inherently
consumes device resources, which can be a
significant challenge in resource-constrained
environments. Lightweight monitoring ad-
dresses this issue by using periodic sampling
to collect performance data.

The choice of sampling interval is crit-
ical, as it directly impacts the tradeoff be-
tween resource overhead and monitoring
accuracy. Smaller sampling intervals im-
prove accuracy but increase system over-
head, while larger sampling intervals con-
serve resources at the expense of accuracy.

2.4 Sage Continuum Plugins

Sage Continuum plugins are user-
developed applications that are deployed
for data collection and analysis on edge de-
vices. These plugins run within the WES
runtime, allowing for easy deployment and
operation across distributed nodes. Each
plugin is packaged as a lightweight Docker
container, ensuring portability and con-
sistent performance on different hardware

2



platforms. This architecture enables effi-
cient local processing of data from various
sensors, cutting down on bandwidth use
and reducing latency.

The plugins are designed to handle a
range of tasks, from real-time data collec-
tion to running machine learning models.
For instance, applications built with frame-
works like TensorFlow or PyTorch can be
seamlessly incorporated into the workflow.
After processing data locally, the plugins
send only key insights to a central system,
where tools perform aggregation and ad-
vanced analysis. This approach improves
scalability while reducing the resource de-
mands of centralized processing.

3 Performance Monitoring
Plugin

To capture performance data, a dedi-
cated plugin is introduced to run on Sage
Continuum’s edge devices. The plugin cap-
tures CPU, memory, and power metrics and
transmits them to its central server for fur-
ther analysis.

3.1 Plugin Design and Functionality

The plugin is implemented as a Docker
container based on a PyWaggle base image.
Three monitoring units are defined within
the plugin:

• /proc/stat Monitoring Unit

• /proc/meminfo Monitoring Unit

• /sys/bus/i2c Monitoring Unit

Each monitoring unit reads data from
its respective virtual file at regular sampling

intervals. The plugin’s flexibility allows for
the easy addition of new monitoring units
to capture other relevant system health in-
dicators.

/proc/stat Monitoring Unit

The /proc/stat monitoring unit
processes data from the virtual file
/proc/stat, which provides detailed CPU
runtime metrics for all cores collectively
and each core individually. These metrics
include time spent in various states, such
as user, nice, system, idle, I/O wait, IRQ,
soft IRQ, and steal.

To compute CPU workload changes,
the unit captures differences between con-
secutive sampling intervals. For each inter-
val, it calculates the time spent in each state
by subtracting the previous sample’s values
from the current one. These differences are
then used to compute the percentage of to-
tal CPU time spent in each state. For ex-
ample:

• Given initial values t1 = {10, 5, 5}
(user, system, idle) and subsequent
values t2 = {24, 7, 9}, the differences
t2−t1 = {14, 2, 4} represent time spent
in each state during the interval.

• The total time is 14+2+4 = 20 jiffies,
yielding percentages of 70% (user),
10% (system), and 20% (idle).

The /proc/stat monitoring unit sup-
ports filtering metrics based on custom con-
figurations, allowing a tailored view of CPU
usage. For this experiment, only total CPU
user time is considered.

3



/proc/meminfo Monitoring Unit

The /proc/meminfo monitoring unit
processes data from the virtual file
/proc/meminfo, which provides detailed in-
formation about the system’s memory us-
age. Key metrics include total memory, free
memory, buffers, cached memory, and swap
usage.

This unit calculates memory utiliza-
tion by subtracting free memory, MF , from
the total memory, MT and dividing the re-
sult by the total memory, transforming it
into a percentage:

Memory Usage (%) =

(
MT −MF

MT

)
× 100

Memory data is processed at each
sampling interval, enabling users to track
changes in usage over time. The
/proc/meminfo monitoring unit can be
configured to focus on specific metrics such
as memory used or swap usage. This ex-
periment focuses exclusively on the memory
usage.

/sys/bus/i2c Monitoring Unit

The /sys/bus/i2c monitoring unit
tracks power usage by reading data from the
I2C bus, yieldig three voltage rails: VDD IN,
VDD CPU GPU CV, and VDD SOC. These rails
supply power to critical components of the
system:

• VDD IN: Maximum voltage intake.

• VDD CPU GPU CV: Voltage between the
CPU and GPU.

• VDD SOC: Voltage for the system-on-
chip (SoC).

The monitoring unit collects current
and voltage readings from the virtual files
in the /sys/bus/i2c/ directory. The
/sys/bus/i2c monitoring unit calculates
the power consumption (in watts) for each
rail using the electric power equation:

P (Watts) = V (Volts) · I (Amperes)

This data provides insights into the
system’s energy usage and the number of
joules consumed over time. This experi-
ment focuses exclusively on VDD IN.

3.2 Integration with Waggle Edge
Stack

The performance monitoring plugin
runs as a container within the WES run-
time environment. It operates alongside
other WES-managed plugins, using the
WES container orchestration system for ef-
ficient scheduling and execution.

Packaged as a lightweight Docker con-
tainer, the plugin adheres to WES’s modu-
lar deployment framework, leveraging con-
tainerized environments to maintain porta-
bility and consistency across various edge
nodes. This approach eliminates the need
for hardware-specific adjustments.

The collected metrics are published
through WES-integrated messaging sys-
tems, ensuring resource usage data is ac-
cessible to other plugins. WES utilizes this
data to enhance plugin scheduling and opti-
mize workload distribution across the edge
device, improving overall system efficiency.

4 Applications for Performance
Testing

In this experiment, two plugins, a mo-
tion detector and an image captioner, were

4



used for performance testing due to their
high resource demands and real-time pro-
cessing needs. Each trial lasts two hours,
with the performance monitoring plugin
continuously active. During this time, the
motion detector runs every 10 minutes, and
the image captioner runs every 15 min-
utes, resulting in deliberate overlaps every
30 minutes.

4.1 Motion Detector

The motion detector plugin [6] is a ver-
satile tool designed for detecting motion
patterns using various object detection and
tracking methods. The primary detection
method, Farnebäck’s Dense Optical Flow
Method [7], leverages polynomial expansion
to estimate motion between frames, mak-
ing it ideal for periodic processing of cam-
era feeds. Additional methods include naive
and advanced background subtraction tech-
niques [8], offering flexibility for diverse use
cases.

Relying on the OpenCV and NumPy
libraries, the plugin ensures a lightweight
and adaptable implementation. Running
every 10 minutes, it generates a CPU- and
memory-intensive workload, making it well-
suited for evaluating periodic performance
in real-time scenarios.

4.2 Image Captioner

The image captioner plugin [9] utilizes
Microsoft’s Florence-2-base model [10] to
generate comprehensive descriptions of im-
ages captured by the device’s camera. It
performs inference locally using the CPU
and GPU, avoiding reliance on cloud-based
processing.

For each image, the plugin executes the
model three times with distinct prompts:

• Detailed captioning: Produces a de-
scriptive summary of the entire image.

• Phrase grounding: Identifies key ele-
ments in the image and pinpoints their
locations.

• Region-specific captioning: Cap-
tures fine details from specific regions,
emphasizing subtle or overlooked fea-
tures.

The outputs from these runs are
merged and refined through post-processing
to remove duplicate and unnecessary meta-
data. This process delivers a detailed sum-
mary and labeled components, creating a
holistic description for each image.

Running every 15 minutes, the plugin
generates a substantial workload by com-
bining computer vision and large language
model processing, making it an excellent
test case for assessing system performance
under resource-intensive conditions.

5 Performance Analysis

Millions of data points were gathered
at various sampling intervals to measure
CPU usage, memory utilization, and energy
consumption. The motion detector and im-
age captioner applications are run concur-
rently at fixed intervals to simulate system
load and assess behavior under stress.

Trials last for two hours and are con-
figured with sampling intervals of 0.015625,
0.03125, 0.0625, 0.125, 0.25, 0.33, 0.66,
0.75, 1.0, 1.5, 2.0, and 3.0 seconds

5



5.1 Impact of Sampling Interval on
Performance

5.1.1 CPU Usage

Figure 1: Comparison of CPU user % time
between sampling intervals of 0.0625 and 2.0
seconds

Smaller sampling intervals increase
the frequency of monitoring tasks, lead-
ing to overlapping execution with applica-
tion workloads and other system processes,
which raises CPU utilization as resources
are shared among competing tasks. This
overlap results in more context switches,
causing delays for time-sensitive applica-
tions, reduced throughput, and overall sys-
tem inefficiency.

Figure 1 highlights this impact by
comparing a 0.0625-second interval to a
2.0-second interval, showing how faster
sampling exacerbates task overlapping, re-
duces CPU availability, and degrades per-

formance, underscoring the tradeoff be-
tween sampling frequency and system effi-
ciency.

Across all trials, the CPU operates in
distinct phases. These phases can be cap-
tured and analyzed by applying a Gaussian
Mixture Model (GMM) on the CPU usage
data, revealing unique clusters. The clus-
ters are insightful for understanding how
sampling intervals impact CPU usage pat-
terns across varying workload intensities.
By capturing distinct low, moderate, high,
and peak phases, the analysis highlights the
tradeoff between sampling granularity and
phase clarity. The clustering process reveals
four key phases of the trials:

Cluster 1: Idle state when neither
plugin is running, reflecting baseline
CPU usage.

Cluster 2: Motion detector runtime
only, indicating moderate CPU de-
mand.

Cluster 3: Image captioner runtime
only, reflecting higher computational
load.

Cluster 4: Concurrent runtime of
both plugins, representing peak CPU
usage.

The histogram comparison in Figure
2 illustrates how CPU usage phases dif-
fer between the 0.0625-second interval and
2.0-second interval. At the 0.0625-second
interval, the clusters are distinct but ex-
hibit higher variability due to the granu-
larity of frequent sampling. Notably, only
three clusters are observed because cluster
3 (image captioner runtime) and cluster 4

6



Figure 2: Histogram comparison of CPU user
% time between sampling intervals of 0.0625
and 2.0 seconds

(concurrent runtime of both plugins) over-
lap, reflecting increased task interference.

In contrast, at the 2.0-second sampling
interval, all four clusters are clearly sepa-
rated. The reduced monitoring overhead al-
lows for better phase distinction, as work-
load tasks have more uninterrupted CPU
time. This demonstrates how smaller inter-
vals increase overlap and cluster complexity,
while larger intervals provide clearer sepa-
ration, highlighting the impact of sampling
frequency on task distribution and CPU
utilization patterns.

Shorter sampling intervals are antici-
pated to yield higher accuracy in monitor-
ing; however, the overhead introduced from
monitoring complicates precise CPU usage
measurements. As the sampling interval

Figure 3: Comparison of CPU user % mean
time across all intervals.

decreases, the performance monitoring plu-
gin’s overhead grows, causing interference
that distorts the true CPU usage patterns
of the test application workload. This in-
terference reduces the reliability of perfor-
mance data and highlights the tradeoff be-
tween monitoring granularity and the effec-
tiveness of system performance analysis.

Figure 3 compares the mean CPU user
times across all clusters for each trial. Clus-
ter 1 shows the most significant improve-
ment, with CPU usage increasing by ap-
proximately 80% as the sampling interval
grows from 0.015625 seconds to 3.0 sec-
onds. Cluster 2 experiences a 55% increase,
while clusters 3 and 4 display more modest
gains of 20% and 8%, respectively. Notably,
at the 0.125-second sampling interval, the
means of clusters 3 (image captioner run-

7



time) and 4 (concurrent runtime) begin to
differentiate clearly, highlighting the impact
of reduced monitoring interference on phase
separation.

Figure 4: Comparison of CPU user % mean
time across all intervals.

Figure 4 provides a holistic view of the
trials by plotting the mean CPU user time
for each sampling interval. The graph high-
lights the significant impact of sampling in-
terval on CPU performance, offering valu-
able insights into the tradeoff between per-
formance and accuracy. Shorter intervals
produce more data points, enabling finer-
grained monitoring but at the cost of higher
overhead. In contrast, greater sampling in-
tervals produce fewer data points, reducing
overhead and interference, but potentially
sacrificing detailed insights into CPU usage
patterns.

5.1.2 Memory Usage

Memory usage analysis follows a sim-
ilar methodology to CPU usage, examin-
ing the effects of different sampling inter-
vals on observed utilization patterns. Fig-
ure 5 compares memory usage percentages
at the 0.0625-second interval and 2.0-second
interval, highlighting how utilization varies
across application states.

Figure 5: Comparison of memory usage %
between scheduled applications at sampling in-
tervals of 0.0625 and 2.0 seconds.

The analysis shows that memory uti-
lization remains relatively stable across
sampling intervals. As illustrated in Figure
5, memory usage fluctuates between 40%
and 50% when neither plugin is active. Dur-
ing the concurrent execution of both plug-
ins, memory usage spikes to 90%–100%, re-
flecting near-total utilization of the device’s
memory capacity. This behavior brings out

8



the significant memory demands of running
resource-intensive plugins simultaneously.

Figure 6: Clustered histogram comparison
of memory usage % at sampling intervals of
0.0625 and 2.0 seconds.

Figure 6 shows clustered histograms
that indicate similar memory utilization
means between the two sampling intervals.
However, at the 2.0-second interval, there
is less time spent at larger memory capac-
ities compared to the 0.0625-second inter-
val. Despite this variation, the overall dis-
tributions remain largely consistent, show-
ing minimal impact across sampling inter-
vals.

The memory usage remains consistent
across all sampling intervals, with signif-
icant increases observed only during the
simultaneous execution of both plugins.
These findings indicate that memory uti-
lization is less sensitive to changes in sam-

pling interval size compared to CPU user
time, highlighting its stability under vary-
ing monitoring conditions.

5.1.3 Energy Consumption

Energy consumption analysis examines
the impact of different sampling intervals on
power usage, adopting a methodology sim-
ilar to CPU and memory analysis. Figure
7 compares energy usage (in Watts) at the
0.0625-second interval and 2.0-second in-
terval, revealing distinct patterns in power
consumption.

Figure 7: Comparison of energy usage
(Watts) between scheduled applications at sam-
pling intervals of 0.0625 and 2.0 seconds.

The data shows considerable variation
in energy consumption between intervals.
At the 0.0625-second interval, energy usage
ranges from approximately 5.5W to 6.7W.
In contrast, the 2.0-second interval results

9



in a range of 4.1W to 6.5W. Less frequent
monitoring lowers baseline energy require-
ments, as reflected in the reduced minimum
power usage.

Figure 8: Clustered histogram comparison of
energy usage (Watts) at sampling intervals of
0.0625 and 2.0 seconds.

Figure 8 presents the clustered his-
tograms for energy usage at the 0.0625-
second interval and 2.0-second interval, cat-
egorized into three clusters, unlike the four
clusters observed in CPU user time analy-
sis. The reduction to three clusters is at-
tributed to a hardware-imposed limit on
power draw during the simultaneous execu-
tion of both plugins, preventing overheat-
ing or exceeding the device’s energy bud-
get. This limitation causes overlapping en-
ergy usage patterns for the image captioner
and the combined execution of both plug-
ins, effectively merging them into a single

cluster.
The three phases in energy clustering

for this experiment are as follows:

Cluster 1: Idle state when neither
plugin is running.

Cluster 2: Runtime of the motion de-
tector only.

Cluster 3: Runtime of the image cap-
tioner only and the combined runtime
of both plugins.

Figure 9: Comparison of clustered means of
energy usage (Watts) across all sampling in-
tervals.

Figure 9 compares the clustered means
of energy usage across all sampling inter-
vals. At the smallest interval (0.015625
seconds), the cluster means are closely
grouped, reflecting the high granularity of

10



frequent monitoring. This granularity in-
creases the runtime of the performance
monitoring plugin, resulting in overlaps be-
tween application runtimes and blending
energy usage patterns.

As the sampling interval increases, the
runtime of the monitoring plugin decreases,
reducing overlaps and allowing for clearer
separation of application phases. Larger
intervals spread the cluster means further
apart, emphasizing distinct energy usage
patterns as transitions between application
states become less frequent and smoother.

Figure 10: Comparison of joules consump-
tion across all sampling intervals.

To quantify energy usage for each trial,
the following function is applied:

Etotal =
n∑

i=2

P (ti) ·∆ti

where P (ti) represents the effective
power usage at sample time ti, and ∆ti is

the time difference between sample times ti
and ti−1. This computation yields the to-
tal energy usage in joules for each sampling
interval.

Figure 10 plots the total energy con-
sumption in joules across all sampling inter-
vals, providing a comprehensive perspective
on energy performance. The results show
that smaller sampling intervals significantly
increase energy consumption due to higher
monitoring overhead. These findings high-
light the tradeoff between finer sampling for
accuracy and the energy efficiency required
for sustained operation in monitoring appli-
cations.

5.2 Impact of Sampling Interval on
Plugin Runtime

Figure 11: Application Runtime vs Sampling
Interval

To evaluate the impact of system mon-
itoring on application performance, we an-
alyzed the runtime of the two testing plug-

11



ins: the motion detector and the image cap-
tioner, under each sampling interval. The
execution durations were recorded for each
interval.

5.2.1 Performance Trends

The motion detector plugin exhibited
a gradual improvement in execution time
as the sampling interval increased. At very
short intervals (e.g., 0.015625 seconds), the
overhead introduced by frequent sampling
led to execution durations averaging 350–
400 seconds. As the sampling interval in-
creased to 0.125 seconds, the mean duration
dropped significantly, after which the im-
provement plateaued, stabilizing below 250
seconds for intervals beyond 0.125 seconds.

Conversely, the image captioner appli-
cation demonstrated extreme sensitivity to
short sampling intervals, with mean dura-
tions exceeding 1500 seconds at 0.015625
seconds. This suggests substantial interfer-
ence caused by intensive monitoring. How-
ever, as the sampling interval increased, the
execution durations dropped sharply, sta-
bilizing around 350 seconds for intervals
greater than 0.125 seconds.

5.2.2 Analysis

The observed trends highlight a trade-
off between sampling interval size and ap-
plication performance. While frequent sam-
pling provides fine-grained monitoring data,
it imposes significant overhead, particularly
for computationally intensive applications
like the image captioner. This effect di-
minishes as the sampling interval increases,
indicating a point of diminishing returns

where the performance gains become neg-
ligible.

5.3 Performance and Accuracy
Tradeoffs in Monitoring

Evaluating the tradeoff between perfor-
mance and accuracy requires defining util-
ity functions for each. By integrating these
utility functions, we gain valuable insights
into the balance between the two.

Since memory usage stayed consistent
regardless of sampling interval, we will be
analyzing the tradeoff in terms of CPU us-
age and energy consumption. To capture
a holistic understanding of the tradeoff, we
use the CPU means across all sampling in-
tervals (Figure 4) and the joules consumed
consumed across all sampling intervals (Fig-
ure 10).

5.3.1 Performance Utility Function

The performance utility function quan-
tifies the performance of the experiment
where the sampling interval is the input.
Assuming that the performance is equally
important as accuracy, the performance
utility function needs to be measured on
the same scale as the accuracy. We can
achieve this by normalizing the CPU means
and joules consumed using Min-Max Nor-
malization of the vector of CPU means and
joules consumed.

normalize(v) =
v −min(v)

max(v)−min(v)

The values after normalization will re-
tain the information about the performance
and map the values to the range [0, 1]. For
both CPU means and joules consumed, we
can identify lower and upper bounds.

12



For CPU means, we know that the
CPU will never exceed 100% and will never
fall below 0%. We also know that as
the sampling interval decreases, the CPU
means approach it’s maximum use capac-
ity. As the sampling interval increases, the
CPU means approach it’s minimum use ca-
pacity.

Similarly, for joules consumed, the
joules will not exceed more than the power
supply will allow it to pull and while the
system runs, the power supply will give the
system enough to power to stay on. We
also know that as the sampling interval de-
creases, joules consumption approaches the
maximum capacity at which the power sup-
ply can operate and as sampling interval in-
creases, joules consumption approaches the
minimum capacity at which the power sup-
ply will give for the system still stay up and
running.

We can fit a function to both the CPU
means and energy consumption to represent
the performance utility function.

Uperf(x) = 1− L

1 + e−k(x−x0)
+ b

We fit this curve to our CPU means
and energy consumption because the data
is representitive of the complement of a lo-
gistic function. Fitting the curve to the nor-
malized CPU means and joules consump-
tion data, we have an R2 value of 0.990 and
0.985 value respectively.

5.3.2 Accuracy Utility function

The accuracy utility function quanti-
fies the accuracy of the experiment where
the sampling intervals is an input. Smaller
sampling intervals yield more data points

which, in turn, put together a more com-
plete and confident understanding of the
system health. We can use the number of
data points as a way to measure the accu-
racy of the system health.

The number of data points in each trial
is given as:

num points(interval) =
7200

interval

where 1
interval

models the number of
data points collected per second and 7200
is the number of seconds in 2 hours.

We take the number of points of each
trial as a vector and normalize the vector.
This process retains the structure of the
data while scaling the data to the range [0,
1].

To capture the growth of the normal-
ized number of points, we fit a function to
represent the accuracy utility function.

Uacc(x) =
a

x
+ b

Fitting this curve to our normalized
number of points, we fit the function with
an R2 value of 0.999.

5.3.3 CPU and Energy Tradeoff

Combining the performance utility
functions fit on the normalized CPU means
and the normalized joule consumption with
the accuracy utility function fit to the nor-
malized sampling interval data. We create
two combined utility functions that assist
in understanding the tradeoff.

Figure 12 illustrates the performance
utility function, accuracy utility function,
and combined utility function for both CPU

13



Utility Function Local Minimum Local Maximum Midpoint

CPU Means 0.063 1.113 0.588
Energy Consumption 0.072 0.616 0.344

Table 1: Measured values for CPU Means and Energy Consumption.

Figure 12: Utility functions for CPU Means
and Joules Consumption

means and energy consumption. The com-
bined utility function highlights two key
points:

1. Local Minimum: Represents a sub-
optimal choice, as it sacrifices signifi-
cant performance to achieve a higher
rate of data collection. Sampling in-
tervals smaller than this point result in
diminishing returns for performance.

2. Local Maximum: Marks the opti-
mal point, where performance peaks,
offering the highest possible data col-
lection rate at peak performance. This
is the point of maximum efficiency for
both performance and data collection,
making it the most desirable option in
many scenarios.

The significance of the local minimum
lies in its role as a reference point for deter-
mining a balanced sampling strategy. By
taking the midpoint between the local min-
imum and the local maximum, the system
achieves a strategy that sacrifices some per-
formance for increased accuracy in a con-
trolled and measurable way. This range be-
tween the local maximum and the midpoint
is particularly advantageous, as it balances
key priorities:

• Fair Trade-Off: This range provides
a balanced compromise, allowing suf-
ficient data collection while maintain-
ing acceptable performance levels. It
avoids the extremes of overburdened
performance or insufficient data.

14



• Performance Efficiency: Sampling
closer to the midpoint remains effi-
cient, avoiding the steep performance
cost of the local minimum while still
collecting meaningful data.

• Applicability: The strategy is prac-
tical for constrained environments,
such as embedded systems or energy-
sensitive platforms, where moderate
monitoring overhead is necessary.

• Strategic Accuracy: While not as
data-rich as the local minimum, this
range still captures trends effectively,
enabling informed decision-making and
adaptive application adjustments.

The midpoint between the local maxi-
mum and local minimum offers a balanced
strategy, with a range near the local maxi-
mum leaning toward performance efficiency
while maintaining meaningful data collec-
tion. This approach is well-suited for dy-
namic or resource-constrained systems.

Table 1 gives the sampling interval val-
ues for the points on figure 12. The CPU
means and energy consumption utility func-
tions have different midpoints because the
CPU and energy consumption react differ-
ently towards a sampling intervals.

6 Resource Planning and
Scheduling Optimization

Science goals, defined as rule-sets dic-
tating how and when plugins execute on
edge nodes, are created by scientists to
achieve specific objectives. These goals are
managed within the Sage Continuum sched-
uler, which is responsible for deploying and

executing plugins according to the defined
rules.

The performance monitoring plugin
captures critical resource utilization data,
such as CPU usage, memory consumption,
and energy metrics. By optimizing the bal-
ance between accuracy and performance,
the plugin determines an efficient sampling
interval that ensures high-quality metrics
are published without overloading the sys-
tem. These metrics are then utilized by
the scheduler to make intelligent decisions
about plugin execution and resource alloca-
tion.

The scheduler leverages this data to
dynamically adjust plugin schedules and
maintain efficient node operations. For
example, when resource utilization ap-
proaches critical thresholds, the scheduler
could refine execution patterns or adjust
task priorities to sustain balanced opera-
tions. This ensures that edge nodes oper-
ate within optimal limits while achieving
the defined scientific objectives.

By combining accurate resource moni-
toring with adaptive scheduling, the Sage
Continuum scheduler ensures efficient re-
source utilization, sustained reliability, and
the successful execution of science goals, all
while adapting to real-time workload and
system conditions.

7 Conclusion

The research presented here offers
a lightweight method to monitor system
health on Sage Continuum edge devices.
The dedicated plugin captures CPU, mem-
ory and power metrics without introduc-
ing excessive overhead, enabling efficient

15



performance tracking even in resource-
constrained environments.

This study explores the tradeoff be-
tween sampling frequency and accuracy in
system monitoring, revealing its impact on
device behavior and resource usage. It
highlights that while finer sampling pro-
vides more detailed insights, it comes at the
expense of increased computational load,
which can hinder real-time responsiveness.
The analysis presents a approach to this
tradeoff, offering practical guidance for se-
lecting sampling intervals based on the ap-
plication’s needs.

The lightweight monitoring method
enables efficient system health tracking
without compromising device performance.
This capability is particularly valuable
for resource-constrained environments like
Sage Continuum’s edge devices where
timely hazard detection relies on real-time
sensor data processing.

The insights gained from this research
have implications for enhancing the effi-
ciency of distributed monitoring systems
like Sage Continuum. They allow devel-
opers to strike a balance between accuracy
and performance, optimizing resource usage
while maintaining system health insights.
This approach enables more efficient appli-
cation scheduling and improved workload
management on edge devices.

References

[1] Mahadev Satyanarayanan. “The
Emergence of Edge Computing”. In:
Computer 50.1 (2017), pp. 30–39.
doi: 10.1109/MC.2017.9.

[2] SAGE Continuum. SAGE Contin-
uum Project: An Open Instrumenta-
tion and Edge Computing Platform.
https : / / sagecontinuum . org /

about. Accessed: 2024-11-21.

[3] The Linux Kernel Documentation.
Virtual Filesystem (VFS). https://
docs . kernel . org / filesystems /

vfs.html. Accessed: 2024-11-21.

[4] Patrick Mochel. “The sysfs filesys-
tem”. In: Linux Symposium. Vol. 1.
The Linux Foundation San Francisco,
CA, USA. 2005, pp. 313–326.

[5] The Linux Kernel Documentation.
I2C Sysfs Interface. https://docs.
kernel.org/i2c/i2c-sysfs.html.
Accessed: 2024-11-21.

[6] Colin Burdine, Sean Shahkarami,
and Nicola Ferrier. Motion-detector.
2024. url: https : / / portal .

sagecontinuum . org / apps / app /

seonghapark/motion-detector.

[7] Gunnar Farnebäck. “Two-Frame Mo-
tion Estimation Based on Polynomial
Expansion”. In: vol. 2749. June 2003,
pp. 363–370. isbn: 978-3-540-40601-3.
doi: 10.1007/3-540-45103-X_50.

[8] Zoran Zivkovic and Ferdinand van
der Heijden. “Efficient adaptive den-
sity estimation per image pixel for
the task of background subtraction”.
In: Pattern Recognition Letters 27.7
(2006), pp. 773–780. issn: 0167-8655.

16

https://doi.org/10.1109/MC.2017.9
https://sagecontinuum.org/about
https://sagecontinuum.org/about
https://docs.kernel.org/filesystems/vfs.html
https://docs.kernel.org/filesystems/vfs.html
https://docs.kernel.org/filesystems/vfs.html
https://docs.kernel.org/i2c/i2c-sysfs.html
https://docs.kernel.org/i2c/i2c-sysfs.html
https://portal.sagecontinuum.org/apps/app/seonghapark/motion-detector
https://portal.sagecontinuum.org/apps/app/seonghapark/motion-detector
https://portal.sagecontinuum.org/apps/app/seonghapark/motion-detector
https://doi.org/10.1007/3-540-45103-X_50


doi: https://doi.org/10.1016/
j . patrec . 2005 . 11 . 005. url:
https : / / www . sciencedirect .

com / science / article / pii /

S0167865505003521.

[9] Ryan Rearden, Seongha Park,
and Yongho Kim. Plugin-image-
captioning. 2024. url: https :

/ / portal . sagecontinuum . org /

apps / app / yonghokim / plugin -

image-captioning.

[10] Bin Xiao et al. Florence-2: Advanc-
ing a Unified Representation for a Va-
riety of Vision Tasks. 2023. arXiv:
2311.06242 [cs.CV]. url: https:
//arxiv.org/abs/2311.06242.

17

https://doi.org/https://doi.org/10.1016/j.patrec.2005.11.005
https://doi.org/https://doi.org/10.1016/j.patrec.2005.11.005
https://www.sciencedirect.com/science/article/pii/S0167865505003521
https://www.sciencedirect.com/science/article/pii/S0167865505003521
https://www.sciencedirect.com/science/article/pii/S0167865505003521
https://portal.sagecontinuum.org/apps/app/yonghokim/plugin-image-captioning
https://portal.sagecontinuum.org/apps/app/yonghokim/plugin-image-captioning
https://portal.sagecontinuum.org/apps/app/yonghokim/plugin-image-captioning
https://portal.sagecontinuum.org/apps/app/yonghokim/plugin-image-captioning
https://arxiv.org/abs/2311.06242
https://arxiv.org/abs/2311.06242
https://arxiv.org/abs/2311.06242

	Introduction
	Background
	Edge Computing
	System Monitoring Using Virtual Filesystem
	Tradeoff Between Performance and Accuracy
	Sage Continuum Plugins

	Performance Monitoring Plugin
	Plugin Design and Functionality
	Integration with Waggle Edge Stack

	Applications for Performance Testing
	Motion Detector
	Image Captioner

	Performance Analysis
	Impact of Sampling Interval on Performance
	CPU Usage
	Memory Usage
	Energy Consumption

	Impact of Sampling Interval on Plugin Runtime
	Performance Trends
	Analysis

	Performance and Accuracy Tradeoffs in Monitoring
	Performance Utility Function
	Accuracy Utility function
	CPU and Energy Tradeoff


	Resource Planning and Scheduling Optimization
	Conclusion

