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Abstract

Recent advances in large language models
(LLMs) have significantly improved the qual-
ity of text representations, enabling break-
throughs in dense retrieval, semantic search,
and a range of downstream natural language
processing tasks. However, leveraging LLMs
for effective text embeddings faces persistent
challenges, including architectural constraints
such as causal attention, misalignment between
pre-training and embedding objectives, and lim-
ited support for multilingual scenarios. This
research addresses these challenges through
two complementary contributions. First, we
introduce ULLME, a unified framework that
enables bidirectional attention and supports di-
verse fine-tuning strategies-including our novel
Generation-augmented Representation Learn-
ing (GRL), which aligns embedding and gen-
eration objectives to produce richer text em-
beddings. ULLME consistently outperforms
previous methods across a wide range of bench-
marks and LLM architectures. Second, we
present LUSIFER, a zero-shot multilingual
adaptation framework that integrates a multilin-
gual encoder with an LLM-based embedding
model via a lightweight connector. Without
requiring multilingual supervision, LUSIFER
achieves strong multilingual and cross-lingual
performance, especially in medium and low-
resource languages, as demonstrated on a com-
prehensive benchmark covering 123 datasets
in 14 languages. Together, these contributions
advance the state of the art in text representa-
tion learning with LLMs by providing both a
flexible, high-performance embedding frame-
work and a practical solution for multilingual
and cross-lingual embedding tasks.

1 Introduction

Text embeddings, which provide dense vector rep-
resentations of textual content (Mikolov et al.,
2013; Devlin et al., 2019), have become funda-
mental building blocks in modern natural language

processing. These embeddings encode semantic
information and serve as an important component
for numerous downstream applications, ranging
from information retrieval and document reranking
to classification, clustering, and semantic textual
similarity assessment. Recently, the significance
of high-quality embeddings has been further am-
plified by their crucial role in retrieval-augmented
generation (RAG) systems (Lewis et al., 2020b).
RAG architectures enable large language models
(LLMs) to dynamically access and integrate exter-
nal or proprietary knowledge without the need for
model parameter updates, substantially enhancing
their adaptability and accuracy (Wang et al., 2023;
Liu et al., 2024b; Gao et al., 2024).

The evolution of embedding models has wit-
nessed remarkable advancements, progressing
from static word embeddings (Robertson et al.,
2009) through contextualized representations
(Reimers and Gurevych, 2019; Gao et al., 2021b;
Ni et al., 2021a) to state-of-the-art LLM-based em-
bedding models (Wang et al., 2024b) that harness
the sophisticated semantic understanding capabili-
ties of large language models. These developments
have substantially enhanced performance across
various embedding tasks (Luo et al., 2024), achiev-
ing unprecedented accuracy in semantic similarity
and retrieval applications.

Despite these advances, significant challenges re-
main. LLMs, particularly those with decoder-only
architectures, are primarily optimized for genera-
tive tasks and often employ causal attention mech-
anisms that limit their capacity for effective bidi-
rectional context modeling-an essential property
for high-quality text embeddings (Grattafiori et al.,
2024; Jiang et al., 2023a). Moreover, the objec-
tives used during LLM pre-training are typically
misaligned with the requirements of dense retrieval
and semantic similarity tasks, resulting in subop-
timal performance when these models are directly
applied to embedding-centric applications. Exist-
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ing frameworks for LLM-based embeddings have
further been limited by their narrow support for
a small set of model architectures and fine-tuning
strategies, restricting their practical utility and the
pace of innovation in the field (Wang et al., 2024b;
Muennighoff et al., 2024a; BehnamGhader et al.,
2024a; Lee et al., 2024)

Another critical gap is the lack of robust multilin-
gual embedding capabilities. As the predominant
focus on English in LLM-based embedding models
has created a significant disparity in multilingual
capabilities. This gap is especially pronounced
in medium and low-resource languages, where
English-centric models exhibit substantial perfor-
mance degradation due to insufficient language-
specific training data (Wang et al., 2020; Thakur
et al., 2024). While recent advances in multilin-
gual embedding models, particularly those lever-
aging multilingual pre-trained architectures, have
demonstrated promising results in multilingual em-
bedding tasks (Li et al., 2023b; Wang et al., 2024d;
Chen et al., 2024), their reliance on explicit mul-
tilingual supervision for embeddings constrains
their applicability primarily to languages with abun-
dant training resources, leaving the challenge of
true language-agnostic representation largely unad-
dressed.

This report addresses these challenges through
two key contributions:

ULLME: A Unified Framework for Large
Language Model Embeddings with Generation-
Augmented Learning (Man et al., 2024): ULLME
introduces a flexible, plug-and-play framework
that enables bidirectional attention across a wide
range of LLM architectures and supports multi-
ple fine-tuning strategies, including contrastive
learning, supervised fine-tuning, and direct pref-
erence optimization. Central to ULLME is
the novel Generation-augmented Representation
Learning (GRL) method, which enforces consis-
tency between representation-based and generation-
based relevance scores, leveraging the generative
strengths of LLMs to produce richer and more ef-
fective embeddings. This unified approach not only
addresses the architectural limitations of LLMs in
embedding tasks but also streamlines the process
of adapting and evaluating models across diverse
retrieval and semantic applications.

LUSIFER: Language Universal Space Inte-
gration for Enhanced Multilingual Embeddings
with Large Language Models (Man et al., 2025):
LUSIFER tackles the multilingual gap by intro-

ducing a zero-shot framework that adapts English-
centric LLM embedding models for multilingual
tasks without requiring explicit multilingual su-
pervision. The architecture integrates a robust
multilingual encoder with a target LLM through
a lightweight connector, enabling the transfer of
language-agnostic semantic knowledge. LUSIFER
is trained exclusively on English data yet achieves
strong zero-shot transfer across 14 languages and
123 datasets, demonstrating significant gains es-
pecially for medium and low-resource languages.
This approach lowers the barrier for extending ad-
vanced LLM embeddings to a truly global audi-
ence.

Together, these contributions establish a com-
prehensive toolkit and methodology for improving
text representations with LLMs. By addressing
both the technical limitations of current embedding
frameworks and the persistent disparities in multi-
lingual representation, this work sets new bench-
marks for the field and provides practical solutions
for researchers and practitioners seeking to deploy
LLM-based embeddings in diverse, real-world sce-
narios

2 Related Work

2.1 LLMs for Dense Retrieval.

Recent advancements in this area have primarily
addressed two key challenges: (i): Overcoming
LLMs’ Causal Attention Limitations by develop-
ing methods to enable bidirectional attention within
LLMs (Muennighoff, 2022; Muennighoff et al.,
2024b; BehnamGhader et al., 2024b; Lee et al.,
2024), allowing models to consider both past and
future context when computing embeddings, and
(ii): Aligning LLM Pre-training with Text Rank-
ing by fine-tuning LLMs via contrastive learning
(Ma et al., 2023; Wang et al., 2024c; Lee et al.,
2024). This process can also be augmented with
additional objectives such as supervised fine-tuning
(SFT) (Muennighoff et al., 2024b) or mask-filling
tasks (BehnamGhader et al., 2024b). An alterna-
tive approach proposed by Springer et al. (2024)
involves a prompting method where the input se-
quence is duplicated, enabling each token to attend
to future tokens and mitigating the contextualiza-
tion issues inherent in causal attention. While these
methods have shown promise, they generally do not
explicitly enforce consistency between the model’s
understanding of relevance in both the embedding
and generation spaces. This limitation restricts

2



Framework #Supported Supported Fine-tuning Strategy
LLMs SFT DPO Contrastive

SentenceTrasformers (Reimers and
Gurevych, 2019)

>10 ✗ ✗ ✗

SGPT (Muennighoff, 2022) 1 ✗ ✗ ✓
RepLLaMA (Ma et al., 2023) 1 ✗ ✗ ✓
Echo-Embedding (Springer et al., 2024) 2 ✗ ✗ ✗

GritLM (Muennighoff et al., 2024b) 2 ✓ ✗ ✓
LLM2Vec (BehnamGhader et al.,
2024b)

3 ✗ ✗ ✓

NV-Emb (Lee et al., 2024) 1 ✗ ✗ ✓
ULLME (our) >10 ✓ ✓ ✓

Table 1: Comparisions between ULLME and other
LLM-Embedding frameworks. For ULLME, the mod-
ule combination enables many possible models and 10
is the number of models we have tested for usability.

their ability to fully leverage the remarkable gen-
erative capabilities of LLMs for dense retrieval
tasks. Our work, GRL, builds upon these founda-
tions while addressing their limitations, introducing
novel techniques to harmonize embedding-based
and generation-based relevance scoring within a
unified framework.

2.2 Frameworks of LLMs for Dense Retrieval.

Existing frameworks for LLMs in Dense Retrieval
have been constrained by their limited support for
LLM architectures and fine-tuning strategies. As
shown in Table1, SentenceTransformers(Reimers
and Gurevych, 2019) supports various types of
LLMs but is primarily designed for inference with-
out allowing fine-tuning, limiting its applicability
in advancing state-of-the-art dense retrieval meth-
ods. Some recent works (Muennighoff, 2022; Ma
et al., 2023; Lee et al., 2024), such as Echo (Wang
et al., 2024c), GritLM (Muennighoff et al., 2024b),
LLM2Vec (BehnamGhader et al., 2024b), and the
models in the Hugging Face’s MTEB leaderboard1,
have introduced implementations for LLM-based
text embeddings. However, these approaches are
often tailored to specific model architectures and
training methods with hard-coded implementations,
thus restricting their adaptability and use across
different LLM architectures and fine-tuning strate-
gies to meet diverse development and application
demands. In contrast, our framework ULLME ad-
dresses these limitations by offering a flexible and
extensible platform. ULLME can accommodate a
diverse range of LLM backbones and supports vari-
ous training approaches, making it highly versatile
and broadly applicable.

1https://huggingface.co/spaces/mteb/
leaderboard

2.3 Zero-shot Multilingual Embedding

Multilingual Embedding has evolved through sev-
eral distinct methodological approaches, each ad-
dressing the fundamental challenge of bridging lan-
guage gaps in embedding tasks. Early successful
approaches relied on translation models to enable
multilingual understanding (Liu et al., 2020; Shi
et al., 2021; Zhang and Misra, 2022). While ef-
fective, these methods introduced operational com-
plexity by requiring external translation systems,
limiting their practical deployment and scalability.

The emergence of multilingual pre-trained lan-
guage models, particularly XLM-R (Conneau et al.,
2020), opened new possibilities for multilingual
transfer. Recent works have demonstrated promis-
ing results by fine-tuning such models with con-
trastive learning objectives on multilingual data
(Wang et al., 2024d; Chen et al., 2024; Sturua et al.,
2024). However, these approaches face two key
limitations: they require substantial multilingual
training data, and moreover, they do not exploit the
sophisticated semantic representations afforded by
contemporary English-centric LLM architectures,
which have demonstrated superior performance in
capturing nuanced semantic relationships.

Recent advances in aligning multilingual and
English-centric representations could offer a solu-
tion. By combining independently pre-trained rep-
resentations, a paradigm that has shown remarkable
success in multimodal alignment research (Alayrac
et al., 2022; Liu et al., 2024a; Lu et al., 2024), these
works bridge the gap between visual encoders and
language models to enhance visual comprehension.
As such, similar principles can be applied to align
multilingual representations with LLM-based se-
mantic spaces. While related efforts have explored
aligning multiple LLMs for improved reasoning
capabilities in multilingual settings (Bansal et al.,
2024; Yoon et al., 2024), these approaches primar-
ily target generation tasks and typically require
large-scale alignment data. Our work extends these
efforts by focusing on embedding tasks and lever-
aging a minimal set of parameters to align multilin-
gual and English-centric representations, enabling
enhanced multilingual representation capabilities
without requirement for large-scale multilingual
training data.

2.4 Multilingual Embedding Benchmarks

The evaluation landscape for multilingual em-
bedding models has historically been fragmented
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across various benchmarks, each with significant
limitations. While existing benchmarks have made
valuable contributions, they often exhibit con-
strained scope: MINERS (Winata et al., 2024) pro-
vides evaluation across multiple languages but is
limited to classification and STS tasks with only
11 datasets; XNLI (Conneau et al., 2018), XQuAD
(Artetxe et al., 2020), and SIB-200 (Adelani et al.,
2024) offer broad language coverage but focus ex-
clusively on classification tasks; and MTEB (Muen-
nighoff et al., 2023), despite its diverse task selec-
tion, primarily addresses high-resource languages.
To address these limitations, we introduce a com-
prehensive evaluation framework that encompasses
5 fundamental embedding tasks—Classification,
Clustering, Reranking, Retrieval, and STS—across
an extensive collection of 123 datasets spanning
14 languages. This holistic approach enables sys-
tematic evaluation across both task and language
dimensions, providing unprecedented insights into
models’ multilingual capabilities. Furthermore,
our benchmark extends beyond traditional multi-
lingual evaluation by incorporating cross-lingual
tasks, featuring coverage of over 100 languages,
including critically low-resource languages that
have been historically underrepresented in exist-
ing benchmarks. This extensive coverage allows
for a more nuanced understanding of embedding
models’ performance across the global linguistic
landscape.

3 ULLME - Unified framework for Large
Language Model Embedding

We present an overview of our ULLME framework
in Section 3.1 while Section 3.2 details the key
technical methods.

3.1 Overview

ULLME addresses the limitations of existing LLM-
based dense retrieval frameworks by offering a
flexible and comprehensive solution. The frame-
work operates in three main stages. First, it en-
ables bidirectional attention within LLMs by re-
placing the causal attention mask with a bidirec-
tional one. This crucial modification extends the
models’ ability to consider both past and future
context when generating embeddings, significantly
enhancing its capacity for dense retrieval tasks.
The transformed model is then returned as a Py-
Torch object, providing users with the flexibility to
integrate it into various frameworks or pipelines.

from ullme.models import ULLME

model = ULLME(
model_name_or_path="mistralai/Mistral-7B-v0.1",
model_backbone_type="mistral",
lora_name="ullme-mistral",
loar_r=16,
lora_alpha=32,
)

input_sentence = "This a example sentence."
model_inputs = model.tokenizer(

[input_sentence],
return_tensors='pt'
)

model_output = model(
input_ids=model_inputs['input_ids'],
attention_mask=model_inputs['attention_mask'],
is_generate=False
)

>> {'rep': (1, hidden_dim)}

Listing 1: Extending bidirectional attention for LLMs
via ULLME.

We will elaborate on this process in Section 3.2.1.
Second, ULLME supports a diverse array of fine-
tuning strategies, including Contrastive Learning,
Supervised Fine-tuning (SFT), Direct Preference
Optimization (DPO), and our novel Generation-
augmented Representation Learning (GRL). This
versatility allows for tailored optimization across
a wide spectrum of retrieval tasks and domains, as
detailed in Section 3.2.2. Finally, the framework
streamlines the evaluation process by incorporating
direct support for model validation using the Mas-
sive Text Embedding Benchmark (MTEB) library
(Section 3.3). This integration facilitates compre-
hensive assessment across numerous retrieval and
embedding tasks. By seamlessly combining these
elements, ULLME provides an extensive toolkit for
leveraging LLMs in diverse dense retrieval tasks,
encompassing everything from initial model adap-
tation to fine-tuning and evaluation. Our compre-
hensive approach aims to accelerate research and
development for of LLM-based dense retrieval, of-
fering researchers and practitioners a comprehen-
sive platform for innovation and advancement.

3.2 Key Features
3.2.1 Enabling Bidirectional Attention
To enable bidirectional attention in LLMs, ULLME
requires only minimal code modifications, as
illustrated in Listing 1. The framework’s
user-friendly design allows for easy initializa-
tion with various LLM backbones by sim-
ply specifying the “model_name_or_path” and
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Figure 1: Overview of LUSIFER. Left: Align a multilingual encoder with the target English-centric LLM only
using English data and a minimal set of trainable parameter. Center: End-to-end representation finetune through
contrastive learning on English text-embedding tasks using LoRA. Right: During inference, LUSIFER successfully
processes text-embedding tasks across multiple languages.

“model_backbone_type” parameters. ULLME
seamlessly integrates with Hugging Face Trans-
formers, loading pre-trained LLMs directly from
their repository. Additionally, our framework sup-
ports parameter-efficient fine-tuning through Low-
Rank Adaptation (LoRA) (Hu et al., 2022), offer-
ing flexibility in model adaptation. Once initialized,
the model can be used to compute sequence repre-
sentations. The “is_generate” parameter plays a
crucial role in controlling the attention mechanism:
when set to “False”, the model employs bidirec-
tional attention, optimizing it for dense retrieval
tasks, while “True” reverts the model to causal
attention, mimicking the standard Hugging Face
Transformer model output. This dual functionality
allows ULLME to serve both as an advanced spe-
cialized embedding model and as a language model
when needed, providing developers with a flexi-
ble tool that can conveniently transition between
bidirectional and causal attention modes. ULLME
provides various methods for extracting text embed-
dings from LLMs, such as using representations
from the first token, last token, mean, or weighted
mean pooling. However, it defaults to averaging the
representation vectors from the final layers (mean)
for better performance on our datasets.

3.2.2 Fine-tuning Strategies

Our ULLME framework supports multiple fine-
tuning strategies, as illustrated in Listing 2.

Contrastive Learning. ULLME’s Contrastive
Learning objective utilizes in-batch negatives
(Chen et al., 2020; Gao et al., 2021b). The con-
trastive loss is formally defined as: LCL =

− log exp (srt(q,p+))
exp (srt(q,p+))+

∑
p−∈B exp (srt(q,p−))

.

Here, B represents a mini-batch, q is the input

from ullme.trainer import GradCacheTrainer

trainer = GradCacheTrainer(
con_loss_type='NTXentLoss',
gen_loss_type='dpo', # 'sft'
use_kl_loss=True

)
trainer.fit_epoch(

model=model,
train_loader=train_dataloader,

)

Listing 2: Finetuning LLMs for text embedings via
ULLME.

query, p+ denotes the positive (relevant) passage,
and p− represents negative (non-relevant) passages
sampled from the current training mini-batch. The
function srt(q, p) computes the relevance score be-
tween a query and a passage using cosine similarity
of the induced representations for q and p. To en-
hance the effectiveness of Contrastive Learning,
especially under limited GPU memory constraints,
ULLME incorporates advanced techniques such as
GradCache (Gao et al., 2021a) and cross-device
contrastive loss computation. These optimizations
allow for efficient training with larger batch sizes
and more diverse negative samples, which are cru-
cial for learning high-quality representations.

Supervised Fine-tuning (SFT). In addition to
contrastive learning, ULLME supports SFT, a strat-
egy that enhances LLMs’ ability to generate high-
quality passages in response to queries. ULLME
implements SFT using a next-word prediction ob-
jective: LSFT = − 1

N

∑N
i=1 log πθ(wi|w<i, q).

Here, N is the length of the positive passage p+,
wi is the i-th token in p+, and πθ(w|x) is the con-
ditional likelihood of w given x, computed by the
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LLM θ. Importantly, during SFT loss computation,
ULLME reverts to using causal attention, mirroring
standard LLM behavior.

Direct Preference Optimization (DPO).
ULLME incorporates Direct Preference Optimiza-
tion (DPO) (Rafailov et al., 2023) as an advanced
fine-tuning strategy, offering an alternative to
traditional Supervised Fine-tuning (SFT). DPO has
demonstrated superior effectiveness in LLM fine-
tuning. Moreover, the DPO approach inherently
accounts for both preferred and rejected outputs,
making it intuitively more suitable for aligning
models with text-ranking objectives compared to
SFT. In ULLME’s implementation, the ground-
truth relevant passage p+ for a query q is treated as
the preferred output, while negative and irrelevant
passages p− are considered dispreferred. The DPO
loss function is designed to encourage the model
to assign higher generation probabilities to p+

compared to any p−: LDPO =

− log σ
(
β log πθ(p

+|q)
πref (p+|q) − β log πθ(p

−|q)
πref (p−|q)

)
. In

this formulation, σ represents the sigmoid function,
β is a scaling factor, and πref (p|q) denotes the
conditional likelihood computed by the original
pre-trained LLM (the reference model).

In addition to the standard DPO formulation,
ULLME includes implementations of advanced
variants such as Kahneman-Tversky Optimization
(KTO) (Ethayarajh et al., 2024) and Contrastive
Preference Optimization (CPO) (Xu et al., 2024).
The modular architecture of ULLME facilitates
the seamless integration of new preference opti-
mization techniques as they emerge, ensuring that
the framework remains at the forefront of LLM
fine-tuning advancements. Finally, to maintain con-
sistency with the model’s pre-training paradigm,
ULLME employs causal attention when computing
the DPO loss, similar to the approach used in SFT.

Generation-augmented Representation
Learning (GRL). ULLME further introduces
a novel fine-tuning strategy GRL that explicitly
aligns the LLMs’ understanding of passage-query
text relevance in embedding and generation
spaces to boost representation learning. As
such, GRL first computes a generation-based
relevance score sgen(q, p) utilizing the con-
ditional generation likelihood of a passage
candidate p given input query q from LLMs:
sgen(q, p) = 1

t

∑t
i=1 log πθ(wi|w<i, q), where t

is the length of p and wi is the i-th token in p.
Next, we seek to recognize the consistency of the

from ullme.models import WrappedULLME
from ullme.eval import eval_mteb_dataset

model = WrappedULLME(
model_name_or_path="mistralai/Mistral-7B-v0.1",
model_backbone_type="mistral",
lora_name="ullme-mistral",
loar_r=16,
lora_alpha=32,
model_checkpoint="path/to/your/checkpoint"
)

eval_result = eval_mteb_dataset(
model=model,
dataset_name='MSMARCO',
langs=['eng'],
)

>> {'eng': 35.8}

Listing 3: Evaluation on MTEB dataset via ULLME.

query-passage relevance scores obtained from the
representations (i.e., srt(q, p)) and the generation
likelihood (i.e., sgen(q, p)). Particularly, let U be
the set of m candidate passages for q. For each can-
didate passage pi ∈ U , we compute srt(q, pi) and
sgen(q, pi), then normalize these scores to obtain
the representation and generation relevance distri-
butions over U : Prt(q, pi) = exp(srt(q,pi))∑

p′∈U exp(srt(q,p′))

and Pgen(q, pi) =
exp(sgen(q,pi))∑

p′∈U exp(sgen(q,p′))
.

Afterward, we minimize the KL di-
vergence between their distributions:
LKL =

∑
p∈U Prt(q, p) log

Prt(q,p)
Pgen(q,p)

, serv-
ing as a training signal to enrich representation
learning for LLMs.

Finally, the overall training loss for GRL com-
bines the contrastive loss LCL, the direct pref-
erence optimization loss LDPO, and the KL-
divergence loss LKL: LGRL = λCLLCL +
λDPOLDPO + λKLLKL, where λCL, λDPO, and
λKL are weighting hyperparameters.

3.3 Evaluation Process
ULLME streamlines the evaluation process by

integrating direct support for evaluating LLM-
based text embedding models over MTEB2, a
widely-used Massive Text Embedding Benchmark
with diverse tasks and datasets. This integration
facilitates comprehensive model development with
different methods and extensive assessment across
numerous retrieval and embedding tasks in a sin-
gle framework. ULLME wraps a fine-tuned model
into a “WrappedULLME” instance, ensuring compat-
ibility with MTEB’s requirements for direct eval-

2https://github.com/embeddings-benchmark/mteb
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uation. In addition to supporting ULLME’s fine-
tuned models, our evaluation function is designed
to perform seamlessly with most LLM models
available in the Hugging Face ecosystem, including
the latest LLM-Embedding models in the MTEB
leaderboard. Users can easily specify the desired
model through the “model_name_or_path” pa-
rameter, enabling effortless evaluation of various
LLMs without the need for extensive configuration.
ULLME allows users to select specific datasets and
language subsets for evaluation. The evaluation
results are reported using MTEB’s predefined main
scores of the corresponding dataset, ensuring stan-
dardized and comparable metrics across different
models, as demonstrated in Listing 3.

4 ULLME’s Experiments

Our ULLME framework supports various LLM
architectures and fine-tuning strategies for text
embeddings with convenient interface. To high-
light the framework’s flexibility, we demonstrate
the operations of ULLME with three different
base LLMs ranging from 1.5B to 8B parameters:
Phi-1.5B (Li et al., 2023a), Mistral-7B-Instruct-
v0.2 (Jiang et al., 2023b), and Meta-LLama3-
8B-Instruct (AI@Meta, 2024). For each LLM,
we evaluate ULLME’s performance for differ-
ent combinations of attention and fine-tuning ap-
proaches, including: Base: Original causal model,
Causal + CL: Causal model fine-tuned with Con-
trastive Learning, Bi + CL: Bidirectional-enabled
model fine-tuned with Contrastive Learning, and
Bi + CL + SFT: Bidirectional-enabled model
fine-tuned with Contrastive Learning and SFT.
In addition, we report the performance of our
Generation-augmented Representation Learning
(GRL) method for fine-tuning LLMs in ULLME,
featuring the full model GRL and GRLSFT , a
variant of GRL that replaces DPO with SFT for
tuning. Finally, we compare the performance
of ULLME’s models with recent state-of-the-art
methods for LLM-based text embeddings, includ-
ing Echo (Wang et al., 2024c) and LLM2Vec
(BehnamGhader et al., 2024b).

Settings. Following prior work (Qu et al., 2021;
Ren et al., 2021; Ma et al., 2023), we use a cu-
rated subset of the MSMARCO dataset (Bajaj et al.,
2018a) for model training. MTEB datasets are em-
ployed for evaluation. To train the models, we
utilize LoRA (Hu et al., 2022) with r = 16 and
α = 32, and enable various optimization tech-

Phi 1.5 Mistral-2-7B LlaMa-3-8B

Echo* 36.00 50.26 51.11
LLM2Vec∗ 54.47 57.47 58.04
Base 31.15 42.31 42.33
Causal + CL 51.83 54.03 54.68
Bi + CL 52.70 55.41 55.86
Bi + CL + SFT 53.88 57.01 56.83
GRLSFT 55.01 58.37 57.50
GRL (ours) 55.76 59.50 59.27

Table 2: Model performances on MTEB datasets using
MSMARCO for training data. The numbers are aver-
aged over 56 datasets of MTEB, covering diverse tasks
such as Retrieval, Reranking, Clustering, Pair Classifi-
cation, Classification, Semantic Textual Similarity, and
Summarization. The best results are in bold and ∗ indi-
cates our implementation/reproduced results using the
same training data.

niques, i.e., GradCache, gradient checkpointing,
mixed precision training, and FSDP (Zhao et al.,
2023a), to minimize GPU memory requirements.
We utilize the AdamW optimizer (Loshchilov and
Hutter, 2017) with a learning rate of 2e-4 and a
batch size of 512 with the number of hard neg-
ative passages per example was set to 8. We
train the models for one epoch on MSMARCO.
The weights for the GRL loss components include
λCL = λKL = 1 and λDPO = 0.5. The scaling
factor β in the DPO loss was set to 0.1.

Results. Table 2 showcases the performance of
various models on the MTEB datasets. Compared
to previous methods Echo and LLM2Vec, it is clear
that our ULLME framework can be used to train
diverse and competitive LLM-based embedding
models for different base LLMs and tasks in MTEB.
Among various architectures in ULLME, we ob-
serve that the combination of contrastive learning
and SFT leads to better performance than the indi-
vidual techniques, demonstrating their complemen-
tary benefits for LLM-based embeddings. Notably,
our proposed Generation-augmented Representa-
tion Learning (GRL) method in ULLME consis-
tently outperforms the best baseline, LLM2Vec,
across different base models ranging from 1.5B to
8B parameters. This highlights the effectiveness
of using generation probabilities to guide repre-
sentation learning in GRL. Finally, we note that
the inference time of the fine-tuned models with
ULLME is comparable to the original LLMs, pro-
cessing 16K, 12K, and 12.8K tokens per second
for Phi-1.5B, Mistral-7B-Instruct-v0.2, and Meta-
LLama3-8B-Instruct, respectively.
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5 LUSIFER: Language Universal Space
Integration for Enhanced Multilingual
Embeddings with Large Language
Models

Previous works demonstrate that representations
of multilingual encoder models exhibit inherent
language-agnostic properties, facilitating zero-shot
multilingual transfer (Pires et al., 2019; Libovický
et al., 2020). Building upon this foundation, we
propose LUSIFER, an embedding framework that
aligns a multilingual encoder model with a target
English-centric LLM’s representational space, en-
abling the target to encode semantics across multi-
ple languages without extensive multilingual train-
ing. This section details our architectural design
and two-stage training process for LUSIFER.

5.1 Model Architecture

The core development of LUSIFER lies in its novel
approach to enabling multilingual encoding of tar-
get LLMs through efficient representation map-
ping. As illustrated in Figure 1, LUSIFER’s ar-
chitecture consists of three key components: (1) a
multilingual encoder that functions as a language-
universal learner, capturing semantic information
for diverse languages, (2) a language-agnostic con-
nector that serves as a minimal parametric bridge
between representations, and (3) a target LLM op-
timized for embedding-specific tasks. The multi-
lingual encoder processes input from various lan-
guages into a shared semantic space, while the
connector, designed with minimal trainable pa-
rameters, aligns these universal representations
with the target LLM’s native representational space.
This alignment enables the target LLM embedding
model to effectively leverage multilingual under-
standing without requiring extensive multilingual
training data or architectural modifications.

Following successful approaches in multimodal
alignment (Alayrac et al., 2022; Liu et al., 2024a;
Lu et al., 2024), we implement the connector as
a 2-layers feed-forward network, FF, augmented
with a single trainable token appended to the mul-
tilingual encoder’s hidden states. Formally, given
input tokens Xinput (with necessary padding), the
multilingual encoder’s hidden states Henc are trans-
formed to align with the target LLM’s representa-
tional space. The resulting aligned hidden states
Halign maintain dimensionality compatibility with
the target LLM’s hidden states while extending the
sequence length by one (|Xinput|+ 1): Halign =

[FF(Henc); t], where FF is the feed-forward net-
work to align the multilingual encoder’s hidden
states with dimension de to the target LLM’s hid-
den states with dimension dt, and t ∈ Rdt is the
trainable token. Moreover, we employ a masking
mechanism to mask any original padding tokens
in Henc to prevent their influence on the target
LLM’s processing, ensuring the model focuses on
meaningful tokens.

5.2 Training Pipeline
LUSIFER employs a two-stage training process
to achieve optimal multilingual representation ca-
pabilities. Both stages only require training on
English data, leveraging the multilingual encoder’s
inherent language-agnostic properties and embed-
ding advantages of LLMs to facilitate zero-shot
multilingual transfer.

Stage 1: Alignment Training. The initial train-
ing stage aligns the multilingual encoder’s repre-
sentations with the target LLM’s embedding space.
Specifically, we optimize the connector parame-
ters θc and the multilingual encoder parameters θe
while keeping the target LLM’s parameters fixed,
ensuring stable convergence. The training employs
two complementary objectives: (1) A masked re-
construction task where we randomly mask k%
of input tokens such that Xinput = mask(X, k),
training the model to recover the original sequence
Xlm = X. (2) An autoregressive completion task
that focuses on next-token prediction, where the
model learns to generate the target sequence Xlm

conditioned on the input context Xinput. The train-
ing objective for both tasks is formulated as lan-
guage modeling objective to generate the target
sequence Xlm given the input sequence Xinput.
This objective enables local token-level alignment
through masked reconstruction task where the
model learns to predict the masked tokens by lever-
aging the context. In addition, it exploits global
semantic alignment through autoregressive com-
pletion task that encourages the model to capture
semantic information of the input sequences to gen-
erate the target sequence. As such, our training
strategy learns to align the multilingual encoder’s
representations with the target LLM’s embedding
space while preserving important semantic infor-
mation of multilingual input sequences. Our train-
ing process is conducted using the standard cross-
entropy loss function.

Stage 2: Representation Finetuning. The sec-
ond stage improves text representations through
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Figure 2: Overview of tasks and datasets in our benchmark. Crosslingual datasets are marked with a blue shade.

a contrastive learning process, effectively teach-
ing the model to distinguish between positive and
negative examples. Our approach leverages both
in-batch negatives sampled from the current train-
ing batch and hard-negative examples specifically
curated to enhance model training. Additionally,
we incorporate bidirectional attention mechanisms
within the target LLM, following recent advances
in LLM’s representation learning (Muennighoff
et al., 2024a; BehnamGhader et al., 2024a; Lee
et al., 2024; Man et al., 2024). This bidirectional
context modeling significantly enhances the quality
of learned representations by enabling the model
to capture both forward and backward dependen-
cies in the input sequence. During this stage, we
finetune all components of LUSIFER, including
the target LLM, the multilingual encoder, and the
connector parameters, to optimize the model’s rep-
resentation quality for embedding-specific tasks.
The goal of this stage is to improve the quality of
text representations by leveraging the advanced em-
bedding capabilities of the target LLM while main-
taining the multilingual understanding provided by
the multilingual encoder.

6 LUSIFER’s Experiment

In this section, we first introduce the benchmark
datasets and evaluation metrics in Section 6.1.
Then, we describe the experimental setup, includ-
ing the model implementation, training data, and
training details in Section 6.2. Afterward, we
present the main results in Section 6.3, and analyze
the effectiveness of LUSIFER’s components in Sec-
tion 6.6. Finally, we visualize the LUSIFER’s rep-

resentations in multilingual space to obtain insights
into its lingual-agnostic capabilities in Section 6.7.

6.1 Benchmark
Figure 2 illustrates the tasks and datasets in our
benchmark. Following (Muennighoff et al., 2023),
our benchmark includes five fundamental embed-
ding tasks, with the evaluation protocol for each
task adapted from the respective original papers.
The benchmark involves 123 diverse datasets, in-
cluding 48 Classification datasets, 24 Clustering
datasets, 24 Retrieval datasets, 22 Semantic Tex-
tual Similarity STS datasets, and 5 Reranking
datasets. The main metrics for each task are as
follows: Classification: Accuracy, Clustering: V-
measure (Rosenberg and Hirschberg, 2007), Re-
trieval: nDCG@10, STS: Pearson correlation based
on cosine similarity (Reimers et al., 2016), and
Reranking: MAP. Following (Lai et al., 2023),
our benchmark covers 14 languages including 5
high-resource languages: English (en), Spanish
(es), Russian (ru), French (fr), Vietnamese (vi); 6
medium-resource languages: Persian (fa), Indone-
sian (id), Arabic (ar), Finnish (fi), Korean (ko),
Hindi (hi); 3 low-resource languages: Bengali (bn),
Telugu (te), Swahili (sw).

Additionally, we evaluate models on cross-
lingual retrieval tasks where the models need to
perform text embedding tasks with queries and doc-
uments in different languages. These tasks feature
5 datasets, including Belebele (Bandarkar et al.,
2024), MLQA (Lewis et al., 2020a), STS17, STS22
(Agirre et al., 2016), and IndicCrosslingualSTS
(Ramesh et al., 2022), covering over 100 languages,
including critically low-resource languages.
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Baselines En Es Ru Fr Vi Fa Id Ar Fi Ko Hi Bn Te Sw Avg.

Jina-embeddings-v3* (Sturua et al., 2024) 59.84 61.23 62.88 58.94 66.74 78.35 58.51 64.71 73.57 64.96 64.19 61.54 68.96 49.20 63.83
mGTE-base* (Zhang et al., 2024) 60.40 59.65 61.02 56.20 65.81 73.46 56.55 61.97 68.96 61.22 60.81 58.24 63.58 52.57 61.46
BGE-M3* (Chen et al., 2024) 60.09 60.60 62.37 57.34 70.69 78.97 58.78 64.12 75.60 64.72 64.61 65.31 69.85 54.20 64.80
Multilingual-E5-large* (Wang et al., 2024e) 61.91 61.97 62.91 59.40 71.30 78.08 55.21 63.41 76.53 66.55 63.75 63.67 67.32 51.55 64.54
UDEVER-Bloom-7B* (Zhang et al., 2023) 55.83 56.39 59.73 54.38 64.32 68.70 48.97 55.02 67.60 58.54 55.96 55.13 61.00 47.41 57.78

SimCSE (Gao et al., 2021b) 51.92 51.81 24.90 46.95 31.18 37.12 39.27 29.46 41.64 26.23 25.17 21.54 26.71 38.36 35.16
Contriever (Izacard et al., 2022) 49.29 44.26 26.55 44.05 33.03 39.66 38.33 32.36 45.76 26.47 23.27 22.61 22.64 39.26 34.82
GTE-large (Li et al., 2023b) 62.29 51.66 33.49 50.13 38.88 44.67 43.07 30.27 51.98 27.02 20.38 22.97 22.75 41.40 38.64
BGE-en-1.5 (Xiao et al., 2023) 63.27 51.65 32.79 50.84 38.50 49.73 43.28 30.81 51.16 31.11 25.28 26.34 23.02 41.96 39.98
E5-large (Wang et al., 2024a) 60.12 52.41 26.81 51.00 37.99 39.47 43.86 31.32 53.59 28.84 24.57 23.48 22.03 43.25 38.48
ST5-XXL (Ni et al., 2021c) 58.81 60.35 44.42 58.50 41.81 24.66 53.43 25.30 52.46 15.43 18.07 17.10 21.63 38.81 37.91
GTR-XXL (Ni et al., 2021b) 58.12 54.39 41.94 53.21 37.96 24.67 50.08 25.14 53.88 15.23 17.35 15.92 22.12 40.57 36.47
E5-Mistral (Wang et al., 2024b) 66.64 61.84 61.30 59.65 58.58 72.55 58.25 54.43 66.97 62.82 56.23 55.10 47.15 50.61 59.44

LUSIFER (Ours) 57.20 60.14 59.82 59.24 67.69 76.17 59.70 55.60 72.83 65.23 62.37 58.43 69.30 53.12 62.63

Table 3: Comparative analysis of model performance across multiple languages and tasks. The table presents
average metrics for each model, with the highest score for each language emphasized in bold. * denotes the models
trained on extensive multilingual data.

Baselines MLQARetrieval BelebeleRetrieval STS17 STS22 IndicCrosslingual Avg.

SimCSE (Gao et al., 2021b) 7.41 18.35 39.71 37.95 0.18 20.72
Contriever (Izacard et al., 2022) 9.75 22.94 34.55 41.72 0.03 21.80
GTE-large (Li et al., 2023b) 16.99 31.82 37.57 53.79 1.59 28.35
BGE-en-1.5 (Xiao et al., 2023) 16.64 31.19 40.40 50.77 1.11 28.02
E5-large (Wang et al., 2024a) 17.04 31.12 37.90 54.31 1.83 28.44
ST5-XXL (Ni et al., 2021c) 20.82 41.68 56.19 59.02 1.76 35.89
GTR-XXL (Ni et al., 2021b) 20.19 38.02 50.83 60.11 2.74 34.38
E5-Mistral (Wang et al., 2024b) 31.54 54.75 81.12 71.37 21.92 52.14

LUSIFER (Ours) 36.68 57.81 81.09 70.49 43.40 57.89

Table 4: Cross-lingual evaluation results. The table presents average metrics for each model over all languages of
the datasets, with the highest score for each language emphasized in bold.

6.2 Experimental Setup

Implementation Details. LUSIFER encompasses
three key components: a multilingual encoder, a
connector, and a target LLM. We employ XLM-
R-large (Conneau et al., 2020) as the multilingual
encoder, Mistral-7B (Jiang et al., 2023a) as the
English-centric target LLM, and a 2-layer feed-
forward network with one trainable token as the
connector. To facilitate efficient training, we lever-
age the LoRA framework (Hu et al., 2022) for train-
ing of LUSIFER’s components. Furthermore, we
employ GradCache (Gao et al., 2021a), gradient
checkpointing, mixed precision training, and FSDP
(Zhao et al., 2023b) to minimize GPU memory
requirements. The LUSIFER architecture and its
training code are built on top of the Hugging Face
Transformers (Wolf et al., 2020) and Pytorch Light-
ning libraries (Falcon and team, 2024).

Training Data. We only train LUSIFER on
a diverse public English datasets. For align-
ment training, we use the combination of the En-
glish Wikipedia and questions-answering datasets.
Specifically, we use subset of Wikitext-103 (Mer-
ity et al., 2017) and MSMARCO (Bajaj et al.,
2018b) for the masked reconstruction and autore-
gressive completion tasks, respectively. For repre-

sentation finetuning, we adopt the retrieval datasets
as follows: MS MARCO (Bajaj et al., 2018b),
NQ (Kwiatkowski et al., 2019), PAQ (Lewis et al.,
2021), HotpotQA (Yang et al., 2018), SNLI (Bow-
man et al., 2015), SQuAD (Rajpurkar et al., 2016),
ArguAna (Wachsmuth et al., 2018), FiQA (Maia
et al., 2018) and FEVER (Thorne et al., 2018).
To address the lack of hard negatives in these
datasets, we leverage an encoder-based model
(Wang et al., 2024a) to select the hard negatives on
those datasets.

Baselines. We evaluate LUSIFER’s perfor-
mance across the five fundamental embedding tasks
on the benchmark datasets. We make comparisons
with a variety of baseline models for embedding
tasks which only trained/finetuned on mainly En-
glish data. Baselines include the following cat-
egories: dense retrieval models with Small Lan-
guage Model (SLM) backbone: SimCSE (Gao
et al., 2021b), Contriever (Izacard et al., 2022),
GTE-large (Li et al., 2023b), BGE-en-1.5 (Xiao
et al., 2023), E5-large (Wang et al., 2024a); and
dense retrieval models with Large Language Model
(LLM) backbone: GTR-XXL (Ni et al., 2021b),
ST5-XXL (Ni et al., 2021c), E5-Mistral (Wang
et al., 2024b). Moreover, we include the follow-
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Figure 3: Performance comparison of LUSIFER and baseline models on Classification and Clustering tasks.

ing state-of-the-art multilingual embedding models
which are trained on extensive multilingual data
for reference: Jina-embeddings-v3 (Sturua et al.,
2024), mGTE-base (Zhang et al., 2024), BGE-M3
(Chen et al., 2024), Multilingual-E5-large (Wang
et al., 2024e), and UDEVER-Bloom-7B (Zhang
et al., 2023).

6.3 Main Results

Table 3 presents the main results of LUSIFER
and baseline models on the benchmark datasets.
LUSIFER achieves state-of-the-art performance in
10 out of 14 languages, with an average score of
62.63 across all languages, a 3.19 points improve-
ment over the previous best-performing baseline,
E5-Mistral (59.44) (Wang et al., 2024b). Note
that E5-Mistral is essentially the Mistral model
fine-tuned on extensive proprietary synthetic data
and supplemented with some multilingual data for
training. Our results demonstrate that LUSIFER
significantly enhances the multilingual capabilities
of English-centric embedding LLM by aligning
it with a multilingual encoder, enabling effective
multilingual representation without requiring ex-
plicit multilingual training data. The improvements
are particularly pronounced for medium and low-
resource languages, with Telugu (te) showing the
largest gain of 22.15 points over E5-Mistral. This
highlights LUSIFER’s effectiveness in improving
representation capabilities for traditionally under-
represented languages. Additionally, LUSIFER
significantly outperforms the embedding models
with SLM backbones, such as E5-large (38.48)

and BGE-en-1.5 (39.98) which are trained on En-
glish data only, thus further demonstrating the ben-
efits of combining multilingual encoder and LLM’s
English-centric for text-embedding tasks in mul-
tilingual settings. Furthermore, even without ex-
plicit multilingual supervision, LUSIFER achieves
competitive performance (62.63) compared to state-
of-the-art multilingual models that require exten-
sive multilingual training data, such as BGE-M3
(64.80) (Chen et al., 2024) and Multilingual-E5-
large (64.54) (Wang et al., 2024e). These results
further demonstrate the benefits of LUCIFER for
multilingual representation learning while avoiding
expensive multilingual data for text embeddings.

6.4 Cross-Lingual Evaluation

Table 4 presents the results of LUSIFER and base-
line models on the cross-lingual tasks. LUSIFER
achieves the highest average score of 57.89, outper-
forming the previous best-performing baseline, E5-
Mistral (52.14), by 5.75 points. Notably, LUSIFER
demonstrates significant improvements in low-
resource languages, as evidenced by its perfor-
mance on the IndicCrosslingual dataset, where it
achieves a score of 43.40, substantially higher than
the next best baseline, E5-Mistral (21.92). These
results underscore LUSIFER’s effectiveness in en-
hancing cross-lingual capabilities through efficient
multilingual representation alignment, enabling the
model to process text-embedding tasks across mul-
tiple languages effectively.
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Baselines En Es Ru Fr Vi Fa Id Ar Fi Ko Hi Bn Te Sw Avg.

LUSIFER (Full) 57.20 60.14 59.82 59.24 67.69 76.17 59.70 55.60 72.83 65.23 62.37 58.43 69.30 53.12 62.63

LUSIFER (Connector Only) 35.53 33.98 42.95 33.54 35.68 57.86 35.55 27.60 48.72 34.45 47.57 41.85 46.50 34.66 44.18
LUSIFER (Frozen Multilingual Encoder) 50.99 58.77 58.30 52.73 62.24 75.88 58.11 41.66 70.75 59.53 62.48 55.53 66.24 49.12 58.74
LUSIFER (Alignment Only) 43.32 38.94 45.12 36.75 41.96 64.60 38.38 33.07 52.78 38.08 53.06 47.84 48.34 40.03 44.45
LUSIFER (Representation Finetuning Only) 49.71 58.76 58.08 51.01 62.11 74.01 57.32 40.95 68.47 57.81 59.74 53.53 63.39 47.03 57.28

Table 5: Ablation study results of LUSIFER’s components. The table presents average metrics for each model, with
the highest score for each language emphasized in bold.
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Figure 4: Performance comparison of LUSIFER and
baseline models on Reranking tasks.

6.5 Task-Specific Performance

Figure 3, 4, 5 present the performance compar-
ison of LUSIFER and baseline models on Clas-
sification, Clustering, Reranking, Retrieval, and
STS tasks. LUSIFER consistently outperforms the
baseline models across 4 out of 5 tasks, with the
largest improvements observed in Clustering and
Retrieval tasks, especially in the medium and low-
resource languages. However, the performance of
LUSIFER in the Reranking tasks is slightly worse
than the baseline models. This discrepancy may
be attributed to the task’s complexity and the infor-
mation loss in the alignment process between the
multilingual encoder and the target LLM. Never-
theless, LUSIFER’s strong performance across a
variety of tasks and languages highlights its abil-
ity to enhance multilingual representations without
relying on explicit multilingual training data.

6.6 Ablation Study

To evaluate the effectiveness of LUSIFER’s com-
ponents and training procerdure, we conduct an
ablation study to analyze the impact of each com-
ponent on the model’s performance. We compare
the performance of LUSIFER with the following

ablated versions: (1) LUSIFER with only finetun-
ing connector in both alignment training and rep-
resentation finetuning stages, (2) LUSIFER with
frezzing the multilingual encoder while training the
connector and the target LLM in both stages, (3)
LUSIFER with only alignment training, i.e., align-
ment training without representation finetuning, (4)
LUSIFER with only representation finetuning with-
out alignment training. Table 5 presents the results
of the ablation study. The full LUSIFER model
achieves the highest average score of 62.63 across
all languages, outperforming the ablated versions.
Notably, the alignment training and representation
finetuning stages both contribute to the model’s per-
formance, with the representation finetuning stage
showing a more substantial impact on the model’s
performance. These results underscore the impor-
tance of each component in LUSIFER’s architec-
ture and training process, highlighting the model’s
effectiveness in enhancing multilingual representa-
tion capabilities.

6.7 Model Representation Visualization

Figure 6 shows 2D scatter plots of representa-
tions from different models for 200 randomly sam-
pled examples from the SIB200 dataset, visual-
ized using t-SNE. The points are colored by the
language of the samples. The t-SNE representa-
tion of E5-Mistral demonstrates a clearer separa-
tion between languages, with distinct clusters for
each language. In contrast, the visualization of
LUSIFER presents a more mixed distribution of
languages, with overlapping clusters across differ-
ent languages. This observation provides insights
into LUSIFER’s lingual-agnostic capabilities, high-
lighting the model’s ability to bridge the gaps be-
tween representation spaces of different languages.
These results suggest that LUSIFER’s alignment
strategy enables the model to comprehend seman-
tics across multiple languages effectively, facilitat-
ing zero-shot multilingual transfer. Overall, our
experiments confirm the advantages of the repre-
sentation alignment strategies in LUCIFER to ef-
fectively enable zero-shot multilingual transfer for
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Figure 5: Performance comparison of LUSIFER and baseline models on Retrieval and STS tasks.

(a) E5-Mistral (language) (b) LUSIFER (language)

Figure 6: t-SNE representation of 200 randomly sam-
ples from the SIB200 dataset. The points are colored by
the languages.

LLM-based embedding methods.

7 Conclusion

This report presents two major contributions toward
advancing the quality and versatility of text repre-
sentations using large language models (LLMs):
ULLME, a unified framework for LLM-based em-
beddings with generation-augmented learning, and
LUSIFER, a novel approach for multilingual em-
bedding adaptation without explicit multilingual
supervision.

ULLME addresses fundamental challenges in
leveraging LLMs for dense retrieval and represen-
tation learning, such as the limitations of causal at-
tention and the misalignment between pre-training
and retrieval objectives. By enabling bidirectional
attention across a broad spectrum of LLM architec-
tures and supporting diverse fine-tuning strategies-
including contrastive learning, supervised fine-
tuning, and direct preference optimization-ULLME
provides a flexible, plug-and-play platform for em-

bedding research and deployment. Its core in-
novation, Generation-augmented Representation
Learning (GRL), enforces consistency between
representation-based and generation-based rele-
vance scores, effectively harnessing the generative
strengths of LLMs for improved embedding quality.
Extensive evaluations demonstrate that ULLME,
particularly with GRL, consistently outperforms
strong baselines and achieves state-of-the-art re-
sults on the Massive Text Embedding Benchmark
(MTEB), validating its effectiveness and generality.

LUSIFER tackles the persistent gap in multi-
lingual representation by introducing a zero-shot
adaptation framework that aligns a robust multi-
lingual encoder with an English-centric LLM em-
bedding model through a lightweight connector.
This design enables effective transfer of language-
agnostic semantic knowledge, allowing the result-
ing model to perform strongly on multilingual and
cross-lingual tasks without requiring any explicit
multilingual training data. LUSIFER is compre-
hensively evaluated on a new benchmark cover-
ing five primary embedding tasks, 123 datasets,
and 14 languages, and demonstrates substantial
improvements over existing baselines, especially
for medium and low-resource languages. In cross-
lingual settings, LUSIFER achieves state-of-the-art
performance, highlighting its ability to bridge the
gap between high-resource and low-resource lan-
guage applications efficiently and effectively.

Together, these contributions provide a com-
prehensive toolkit and methodology for improv-
ing both monolingual and multilingual text em-
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beddings with LLMs. They lower the barrier for
researchers and practitioners to deploy advanced
embedding models in diverse real-world scenar-
ios, from retrieval-augmented generation to seman-
tic search and classification. The frameworks in-
troduced here set new benchmarks for the field
and open promising directions for future work,
including further exploration of alignment strate-
gies, extension to other modalities, and integra-
tion with emerging LLM architectures and training
paradigms. By bridging architectural, training, and
language gaps, this work significantly advances
the state of text representation learning and paves
the way for more inclusive and effective natural
language understanding systems.
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