COMBINATOR REDUCTIONS ON A

LISP MACHINE|

by

NILGUN MAT

A THESIS

Presented to the Department of Computer
and Information Science
and the Graduate School of the University of Oregon
in partial fulfillment of the requirements
Master of Science

June 1985

srreor o © ¢

r . John SUnery

ii

%

© 1985 Nilgiin Mat

iv

An Abstract of the Thesis of
Nilgin Mat for the degree of Master of Science
in the Department of Computer and Information Science
to be taken June 1985

Title: COMBINATOR REDUCTIONS ON A LISP MACHINE

Approved: \>%i»~ Es (1“7(,
Ur. John(s) Conery

A number of techniques exist for implementing

applicative lanquages. One of the techniques, based on
Combinatory Logic, implements applicative languages as
combinator reductions. This thesis describes an
implementation on the Symbolics 3600 Lisp machine of normal
order reductions with either copied or shared values for a
subset of SASL using Turner's combinator technique. These
two implementations are compared with respect to the time
and memory requirements of reductions. Also, the efficiency
of reductions with and without the optimisation rules are
investigated. Finally, the user is provided with the option
of displaying the underlying structure and the

transformations on copied and shared reductions.

VITA
NAME OF AUTHOR: Nilgun Mat
PLACE OF BIRTH: Istanbul, Turkey

DATE OF BIRTH: March 24, 1960

UNDERGRADUATE AND GRADUATE SCHOOLS ATTENDED:

University of Reading, Britain
University of Oregon

DEGREES AWARDED:
Bachelor of Science, 1982, University of Reading,

Britain
Master of Science, 1985, University of Oregon

AREAS OF SPECIAL INTEREST:

Programming Languages

PROFESSIONAL EXPERIENCE:

Teaching Assistant, Department of Computer and
Information Science, University of Oregon, Eugene,
1983-85

Student Programmer, Computing Center, University of
Oregon, Eugene, 1983-84

vi

ACKNOWLEDGEMENTS

The author wishes to express her appreciation to her
thesis adviser John Conery for his guidance and support
throughout the study. In addition special thanks are due to
Lajos Ronjai and Steve Fickas for their helpful comments on
this paper. The author would also like to extend her
sincere thanks to Professor David Turner for replying to her

letter so quickly when she needed help.

vii

Anneme ve Babama
or

To my parents

viii

TABLE OF CONTENTS
Chapter Page
I L] INTRODUCTIONI ® 4 5 82 0% P4 %0 S0 e e b a4 % % 0 & 9 9 B 0 e . l

Power of Applicative Languages.............
Implementation Considerations in
Applicative LanguagesS...veeeeeeeeeeeesens
Description of the ThesSiS..uueseeeeenennnn.
Motivation for the Thesis....veeerennnoenns

@ ~J |

II. IMPLEMENTATION TECHNIQUES FOR
APPLICATIVE LANGUAGES.I'I...ll..l...l....'. g

Combinator Machines.llII.l....l..l.I.ll.... 12
Turner's Combinator Approach......eeceeov... 13

II1. IMPLEMENTATION OF NORMAL ORDER REDUCTIONS.... 17

Implemented Set Of PSASL....vveeenneennanns 17
Abstraction Algorithm.....cuuueeeeennnennnn, 19
Data StruCtUresS....vieiieeenenecncasoncnnns 23
REAUCEIONS. .ttt tivenareenerocecannannnns 24
Graphical Display of ReductionS............ 31
An Example of Copied ReductionS............ 32
An Example of Shared Reductions............ 36

IV, EXPERIMENT S . . i cttetoerenasooancaoososecessnsss 39
TSt CaS@S.u.uiiiiioeiconncesnaconosnocnnsnns 39
MEeaSUremMeNES. ittt eeeencessncnsanesscecenens 41
RESULES ..t iiiinrnneoeseecneenscnoneosnennnnns 42

V L] CONCLUS I ONS ® % 4 % ¥ 08 A& e N A e B E P EDS ® & 9 8 &8 8 0 "8 a8 L] 48
VI- FUTURE WOR-K. L I B B B B I B N I N IR] # & &8 % 8 &0 80 s 9 a0 50
Extensions to the PSASL Interpreter......... 50
Further Areas of Explorations............... 53
APPENDIX-.....Q.'l'.ll....l..l...l.'.l..l....ll.l.. 55

BIBLIOGRAPHYI....II'..I..'Il..ll..ll...l.lll'..l..l 56

ix

LIST OF TABLES

Table Page
lI A-bstraCtion Algorithnl..'l...'..‘l..l....l..l. 20
2. Definitions of the Combinators............... 21
3. Measurements from Copied Combinator

Reductions.l.ll..l.-ll...l'.ll......ll.'ll- 43
4, Measurements from Shared Combinator

Reductions‘..l---l..l.-.l...l.-.l...ll-ll.. 44
5 Comparison of Optimised Copied and

Shared Reductions with Regard to

Time and Memory RequirementsS............... 45
6. Measurements on Shared Reductions

Without the Optimisation Rules........c.... 47
s Comparison of Time and Space Efficiency

Between Shared Reductions With and
Without Optimisation RUleS.....veeeecsnnnn. 46

LIST OF FIGURES

Table Page

1. The Combinator Tree for the PSASL

"Suc”" exXpresSioN..ccisecccaccresnecnns vooe 23
2. Reduction on the C combinator............ 25
3. The S combinator in copied reductions.... 27
4. The S' combinator is copied reductions... 27
5. The Y combinator in copied reductions.... 28

6. Shared reductions with the §
combinator-.ll...ﬂ...l.. * 8 8 &P 808 a0 29

i Shared reductions with the §'
combinator. ----- ® 5 8 0 8 0 00 20 P P e e e . 8 w0 29

8. Shared reductions with the ¥
Conlbinator.....I'.........I........ L] EG

CHAPTER I
INTRODUCTION

In the last decade, applicative languages {(also known
as functional programming languages} have been the center of
considerable interest and research. The reason for such
interest stems from the clean semantics and the elegant
programming style associated with these languages. The
acceptance of applicative languages, however, has suffered
from their inefficent implementations in comparison to the
more efficent implementations of the imperative languages.
Nevertheless, applicative languages have recently become
more attractive due to the discovery of improved
implementation methods.

This thesis uses Turner's combinator reduction
technique (Turner, 1979) to implement a subset of his SASL
language on the Symbolics 3600 Lisp Machine. The first two
sections of this chapter feature the characteristics and
implementation methods of applicative languages. The last
two sections of the chapter give the description and the

motivation of the thesis.

Power of Applicative Languages

In an applicative language, the central mechanism is

function application. The notion of an applicative language
is best illustrated through Richards' description of

applicative:

...a8 term which refers to notation in which
computation consists solely of applications of
functions to arguments. Imperative operations
such as assignment statements and input and output
commands are entirely absent from applicative
notations. Also absent are the concepts of
machine state...(Richards, 1982:2)

Applicative languages allow a higher level description
of a solution, which raises the level of programming and
decreases chances of error. For example, a function that
adds one to every element of a list has much in common with
a function that tests for zeroces in a list. The only
difference is the particular function that is applied to
list elements. Thus a desirable commodity is the ability to
abstract out the common patterns and write a function which
takes as its argument another function (such as "addl" or
"zerop") and applies it to every element of a list.
Abstracting out a recurring pattern frees the user to
concentrate on the essence of the problem.

Models of computation for applicative languages are
based on lambda-calculus and Church's combinators. This
results in clean semantics with side-effect free operations.
The implication is that functions can be combined in ways
which can supress details of loop control. As an example,

consider the "map" function which takes a function and a

list as arguments, and applies the function to each element
in the list. 1In an applicative style "map" can be written

as:

map £ [] = []

map f(a:x) = f a : map f x

Throughout the thesis the notation that f x will be used to
indicate f applied to x. Thus given an empty list, [],
"map" returns an empty list. If the list is non-empty then
"map" applies the function "f", which is passed as a
parameter, to the first element in the list and recursively
calls itself for the rest of the elements in the list.

In an imperative language "map" would correspond to

procedure map (f,x,y);
integer i;
for i:= 1 to n do

yli] = £ (x(i]);

In comparing the two programs, the following is noticed:

(1) the former is completely general whereas the latter
requires n, size of the list, as part of the code.

(2) the applicative code allows ease in combining
functions as in application of "map" to function "f".

Similarly, a function "g" can be applied to the readily

defined "map" function, i.e g map f x. In most imperative
languages, the function "f" usually can not be passed as a
parameter. In a few imperative languages (such as Algol-60)
which allow function parameters, the process is awkward due
to side-effects.

(3) the applicative program operates on conceptual
units versus assignment statement at a time computing.

(4) the first code has no states, only values; in the
latter code statements operate on a state.

Another nice property of applicative languages is the
availability of infinite data objects. Consider a program
that finds the first integer which has a certain property P.
There is a need for two different processes. One process
will generate integers while another process will test the
integers for a property P. The integers starting from n can

be generated as follows:

intsn=n: intsn + 1

A function which finds the first integer for which a

function f is true can be described as:

first £ (x:y) = £ (x) -> x;

first f y

If an integer i is true for f i, then first f i returns the

integer, otherwise, next integer is tested for the property.
Let prop x be a function that returns true if integer x has
property P. By combining the processes of integer

generation and property testing our program is

first prop (ints 1)

This program will generate as many integers as required to
find the first integer which satisfies the test condition.
Note that "ints" defines an infinite list of integer, but
the interpreter generates only as many of these integers as
are required by the process named "first."

Another feature of applicative languages is that they

support non-strict functions, i.e. functions capable of

returning a result even when one of the parameters is

undefined. For example, consider the expression:

x=0->1; vy

The above conditional, when x is zero, has the value 1,
otherwise the value y. Such an expression should be
non~-strict, since the value should always be 1 when x is
zero, whether or not the value of y exists.

Finally, the clean semantics and higher-order functions
lead into possibility of exploiting the inherent parallelism

in a problem. For example, an imperative program to compute

the product of two vectors u and v of size 10 elements uses
a loop to multiply each corresponding element, assigning the

product to another vector uv:

for i:= 1 to 10 do

uvli] := uli] * v[i];

The order of multiplication, i.e. multiplication of ull] by
v[1] first, then u{2] by v[2], and so on is not part of the
problem. Multiplying u and v in parallel, i.e. performing
elementwise multiplications simultaneously, is usually not
possible in an imperative interpreter. Due to referential
transparency, interpreters for applicative languages are
free to use any order. An example is the unraveling

interpreter for Id (Arvind et al,1978).

Implementation Considerations

in Applicative Languages

A main issue in language implementation is keeping
track of variable bindings. Variables include formal

parameters like n in this definition of factorial:

fac n = n 0 ->1; n* fac (n - 1)
Another example is the local variable x in the expression:

(x + 1) * (x - 3) where x = 7

Each variable has a scope, and the variable can be
replaced by its value within this scope without altering its
meaning. In order to achieve such replacement, the variable
and its value need to be kept together,

Languages have different methods for associating a
variable and its value. Imperative languages with static
scoping such as Pascal use activation record stacks with
displays to keep track of their identifiers during execution
of procedures and blochk structures. Languages like LISP use
association lists (a-lists) to keep track of variable
bindings. Most applicative language implementations use
a-lists in the form of a name-value pair. A number of
implementations such as the interpreter of Henderson and
Morris use closures, i.e. name-environment pairs to
evaluate variable bindings. Implementations based on
Church's combinators, such as the interpreters of Johnsson's
and Turner, compile away references to variables so that the
compiled code has no variables names, and the run-time

system does not have to keep track of variable bindings.

Description of the Thesis

The thesis work is based on Turner's implementation
technique for an applicative lanquage called "St. Andrews
Static Language" (SASL) (Turner,1982), This thesis

describes the implementation of a language referred to as

PSASL (for prefix SASL). The PSASL interpreter is
implemented in ZetaLisp on a Symbolics 3600 Lisp machine.
PSASL is a subset of SASL with some syntactic changes
in the notation. The PSASL interpreter implements two
different reduction engines using a technique described by
Turner (1984). Turner's technique, known as graph |
reduction, is an alternative to the more common method of
string reduction. Generally, string reductions are.less
efficient than graph reductions, in which portions of the
computation can be shared. However, no figures are
available as to how much worse the former is when executing

a typical program.

Motivation for the Thesis

This thesis was motivated by:

(1) The interest to understand Turner's implementation
technique, especially to understand how it optimises
execution of recursive functions. -

(2) The aim to quantify the relative efficiencies of
graph reductions with string reductions.

(3) A chance to investigate the clarity brought by
displaying the combinator reductions to the user. A
disadvantage with a language like SASL is that it is hard to
tell users why a program failed. Visual display is an

attempt to solve this problem.

CHAPTER 1II

IMPLEMENTATION TECHNIQUES FOR

APPLICATIVE LANGUAGES

A number of different techniques exist for implementing
applicative languages on sequential machines. Most
implementations of applicative languages evaluate arguments

to functions either before (applicative order) or after

(normal order) function application. The choice of

evaluation strategy is important: if a program has a value,
a normal order interpreter will terminate with that value,
whereas in applicative order evaluation no such termination
is guaranteed. For example, consider the function "c7"

which produces the number seven regardless of its argument.

c7 £fy=7

where f y =y + y

"c7" may or may not terminate depending on the evaluation
strategy used. The normal order evaluation will return 7
since the arguments f and y are not needed in the function
evaluation. The applicative order evaluation will evaluate
£(y) first, and "c7" will not terminate if evaluation of
f(y) never terminates. Implementation of infinite data

objects also requires normal order evaluation, so that only

10

the needed arguments will be evaluated leading to the
termination of the program.

A major drawback of normal order evaluation, however,
is its inefficiency. A concern in normal order evaluation
is the multiple evaluations of a common subexpression in a
given expression, i.e. there is no "sharing of values".

For example in

(2 * x *y) + (7 *y)

y - 2
1+ 3

where x

Y

The answer is 44. This result can be reached in two ways:

(1) by evaluating arguments first, calculating the
value of y and x to be 4 and 2, and then subsituting the
numbers appropriately in the evaluation the expression
(applicative order).

(2) by subsituting the expressions for y and x in the
main expression and performing the calculations {(normal
order). In other words, evaluate

(2 * ((1+3) - 2) * (1+3)) + (7 * (1+3)).

In the second method, calculation of y is done three times,
as opposed to the single calculation performed in the first
case. Previous implementations of applicative languages
have used one or the other of these orders. Normal order

interpreters are also known as lazy or delayed evaluation

11

interpreters.

The SECD machine of Landin and the Lisp interpreter of
McCarthy (1960) use applicative order in evaluating
arguments to functions. Henderson and Morris (1976},
Wadsworth (1971) and Johnsson (1983) use delayed evaluation
of arguments; however, each differ in their implementation.

Henderson and Morris's lazy interpreter keeps the
environment as a name-value association list and evaluates a
common subexpression more than once. Wadsworth and Johnsson
maintain a graph structure for the applicative expression
where copying of some common subexpressions is avoided
through its graph structure. This results in fewer
reductions; but, for other expressions where copies are
needed, the copying procedure becomes costly since questions
arise as to what and how much of the structure should be
copied. However, the method of detecting common
subexpressions during reductions in both implementations are
shown by Arvind to be equivalent (Arvind et al, 1982).

A better method for finding common subexpressions is
detection of these expressions during the compilation of an
expression rather than its reduction. Johnsson's G-machine
uses Hughes' method to detect common subexpressions during
compilation {(Hughes, 1982). Unfortunately, all the methods
described involve some overhead. Hughes' algorithm depends
on the order of compilation. Henderson and Morris has a

major overhead due to the construction of environments.

12

Wadsworth's interpreter requires a search through the graph

to detect bound variables.

Combinator Machines

The inefficiency seen in normal order reductions in
some applicative languages is due to their lambda style
reducer implementations. Normal order evaluation for a
lambda reducer involves forming a closure for the argument
of the function in order to postpone its evaluation. This
process is potentially expensive and in practice most lambda
reducers implement applicative order evaluation (Jones,
1982).

An alternative implementation, based on combinatory

logic, eliminates all variables from the object program by

a process known as bracket abstraction, introducing

constants called combinators (defined below). A compilation

algorithm produces the combinatory code, which then is

executed on a graph reduction machine. Combinators lend

themselves naturally to normal order evaluation. Also, they
provide a good basis for program transformation and
verification.

Johnsson's G-machine provides an efficient
implementation of Hughes' abstraction algorithm and his
super-combinator approach. 1In the G-machine the set of

combinators change for a given expression with the notion

13

that the best set of combinators are used for a particular
expression., Turner's abstraction algorithm is not as
efficient, in that repeated passes are needed over the
combinator expression, but, it uses a fixed set of simple
combinators. Turner's machine, due to its simplicity, is
very attractive as it lends itself to hardware
implementation.

Today, there are implementations of combinator reducers
in hardwvare. Two of these machines are built in United
Kingdom: CRS/1 with a lambda-to-combinator converter
(Beale, 1982) and SKIM designed by Cambridge University.
The Burroughs Research Center at Austin, Texas is also in
the process of building a combinator reduction machine,

NORMA, based on Turner's implementation method.

Turner's Combinator Approach

Combinators perform the same tasks as lambda-calculus
operations, but without the use of variable bindings. Thus
the inefficiencies due to management of variable bindings in
applicative language implementations based on
lambda-calculus are not present in combinatory logic.

The notion of a combinator can be best illustrated
through an example. In arithmetic, the commutative law of

addition can be expressed as

for all x,y: X +y =y + x

14

This law can be expressed without the variable bindings by

defining a function A

Axy=x+y {for all x, y}

and by introducing an operator C which transforms sentences
about functions. We define C to operate on a function f and

objects x and y as follows:

Cixy=1£fyx {for all f,x,y}

Then the commutative law can be expressed simply as:

The operator C is called a combinator (Hindley et.all,

1972).

Turner, in his implementation of a combinator reduction
machine, defines an applicative language called SASL (st.
Andrews Static Language). This language, although
simple and small, has all the characteristics of other

applicative languages (Turner, 1984).

Turner's implementation evaluates a SASL expression in

the following way:

15

(1) The SASL expression is converted to a
combinator expression via the abstraction
algorithm using the fixed set of combinators S, K,
I, C, B, ¥ (these will be defined below).

(2) The combinator expression is evaulated by a
reduction machine until the result of the SASL
expression is obtained.

In the first part of the implementation an expression

such as

fac 4
where

facn=n=0->1; n * fac (n - 1)

is compiled to its equivalent combinator expression:

(B(S times)(C minus 1)))))))

The upper case letters are combinators, and the remaining
symbols are function names and constant objects. Notice
that all variables have been removed.

In the second part of the implementation, the compiled
code, in the form of a tree structure, is passed to the
reduction machine. The reduction machine successively
reduces the tree into a final output value. During

execution, subtrees representing common subexpression become

16

shared, and the tree is tranformed to a graph structure. So
"fac 4" combinator code is progressively reduced until the
result 24 is obtained.

Turner's technique of normal graph reductions with
shared graphs has the advantage of combining termination
properties of normal order reductions with the efficiency of
applicative order reductions. The abstraction algorithm,
definitions of combinators, and execution algorithm are

given in the next chapter.

17

CHAPTER III
IMPLEMENTATION OF NORMAL REDUCTIONS

This chapter describes an implementation of bracket
abstraction and reduction algorithms on the Symbolics 3600
Lisp machine in Zetalisp running under release 5.1. The
input is a subset of SASL called PSASL, for "prefix SASL",
in which every function application is written in prefix

form. So, for example, the user would write
times (plus x 3) (minus x 4) where x = 22
instead of the SASL expression
(x + 3) * (x + 4) where x = 22

The output is the result of the reduction. The reduction
engine includes a facility to display the underlying data
structure of the input PSASL expression and the

transformations on this expression.

Implemented Set of PSASL

A very small subset of SASL is implemented. The
justification for such a small set is that the aim was not
to implement a SASL interpreter but to understand and

compare normal order string and graph reductions. Appendix

18

includes a brief description of the PSASL grammar rules in
BNF notation. A PSASL program consists of:

Objects: Two types of objects are available, numbers
(integers) and truth values (true, false).

Primitives: The primitive operations include plus, minus,

times, div, cond, eq, less, grt, lesseq, grteqg, noteq, and,
or.

Lexical conventions: The input PSASL expression is different

than the SASL expression as mentioned above. The former is
in prefix monadic notation while the latter has an infix
notation. For example, a SASL expression to calculate the

third Fibonacci number corresponds to

0 ->1

fib 3 where fib x = x

-a

1l ->1; fib (x - 1) + fib (x - 2)

X

In PSASL this is written

fib 3 where
fib x = cond (eq 0 x) 1
(cond (eq 1 x)
(plus (fib (minus x 1)) (fib (minus x 2))))

Another restriction in the implementation is in use of
where clauses. In Turner's SASL language there are two

types of where clauses

19

(1) nested
(2) multiple

An example of a nested where clause is the expression
(3 * y where y = z + 10) where z = 5§

An example of a multiple where clause on the other hand is
Xx * (y + x) where y = 3

x = 7

in which the where clasuse defines two or more values
at the same level. The above expressions result in 45
and 70 respectively. In this implementation nested
wheres (like the first example) can be handled.

However, multiple wheres are not included.

Abstraction Algorithm

PSASL expressions are compiled with Turner's
abstraction algorithm (Turner, 1984). The abstraction |
algorithm converts the input PSASL expression into a
constant form by abstracting the variables and introducing
the combinators.
A PSASL expression "el" applied to another expression
"e2" is represented as the juxtaposition of two expression,
i.e. "el e2", and the function application is left

associative. This example shows the result of f{(x) being

20

applied to g(y).

f x (gy)

In the above expression "f" is applied to "x" and the
resulting function is applied to "g y". The parenthesis in
"g y" show that application of "g" to "y" has to be done

before the resulting function from "f x" is applied.

Abstraction of variables is a pattern directed
approach. The input PSASL expression is separated into its
subexpressions and the variables are abstracted according to

the shown abstraction algorithm,

TABLE 1. Abstraction Algorithm

[x] E1 E2 =8 ([x] E1) ([x] E2) for all El1, E2

[x] E=KE for any object E = x

[x] x =1

[x] Ex =E for any expression E

[x] E1 E2 = B E1 ([x] E2) for any E1, E2 where x
occurs in E2

[x] E1 E2 = C ([x] E1) E2 for any El, E2 where x

occurs in E1l

SOURCE: Turner, D.A. "Combinator Reduction Machines”,
Workshop on High Level Computer Architecture, (1984):5,29

For example, consider a simple PSASL expression involving

just the variable itself, say x. Then abstracting x from x,

21

written as [x] x, results in I, identity combinator. A more
complex expression involving two subexpressions El and E2

where El contains an occurence of variable x leads to
[x] E1 E2 = ¢ ([x] El) E2

The resulting combinator code from the abstraction algorithm
grows quadratically with every variable abstracted: thus
optimisation rules involving S', C', B' combinators are
defined by Turner (1984). The definitions of the
combinators used by Turner and in this implementation are

given in Table 2.

TABLE 2. Definitions of the Combinators

Sfgx=1(fx)(gx}) 8" kfgx-=k (fx){gx)
Kfx-=f B'kfgx==%kk{(f (g x))
Ix=x Ckigx=k (fx)g
Bfgx=1f (g x)

Cfgx=(fx)g

Yf=1f (Y f)

SOURCE: Turner, D.A. "Combinator Reduction Machines™,
Workshop on High Level Computer Architecture, (1984):5.29

The combinator code using the optimisation rules grows
at worst linearly in size of the computed code. Thus, the

example of "fac4" with optimisation rules becomes

22

CI4(Y (B (S (C' cond (C eq 0)1))

(B (S times)(C B C minus 1)))))

— —— — — —

The complete compilation of PSASL is achieved in three
steps:

(1) Formal parameters are removed via bracket
abstraction. Variables are abstracted from function
definitions by an application of the abstraction algorithm,

(2) Recursion is removed. The Y combinator is
introduced into an expression of the form " ... where
f = E " when E contains f. The converted form is
" ... where f =Y ([f] E)." (Turner,1984:5,28)

(3) All where constructs are eliminated. an expression
"E] where x = E3" is replaced by "([x] E;) Ep".

The following example illustrates the compilation algorithm.

The input PSASL expression:

suc 3 where suc n = plus n 1
Abstracting the variable "n" from the inner expression:

[n] plus n 1 {El = plus n E2 = 1}
C ([n] plus n) 1

Cplus 1

There is no recursion, so next step is removal of the where

clause:

23

(C ([suc] suc) 3) C plus 1
{[suc] suc 3) C plus 1 {El = suc 3 E2 = C plus 1}
(CI3)Cplusl

Data Structures

The result of the compilation algorithm is a structure
containing only combinators and constants. Note that
function names are constants. This code is used to build a
left leaning binary tree as the underlying representation
for the PSASL expression. An interior node with left
subtree f and right subtree x is used to represent "f x.”
The importance of such a structure is that at any time the
function to reduce is indicated by the leftmost leaf in the
tree. For example the combinator tree for the example code

is shown in Figure 1.

l | [I

e T T

FIGURE 1. The combinator tree of (C I 3) C plus 1
for the PSASL "suc" expression.
The tree structure is implemented using the 'flavors'
facility of the Zetalisp. Operations on the structure are
defined via 'defmethods' in flavors. Programs that use

flavors are cleaner and conceptually easier to follow;

24

however, they may not be as efficient as the code written to
take advantage of Lisp machine architecture such as cdr
coding. The sacrifice of somewhat perhaps a lesser
efficient code was made for the clarity in program

understanding and maintenance.

Reductions

This thesis implements two kinds of reductions: graph
reductions with sharing and tree reductions with copying.
Both reductions use normal order evaluation and both start
with the same combinator tree. As the reductions progress,
one reduction shares the common subexpressions while the
other copies them. Both types of reductions use the same
data structure with slight variations due to the different
display algorithms. Although the reductions are based on
Turner's combinator reduction machine, the mechanism that
determines the sequence of reductions is slightly different,
The difference is that Turner's improved reduction machine
involves two pointers for the sequencing of reductions,

This implementation uses the previous version of the
reduction machine where the order of reduction is given via
a left ancestor stack.

The PSASI, expression, which is in form of a binary tree
after compilation, is reduced according to the combinator or
function that appears in its leftmost leaf. The structure

is transformed into a new structure according to the

25

definition of the combinator or function. Consider a simple

combinator structure such as

The C combinator applied to functions "f" and "g" and
variable "x" results in application of "f" to "x" and,
application of the resulting function, i.e. "f x" to "g".
The corresponding graph transformation is shown in Figure 2.
Such reductions are continued until the whole structure
simplifies to a structure in which no further applications
are possible., Typically this will result in a single node

which holds the value for the input expression.

FIGURE 2. Reduction on the C combinator,

i.e.Cfgx= f xq.
The reductions for the "suc 3 where suc n =n + 1" are shown
below. The initial structure is given by the combinator

expression derived earlier.

26

l [

S— ——
€I3(Cplus1)

[1
' | 3
[R
I(C plus 1) 3
I
| L C pl
[, § Cplus 1 3

*=

27
Reductions with Copying

The most important characteristic for measuring
efficiency of these reductions is the necessity to copy
parts of a structure. For example, given the expression S f
g X, the combinator tree will be tranformed to the tree for
f x (g x) where the tree that represents x will be copied

(See figure 3).

F f 8 k

FIGURE 3. The S combinator in copied reductions,
i.e. S fgx=1fx (g x).

Other combinator reductions that require a copy

operation are §' and Y. (See Figures 4 and 5).

FIGURE 4, The S§' combinator in copied reductions,
i.e. ' kfgx=kf x (g x).

28

I y!

FIGURE 5. The Y combinator in copied reductions,
i.e. Yf=fYf£,

Reductions with Sharing

In these graph reductions the need for the copy
operation is eliminated for Y, S, S' combinators. This is
achieved through sharing of the common argument in the
transformed structure rather than copying it. The result is
a@ mechanism with less use of memory and most important, more
efficient reductions.

In graph reductions, sharing of a subtree is achieved
with S and S§' reductions by a simple pointer manipulation.
For example, in describing the reduction S f g x = £ x (g
x), the second x is not duplicated. Instead a node is
created for the second x which points to the original x.
Therefore, there is only the original x and it is shared by

both f and g. (See figures 6 and 7).

29

FIGURE 6. Shared reductions with the S combinator,
i.e. Sfgx=fx (g x)

!

F——Lc----“""" G

FIGURE 7. Shared reductions with the S' combinator,
i.e. Sk fgx=%k¢£x (gx)
Sharing of a subtree for recursive expressions
involving the Y combinator is less intuitive. Given the
definition of Y as: ¥ f = f ¥ f, the expected visual

correspondance would be:

o
1"-1

30

However, the reductions of Y is diagramatically defined as
shown in figure 8 where the f on the right hand side has a
pointer to itself. This corresponds to the definition Y=

f rather than Y f = £ ¥ f,

v b -_[,
Neoma,

C R

FIGURE 8. Shared reductions with the Y combinator,
i.e. Y =1£fYf.

Reductions with sharing work because of referential
transparency. Once appropriate links are established to the
common structures, the functions at the root of the links
share the effects of evaluation. Thus, if e is a common
subexpression in "plus (f e) (g e)", e is evaluated once
(when required by f), and then g automatically gets the
reduced version of e, since it points to the same node f
points to. This results in shared structures being reduced
only once {(a property of applicative order evaluation).

Also shared structures are reduced only when necessary (a
property of normal order evaluation). The extensive example
given in the next section demonstrates this property. Thus

graph reduction emerges as a very powerful technique where

31

the efficiency of applicative order is provided together
with a demand-driven processing evaluation for arguments of

a function,

Graphical Display of Reductions

Two algorithms are implemented to draw trees and graphs

on the bit mapped display of the Symbolics 3600,
Displaying Copied Reductions

The algorithm to display the binary tree uses two
passes over the structure. In the first pass information on
number of descendants for each node is obtained. 1In the
second pass, the nodes of the tree are displaced
horizontally from the parent node according to the number of
descendants on the left and right subtrees. This provides
flexible positioning of nodes on the screen, which is
divided N parts, where N is the number of descendants. This
enables a complete display of a tree with any number of
nodes; however, there is the danger of having all the
information scrunched at the lowest level if the tree is
large {experince shows the display starts to look bad at 80
nodes). This limitation is due to the physical screen size
of the Lisp machines--which is actually quite spacious at
1088 by 748 pixels-- and is not a limitation posed by the
algorithm,

32
Displaying Shared Reductions

The algorithm to display graphs is also a two pass
algorithm. In the first pass, similar to the tree display
algorithm, information on the number of descendants is
obtained; however, more information is required to display
a graph. The extra information, of whether a node is a
shared node or a root of a shared subtree of subgraph, is
determined in pass one.

In the second pass, the algorithm displays the graph
according to the number and type of its descendants. The
backpointers and self pointers (pointers to shared
structure) are drawn as a dashed line to distinguish them

from the other links of the structure.

An Example of Copied Reductions

Consider the PSASL expression:
times (minus x 3) (plus x 5) where x = (plus 2 7)

The diagrams given below start with the combinator tree
representation of the PSASL expression and continue with
transformations that are taken at each step of the reduction
until the result is reached. Note that the subtree
representing the value of x, i.e. plus 2 7, is copied and
evaluated more than once. The duplication of "plus 2 7" can
be seen in second diagram while its evaluation is seen in

diagrams 4 and 7.

diagrams 4 and 7.

|5lsl
{
| |
- 1 l

|
| m I v R e |
S g

%cﬂnbinntur tree

sas)
{ : |
. | Iﬂ : l__1
b | L —") —l’
._-1’ [. 2
e

{combinator tree
Isnll
e _______________

33

! 1
. 7__| l 1
O ,;—[ﬁ. -k — L

conbinator tree

%

sanl
_
[
i 1
E----15 r_________[|
U e

comnbinator tree

\

sas]
| : 1
1 [
' ; A 1 S
|
* 2 "

conbinator tree

san)

34

=
-

conbinator tree

sas)

14

-
o

conbinator tree

Lm\

) e ———— —

a4

conbinator tree

An Example of Shared Reductions

The diagrams given below show each state of the
reduction of the same expression in which common

subexpressions are shared instead of copied.

conbinator tres
Iunl

I

|
l:_ l o.a-a..---a.o—.l..o---m
{ 1¢°"
— - [_‘_‘—!
g--j_ L r"-L L g_ A

combinator tree

‘

sasl

36

[
| !
g : | — e
2 l_._.1 --------- T—.-'-_'“,s
S 1 ¢ 3 4
- [_.—L
’._—'2

I
| 1
A =
inator tree
B e ee——————
[
| A
6 [-
| § [__15 9
c *

W‘M

sasl

——

37

]

conbinataor tree

e

——

conbinator tree

Lgpul

8¢

38

39

CHAPTER 1V

EXPERIMENTS

A number of functions with varying computational
expense are used as test cases. These test cases were
executed by both copied and shared reduction engines.
Measurements obtained are contrasted with the expectation of
learning which implementation is more efficient and how

optimisations affect the number of reductions.

Test Cases

The following PSASL programs where used as benchmarks:

Factorial: Computes the factorial of 15 using a recursive
method.

fac 15 where fac n = cond (eq 0 n) 1
(times n (fac (minus n 1)))

Fibonacci: Uses the recursive definition to compute the
10th fibonacci number.
fib 10 where

fibn = cond (eq 0 n} 1

(cond (eq 1 n) 1 (plus (fib (minus n 1))
(fib (minus n 2}))

Permutations: Counts the 7 element sequences chosen from 11

without repetition via the difference equation P(n,r) = n *

PSR T

40

P(n-1,r-1),.

perm 11 7 where
perm n r = cond (eq 0 r) 1
(times n (perm {(minus n 1)
(minus r 1)))

Combinations: Computes the binomial coefficient Cc(4,2)

using the PASCAL Triangle relation C{(n,r) = C(n-1,r-1) +
C(n-1,r).

comb 4 2 where
comb nr = cond (eq 0 r) 1
(cond (eq 0 n) 1
(plus (comb (minus n 1) (minus r 1))
(comb (minus n 1) r)))

Twice: Computes the curried function twice defined by
Turner. (1984:5.27)
(twice twice twice suc 2
where twice f x = f (f x))
where suc n = plus n 1

Note that "twice f x " is f(f(x)); the answer here is 64.

Power: finds the 7 th power of 3.
pow 3 7 where
pow nm = cond (eqm 0} 1
(times n (pow (minus m 1)))

Binomial Coefficient: Computes C(10,3) coefficient in the

binomial expression,

(bin 10 3 where
bin n r = div (fac n) (times (fac (minus n r)) (fac r)))
where

fac z = cond (eq 0 z) 1 (times z (fac (minus z 1)))

4]

Here we use an algorithm different from "combinations" for

the same problem.

Prime: If a number is prime returns the number otherwise
returns the first divisor. Determination of primeness is
done by test division starting from number 2.
prim 61 2

where primn f = cond (eq 0 (mod n £f)) f

(cond (eq n £) n
(prim n (plus f 1))

Ackerman: Computes a version of Ackerman's function with
arguments 2 and 3 (Turner,1982).
A 2 3 where

A xy=cond {egq 0 x) (plus y 1)

(cond (eq y 0) (A (minus x 1) 1)
(A (minus x 1) (A x (minus y 1)))

Arvind: A test to show the difference between shared and
copied reductions, through evaluation of arguments once or
more than once., (Arvind, 1984:5.2)

(plus (g 3) (g 4)
where
gy=f (times 2 2) y)
where
f x y= (plus (times x x) (times x y)))

Measurements

The measurements taken include the following:
(1) Number of applications of each primitive, function

and combinator during a reduction,

42

(2) Number of nodes used for evaluation of memory
requirements, -

(3) Number of nodes copied (only for non-shared
reductions),

(4) Time taken for a reduction.

Copied and shared reductions were executed for each of
the given test cases. This enables comparisons of
efficiency of one method over the other in terms of number
of reductions and storage requirements. Further, the graph
reductions with and without optimisation rules {(combinators
S', C', B') are compared in terms of reductions and
storage requirements. All measurements are taken with the
display facility turned off. The time measured is only the
time it takes to execute the reductions and does not involve
abstracting the variables and building the internal

representation for the PSASL expression.
Results

Tables 3 and 4 show the data obtained for the test
cases from copied and shared reductions respectively.
Results obtained vary greatly depending on the test cases.
One conclusion that can be made is that deeply nested
recursions requiring a lot more computation produce more
drastic figures in terms of number of reductions done and

nodes used.

43

St] EE - 01 - £ - - 3 - v S 9 - 4 PuUALE
0LSLY vo9Ly FA T - - E9E 8L azv - €IS LBl E6L L - 962 uBwIey IV
ET6VE S86PE vEEB - - - OvsSE BL1 - BEZ 09 109 @6T Z 1 6Ll sewjJd
4 53:]) o6 609 L 1z el - sz - v £Z EOZ 1) z - Ev 19 jwoulqg
6Ly LZs zLl - i 8z - Si - L] St Le t - 8 Jenod
vsZ 14:74 BEL - - - 91 1 - - - 61 44 9% - vz LETY B
a8 9ve 182 I £l 19 - 91 - v g1 89 St { - LT SUO}3IVULQWOD
vz LBZ 9L - 4 6 - o1 - € 4 vi oz | - L4 suo | jenuied
11162 SLI6Z 1rE9 - - ELB1 ae 0ze - gLl LLl ODLET 96F | - 0ZE y238U0GY §
LLB1 Si61 €c9 - T . -} £ 4 - o1 - - 91 LSz ov l - IE 19} Jo3awy
sepou S9pOU sSUOL1IDNDRY /7 * = +] -] .S A e [*] 1 b s uoj3ouny
pejdoa pesn te3oy

pesn aie [g@ ‘,D ‘.S sorny uorjesturido
Suo13onpay Jojeurquwo) patdo) WOaJ SIUSWRANSESIW °f ATLVL

44

85 8z S = € = = £ v] 9 4 pUjAsE
91§ 9sy - 9z zl LS - 55 64 L t v uRWIBYDE
zevt I1-14} - - 65 el - ecz z9 1- TR 611 sowy Jd
992 092 1z 1z - -4 - v oy Lz z EY lejwouyq
el zii L L - 51 - L g1 vz 1 8 4emuo0d
69 73 - - 91 ! - - 61 61 ot 6 8D MY
[§:] 961 El £l = g1 - 14 51 oz 1 Le suoyleuiqQwod
L6 09 € G - 8 - [8 51 l v suoyieynuwaed
o111z zeoz - 9Ll 1) oze - 66 66v aLr ot 0ze EELVLLI¥
591 LLy 51 sl - 91 - - ce Lt 1 e IRy 4030wy
$8pOU SUD |} }INPBI . - + e .8 .8] a 1 [uojiouny
pesn {230}
pasn aie ,g ‘,D ‘,S sarny uotrijestwiido
SUOTIONPaYy JOJRUTQUOD pPaJeyS wo.dj SjuawaInsesay °§ TTEVL

45

Table 5 compares copied and shared reductions based on
time and memory usage. In general, optimised copied
reductions can require four to fifteen times more memory
than optimised shared reductions. In terms of number of
reductions, optimised copied reductions can result in up to
three times more reductions than their optimised graph

counterparts.

TABLE 5. Comparison of Optimised Copied and Shared
Reductions with Regard to Time and Memory
Requirements

function total nodes total reductions

copied shared copied shared

factorial 1915 165 639 177
fibonacci 29175 2110 634 2632
permutations 297 97 76 60
combinations 946 181 281 156
twice 284 69 138 74
power 527 133 172 112
binomial 1904 266 609 260
primes 34985 1432 8334 1257
ackerman 47664 516 4028 456

arvind 45 59 87 28

Table 6 gives measurements on combinators used without
the optimisation rules. In comparing graph reductions of
table 6 with the optimised graph reductions in table 4, it
can be seen that for small functions such as arvind, twice
and permuations, there is no significant improvement.

However, computationally more demanding functions show 20%

46

improvement with optimised graph reductions over
non-optimised ones with regards to number of reductions
done. The memory requirements for unoptimised graph
reductions, on the other hand, is about 20% less than
optimised reductions.

Table 7 provides the comparison on time and space
efficiency of graph reductions with and without optimisation
rules. As mentioned previously optimisation rules result in
less number of reductions, thus less time; but more memory

usage.

TABLE 7. Comparison of Time and Space Efficiency Between
Shared Reductions With and Without Optimisation

Rules
function total nodes total reductions
factorial 165 151 193 177
fibonacci 2110 1711 3042 2632
permutations 97 96 72 60
combinations 181 177 178 156
twice 69 70 75 74
power 133 119 135 112
binomial 266 259 293 260
primes 1432 1036 1793 1257
ackerman 516 432 599 . 456
arvind 59 60 31 28

First columns of each heading refer to shared reductions
with optimisations while the second columns under the
headings refer to non-optimised shared reductions.

47

09 e S - € v :] 9 S pupaJe
ZEV 66S = 9z z\ g1l (1744 1 LB uvewJeyoe
SEQ! EBGLL - - 65 are Lie [4 LSE sowyad
652 €62 Lz 1z - 1L 09 Z Lt {ejwouiq
61 SEL I3 L - EE Ly t Si J4amod
oL 5L - - gl oz (174 ot 6 82inmy
LLl :F A El El - 1€ v 1 1E Su0} 18Ul quwod
96 ZL € . S - gl Lz i L suo}jyeinused
Liet Zv0E = 941 ae 619 8as i 60%F EEL-U LG L)
164 E£61 Si Gl = EE 6t I IE |eyJo3dey
sepou Suo| 3aNpe.L . - + 3 -] 1 S ugjiIduny
pesn L2303

33 3INOYIIM SUOTIONPaY

saTny uotlesturido
paJeys uo SIUSWIIANSEINW

‘9 FIIV.L

48

CHAPTER V
CONCLUSIONS

Graph reductions are more efficient and faster than
copied reductions, which was known prior to undertaking of
the thesis. The test cases are based on fairly small
expressions although computationally they are comparable to
more typical larger expressions. The following conclusions
can be deduced at the danger of making oversweeping
generalizations:

(1) Optimised graph reductions seem four to fifteen
times better in terms of memory needed and two to three
times better with respect to number of reductions executed
than optimised string reductions. The problems which are
most effected seem to be PSASL expressions that contain one
or more recursive calls,

(2) optimised graph reductions in comparison to their
non-optimised counterparts, result in about 20% less
reductions but about equivalent amount of increased memory
usage. This is again seen in computationally expensive
expressions. However, for almost all cases there is a
general increase in memory usage with optimised reductions.
The implication is that although the optimisation rules

result in more compact compiled code, at run-time the code

49

expands and results in higher memory usage than the memory
requirements seen in non-optimised reductions. Using
optimisation rules is better since in general memory is
cheaper than time,

(3) Display of information on a screen is a non-trivial
task requiring many considerations such as the
appropriateness of the pictorial representation to the user:
what parts of the structure should be shown, all or some
etc. In this project, some of these issues can be avoided
by assuming that only sophisticated programmers who are
familiar with trees and graphs would use PSASL. The
facility of displaying combinator reductions is helpful in

understanding and debugging PSASL programs.,

50

CHAPTER VI

FUTURE WORK

Extensions to the Thesis

A number of extensions are desirable to the current
implementation of PSASL:

(1) Extending the abstraction of expressions

(2) Including lists and strings as objects

(3) Including 2ZF expressions

(4) Modifying the graphical display of PSASL
expressions.

The abstraction algorithm, for completeness, needs to
handle "multiple®” wheres.

The power of SASL comes from its capability of handling
infinite streams which are introduced to the system through
"lists". This implementation would benefit considerably
from inclusion of lists and list primitives such as head,
tail, map, etc. In any implementation, input and output is
also crucial. Operations to read and write files are
desirable as well as operations to manipulate strings .

ZF-expressions, implementations of the set expressions
of Zermelo-Frankel, are useful shorthands in describing a
general type of iteration over lists. For example, a list

spareparts of spare part records can be defined with

51

functions such as name, partnumber and cost. So if "s" is a
record then "name s", "partnumber s" and "cost s" will yield
the name, partnumber and cost of s respectively. A list of

all spare part names can be obtained through the ZF

expression

{ name x ; x <- spareparts}

meaning "the set of names of all x where x is a spare part."
The first part of this expression "name x" is referred to as
the body; the latter part involving "<-" is the generator
and provides the source for elements of the body, i.e.

names in this case. The power of the ZF expressions come
with definitions of guards which filter the elements
produced by the generator. For example, the names and costs
of spare parts which cost less than $15.00 would correspond

to

{ {name x, cost x} ; x <- spareparts ; cost x < 15.00}

Thus ZF-expressions provide ease in describing operations on
specific parts of lists.

A program that would be nice to compile in PSASL is
Turner's solution to the "Eight Queens" problem in SASL

using ZF-expressions.

52

queens 8
where
gueens 0 = [[]]
queens n = [g:b; b<- queens(n-1); g<-1..8; safe q b]
safe g b =all I [ecks g b i; i<- 1.. b]

checks abi=q=Dbi | abs(q -b i) =i

The graphical display of trees and graphs for this
implementation is sufficient; however, if the
implementation is extended, then possibly a more flexible
display method is needed in order to display large
structures. A possible technique is to use a mapping from a
large virtual screen to the smaller physical screen using
the mouse to scroll the display in all four directions.

This would require some work with the limited graphics
facility and the awkard windowing system on the Symbolics
3600 machines.

A necessary commodity in compiler or interpreter
implementations is good debugging facilities. Programmers
in PSASL should not need to know about combinators; thus, a
non-combinator feedback is desirable as to where the program
has gone wrong. The current facility to display PSASL
structures during reductions is viewed as a helpful
debugging tool for programmers who are familiar with

combinators and their definitions. Two goals for the future

53

are:
(1) Develop a method for displaying internal state in
user's (source program) terms, not combinators.
(2) If combinators must be used, define a form of
graphic feedback, helpful for programmers who are not

conversant with combinators.

Further Areas QOf Exploration

The implementation technique of combinator-reduction
machines lead into further avenues of investigation. An
avenue of interest is exploring the potential of parallelism
with such a technique.

Functional languages are amenable to parallel
operations. The operation of applying one function to
another function in PSASL is represented as a juxtaposition
of two expressions el and e2; in some cases these two
expressions can be evaluated in parallel on a
multiprocessor. Furthermore, as no side-effects exist,
subexpressions can also be evaluated simultaneously. Burton
(1984,159:174) suggests a method of annotating SASL-like
programs to control parallelism and reduction order in
evaluation of functional prbgrams. The annotation he
proposes detects whether a given expression can be reduced,
partially reduced or abstracted. In Turner's combinator

technique, this is detected through replacing a single

54

combinator rule by three other rules. For example, the S f

g x is replaced by

Sp £ gx
Sg f g x

Sp f g x

These rules correspond to the detection of reduce,
make-abstraction and partially reduce operations. The claim
is that make-abstraction and partially reduce operations can
be performed in parallel. The notion is that with
combinators whenever a subexpression is transferred to
another processor to be partially reduced, it will be
self-contained. The interested reader is referred to the

paper by Burton (1984).

55

APPENDIX
BNF DESCRIPTION OF PSASL

<program> ::= <expr>
<expr> ::= <expr> where <condexp>

<condexp> ::= cond <opexp> (<condexp>) | (<opexp>)
<opexp> ::= <prefix> <opexp> <opexp> | <comb>

<comb> ::= <comb> <simple> [<simple>

<simple> ::= <constant> | (<epxr>)

<constant> ::= <numeral> |<boolconst> | <id>
<boolconst> ::= T | F

<numeral> ::= { digits 0 through 9 }

<id> ::= { letters a through z }

Operators (in order of increasing binding power):
not and or eq noteq less grt lesseq grteq times div plus

minus

Built-in functions include:

mod

56

BIBLIOGRAPHY

Arvind, K.P. "Sharing of Computation in Functional
Language Implementations."™ Proceedings of the
International Workshop on High Level Computer
Architecture.” 1984.

. Gostelow, and W.E. Plouffe. "An
Asynchronous Programming Language and Computing
Machine."” Technical Report 1l4a, Department of
Information and Computer Science, University of
California, Irvine, December, 1978.

Brown, Marc H., and Robert Sedgewick. "Techniques For
Algorithm Animation.” IEEE Software. (January
1985) :28-39.

Burton, F.Warren. "Annotations to Control Parallelism
and Reduction Order in the Distributed Evaluation of
Functional Programs."” ACM Transactins on Programming

Languages and Systems. Vol. &, no. 2 (April
1984):159-175.,

Henderson, P. and J.H. Morris. "A Lazy Evaluator."

Conference Recordings Of The Third ACM S Oosium on
Principles of Programming Languages. {(January

1976):95-103.

Hindley, J.R, B. Lercher and J.P. Seldin.
Introduction to Combinatory Logic. London
Mathematical Society Lecture Note Series 7. Cambridge
University Press, 1972.

Hughes, R.J.M. "Super Combinators- A New
Implementation Method for Applicative Languages." ACM

Sz%gosium on LISP and Functional Programming.

Johnsson, Thomas. The G-machine. Chalmers Institute
of Technology, 1983.

Jones, Neil D., and Steven S. Muchnick. "A
Fixed-Program Machine For Combinator Expression
Evaluation." ACM Symposium on LISP and Functional
Programming. (1982):11-20.

57

Jones, Simon L,P. "An Investigation Of The Relative
Efficiencies Of Combinators and Lambda Expressions."
ACM Symposium on LISP and Functional Programming.
(1982):150-158.

Landin, P.J. "The Mechanical Evaluation of
Expressions.," The Computer Journal. Vol. 6, no. &
(1964) :308-320,

McCarthy, J. "Recursive Functions of Symbolic
Experessions and their Computation by Machine, Part 1."
Communications of the ACM. Vol. 3, no. 4 (April
1560):184 - 195.

Maclennan, B.J. Principles Of Programming Languages:
Design, Evaluation and Implementation. CBS College
Publishing, New York, 1983.

Richards, Hamilton Jr. "Programming In SASL" Burroughs
Corporation Austin Research Center. 3 December 1983.

. "The Pragmatics Of SASL For Programming
Applications." Burroughs Corporation Austin Research
Center. Report No, ARC 82-15, 15 June 1982.

Sedgewick, Robert. Algorithms. Addison-Wesley,
(1583):171~ 223.

Turner, D.A. "Combinator Reduction Machines."
Proceedings of the International Workshop on High
Level Computer Architecture. (1984):5.26-5,38,.

. "A New Implementation Technique for
Applicative Languages."” Software-Practice and
Experience. Vol. 9 (1979):31-49.

. "Another Algorithm For Bracket
Abstraction." The Journal of Symbolic Logic. Vol. 44,
no. 3 {(December 1978):67-71.

. SASL Langquage Manual. June 1976 (Revised
November 1983).

Wadsworth, C.P. Semantics and Pragmatics of the
Lambda-Calculus." University of Oxford, 1971.

