
Towards Efficient Long-context Modeling in Large Language Models

Chien Van Nguyen,
1Department of Computer Science, University of Oregon, Eugene, OR, USA

chienn@uoregon.edu

Abstract

Effectively processing and utilizing informa-
tion across long text sequences is a fundamen-
tal challenge in advancing Natural Language
Processing (NLP). Tasks like document-level
information extraction inherently require mod-
els to understand context that spans beyond
single sentences, often throughout an entire
document. Our recent work on Document-level
Event Argument Extraction (EAE) achieved
state-of-the-art performance by leveraging con-
textualized soft prompts and aggregating rele-
vant document context. However, this method,
like many other powerful NLP models, relies
on underlying Large Language Models (LLMs)
with fixed and relatively short context windows,
typically limited to a few thousand tokens. This
report presents this state-of-the-art EAE work
and highlights how its success, despite these
context constraints, reveals the critical need
for LLM architectures capable of handling sig-
nificantly longer contexts efficiently. We then
introduce Taipan, a novel hybrid LLM architec-
ture we developed that combines the efficiency
of State Space Models (Mamba-2) with the ex-
pressive power of Selective Attention Layers.
Taipan is designed to efficiently model depen-
dencies and retrieve information across context
lengths up to one million tokens. We demon-
strate Taipan’s superior performance on long-
context retrieval and extrapolation tasks, show-
ing its potential to overcome the context bottle-
neck faced by current SOTA models and enable
future advancements in tasks like document-
level EAE on unprecedented scales.

1 Introduction

A major research direction in the field of Large Lan-
guage Models (LLMs) today is Long-context Mod-
eling. This aims to significantly improve LLMs’
efficiency and capability in handling extreme long
input sequences. The motivation for this is clear:
many real-world tasks demand the ability to un-
derstand and process documents, conversations, or

data streams that easily exceed hundreds of thou-
sands or even a million tokens. Examples span
diverse domains, from analyzing scientific litera-
ture and legal documents to processing historical
archives and engaging in extended dialogues.

However, the prevailing LLM architecture, the
Transformer (Vaswani et al., 2017), faces funda-
mental limitations here. The self-attention mecha-
nism, while powerful for capturing dependencies,
has a quadratic computational complexity (O(L2))
with respect to the sequence length (L). This
leads to computational bottlenecks that become
prohibitive for long inputs. Furthermore, during
inference, the memory usage for storing the Key-
Value (KV) cache grows linearly (O(L)) with con-
text length, quickly exceeding available hardware
capacity. These limitations make it challenging to
scale standard Transformers to the required context
lengths, often necessitating truncation or complex
chunking strategies that can compromise accuracy
by breaking long-range dependencies.

This presents a key challenge in balancing effi-
ciency (reducing memory usage and boosting com-
putation speed) with accuracy (enhancing perfor-
mance on tasks requiring long contexts).

A significant application area that both benefits
from and exemplifies the need for long-context
LLMs is Document-level Information Extrac-
tion (IE). Unlike traditional IE methods or simpler
sentence-level approaches, document-level IE fo-
cuses on capturing relationships, events, and con-
text that span an entire document, requiring the
integration of information from potentially distant
parts of the text. The challenges here are twofold:
effectively reasoning across long contexts with dis-
tant dependencies, and maintaining computational
efficiency when processing large documents or col-
lections of documents.

Despite these challenges, LLMs offer com-
pelling opportunities for Document-level IE. Their
pretraining on vast corpora provides a strong foun-

dation for language understanding, which can be
further enhanced by incorporating structured docu-
ments into training. Crucially, the advent of truly
long-context LLMs has the potential to revolution-
ize this field by enabling models to process full
documents without resorting to information-losing
truncation.

These observations motivate two core research
questions driving our work:

Q1: How can we enable efficient and scalable
long-context modeling in LLMs? This question
probes the architectural and algorithmic advance-
ments needed to process extremely long context
efficiently. What modifications can reduce memory
and computational costs? How can we maintain
or improve performance on long-range dependen-
cies? Can techniques like KV cache compression
or pruning play a role?

Q2: How can we improve document-level
information extraction using LLMs? This
application-focused question investigates how
LLMs can better handle the complexities of docu-
ment structure and dependencies. How can models
effectively capture cross-sentence and cross-page
relationships for tasks like event argument extrac-
tion or relation extraction?

Addressing Q2 on the scale required by real-
world documents (i.e., large documents) fundamen-
tally depends on breakthroughs in Q1. Without
efficient long-context architectures, the application
of powerful LLMs to large documents for IE tasks
remains constrained.

The following sections detail our research con-
tributions towards these questions. We will first
present our work on Document-level Event Argu-
ment Extraction, which achieved state-of-the-art
performance on standard benchmarks and under-
scored the potential of LLMs for IE tasks, while si-
multaneously highlighting the limitations imposed
by current context windows. We will then intro-
duce our work on Taipan, a novel LLM architec-
ture designed to directly address the efficiency and
scalability challenges of Q1, enabling truly long-
context modeling and paving the way for future
advancements in applications like Document-level
IE on unprecedented scales. 1

1The next chapters include material from published pa-
pers and preprints. We acknowledge the contributions of
co-authors Hieu Man, Thien Huu Nguyen, Huy Huu Nguyen,
Thang M. Pham, Ruiyi Zhang, Hanieh Deilamsalehy, Puneet
Mathur, Ryan A. Rossi, Trung Bui, Viet Dac Lai, and Franck
Dernoncourt.

2 Document-level Event Argument
Extraction (EAE): A Case for
Long-Context Needs

2.1 Introduction
As an important task in Information Extraction (IE),
Event Argument Extraction (EAE) aims to recog-
nize event arguments and roles for given event
mentions in text. For example, in the text “On
the morning of 1 March 2019, Taliban gunmen and
suicide bombers attacked Camp Shorabak.” with
the event trigger “attacked” of type Conflict.Attack,
the goal of EAE systems is to identify “gunmen”
and “bombers as the Attacker argument, and “Camp
Shorabak” as the Target. Along with event detec-
tion, EAE has important applications for different
natural language processing (NLP) tasks.

EAE research progress has been accelerated by
deep learning architectures to significantly boost
extraction performance. Early deep learning mod-
els for EAE have followed the traditional ap-
proaches to formulate EAE as classification or
sequence labeling problems (Chen et al., 2015;
Nguyen et al., 2016; Sha et al., 2018; Liu et al.,
2018; Nguyen and Nguyen, 2018; Pouran Ben Vey-
seh et al., 2022). Recently, there has been a
growing interest in solving EAE in the new ques-
tion answering or text generation frameworks to
better exploit task-specific information (e.g., la-
bels/descriptions of argument roles) via prompts for
pre-trained language models (PLM). As such, ques-
tion answering methods for EAE create a question
for each argument role to perform span extraction
over input context (Du and Cardie, 2020; Liu et al.,
2020; Li et al., 2020; Liu et al., 2021a) while text
generation models directly consume an input text
and argument-specified prompt/template to gener-
ate arguments for each event mention (Li et al.,
2021; Zeng et al., 2022). However, a common
issue in current prompt-based methods for EAE
involves the use of discrete and manually-designed
prompts to present task information for the mod-
els, e.g., event types and argument roles. As such,
these prompts often follow some pre-defined tem-
plates (Li et al., 2021; Ma et al., 2022) that are
applied to extract arguments for all events in text.
While convenient for human understanding, dis-
crete and pre-defined prompts might not be ideal
for all examples, causing sub-optimal performance
(Liu et al., 2021b). The discrete nature also makes
it challenging to achieve prompt customization for
each example in EAE models. Further, due to the

employment of PLMs, it has been observed that
model performance can be very sensitive to spe-
cific formulations of discrete prompts (Zhao et al.,
2021; Ma et al., 2022), leading to instability and
less reliability when adapting to different datasets.

Another issue of hard prompts for EAE mod-
els concerns other relevant examples from training
data that can provide helpful information to support
argument prediction for current input text and event
type. As such, a few recent work has retrieved re-
lated examples for an input text to combine with
hard prompts to improve EAE (Du et al., 2022; Du
and Ji, 2022). However, due to the input length
limit of PLMs, the number of relevant examples in
the prompts is also constrained, thus unable to fully
leverage their advantages to boost performance.

To this end, our work proposes a novel prompt-
based method for EAE where learnable soft
prompts are explicitly introduced to enable prompt
customization for examples, stability improvement,
and incorporation of relevant example context. In
particular, based on the architecture of generative
PLMs, our model directly utilizes input example
representations to compute soft prompts for EAE,
thus allowing the prompts to be specifically de-
signed for each example for better customization.
In addition, soft prompts facilitate the accumula-
tion of representations of relevant examples for an
input event type to consume more examples for
richer prompts. To exploit this flexibility of soft
prompts, our model extensively considers relevant
examples as the texts in training data that contain
similar event types to an input text, leading to com-
prehensive external event context to aid EAE. Ac-
cordingly, we introduce a graph structure to capture
mentioning relations between documents and event
types. This graph is then fed into graph neural
networks to facilitate representation aggregation
of relevant documents with similar events for soft
prompt computation. We evaluate the proposed
model for EAE on the benchmark datasets RAMS
and WIKIEVENTS. The results demonstrate the
benefits of the proposed method, leading to state-
of-the-art performance for EAE.

2.2 Model

In EAE, given an event trigger/mention in a doc-
ument, we need to identify argument spans and
roles for the event. For convenience, let D =
{D1, . . . , D|D|} be the set of documents in the
training data and ek ∈ Di be the current event

trigger in document Di with event type et for EAE.

Relevant Context Aggregation: Our EAE
model follows the prompt-based framework (Ma
et al., 2022) where a prompt is created for each
event type and fed into the pre-trained language
model BART (Lewis et al., 2020) to perform span
extraction for the argument roles. As such, in con-
trast to hard and manually-designed prompts as in
previous work, our model introduces soft prompts
with example customization and relevant example
aggregation to boost the performance. In particular,
given the current event trigger ek ∈ Di, our model
first aims to aggregate context representations from
relevant documents in D for the event type et of
ek to enrich soft prompt computation. Motivated
by relevant documents via similar event types, we
we first construct an event-type mentioning graph
G between the documents in D and the event types
T = {t1, . . . , t|T |} to facilitate representation ag-
gregation. In particular, the node set V for our
graph involves both documents and event types,
i.e., V = D ∪ T . We only connect a document
Du ∈ D and an event type tv in G if there exists an
event mention of type tv in Du. In this way, we can
link the documents in D via similar event type men-
tioning for convenient representation aggregation
with graph neural networks.

To obtain representations for each document
Du ∈ D, we introduce the markers <ET> and
</ET> before and after each event trigger word in
Du to generate the marker-augmented document
D̂u. The augmented document is then sent into
the encoder of BART to produce a representation
for each word in D̂u (using the averages of hidden
vectors in the last layer for sub-words). Afterward,
the representation D

0
u for Du ∈ D is computed by

performing mean pooling over the representations
for the <ET> markers of event triggers, aiming to
retain event-focused context in the representation.
For the event types tv ∈ T , we initialize their repre-
sentations t0v randomly. Afterward, the graph G and
representations D0

u and t
0
v for documents and event

types are consumed by a graph attention network
(Veličković et al., 2017) to aggregate the represen-
tations via the connections in G, producing richer
representations D

L
u and t

L
v for Du and tv after L

layers of transformation. Consequently, we treat
the induced representation et for the current event
type et as the aggregation for context information
of relevant documents for prompt computation for
ek ∈ Di in the next steps.

Soft Prompt Computation: For convenience,
let ek be the representation for the event trigger ek
after the marker-augmented document D̄i for Di

is encoded by the BART encoder in the previous
step. As such, our soft prompt for EAE for trigger
ek ∈ Di will be a matrix Psoft of size Ms × d
where Ms is a hyper-parameter and d is the dimen-
sion of the hidden vectors in our core model BART,
thus allowing Psoft to be integrated into the com-
putation of BART. To achieve a customized soft
prompt Psoft for ek in our model, the contextual
representation ek for ek will be utilized to compute
Psoft. In addition, as discussed above, Psoft will
also be conditioned on the aggregation of relevant
context representations et for the the event type
et of ek to enrich the prompt and facilitate argu-
ment extraction. To this end, we utilize a learnable
feed-forward network FF to transform the con-
catenation ek and t

L
k into a vector of size Ms × d.

This vector will then be reshaped to form our soft
prompt Psoft = reshape(FF ([ek; et])).

Prompt-based EAE: While soft prompts en-
able example customization and relevant context
incorporation for the models, we further inherit the
hard prompts to explicitly specify expected argu-
ment roles for span extraction. In particular, to
achieve a fair comparison, we utilize the same hard
prompt for each event type as in previous work (Li
et al., 2021; Ma et al., 2022) that connects all ar-
gument roles with natural language. For example,
for the event type Life.Consume.Unspecified, the
hard prompt to indicate argument roles is: <Con-
sumingEntity> consumed <ConsumedThing> at
<Place> place.

For each event type t, we send its hard prompt
into the embedding layer of BART to obtain a rep-
resentation for each word (i.e., using averages of
embeddings for sub-tokens), leading to the hard
prompt representation P t

hard of size M t
h×d (M t

h is
the length of the hard prompt for t). We then con-
catenate the soft and hard prompt representations to
create a single prompt Pr for EAE with BART, i.e.,
Prt = [P t

hard, Psoft] of size (Ms+M t
h)×d. Next,

we follow the prompt-for-extraction framework in
(Ma et al., 2022) to use the BART encoder to en-
code input context for Di while the prompt P t will
be employed to prompt the BART decoder for span
extraction. Given the current trigger ek ∈ Di, we
first inject the trigger markers <ETi> and </ETi>
before and after ek in Di to create an input context
D′

i, which is then encoded by the BART encoder to

return a sequence of representations Denc
i for the

words in D′
i. In the next step, the BART decoder is

employed to learn richer representations for the
context and prompt using their interactions via
cross-attention in multiple layers, returning the rep-
resentations Ddec

i = BART-Decoder(Denc
i ;Denc

i)

and Pr
t
= BART-Decoder(Pr;Denc

i) for the con-
text and prompt.

Afterward, for the j-th argument role for
event type t, we obtain a role representation ϕt

j

by mean-pooling its corresponding sub-token
representations in the prompt representation
Pr

t. Similar to (Ma et al., 2022), we employ
two selection heads sstart and send (of d dimen-
sions) to compute start and end span selectors
ϕt,start
j = ϕt

j ⊙ sstart and ϕt,end
j = ϕt

j ⊙ send (⊙
is the element-wise multiplication). Each span
selector tuple θtj = (ϕt,start

j , ϕt,end
j) then aims to

select at most one argument span for the j-th role
of t. Here, the golden span for this role is denoted
by (at,startj , at,endj). It will be set to (0, 0) if event
ek does not have an argument of this role in Di. As
such, the extractive prompt framework is utilized
to estimate distributions over token positions in
D for how likely each token in Di would serve
as the start/end position for the argument span
of the role: P t,start

j = softmax(ϕt,start
j Ddec

i),

P t,end
j = softmax(ϕt,end

j Ddec
i). Finally, to

train our model, we optimize the loss:
L = −

∑
ek∈D

∑
j(log(P

t,start
j (at,startj)) +

log(P t,end
j (at,endj))) (i.e., over all events in D).

Inference: At inference time, given an input
text, event type, and argument role, we consider all
possible argument spans for the role, ensuring that
the start indexes are smaller than the end indexes
(including (0, 0)) and their lengths do not exceed
a maximum value computed over training data. A
score for each span is obtained using the proba-
bility log(P t,start

j (at,startj)) + log(P t,end
j (at,endj).

The span with the highest score will be chosen for
prediction. Finally, the aggregations et of relevant
context representations for event types, which are
learned during training, are used in test time.

2.3 Experiments

Datasets and Hyper-parameters: Following pre-
vious work (Li et al., 2021; Ma et al., 2022), we
employ two latest datasets for EAE to evaluate
our model, i.e., RAMS (Ebner et al., 2020) and
WIKIEVENTS (Li et al., 2021). Both datasets
involve multiple events in a document where argu-

ments can distribute over different sentences from
the event triggers. We utilize the same train/dev/test
splits, data pre-processing, and evaluation metrics
for the datasets as in previous work (Ma et al.,
2022) for fair comparison. In particular, our met-
rics include: Argument Identification F1 score
(Arg-I) and Argument Classification F1 score (Arg-
C) scores. For WIKIEVENTS, we also use Ar-
gument Head F1 score (Head-C) to only consider
headword matching for arguments. Finally, we
fine-tune the hyper-parameters for our model on
the development data.
Comparison: We compare our method (called
SPEAE for soft prompts for EAE) with the state-of-
the-art models for EAE. In particular, we consider
two groups of baselines: (i) text generation-based
models: BART-Gen (Li et al., 2021), and (ii) ques-
tion answering-based models: FEAE (Wei et al.,
2021), DocMRC (Liu et al., 2021a), EEQA (Du
and Cardie, 2020), EEQA-BART (Du and Cardie,
2020), EA2E (Zeng et al., 2022), and PAIE (Ma
et al., 2022). The performance of EA2E is ob-
tained by running the provided code over our pre-
processed data using the same evaluation metrics
for a fair comparison. The performance for other
baselines is inherited from (Ma et al., 2022), which
presents the model PAIE with current best-reported
results for our datasets.

Model PLM
RAMS WIKIEVENTS

Arg-I Arg-C Arg-I Arg-C Head-C
BART-Gen BART-b 50.9 44.9 47.5 41.7 44.2

BART-l 51.2 47.1 66.8 62.4 65.4
FEAE BERT-b 53.5 47.4 - - -
DocMRC BERT-b - 45.7 - 43.3 -
EEQA BERT-b 46.4 44 54.3 53.2 56.9

BERT-l 48.7 46.7 56.9 54.5 59.3
EEQA-BART BART-b 49.4 46.3 60.3 57.1 61.4

BART-l 51.7 48.7 61.6 57.4 61.3
EA2E BART-b - - 64.5 58.6 61.7

BART-l - - 70.8 65.7 67.8
PAIE BART-b 54.7 49.5 68.9 63.4 66.5

BART-l 56.8 52.2 70.5 65.3 68.4
SPEAE (ours) BART-b 56.0 51.1 70.6 66.2 69.6

BART-l 58.0 53.3 71.9 66.1 68.8

Table 1: Model performance on test data.

Table 1 shows the performance of the meth-
ods over the test datasets along with their cor-
responding PLM versions. The most important
observation from the table is that the proposed
method SPEAE significantly outperforms the base-
line methods (with p < 0.01) for both base and
larger versions of the PLM models (i.e., BERT and
BART). It just clearly demonstrates the benefits of
the proposed method for EAE with contextualized

soft prompts for instances and relevant context.

Model Arg-I Arg-C Head-C
SPEAE (full) 70.6 66.2 69.6
No example context ek for Psoft 69.7 65.5 68.4
No relevant context et for Psoft 70.1 65.8 68.9
No soft prompt Psoft 69.4 64.7 67.5
No graph for et 69.1 65.3 68.1

Table 2: Ablation study on test data.

Ablation Study: To reveal the contribution of the
designed components in SPEAE, we perform an ab-
lation study over the WIKIEVENT test data. Table
2 presents the performance of the ablated models.
In particular, for soft prompts, we first exclude
either the example-specific context representation
ek or the relevant context aggregation et from the
computation of the soft prompt Psoft. As the per-
formance of the resulting models is significantly
worse than SPEAE, it clearly testifies to the im-
portance of such components for prompt-based
models for EAE. The performance is furthered de-
graded when the soft prompt Psoft is completely
eliminated from the prompt, thus suggesting the
effectiveness of soft prompts for EAE. Additional,
instead of computing the relevant context aggrega-
tions for event types et with a graph neural network,
we explore a variant to directly obtain et from the
average representation of the documents in D that
contain an event mention of type et. The worse
performance of the ablated model clearly confirms
the benefits of the graph neural network for repre-
sentation aggregation of relevant documents/event
types for soft prompt computation for EAE.
Low-resource Learning: To better understand the
operation of the proposed model SPEAE under
low-resource training settings, we perform an eval-
uation when different ratios of training data are
employed to train the models. In particular, we
compare SPEAE with the previous state-of-the-
art models, i.e., EEQA (Du and Cardie, 2020),
EEQA-BART (Du and Cardie, 2020), and PAIE
(Ma et al., 2022) in this low-resource learning ex-
periment. Table 3 demonstrates the performance of
the models (based on Arg-C) on the development
data of WIKIEVENTS. As can be seen from the
table, the proposed model SPEAE is significantly
better than the baseline methods over different ra-
tios of training data, ranging from 1% to 50%. It
just clearly highlights the advantages of our pro-
posed method for low-resource learning settings.
We attribute these advantages to the introduction
of context information from current example and

relevant documents to enrich soft prompts, allow-
ing SPEAE to better utilize available training data
to boost performance.

Model
Training Data Ratio

1% 2% 5% 10% 20% 50%
EEQA 15.0 18.1 35.7 43.2 45.5 49.6
EEQA-BART 21.2 18.3 42.9 44.3 54.1 56.8
PAIE 31.3 40 52.1 51.4 54.9 59.8
SPEAE (ours) 35.0 43.8 52.3 56.7 58.7 64.7

Table 3: Low-resource learning performance (Arg-C) of
the models on the development data of WIKIEVENTS.
Models are trained on different ratios of training data.

Stability Study: One of the major issues with the
discrete prompts in previous EAE models is that
model performance can be sensitive to specific for-
mats of the hand-designed prompts (Zhao et al.,
2021; Ma et al., 2022). This raises an important
concern for the applications of EAE models to dif-
ferent datasets and problems as optimal formats
of the prompts might be unclear for new datasets,
necessitating further laborious efforts for prompt
development and selection. To understand the sen-
sitivity/stability of EAE models over different for-
mats of discrete prompts, this experiment explores
three variants of discrete prompts for EAE as dis-
cussed in (Ma et al., 2022), i.e., Manual Template,
Uncontextualized Soft Prompt, and Concatenate
Template. In particular, Manual Template (MA) in-
volves the discrete prompts we utilize in our work,
(Li et al., 2021), and (Ma et al., 2022). It concate-
nates all argument roles for an event type using nat-
ural language. For Uncontextualized Soft Prompt
(USP), the prompts link argument roles with role-
specific special tokens (Qin and Eisner, 2021; Liu
et al., 2021b). These tokens are associated with
learnable embedding vectors to help transform dis-
crete prompts into representation vectors for further
computation. Here, a key difference between these
embeddings for argument role-specific tokens and
our soft prompts is that our soft prompts are contex-
tualized over current example context and relevant
documents. In contrast, the learnable embeddings
for role-specific tokens in USP are only initialized
randomly, thus unable to contextualize over ex-
ample context for better customization and richer
prompts as in our soft prompts. Finally, in Con-
catenate Template (CA), all argument role names
for an event type are simply concatenated to form
prompts (Ma et al., 2022).

Using three variants of discrete prompts, we
compare the performance (based Arg-C) of our

proposed model SPEAE and the current state-of-
the-art discrete-prompt model PAIE for EAE. Table
4 presents model performance on the RAMS de-
velopment data. It is clear from the table that the
proposed model SPEAE performs significantly bet-
ter than PAIE over different variants of discrete
prompts, thus further demonstrating the benefits of
SPEAE. Importantly, while PAIE exhibits diverse
performance gaps across different discrete prompts,
SPEAE maintains more stable performance. This
suggests an important advantage of SPEAE that is
less sensitive to specific discrete prompt formats
to enable convenient extension to new applications
with less development efforts for prompt design.

Model MA USP CA
PAIE 48.8 47.4 45.2
SPEAE (ours) 51.5 52.2 51.1

Table 4: Model performance over the development data
of RAMS using different variants of discrete prompts:
MA (Manual Template), USP (Uncontextualized Soft
Prompts), and CA (Concatenate Template). Perfor-
mance for PAIE is obtained by running the provided
code from the original paper to achieve fair comparison.

3 Taipan: An Architecture for Efficient
Long-Context Modeling

3.1 Introduction

Transformer-based architectures (Vaswani et al.,
2017; Brown, 2020) have revolutionized Natu-
ral Language Processing (NLP), delivering excep-
tional performance across diverse language mod-
eling tasks (Touvron et al., 2023). This success
stems from their ability to capture complex word
dependencies using the self-attention mechanism.
In addition, Transformers are highly scalable and
well-suited for parallel training on large datasets.
However, despite their success, they still face no-
table challenges when handling long-context se-
quences. Specifically, the self-attention mechanism
suffers from quadratic computational complexity,
and the memory requirement grows linearly with
context length during inference, as the model must
store key-value vectors for the entire context. These
factors impose practical constraints on sequence
length due to the high computational and memory
costs.

To this end, recent advancements in recurrent-
based architectures, particularly State Space Mod-
els (SSMs) (Gu et al., 2021b,a), have emerged as

promising alternatives for efficient language model-
ing (Gu and Dao, 2023; Dao and Gu, 2024). SSMs
offer constant memory usage during inference, and
architectures like Mamba-2 (Dao and Gu, 2024), a
variant of SSMs, have demonstrated performance
comparable to Transformers in certain language
tasks (Waleffe et al., 2024). Some studies even
suggest that SSMs can outperform Transformers
in areas like state tracking (Merrill et al., 2024)
due to their Markovian nature. However, despite
these advancements, SSM-based models still fall
short in scenarios requiring in-context retrieval or
handling complex long-range dependencies (Arora
et al., 2024; Waleffe et al., 2024).

To address these challenges, we introduce
Taipan, a hybrid architecture that combines the effi-
ciency of Mamba with enhanced long-range depen-
dency handling through Selective Attention Layers
(SALs). While Mamba is highly efficient, it relies
on the Markov assumption—where predictions are
based solely on the last hidden state—which can
lead to information loss for tokens that need inter-
actions with distant tokens. To mitigate this, Taipan
incorporates SALs that strategically select key to-
kens in the input sequence requiring long-range
dependencies. These selected tokens first undergo
feature refinement to remove unimportant infor-
mation, and then are passed through an attention
module to capture long-range dependencies.

Less critical tokens bypass the attention step, as
we hypothesize that their Markovian representa-
tions from Mamba contain sufficient information
for accurate prediction, obviating the need for ad-
ditional attention-based augmentation. This selec-
tive approach enables Taipan to balance Mamba’s
computational efficiency with enhanced long-range
modeling capabilities.

SALs play a crucial role in Taipan’s design, both
in enhancing performance and ensuring computa-
tional efficiency. By focusing the attention mecha-
nism on a subset of important tokens, SALs reduce
the computational costs that come from attention
modules. This targeted approach enables Taipan
to excel in memory-intensive tasks while maintain-
ing efficiency during both training and inference.
Importantly, Taipan retains the linear memory us-
age characteristic of SSMs, offering a significant
advantage over traditional Transformer models in
handling extremely long sequences.

We scale Taipan to 190M, 450M, and 1.3B pa-
rameters, pre-training on 100B tokens. Experimen-

tal results demonstrate Taipan’s superior perfor-
mance across a wide range of tasks. In zero-shot
language modeling evaluations, Taipan consistently
outperforms both Transformer and Mamba base-
lines, showcasing its strong general language un-
derstanding capabilities. More notably, in memory-
intensive tasks such as long-context retrieval and
structured information extraction, Taipan exhibits
significant improvements over Mamba-2, address-
ing a key limitation of existing recurrent-based
models. Furthermore, Taipan demonstrates remark-
able extrapolation capabilities, maintaining high
performance on sequences up to 1 million tokens
in context-length - while preserving efficient gen-
eration capabilities. This combination of broad
task proficiency, superior performance in memory-
intensive scenarios, and exceptional long-context
modeling positions Taipan as a versatile and power-
ful architecture for advanced language processing
tasks.

3.2 Background

This section briefly overviews the foundational
architectures relevant to our work. We first re-
view Causal Self-Attention (Vaswani et al., 2017),
the core mechanism of Transformer models. We
then discuss Linear Attention (Katharopoulos et al.,
2020), an efficient variant that achieves linear com-
plexity. Finally, we examine Mamba-2, a recent
architecture that generalizes Linear Attention us-
ing structured state-space models (SSMs) (Dao and
Gu, 2024). We emphasize how each model bal-
ances computational efficiency and recall accuracy,
particularly in memory-intensive tasks ().

3.2.1 Causal Self-Attention
Causal Self-Attention is the key component in
Transformer architectures that allows each token
in a sequence to attend to all other previous tokens
(Vaswani et al., 2017). Given an input sequence
X = [x1, . . . ,xL] ∈ RL×d, where L is the se-
quence length and d is the embedding dimension,
self-attention firsts computes the query, key, and
value vectors for each token via linear projections:

qi = WQxi, ki = WKxi, vi = WV xi

where WQ,WK ,WV ∈ Rd×d are learnable
weight matrices.

Then, the attention output oi for each token xi

will be calculated as a weighted sum of the value
vectors over the distribution of similarity matrix

1K 2K 4K 8K 16K 32K 64K 128K 1M
Context Length

4

6

8

10

12

14
Pe

rp
le

xi
ty

OOM

a) Perplexity Across Context Lengths

Models
Transformer
Jamba
Mamba
Taipan

1K2K 4K 8K 16K 32K
Generation Length

0

100

200

300

400

500

La
te

nc
y

(s
)

b) Latency Across Generation Lengths

Models
Transformer
Jamba
Mamba
Taipan

Figure 1: Model Performance Comparison. a) Perplexity across different context lengths. Lower perplexity
indicates better performance. b) Latency comparison of models at various generation lengths. Taipan exhibits
significantly lower latency and superior scaling compared to other strong baselines for longer sequences.

between its query vector and previous key vectors:

oi =

i∑
t=1

exp(q⊤
i kt/

√
d)∑i

j=1 exp(q
⊤
i kj/

√
d)

vt

The non-linear softmax distribution allows the
models to capture intricate relationships between
tokens, and concentrate on salient features (Qin
et al., 2022; Zhao et al., 2019). As such, self-
attention can encode complex language patterns
and long-range dependencies that are crucial for
complex language understanding and generation
tasks.

3.2.2 Linear Attention
To address the quadratic complexity, recent work
has shown that it is possible to achieve linear com-
plexity with the attention mechanism by replac-
ing the softmax attention with dot-product atten-
tion (Shen et al., 2021; Katharopoulos et al., 2020).
Given a feature transformation ϕ(x), causal self-
attention can be rewritten as:

oi =
i∑

t=1

ϕ(qi)
⊤ϕ(kt)∑i

j=1 ϕ(qi)⊤ϕ(kj)
vt

Then, using the associate property of matrix mul-
tiplication, this can be reformulated as:

oi =
ϕ(qi)

⊤∑i
t=1 ϕ(kt)v

⊤
t

ϕ(qi)⊤
∑i

t=1 ϕ(kt)

Let Si =
∑i

t=1 ϕ(kt)v
⊤
t and zi =

∑i
t=1 ϕ(kt).

We can then rewrite the equation in a recurrent
form:

Si = Si−1 + ϕ(ki)v
⊤
i

oi =
Siϕ(qi)

z⊤i ϕ(qi)
≈ Siϕ(qi)

This formulation allows for efficient training and
inference. Let Q,K,V ∈ RL×d be the query, key,
and value matrices of the sequence input X. During
training, we can use the matrix multiplication form:
O = (QK⊤⊙ML)V, where ML is a causal mask.
At inference time, we can use the recurrent form
for efficient sequential processing.

However, despite its computational efficiency,
linear attention has notable limitations compared to
softmax attention. The dot-product approximation
in linear attention lacks the nonlinear normalization
of softmax, often resulting in a more uniform distri-
bution of attention weights (Han et al., 2023). This
uniformity can impair the model’s ability to focus
sharply on specific and relevant tokens. Conse-
quently, linear attention models may underperform
in tasks requiring precise in-context retrieval or fo-
cused attention on particular input segments (Han
et al., 2023).

3.2.3 Mamba-2
3.3 Model
Mamba (Gu and Dao, 2023) is a variant of struc-
tured state space models (SSMs) that uses the se-
lective data-dependent mechanism. Mamba-2 (Dao
and Gu, 2024) builds on this foundation, reveal-
ing deep connections between SSMs and linear
attention (Katharopoulos et al., 2020) through the
framework of structured state-space duality (SSD).

The core of Mamba-2 can be defined by using
the recurrent form:

ht = Atht−1 +Btxt

ot = Ctht

where At is further simplified to a scalar multiplied
by the identity matrix. This formulation allows

Mamba-2

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

 Softmax-
Attention

Gating Network

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

h2 h5 h9h1 h3 h4 h6 h7 h8 h10

SwiGLU

Gumbel-Softmax

... ...

Selective Attention

Mamba-2

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

 : input token embedding

 : hidden representation

 : refined&augmented representation

 : selected token representationh

x

h

h

Fe
at

ur
e

Re
fi

ne
m

en
t

Figure 2: An overview of the Taipan architecture.

Mamba-2 to be interpreted as a generalization of
linear attention.

The key insight of Mamba-2 is that this recur-
rence can be equivalently expressed as a matrix
multiplication:

Ot = (Lt ⊙CtB
⊤
t)Xt

where L is a 1-semiseparable matrix. This ma-
trix form reveals the duality between the recurrent
(linear-time) and attention-like (quadratic-time)
computations. Also, the 1-semiseparable matrix
L encodes the temporal dependencies, while CB⊤

represents content-based interactions similar to at-
tention. This formulation generalizes linear atten-
tion, which can be seen as a special case where L
is the all-ones lower triangular matrix.

While Mamba-2 is efficient, it shares the same
limitations as Linear Attention in terms of precise
memory recall (Arora et al., 2024; Wen et al., 2024),
leading to reduced performance in tasks that de-
mand accurate retrieval of specific sections in the
input sequence.

To address the limited modeling capabilities of
Mamba-2 and Linear Attention while preserving
their computational efficiency, we introduce Taipan,
a new architecture for sequence encoding in lan-
guage modeling. In Taipan, we strategically incor-
porate Selective Attention Layers (SALs) within
the Mamba framework, as shown in Figure 2. SALs
are inserted after every K Mamba-2 blocks, cre-
ating a hybrid structure that combines Mamba-2’s
efficiency with Transformer-style attention for ef-
fective sequence representation.

The core of SALs is a gating network that iden-
tifies important tokens for enhanced representa-
tion modeling. These tokens undergo two phases:
(1) feature refinement to filter out irrelevant infor-
mation and (2) representation augmentation via
softmax attention. This allows Taipan to capture
complex, non-Markovian dependencies when nec-
essary.

Taipan processes input through Mamba-2 blocks,
with SALs periodically refining key token represen-
tations. These enhanced representations are then
passed into the subsequent Mamba-2 layers, influ-
encing further processing. This hybrid structure
balances Mamba-2’s efficiency with the expres-
sive power of SALs, enabling Taipan to excel in
tasks requiring both speed and accurate informa-
tion retrieval. The following sections detail each
component’s structure and function.

3.3.1 Selective Attention Layers
Selective Attention Layers (SALs) are the key inno-
vation in Taipan, designed to enhance the model’s
ability to focus on critical tokens while maintain-
ing overall efficiency. These layers employ a
lightweight gating network Gθ to dynamically de-
termine which tokens should undergo softmax at-
tention processing.

For each token hidden representation hi in the
input sequence, the gating network G computes a
score vector:

si = Gθ(hi) (1)

where Gθ : Rd → R2 is parameterized by θ. This
score vector si = [si,0, si,1] serves two purposes:

a) Causal Attention b) Sliding Window Attention c) Our Selective Attention

Figure 3: Attention mechanisms in Taipan’s Selective Attention Layers. White areas indicate no attention. (a) Full
Causal Attention (b) Sliding Window Attention (w = 4) (c) Selective Attention (C = 0.3, w = 5)

1) it is used to generate a binary mask mi for token
selection, and 2) it guides feature refinement.

To maintain differentiability while allowing for
discrete token selection, we employ the Straight-
Through Gumbel-Softmax trick (Jang et al., 2017).
A binary mask mi is generated from si to select
tokens during the forward pass of the network:

mi = argmax(GumbelSoftmax(si, τ)) (2)

where τ is the temperature parameter. hi will only
be selected for attention processing if mi = 1.

For the backward pass, we instead use contin-
uous Gumbel-Softmax approximation of mi to
achieve computation differentiability for the net-
work:

z0 = (si,0 + g0)/τ (3)

z1 = (si,1 + g1)/τ (4)

m̃i =
I[mi = 0] exp(z0) + I[mi = 1] exp(z1)

exp(z0) + exp(z1)
(5)

where I[] is the indicator function, and g0 and g1
are i.i.d samples from the Gumbel(0, 1) distribu-
tion. In this way, we are able to train our entire
model, including the gating network, in an end-to-
end fashion for language modeling.

3.3.2 Sliding Window Attention
To maintain linear time complexity while lever-
aging the benefits of attention, Taipan employs
Sliding Window Attention (SWA) (Beltagy et al.,
2020). SWA’s computational complexity scales
linearly with sequence length, allowing Taipan to
handle theoretically unlimited context lengths dur-
ing inference. Importantly, the combination of Se-
lective Attention and Sliding Window Attention
in Taipan leads to a significantly sparser attention
weight map compared to full attention or standard

windowed attention (Figure 3), thus enhancing the
computational efficiency of Selective Attention for
processing long sequences for our model. In addi-
tion, the sparser attention map allows us to afford a
longer sliding window (i.e., w = 2048 in our work)
to effectively capture longer-range dependencies
for input sequences. In this way, our designed
Taipan architecture offers a mechanism to balance
the efficient processing of long sequences with the
ability to capture important long-range dependen-
cies, thereby addressing a key limitation of existing
efficient attention mechanisms. Finally, removing
positional embeddings from the Attention Mod-
ule improves extrapolation capabilities, suggesting
that the model can better generalize temporal re-
lationships. We explore this impact of positional
embeddings in more detail in Section 3.5.2.

For the selected tokens (those with a mask value
mi of 1), we compute their attention-based repre-
sentations:

oi = Attention(qi,K,V) (6)

where qi is the query vector for the i-th selected
token (denoted hs

i), and K and V are the key and
value matrices for previous tokens.

In our model, the score vector si is also used to
refine the representations of selected tokens. We
employ the softmax of si to compute the mixing
weights: [1 − αi, αi] = softmax(si). The final
output for a selected token hs

i is a weighted combi-
nation:

hs
i = (1− αi)h

s
i + αioi (7)

As such, Taipan can adaptively preserve key in-
formation in hs

i while enriching the representation
with the attention output oi. In other words, αi acts
as the data-dependent factor, filtering out unimpor-
tant features from the original representation while
integrating richer information from the attention

outputs. Here, it is important to note that unselected
tokens (i.e., mi = 0) skip the attention module and
retain their original representations from Mamba-2.

Finally, all token representations are passed
through a residual SwiGLU (Shazeer, 2020) layer:

h = h+ SwiGLU(h) (8)

This final transformation ensures that all token rep-
resentations undergo consistent non-linear process-
ing before being passed to the next layer in the
network, enhancing the model’s ability to capture
complex dependencies.

3.3.3 Training and Inference
To better balance efficiency and expressiveness, we
introduce an attention budget constraint. Given a
predefined budget C, representing the desired frac-
tion of tokens to receive attention, we incorporate
a constraint loss into our training objective:

Lconstraint =
N∑

n=1

∥∥∥∥∥C −
∑L

i=1mi

L

∥∥∥∥∥
2

2

(9)

Here, N is the number of SALs, L is the sequence
length, and

∑L
i=1mi represents the number of to-

kens selected for attention processing. During train-
ing, we employ the Straight Through Gumbel Soft-
max estimator for m̃i in the backward pass (Jang
et al., 2017; Bengio et al., 2013), ensuring differen-
tiability while maintaining discrete token selection
in the forward pass, thereby enabling end-to-end
training of the entire model. As such, our overall
training objective includes a standard cross-entropy
loss LCE for language modeling and the budget con-
straint term: L = LCE + λLconstraint, where λ is a
hyperparameter.

During inference, Taipan processes input tokens
sequentially through Mamba-2 blocks. At each
Selective Attention Layer, the gating network Gθ

computes a score vector si = Gθ(hi) for each
token representation hi. This score computes a bi-
nary mask mi to determine if hi should be used for
attention processing. Consequently, our selective
attention approach maintains Mamba-2’s efficiency
for most tokens while applying targeted attention
to critical elements, enabling effective long-range
dependency modeling with minimal computational
overhead.

3.4 Experiments
We conducted extensive experiments to evaluate
Taipan’s performance across various scales and

tasks. Our evaluation strategy focuses on three
main areas: (1) zero-shot evaluation on diverse
benchmarks to demonstrate Taipan’s general lan-
guage understanding capabilities (Section 3.4.2),
(2) in-context retrieval tasks to assess Taipan’s abil-
ity to retrieve information from historical contexts
(Section 3.4.3), and (3) extrapolation ability in long-
context scenarios to evaluate performance on ex-
tremely long sequences (Section 3.4.4).

3.4.1 Experimental Setup
We evaluate Taipan across three model sizes:
190M, 450M, and 1.3B parameters. To ensure a
comprehensive and fair comparison, we benchmark
Taipan against three strong baselines:

• Transformer++ (Touvron et al., 2023): An
enhanced version of the LLaMA architec-
ture (Touvron et al., 2023), incorporating Ro-
tary Positional Embeddings (Su et al., 2024),
SwiGLU (Shazeer, 2020), and RMSNorm
(Zhang and Sennrich, 2019).

• Mamba-2 (Dao and Gu, 2024): A state-of-
the-art linear RNN model based on State
Space Models (SSMs). Each Mamba-2 block
consists of a depthwise convolutional layer
(Poli et al., 2023; Gu and Dao, 2023), an SSM
layer (Dao and Gu, 2024), and MLP layers.

• Jamba (Lieber et al., 2024): A hybrid model
combining full Causal Self-Attention layers
(with Rotary Position Embedding (Su et al.,
2024)) and Mamba-2 layers. Unlike Taipan,
Jamba uses full Causal self-attention instead
of selective attention, retains positional em-
beddings, and lacks a feature refinement mech-
anism.

Implementation Details We train all models from
scratch in three configurations: 190M, 450M, and
1.3B parameters. The training process is consistent
across configurations with the following hyperpa-
rameters: a batch size of 0.5M tokens per step, a
cosine learning rate schedule with 2000 warm-up
steps, and AdamW (Loshchilov, 2017) optimiza-
tion with a peak learning rate of 5e− 4 decaying
to a final rate of 1e− 5. We apply a weight decay
of 0.01 and use gradient clipping with a maximum
value of 1.0. All models are trained with a fixed
context length of 4096 tokens.

The training data size varies by model scale:
the 190M model is trained on 27 billion tokens,

while the 450M and 1.3B models are trained on
100 billion tokens.

For Taipan-specific implementation, we use a
hybrid ratio of 6 : 1, inserting a Selective Attention
Layer (SAL) after every 6 Mamba-2 Blocks. The
Mamba-2 blocks are kept identical to the original
work (Dao and Gu, 2024). We set the attention
capacity C = 0.15. The sliding window attention
mechanism uses a window size (w) of 2048 tokens.

3.4.2 Language Modeling Performance
We report the zero-shot performance of Taipan
and baseline models on a diverse set of com-
monsense reasoning and question-answering tasks.
These include Winograd (Wino.) (Sakaguchi
et al., 2021), PIQA (Bisk et al., 2020), HellaSwag
(Hella.) (Zellers et al., 2019), ARC-easy and ARC-
challenge (ARCe & ARCc) (Clark et al., 2018),
OpenbookQA (OB.) (Mihaylov et al., 2018), Truth-
fulQA (Truth.) (Lin et al., 2021), RACE (Lai et al.,
2017), and BoolQ (Clark et al., 2019). It is worth
noting that these tasks are brief and do not involve
in-context learning, thus inadequately demonstrat-
ing long-context modeling or in-context learning
retrieval abilities.

Table 5 presents the zero-shot results for models
of three sizes: 190M, 450M, and 1.3B parameters.
The results are evaluated using the lm-evaluation-
harnesshttps://github.com/EleutherAI/lm-
evaluation-harness (Gao et al., 2024) framework.

As can be seen, Taipan consistently outperforms
the baseline models across most tasks for all model
sizes. Notably, the performance gap widens as the
model size increases, with the 1.3B Taipan model
showing significant improvements over other base-
lines. This suggests that Taipan’s architecture effec-
tively captures and utilizes linguistic patterns, even
in tasks that do not fully showcase its long-context
modeling capabilities.

3.4.3 In-Context Recall-Intensive
Performance

To evaluate Taipan’s proficiency in precise in-
context retrieval, we assessed all models on a set
of recall-intensive tasks (Arora et al., 2024). These
tasks are designed to test a model’s ability to ex-
tract and utilize information from longer contexts,
a capability particularly relevant to Taipan’s archi-
tecture. Our evaluation suite includes two types of
tasks: structured information extraction and ques-
tion answering. For structured information extrac-
tion, we used the SWDE and FDA tasks (Arora

et al., 2024), which involve extracting structured
data from HTML and PDF documents, respectively.
To assess question-answering capabilities, we em-
ployed SQuAD (Rajpurkar et al., 2018), which re-
quires models to ground their answers in provided
documents.

Table 6 demonstrates Taipan’s significant perfor-
mance advantages over both Mamba and Jamba in
in-context retrieval tasks. Notably, Taipan achieves
this superiority while consuming fewer computa-
tional resources than Jamba, which utilizes full
attention mechanisms. This efficiency is attributed
to Taipan’s architecture, which combines Mamba-
like elements with selective attention mechanisms,
allowing it to filter out less important features. We
also notice that Transformers excel at memory-
intensive tasks in this experiment; however, they
are constrained by linear memory scaling with se-
quence length, limiting their effectiveness and ap-
plicability for very long sequences. In contrast,
Taipan maintains constant memory usage, offer-
ing a more efficient solution for processing long
documents.

3.4.4 Long-Context Extrapolation
Figure 1 illustrates Taipan’s superior performance
in handling extended sequences compared to Trans-
former, Jamba, and Mamba models. In perplexity
evaluations across context lengths from 1K to 1M
tokens (Figure 1a), Taipan yields the lowest per-
plexity, particularly excelling beyond the training
context length.

This performance contrasts sharply with other
models: Transformers struggle with longer con-
texts due to quadratic computational complexity
and linear memory scaling with sequence length,
often leading to out-of-memory errors. Jamba, de-
spite its hybrid nature, faces similar challenges due
to its use of full attention mechanisms. Both Trans-
former and Jamba models exhibit limited extrapo-
lation ability beyond their training context lengths.
Mamba, while more efficient than Transformers
and Jamba, still shows performance degradation
for very long sequences.

Latency comparisons (Figure 1b) further high-
light Taipan’s exceptional efficiency. It demon-
strates the lowest latency among all models, with
linear scaling across sequence lengths. This con-
trasts with the quadratic scaling of Transformers
and higher latency growth of Jamba. Notably,
Taipan consistently outperforms Mamba-2, primar-
ily due to its selective attention mechanism.

Params
& Data

Model Wino. PIQA Hella. ARCE ARCC OB. Truth. RACE BoolQ Avg.

190M
27B

Transformer++ 47.1 60.9 27.9 42.2 20.5 18.9 42.9 25.4 57.2 38.1
Mamba 49.6 60.7 29.3 45.3 21.8 20.6 40.8 27.2 59.3 39.4
Jamba 49.9 60.3 29.2 46.3 21.4 18.5 39.8 27.4 58.6 39.1

Taipan 51.0 62.6 29.4 46.7 20.7 21.8 41.1 26.6 58.7 39.9

450M
100B

Transformer++ 51.5 67.6 42.3 60.8 27.7 33.4 39.2 30.5 54.7 45.3
Mamba 52.7 68.9 42.7 61.4 27.1 34.0 38.5 29.3 53.2 45.3
Jamba 53.1 69.3 44.3 62.6 28.7 34.4 37.5 31.3 55.7 46.3

Taipan 53.0 69.6 46.6 65.6 32.9 36.6 38.6 30.7 60.4 48.2

1.3B
100B

Transformer++ 53.8 71.6 53.8 63.2 36.3 36.4 44.0 31.2 59.4 49.9
Mamba 55.2 73.0 55.6 70.7 38.0 39.0 39.9 32.0 61.8 51.7
Jamba 54.7 73.8 55.8 69.7 37.6 41.8 40.4 32.8 59.2 51.8

Taipan 57.0 74.9 57.9 71.2 39.3 40.4 43.0 34.4 61.5 53.3

Table 5: Zero shot results of Taipan against baseline models.

Params
& Data

Model SWDE FDA SQuAD Avg.

450M

Transformer++ 43.0 48.7 18.1 36.6
Mamba 27.9 9.8 12.5 16.7
Jamba 35.4 36.6 16.3 29.4
Taipan 41.4 39.6 17.8 32.9

1.3B

Transformer++ 64.2 64.5 41.2 56.6
Mamba 48.6 32.3 31.2 37.4
Jamba 56.4 49.7 33.4 46.5
Taipan 61.5 59.7 36.9 52.7

Table 6: Performance on in-context retrieval tasks.

3.5 Ablation Study

We conducted a comprehensive ablation study to
investigate the effect of the two key components
in Taipan’s architecture, i.e., the attention budget
capacity C and the inclusion of Positional Embed-
dings in the SALs, on its performance and efficacy.

3.5.1 Effect of Attention Budget Capacity
Our first experiment aimed to determine the op-
timal value of Capacity C that would maintain
computational efficiency while maximizing perfor-
mance on downstream tasks. We trained multiple
variants of Taipan, each with 1.3B parameters, us-
ing different Capacity C values: [0.10, 0.15, 0.20,
0.25]. Each variant was trained for 24, 000 steps,
allowing us to observe both the immediate impact
of different C values and their effect on model
performance over time.

We evaluated the performance of each variant
at regular intervals on two representative tasks:
SWDE (Arora et al., 2024) (for structured infor-
mation extraction) and HellaSwag (Zellers et al.,
2019) (for commonsense reasoning). These tasks
were chosen to assess both the model’s ability to

handle long-context retrieval and its general lan-
guage understanding capabilities.

As illustrated in Figure 4, Taipan achieves opti-
mal performance with a Capacity C = 0.15. We
observed that increasing C beyond 0.15 does not
lead to significant improvements in results while in-
creasing computational costs. Conversely, reducing
C below 0.15 resulted in a noticeable drop in per-
formance on tasks requiring precise in-context re-
trieval or complex long-range dependencies. These
findings support our hypothesis that computational
demands vary across tokens, with many adequately
represented by Mamba’s Markovian structure with-
out requiring attention mechanisms.

By selectively applying attention only to tokens
that benefit from it, Taipan optimizes resource allo-
cation, enabling high performance while improving
computational efficiency.

3.5.2 Impact of Positional Embeddings

Our second experiment investigated the impact
of Positional Embeddings in Taipan’s Attention
mechanism, focusing on the model’s ability to han-
dle and generalize to various context lengths. We

0.1 0.15 0.2 0.25
Capacity (C)

10

15

20

25

30

35

40

Ac
cu

ra
cy

5.3 5.7 5.9 5.8

16.9
18.6 19.3 19.1

20.5
22.8

21.4
23.6

36.1

38.9
37.5 38.6

a) SWDE

0.1 0.15 0.2 0.25
Capacity (C)

30.0

32.5

35.0

37.5

40.0

42.5

45.0

47.5

Ac
cu

ra
cy

29.2
30.1 30.3 30.3

37.5 38.1 37.8 37.9

40.9
42.0 41.5

42.2

45.4

47.2 47.6
46.9

b) Hellaswag

2k steps 7k steps 10k steps 24k steps

Figure 4: Effect of Attention Budget Capacity C on Taipan’s Performance

trained two variants of the 1.3B parameter Taipan
model for 24, 000 steps with a fixed context length
of 4096 tokens. One variant incorporates Rotary
Positional Embeddings (Su et al., 2024) in the Se-
lective Attention layers, while the other excludes
them. Figure 3.5.2 illustrates the performance of
both variants in terms of perplexity across different
context lengths.

The results reveal that Taipan without Posi-
tional Embeddings performs superiorly in general-
izing context lengths beyond the training context.
Both variants show comparable performance for
sequences similar to or shorter than the training
context length. However, as the sequence length
increases, the performance gap between the two
variants widens, with Taipan without Positional
Embeddings maintaining lower perplexity scores.
This suggests that the absence of Positional Em-
beddings enables more robust scaling to longer
sequences. We attribute this improved generaliza-
tion to the model’s increased reliance on attention
representation rather than positional biases.

1k 2k 4k 8k 16k 32k 64k 128k
Sequence Length

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

Pe
rp

le
xi

ty

Taipan without PE
Taipan with PE

4 Conclusion

The challenge of efficiently processing and under-
standing truly long textual contexts is a major hur-
dle for LLMs. While our state-of-the-art method
for Document-level Event Argument Extraction
(EAE) achieved strong performance on standard
document benchmarks, it highlighted the funda-
mental limitation imposed by the fixed context win-
dows of current LLM architectures. This bottleneck
prevents scaling document analysis to very large
documents, motivating our focus on core architec-
tural improvements.

To address this, we developed Taipan, a novel
hybrid LLM architecture for efficient and expres-
sive long-context modeling. Taipan combines the
linear efficiency of Mamba-2 with Selective Atten-
tion Layers that dynamically apply attention only
to critical tokens. This design effectively balances
computational cost with the ability to capture long-
range dependencies.

Our experiments demonstrate Taipan’s superior
performance on long-context retrieval and extrapo-
lation tasks, successfully enabling efficient model-
ing and retrieval across context lengths up to one
million tokens. By achieving this scale, Taipan
represents a significant step towards answering Q1
and simultaneously paves the way for tackling tasks
like Document-level IE (Q2) on unprecedentedly
large documents, overcoming the context limita-
tions faced by previous methods.

5 Future Directions

This work has addressed the challenges of long-
context modeling and document-level information
extraction by proposing new architectural innova-

tions and demonstrating their utility in key applica-
tions such as event argument extraction. However,
several important research directions remain open
and will form the foundation of future work.

First, while Taipan shows that efficient long-
context modeling is possible through selective at-
tention and hybrid state-space mechanisms, further
exploration is needed to generalize these capabili-
ties to even more complex reasoning settings. One
direction involves incorporating structured memory
into the model, allowing it to maintain persistent,
queryable state across documents or sessions. Such
mechanisms could enable models to scale beyond
single document understanding and support cross-
document synthesis.

Second, future research will continue to refine
document-level information extraction, extending
beyond event argument extraction to more com-
prehensive document understanding tasks. These
include event coreference resolution, temporal re-
lation modeling, discourse-aware summarization,
and narrative structure prediction. Achieving high
performance in these tasks requires not only im-
provements in underlying model capacity but also
new training paradigms that emphasize document
structure and generalization to low-resource do-
mains. In particular, exploring how LLMs can learn
to reason over full-document and multi-document
inputs without relying on heuristic chunking will
be a central challenge.

Finally, a broader goal of this research is to build
models that are not only efficient and accurate but
also interpretable and adaptable to real-world ap-
plications. Future work will also explore human-
in-the-loop training, enabling expert users to guide
model attention or memory retention.

References
Simran Arora, Sabri Eyuboglu, Michael Zhang,

Aman Timalsina, Silas Alberti, Dylan Zinsley,
James Zou, Atri Rudra, and Christopher Ré. 2024.
Simple linear attention language models balance
the recall-throughput tradeoff. arXiv preprint
arXiv:2402.18668.

Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150.

Yoshua Bengio, Nicholas Léonard, and Aaron C.
Courville. 2013. Estimating or propagating gradients
through stochastic neurons for conditional computa-
tion. CoRR, abs/1308.3432.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
et al. 2020. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the
AAAI conference on artificial intelligence, volume 34,
pages 7432–7439.

Tom B Brown. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and
Jun Zhao. 2015. Event extraction via dynamic multi-
pooling convolutional neural networks. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 167–176,
Beijing, China. Association for Computational Lin-
guistics.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Tri Dao and Albert Gu. 2024. Transformers are
ssms: Generalized models and efficient algorithms
through structured state space duality. arXiv preprint
arXiv:2405.21060.

Xinya Du and Claire Cardie. 2020. Event extraction by
answering (almost) natural questions. In Proceedings
of the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 671–683,
Online. Association for Computational Linguistics.

Xinya Du and Heng Ji. 2022. Retrieval-augmented
generative question answering for event argument
extraction. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

Xinya Du, Sha Li, and Heng Ji. 2022. Dynamic global
memory for document-level argument extraction. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 5264–5275, Dublin, Ireland. As-
sociation for Computational Linguistics.

Seth Ebner, Patrick Xia, Ryan Culkin, Kyle Rawlins,
and Benjamin Van Durme. 2020. Multi-sentence ar-
gument linking. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 8057–8077, Online. Association for
Computational Linguistics.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,

http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432
https://doi.org/10.3115/v1/P15-1017
https://doi.org/10.3115/v1/P15-1017
https://doi.org/10.18653/v1/2020.emnlp-main.49
https://doi.org/10.18653/v1/2020.emnlp-main.49
https://doi.org/10.18653/v1/2022.acl-long.361
https://doi.org/10.18653/v1/2022.acl-long.361
https://doi.org/10.18653/v1/2020.acl-main.718
https://doi.org/10.18653/v1/2020.acl-main.718

Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2024. A framework for few-shot language model
evaluation.

Albert Gu and Tri Dao. 2023. Mamba: Linear-time
sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752.

Albert Gu, Karan Goel, and Christopher Ré. 2021a.
Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri
Dao, Atri Rudra, and Christopher Ré. 2021b. Com-
bining recurrent, convolutional, and continuous-time
models with linear state space layers. Advances in
neural information processing systems, 34:572–585.

Dongchen Han, Xuran Pan, Yizeng Han, Shiji Song,
and Gao Huang. 2023. Flatten transformer: Vision
transformer using focused linear attention. In Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pages 5961–5971.

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Cate-
gorical reparameterization with gumbel-softmax. In
International Conference on Learning Representa-
tions.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pap-
pas, and François Fleuret. 2020. Transformers are
RNNs: Fast autoregressive transformers with linear
attention. In International conference on machine
learning, pages 5156–5165. PMLR.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard Hovy. 2017. RACE: Large-scale ReAd-
ing comprehension dataset from examinations. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 785–
794, Copenhagen, Denmark. Association for Compu-
tational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Fayuan Li, Weihua Peng, Yuguang Chen, Quan Wang,
Lu Pan, Yajuan Lyu, and Yong Zhu. 2020. Event
extraction as multi-turn question answering. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2020, pages 829–838, Online. Association
for Computational Linguistics.

Sha Li, Heng Ji, and Jiawei Han. 2021. Document-level
event argument extraction by conditional generation.
In Proceedings of the 2021 Conference of the North

American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 894–908, Online. Association for Computa-
tional Linguistics.

Opher Lieber, Barak Lenz, Hofit Bata, Gal Co-
hen, Jhonathan Osin, Itay Dalmedigos, Erez
Safahi, Shaked Meirom, Yonatan Belinkov, Shai
Shalev-Shwartz, et al. 2024. Jamba: A hybrid
transformer-mamba language model. arXiv preprint
arXiv:2403.19887.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2021.
Truthfulqa: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958.

Jian Liu, Yubo Chen, Kang Liu, Wei Bi, and Xiaojiang
Liu. 2020. Event extraction as machine reading com-
prehension. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1641–1651, Online. Association
for Computational Linguistics.

Jian Liu, Yufeng Chen, and Jinan Xu. 2021a. Machine
reading comprehension as data augmentation: A case
study on implicit event argument extraction. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2716–
2725, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Xiao Liu, Zhunchen Luo, and Heyan Huang. 2018.
Jointly multiple events extraction via attention-based
graph information aggregation. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 1247–1256, Brussels,
Belgium. Association for Computational Linguistics.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021b. Gpt
understands, too. ArXiv, abs/2103.10385.

I Loshchilov. 2017. Decoupled weight decay regulariza-
tion. arXiv preprint arXiv:1711.05101.

Yubo Ma, Zehao Wang, Yixin Cao, Mukai Li, Meiqi
Chen, Kun Wang, and Jing Shao. 2022. Prompt for
extraction? PAIE: Prompting argument interaction
for event argument extraction. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
6759–6774, Dublin, Ireland. Association for Compu-
tational Linguistics.

William Merrill, Jackson Petty, and Ashish Sabharwal.
2024. The illusion of state in state-space models.
arXiv preprint arXiv:2404.08819.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing. In EMNLP.

Thien Huu Nguyen, Kyunghyun Cho, and Ralph Grish-
man. 2016. Joint event extraction via recurrent neural
networks. In Proceedings of the 2016 Conference

https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
https://doi.org/10.18653/v1/D17-1082
https://doi.org/10.18653/v1/D17-1082
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.findings-emnlp.73
https://doi.org/10.18653/v1/2020.findings-emnlp.73
https://doi.org/10.18653/v1/2021.naacl-main.69
https://doi.org/10.18653/v1/2021.naacl-main.69
https://doi.org/10.18653/v1/2020.emnlp-main.128
https://doi.org/10.18653/v1/2020.emnlp-main.128
https://doi.org/10.18653/v1/2021.emnlp-main.214
https://doi.org/10.18653/v1/2021.emnlp-main.214
https://doi.org/10.18653/v1/2021.emnlp-main.214
https://doi.org/10.18653/v1/D18-1156
https://doi.org/10.18653/v1/D18-1156
https://doi.org/10.18653/v1/2022.acl-long.466
https://doi.org/10.18653/v1/2022.acl-long.466
https://doi.org/10.18653/v1/2022.acl-long.466
https://doi.org/10.18653/v1/N16-1034
https://doi.org/10.18653/v1/N16-1034

of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 300–309, San Diego, California.
Association for Computational Linguistics.

Trung Minh Nguyen and Thien Huu Nguyen. 2018. One
for all: Neural joint modeling of entities and events.
In Proceedings of the AAAI Conference on Artificial
Intelligence.

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y
Fu, Tri Dao, Stephen Baccus, Yoshua Bengio, Ste-
fano Ermon, and Christopher Ré. 2023. Hyena hierar-
chy: Towards larger convolutional language models.
In International Conference on Machine Learning,
pages 28043–28078. PMLR.

Amir Pouran Ben Veyseh, Javid Ebrahimi, Franck Der-
noncourt, and Thien Nguyen. 2022. MEE: A novel
multilingual event extraction dataset. In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pages 9603–9613,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Guanghui Qin and Jason Eisner. 2021. Learning how
to ask: Querying LMs with mixtures of soft prompts.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5203–5212, Online. Association for Computa-
tional Linguistics.

Zhen Qin, Weixuan Sun, Hui Deng, Dongxu Li, Yun-
shen Wei, Baohong Lv, Junjie Yan, Lingpeng Kong,
and Yiran Zhong. 2022. cosformer: Rethinking soft-
max in attention. arXiv preprint arXiv:2202.08791.

Pranav Rajpurkar, Jian Zhang, and Percy Liang. 2018.
Know what you don’t know: Unanswerable questions
for squad. In ACL 2018.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99–106.

Lei Sha, Feng Qian, Baobao Chang, and Zhifang Sui.
2018. Jointly extracting event triggers and arguments
by dependency-bridge rnn and tensor-based argument
interaction. In Proceedings of the Association for the
Advancement of Artificial Intelligence (AAAI).

Noam Shazeer. 2020. Glu variants improve transformer.
arXiv preprint arXiv:2002.05202.

Zhuoran Shen, Mingyuan Zhang, Haiyu Zhao, Shuai
Yi, and Hongsheng Li. 2021. Efficient attention:
Attention with linear complexities. In Proceedings
of the IEEE/CVF winter conference on applications
of computer vision, pages 3531–3539.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan,
Wen Bo, and Yunfeng Liu. 2024. Roformer: En-
hanced transformer with rotary position embedding.
Neurocomputing, 568:127063.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NeurNIPS.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2017. Graph attention networks. 6th International
Conference on Learning Representations.

Roger Waleffe, Wonmin Byeon, Duncan Riach, Bran-
don Norick, Vijay Korthikanti, Tri Dao, Albert
Gu, Ali Hatamizadeh, Sudhakar Singh, Deepak
Narayanan, et al. 2024. An empirical study of
mamba-based language models. arXiv preprint
arXiv:2406.07887.

Kaiwen Wei, Xian Sun, Zequn Zhang, Jingyuan Zhang,
Guo Zhi, and Li Jin. 2021. Trigger is not sufficient:
Exploiting frame-aware knowledge for implicit event
argument extraction. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 4672–4682, Online. Association
for Computational Linguistics.

Kaiyue Wen, Xingyu Dang, and Kaifeng Lyu. 2024.
Rnns are not transformers (yet): The key bot-
tleneck on in-context retrieval. arXiv preprint
arXiv:2402.18510.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. HellaSwag: Can a ma-
chine really finish your sentence? In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4791–4800, Florence,
Italy. Association for Computational Linguistics.

Qi Zeng, Qiusi Zhan, and Heng Ji. 2022. EA2E: Improv-
ing consistency with event awareness for document-
level argument extraction. In Findings of the Associ-
ation for Computational Linguistics: NAACL 2022,
pages 2649–2655, Seattle, United States. Association
for Computational Linguistics.

Biao Zhang and Rico Sennrich. 2019. Root mean square
layer normalization. Advances in Neural Information
Processing Systems, 32.

Guangxiang Zhao, Junyang Lin, Zhiyuan Zhang, Xu-
ancheng Ren, Qi Su, and Xu Sun. 2019. Explicit
sparse transformer: Concentrated attention through
explicit selection. arXiv preprint arXiv:1912.11637.

Tony Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In
Proceedings of the International Conference on Ma-
chine Learning (ICML).

https://aclanthology.org/2022.emnlp-main.652
https://aclanthology.org/2022.emnlp-main.652
https://doi.org/10.18653/v1/2021.naacl-main.410
https://doi.org/10.18653/v1/2021.naacl-main.410
https://doi.org/10.18653/v1/2021.acl-long.360
https://doi.org/10.18653/v1/2021.acl-long.360
https://doi.org/10.18653/v1/2021.acl-long.360
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/2022.findings-naacl.202
https://doi.org/10.18653/v1/2022.findings-naacl.202
https://doi.org/10.18653/v1/2022.findings-naacl.202

