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CHAPTER I
INTRODUCTION

The aim of Japan's Fifth Generation Computer System
project is to build a very fast multi-processor parallel
system based on non-Von Neumann architecture. An extended
form of Prolog, a logic programming language, has been
chosen as the kernel language for this project. Researchers
have discovered many kinds of potential parallelism possible
in implementing logic programs. Logic programming has been
used effectively in diversed areas as plane geometry,
learning, generalization, planning, symbolic calculus,
natural language understanding, speech understanding, chess,
query optimization, and robotics [6]. This thesis report
describes an implementation of a parallel interpreter for
logic programs. The interpreter is based on the AND/OR
Process Model described by Conery [4,6]. The interpreter,
written in C, runs on a loosely coupled network of UNIX
systems and can be easily extended to run on a tightly

coupled multi-processor system.



Background

Logic programming is a programming methodology based on
symbolic logic, involving the use of Horn clauses.

Execution of a logic program, comprising a set of Horn
clauses, means finding a solution to a goal predicate
supplied by the user. The solution of the goal is a set of
substitutions for variables occurring in the goal predicate,
obtained by solving that goal. Failure is reported when no
such substitution exists.

Logic programs offer many opportunities for
parallelism. One theme in parallel inference is to develop
methods for extracting parallelism from standard Prolog in
order to achieve faster execution on a multi-processor
system. A second theme in parallel inference is to define a
new logic language appropriate for programming concurrency.
Epilog, an extended version of Prolog, is an example of a
language developed to exploit parallelism from logic
programs. A third approach, which we are taking, is to
define a new logic language, not based on Prolog, but
derived from pure logic. In this approach of language
oriented architecture, the aim is to define machines for
functional programming languages. This is also known as

language first philosophy.



Types of Parallelism

Many practical logic programs have inherent large-scale
parallelism. But, there are important examples of logic
programs which do not have such parallelism, e.g. simple
list concatenation. Among various kinds of parallelism
possible in logic programming, the important ones are
OR-parallelism, AND-parallelism, Search-parallelism and
Stream-parallelism [6]. In OR-parallelism, several clauses
matching a goal are processed concurrently. In
AND-parallelism literals in the body of a clause are solved
simultaneously. Search-parallelism is a technique of
partitioning the data base of clauses in disjoint sets to
enable efficient parallel searching. In Stream-parallelism,
partial results from solution of one literal are passed to
the process solving the next literal.

Issues Involved in Implementing Logic
Programs on a Parallel Machine

The order in which solutions are obtained by a parallel
machine need not be the same as that obtained on a
sequential machine, and in almost all cases, this order is
not important unless one is executing Prolog instead of a
logic program. Prolog programmers rely on the order of
their clauses to produce certain effects, and this will not
be possible in our parallel logic system.

As the number of processors increases, the execution



time of a program should decrease. But the increase in
efficiency is not directly proportional to the increase in
the number of processors, because as the number of
processors increase, so does the communication cost among
processors. Sometimes communication cost may outweigh the
benefits obtained by having many processors, hence
communication should be made as efficient as possible. Also
the increase in the number of processors may result in an
increase in the complexity of resource sharing.

Assignment of work to processors can be done in two
ways. Either work can be assigned to processors by another
processor, such as a central control processor, or idle
processors can be made responsible for selecting work for
themselves. The choice of an appropriate scheme depends
upon various factors. These factors include the
distribution of source program among the processors, the
number of processors et cetera. The former mechanism is a
potential bottleneck when there are a very large number of
processors.

How program statements (Horn clauses) should be
distributed among the processors is also an important issue.
Three possibilities are: a single copy of the program can be
kept in a central global memory; each processor can have a
copy of the program in its respective local memory; or the
program can be divided into several chunks and distributed

among local memories. The first scheme can lead to a



bottleneck at global memory, the second is only possible
when programs are relatively small and each processor has a
lot of local memory to spare. The last scheme looks very
promising in terms of efficiency. Nakagawa (2] and Warren
et al. [10] employ the last scheme. Nakagawa uses the
concept of assertion set in which clauses with the same head
are stored with same processor [9]. Tick and Warren use a
distribution scheme in which clauses with the same head are
kept at different processors [10]. In our system we use the
second scheme, where all processors have a copy of the
program in their local memories.

Two processors may need to share some data at runtime.
An example is a binding environment shared during
unification by many parallel OR-processes of the AND/OR
Process Model [4]. The information can either be duplicated
or shared by the processors. To avoid side effects, copying
may be necessary. But, whenever there is no possibility of
side effects, sharing of data structures is efficient, since
the data structures created by logic programs can be very
large.

Implementation of a true OR-parallel model, such as the
system of Ciepielewski and Haridi [3], may lead to
combinatorial explosion of space. This happens because many
processes are invoked to solve a single literal and each
invocation involves copying the existing stack. Much of the

work in parallel logic programmming has been on techniques



for avoiding this. Ciepielewski and Haridi use a technique
for pruning the search tree [3]. Conery talks about the use
of secondary memory to store the status of blocked processes
(processes at the top of the search tree), and a mechanism
for inhibiting parallelism, so that fewer processes are
created [4]. Other techniques are described by Warren [11],
Kumon et al. [8], and Borgwardt [l1]. In this
implementation a new method developed by Conery, called

closed environments, is used for information sharing [4].

Thesis Layout

The thesis report is organized as follows: Chapter II
describes Conery's AND/OR process model, showing how legic
programs can be interpreted by sets of asynchronous and
independent processes instead of by one large centralized
search algorithm. Implementation of Conery's model on a
single processor and a multi-processor is the topic of
Chapter I1I, which includes a detail description of data
structures used. Chapter IV lists the experiments run on
this system to test and measure the efficiency of the
implementation. Directions for future work are discussed in

the final chapter.



CHAPTER II
CONERY'S AND/OR PROCESS MODEL
Overview

In his doctoral thesis, Conery described the AND/OR
Process Model, an abstract model for parallel interpretation
of logic programs [4]. His model exploits both
AND-parallelism and OR-parallelism. The interpretation of a
goal statement is carried out by two hinds of processes,
called AND-processes and OR-processes. An AND-process is
created to solve a goal statement, which is a conjunction of
one or more literals. The AND-process derives its name from
the fact that all of its literals must be proved to be true
for the goal statement to be true. An OR-process is created
to solve a single literal. The number of ways in which it
can solve this literal is the same as the number of clauses
in the data base whose head clause can be unified with the
literal. Any of these ways may lead to a number of
potential solutions.

During execution, an AND-process may create one or more
OR-processes to solve literals in its goal statement.

Similarly, an OR-process may create one or more



AND-processes to solve the clause body of the clauses whose
head unifies with the literal. In this way, a tree of
processes is created with AND-processes and OR-processes on
the alternate levels. A process can communicate with either
its parent or its child process, but not (directly) with any
other process.

The processes communicate by sending messages to each
other. When a message is processed, the receiving process
updates its internal state in an atomic operation, i.e., it
doesn't process new messages until it completes processing
the old one. This state transformation may result in the
generation of one or more messages and creation of new
processes.

The execution of a user's goal begins by creating an
AND-process to solve that goal. It terminates successfully
when the AND-process receives a "success" message from its
rightmost child (i.e., from the OR-process created to solve
the last literal). The execution terminates unsuccessfully
if the AND-process receives a "fail" message from its first

child process.

Messages

A message represents an action to be carried out by the
receiving process. Messages sent to descendant processes
are "start," "redo" or "cancel," and messages sent to the

parent are "success" or "fail." A "start" message is sent to



a newly created process by its parent. A "success" message
is sent to a process by its child when the child has been
successful in solving its part of the problem. For an
AND-process, this means all literals in the body have been
solved. This message contains a solution, which is
represented by variable bindings. A "fail" message is sent
to a process by its child when the child fails to solve its
goal literal(s). In some situations, after a process
receives an answer from one of its child processes, it will
need a different solution, so it sends a "redo"” message to
that child. Finally when a process doesn't need the service
of a child process any more, it sends a "cancel"” message to

that child.

Parallel OR-process

An OR-process is created by an AND-process to solve a
literal from the AND-process's goal list. The OR-process is
activated when it receives a "start" message from its parent
process. The OR-process will solve its literal in one of
two ways. If the literal unifies with an assertion, the
literal is solved immediately, and an answer can be
constructed for the parent and sent back via a "success"
message. If the literal unifies with the head of an
implication, an AND-process is created to solve the body of
that clause,

The first answer generated by the OR-process is sent to
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its parent and subsequent answers are saved in a list of
answers. One of these answers is sent to the parent when
the parent requests another solution by sending a "redo”
message. When no more solutions can be generated and the
parent sends a "redo" message then the OR-process sends a
"fail™ message to its parent. The OR-process terminates
after sending a "fail" message.

An OR-process can be either in waiting mode or in
gathering mode. It is in waiting mode if its parent is
waiting for an answer. It is in gathering mode when the
parent is busy, using the answer sent previously. The state
of an OR-process is represented by a data structure with the
following fields:

1. L, the literal to be solved by the OR process.

2. WL, the waiting list, a list of answers not yet

sent to the parent.

3. SL, the list of answers that have been sent.

4., DL, a list of ids of descendant processes.
State Transitions

The following sections will describe in detail how a
parallel OR-process reacts to any message it receives,
depending on its current state {waiting or gathering) and

the type of message.



11

Start Message

When an OR-process receives a "start" message, it does
a data base look-up to find all implications and assertions
whose head matches with the goal literal, L. Two literals
match when their functors are same and have same arity. The
OR-process then checks if the head of the clauses can be
unified with L. For all the implications for which the
unification succeeds, the OR-process c¢reates an AND-process
to solve the body of the implication. The ids of
AND-processes are added to the DL list. For all the
assertions for which the unification succeeds, the
OR-process constructs an answer to send to the parent
process. All these answers are kept in the WL list of the
OR-process., If the unification succeeds with at least one
assertion then the WL list will contain at least one
solution. If the WL is not empty, a sclution is removed
from the WL list and is sent to the parent via a "success"
message and the OR-process goes into gathering mode. A copy
of the answer is also saved in the SL list. If the
unification succeeds with at least one implication but with
no assertion, then WL is empty and the OR-process goes into
waiting mode. If no clauses can be found whose head can be
unified with L then the OR-process has failed to find a
solution for the literal. Hence it sends a "fail" message

to its parent and terminates.
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Success Message

Whenever a parallel OR-process receives a "success”
message from one of its descendant processes then it sends a
*"redo" message to the descendant process. The descendant
immediately starts working on constructing another solution.
This saves time if backtracking is required because the
descendant may be able to keep an alternate solution ready
before the need for backtracking arises.

The other actions taken by the OR-process after it
receives a "success" message depend on whether it is in
gathering or waiting mode. If the OR-process is in waiting
mode then it makes a "success” message for its parent and
sends it. A copy of the solution is saved in the SL list,
and the process goes into gathering mode. If the OR-process
is in gathering mode then it constructs an answer and saves
it in the WL list. The answer is not immediately sent to
the parent because the parent is busy. The answer will be
sent later if the parent requests for another solution. The
SL list is unchanged and the process remains in gathering

mode.

Fail Message

When an OR-process receives a "fail" message from a
descendant, it removes the id of the descendant process from

its DL list. Further action depends on the number of active
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descendants and the state of the OR-process.

If the OR-process is in waiting mode and if there are
descendants still working, then no further action is
required, and the mode of the process remains unchanged.
But, if DL is now empty, the OR-process sends a "fail"
message to the parent, since there is no way to construct
another answer and the parent is waiting for an answer.

If the OR-process is in gathering mode then no further
action is required. The process remains in gathering mode.
Since the parent is currently busy, a "fail" message is not
sent, even if the DL list is now empty. A "fail" message

will be sent later when the parent sends a "redo" message.

Redo Message

A "redo" message received by an OR-process in waiting
mode is an erroneous situation because waiting mode
signifies the parent is waiting for an answer; when the
parent is waiting, it shouldn't be sending any messages.

A gathering OR-process handles a "redo” from its parent
in one of three ways, depending on the states of WL and DL
lists.

If the WL list is not empty then the OR-process selects
an answer from it and sends it to the parent via a "success"
message. A copy of the answer is added to the SL list and
the OR-process remains in gathering mode.

If the WL list is empty and if the DL list is also
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empty, then a "fail"” message is sent to the parent because
there is no way to make another answer. After sending a
"fail" message, the OR-process terminates.

If the WL list is empty and if the DL list is not empty
then the process goes into waiting mode. This means that
some descendants are still working to produce an answer.

The SL and WL lists are not changed.

Sequential AND-process

An AND-process is created to solve a conjunction of
literals., The literals are solved by creating OR-processes
for each one. AND-parallelism can be achieved by creating
OR-processes all at once for each literal. But, there are
several issues involved in extracting AND-parallelism. It
is not so easy to achieve this as OR-parallelism. 1In this
thesis, we will be concerned only with sequential
AND-processes.

An AND-process creates an OR-process to solve the first
literal in the goal statement. If the OR-process succeeds,
the bindings in the answer sent by the OR-process are
applied to the remaining literals., An OR-process is then
created to solve the next literal in the goal statement., If
all the literals are solved in this manner then a "success"
message is sent to the parent along with the appropriate
variable bindings.

If an OR-process fails to produce an answer and sends a
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"fail" message, then a "redo" message is sent to the
OR-process which was created to solve the previous literal
in the goal list. If there is no such previous literal,
i.e., if the "fail” message is received from the first
OR-process, then the AND-process sends a "fail" message to

its parent and terminates.
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CHAPTER III
IMPLEMENTATION
Qverview

This chapter describes the implementation of the AND/OR
Process Model. The interpreter is written in C. The first
version described executes on a UNIX system., It maintains a
data base of clauses, two process pools -- one each for
OR-processes and AND-processes -- a message queue, stack
frames for clause environments, and other runtime data
structures. The clause data base and process pools are
organized as hash tables. The message queue is a simple
First In First Qut queue. By providing a suitable
implementation of message passing, and a method for
distributing new processes to other copies of the
interpreters, this system will run on a network of UNIX
systems. These extensions are discussed at the end of the
chapter.

Figure 1 shows a pictorial view of the implementation
on a single processor. CI is a Communication Interface,
which acts as an interface between the user and the

interpreter, I. At any given time, either I or CI is in
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User j/;£> Communication
\\7 Interface

I Interpreter

The Communication Interface (CI) acts as an interface
between the user and the interpreter (I). CI and I are

separate modules; they communicate with each other
synchronously.

FIGURE 1, Configuration of the system on a single processor.
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reading mode and the other is in writing mode. 1Initially CI
is in writing mode. The user can type in clauses or lcad a
disk file containing clauses. He can also query by typing
in a goal statement. CI parses each clause and sends it to
the interpreter via messages. The interpreter stays in the
read mode until it receives a goal statement. After sending
a goal statement, CI goes into reading mode, and waits for
an answer from the interpreter. The interpreter stores all
the clauses in an internal data structure. It goes into
write mode when it receives a goal statement, It solves the
goal and sends the result back to CI. CI then reads the
result from the interpreter and reports it to the user. The
user may type in more clauses or more goal statements.

When the interpreter receives a goal statement from CI,
it starts solving it by creating AND-processes and
OR-processes according to the rules outlined in the previous
chapter. The main issues involved in the implementation of
this interpreter are scheme for storing clauses, choice of
the unification algorithm, handling clause environments,
data structures for processes, managing process pools,
inter-process communication, handling variable bindings and
inter-processor communication. The unification algorithm
described by Conery [5] is used in this implementation and

other issues are described below.
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Organization of Clause Data Base

A structure called a "cell” is used to represent a
term, a variable or a constant in the clause. A cell has
three fields to specify type and other information. All
cells are stored in an array called Cell-memory. A clause
is parsed by CI into a sequence of cells representing the
clause in prefix form. Given this sequence of cells, a
structure of type Clause-node is constructed, which arranges
the available information in an organized manner. An
example will help to make these data structures clear
(Figure 2).

Figure 2{(a) shows a program clause. Figure 2(b) shows
the output of the parser, the prefix form of the clause.
Figure 2(c) shows cells used in storing this clause in the
Cell-memory. The first two fields of cells shown in Figure
2{c) are "tag" and "name." The value of the "taq" field
specifies the type of the cell; it can be one of "sfun”
(functor), "var™ (variable) and "atom" (constant). "Name”
is actually a pointer to a symbol table entry for the string
shown in the Figure. Depending upon the value of the tag
field, the third field is interpreted as arity of the
functor if the tag is "sfun", or variable number in the
clause when the tag is "var"; the third field is ignored
when the value of "tag” field is "atom." Notice that "A" and

"B" are the first and second variables in the clause



a

p(A,B) :- r{(A) & s(B,e).

Note:

¢!

100:
101:
102:
103:
104:
105:
106
107:
108:
109:

Note:100-109 are indexes
in the Cell-memory

"A" and "B"

variables,

<sfun,
<sfun,
<var,
<var,
<sfun,
<sfun,
<var,
<sfun,
<var,
<atom,

are
llel'l
a constant, and ":-",
!l&n'l'lpll'ﬂrn' and
"s" are functors.

2>
0>
1>
2>
1>
0>
2>
1>
0>

b

s—(p(A,B),&(r(a),s(B,e)})

d
functor: 100
no-of-vars: 2
body:
0: 101
1l: 105
2: 107
3: nil
ma;: nil

next-clause: nil

Note:100, 101, 105 and
107 are indexes in
the Cell-memory

20

FIGURE 2. Clause representations: source program clause (a};
clause in the prefix form (b); cells in
Cell-memory (c¢). Clause-node structure {(d);
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respectively; hence the value in the third field of cells at
locations 102 and 106, representing "A," is 0, and that for
cells at locations 103 and 108, representing "B," is 1. All
the cells representing a single clause are stored in
continuous locations in the Cell-memory.

Figure 2(d) shows the contents of Clause-node structure
after this clause is loaded. The Clause-node structure has
four fields. The "functor™ field points to the first cell
in the clause; in the above example, the value of functor is
100, meaning the clause is stored starting at location 100
in the Cell-memory. The second field, "no-of-vars," is used
to store the number of variables in the clause. The third
field, an array called "body," is a very important part of
the Clause-node. This array is used by an AND-process in
solving conjunctions of literals. Index 0 in this array
points to the head of the clause. Subsequent indices point
to literals in the clause body in the order in which they
appear in the clause body. In the above example, index 1
points to the cell representing literal r(A) and index 2
points to cell representing literal s(B,e). This
organization simplifies the work of AND-processes. Access
to the cells of the next and previous literals is
simplified. The fourth field in Clause-node, "next-clause,”
points to the Clause-node structure representing a clause
with the same head functor and arity.

Clause-nodes are stored in a hash table. The functor
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of the clause and its arity serve as the primary and the

secondary keys respectively. Each entry in the hash table

consists of a "functor,"” an "arity" and a "ptr-to-clause”

field.

Clause~-nodes with the same functor and arity are

linked together by the "next-clause"” field in the

clause-node structure.

Data Structure for Processes

In our implementation, an OR-process is represented as

a data structure with the

1.
2.
3.

self-id 5
parent-id 3
L :
WL :
SL :
DL H
state :
next-OR-process:

following fields:

id of the OR-process.

id of the parent AND-process.
pointer in cell-memory to the
current literal to be solved by
this process.

list of answers to be sent.

list of answers already sent.
list of ids of descendant
AND-processes.

operating mode; "gathering" or
"waiting."

pointer to next OR-process. This
field is used in garbage
collection and in organizing the

process pool.

An AND-process has the following fields:
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1. self-id

id of the AND-process.

2. parent-id

id of the parent OR-process.

3. SG : pointer to Clause-node
representing the goal to be
solved.

4. CL : index in array "body" of
Clause-node of the current
literal being solved.

5. clause-envn : pointer to environment for

variable bindings.

6. next-AND-process: pointer to next AND-process.
This field is used in garbage
collection and in organizing the
process pocol.

The id of a process is a single integer.

Process Pools

All active processes are kept in process pools.
AND-processes and OR-processes are kept in different pools,
each organized as a hash table. The process-id is used to
determine the index in the hash table. All the processes
with the same hash function value are linked together using
the next-process pointer in the process structures. To
access a process, the hash function is applied on its id to
get the index in the hash table. The content of this index

in the table points to the list of processes with the same
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hash function value. A sequential search through this list

is required to access the required process.

Inter-process Communication

Inter-process communication is implemented by sending
messages. Whenever a message is generated by some process
it is inserted at the end of a global message queue. A

message has the following fields:

1. source-id :+ id of the source process.
2. dest-id : id of the destination process.
3. command : type of message; it can be one of

"start," "redo," "success" and
"fail."” ("cancel" messages are not
implemented)

4, ptr-to-frame

pointer to the stack frame. This
is used to send a clause
environment with "start" message
and to send an updated environment
with "success” messages.

5. next-message pointer to the next message in the

L1

queue.

Interpreter Loop

When the user requests solution of a goal statement,
the goal statement is parsed and the interpreter is invoked.

The interpreter starts by setting up a root AND-process for
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solving the goal and inserts it in the AND-process pool. It
then inserts a "start" message for this process in the
message queue. The interpreter then loops until the goal is
solved or until it fails. 1In each cycle, it removes the
first message from the message queue and gets the
destination process from the appropriate process pool. The
choice of a process pool is determined by the value of the
process-type field in the message. The type of message is
decoded and the appropriate action is taken depending upon
the current state of the process. In response to this
message, the state of the process will change, and it may
generate new processes and messages. The new processes are
inserted in the process pools and the messages are inserted
in the message queue. After the state transition is
complete, the interpreter loops back and removes the first
message from the queue and the whole procedure is repeated
again. An empty message queue is an erroneous situation
unless the last message sent was a success for the user's

original goal.

Variable Bindings

Variable bindings are stored on two stacks, called the
"local stack" and the "global stack.” These stacks are
sequential arrays of cells. The structure of cells has been
described earlier in this chapter. Whenever an AND-process

is created a stack frame is allocated on the local stack for
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the variables in the goal statement. This stack frame is
called the clause environment of the goal. The size of this
stack frame is equal to the number of variables in the goal
statement plus a cell to store additional information about
the frame,

When variables are bound to simple terms (atoms or
other variables), the binding is stored in the cell in the
environment. When a variable is bound to a complex term, an
instance of the complex term is constructed on the global
stack and a pointer to the term is stored in the variable’s
slot in local stack frame.

When an AND-process starts a descendant OR-process, it
sends a pointer to its clause environment to the OR-process
via a "start" message. The OR-process does a look up in the
data base of clauses to see if the head of any clause is a
potential match with the literal to be solved; a potential
match has the same functor and arity. For each potential
match, a copy of the parent's stack frame is created on the
local stack, and a stack frame is allocated for variables in
the candidate clause. Complex terms from the global stack
are also duplicated. A unification algorithm is then called
to check if the goal literal and the head of the candidate
clause are unifiable., As a side effect of this unification
algorithm, the two stack frames are updated to reflect the
variable bindings.

If the unification fails then the two stack frames are
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garbage collected. 1If the unification succeeds and if the
candidate clause is an implication, then an AND-process is
created to solve the body of the candidate clause. The
stack frames are then "closed" to remove references to the
parent stack frame from the descendant stack frame.
Unification and environment closing are described by Conery
[5]. The closed stack frame is passed as the clause
environment for the AND-process along with the "start”
message.

If the unification succeeds and the candidate clause is
an assertion then the updated parent stack frame contains an
answer for the goal literal. This stack frame is added to
the WL list of OR-process and is eventually sent to the
parent along with the "success" message. The descendant
stack frame can be garbage collected. If no matching
clauses are found or if none of the matching clauses unify
with the goal literal then a "fail"” message is sent to the
parent AND-process.

When an AND-process receives a stack frame along with a
"success" message from one of its descendants, it creates an
OR-process to solve the next literal from the goal list.

The stack frame received with the "success" message becomes
the current environment of the AND-process and is sent to
the next OR-process with the "start” message. If no more
literals are to be solved, then the AND-process simply

passes on the stack frame to its parent as an answer frame.
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When an OR-process receives a stack frame from an
AND-process along with the "success" message, it combines
the stack frame with the copy of the parent's stack frame
associated with this AND-process. This is done by closing

the parent's stack frame with respect to the answer frame

[5].

Multi-processor Implementation

Figure 3 shows the configuration of the system on five
processors. This configuration can easily be extended to
more processors. For the purpose of multi-processor
implementation, the Communication Interface Module (CI) from
the single processor implementation is separated into two
modules. These modules are called User Interface Module,
UIM, and Inter-processor Communication Module, ICM. 1In
Figure 3, there are four ICM's and one UIM. The UIM runs on
a separate processor. An interpreter and an ICM share a
processor. All of these units can talk to each other by
sending messages. UIM is an interface between the user and
the system. All the clauses typed in by the user are parsed
by UIM and are broadcast to all ICM's. ICM's, in turn,
forward these clauses to the respective interpreter. This
ensures that a copy of the program is available at each
interpreter. The interpreter stores these clauses in an
internal data structure. When the user types in a goal

statement, UIM parses it and sends it to only one ICM. This
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User

The User Interface Module (UIM) acts as an interface
between the user and the system, The Inter-processor
Communication Modules (ICMs) are responsible for
inter-processor communication; the communication is
asynchronous. An ICM and an interpreter (I) share a
processor.

FIGURE 3, Configuration of the system on five processors.
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ICM forwards the goal clause to its interpreter. The
interpreter starts solving the goal by creating
AND-processes and OR-processes. To reduce the load on this
interpreter, some of these processes and other data
structures are transported to other interpreters via ICM's.
This kind of communication via messages goes on until the
original goal is solved or until it fails. Once the goal is
solved, its solution is sent to the UIM. The UIM, in turn,
reports the solution to the user and waits for further
instructions from the user.

To have distinct ids for all processes in the system
for the purpose of efficient message passing, the id is a
structure of three fields: "process-no," "host-machine,"” and
"execute-machine.” Each of these fields is a single integer.
"Host-machine” is the processor number on which the process
is created, and "execute-machine" is the processor number on
which the process is running. Since each machine maintains
its own counter for the "process-no" field, these ids are
unique in the system.

The distribution of processes and other data structures
at runtime are very important factors in the efficiency of
the parallel model on a multi-processor system. We have
assumed a simple mechanism of distributing processes. A
simple hashing function is applied on the process-id to
determine where that process should be transported. More

elegant methods can be used to implement this in order to



31

make the system more efficient. For example, distribution
of processes may depend upon the number of processes in the
process pools and the number of messages in the message
queue at each processor so that equal distribution of work
can be achieved.

All the interpreters run concurrently on separate
processors, sending messages to each other asynchronously.
In the single processor implementation, the communication
between the Communication Interface and the interpreter is
synchronous; in this implementation, either one of them is
sending messages at any given time. The ICM and the
interpreter are separate units to ensure that the
interpreter is independent of the communication protocol
among the processors. This system can be implemented on any
tightly coupled processors or loosely coupled network of
processors by proper choice of ICM's.

The representation used for stack frames assures proper
execution of this model no matter which interpreter in the
network performs a process transition. Stack frames passed
in "start™ messages and "success" messages are in closed
form, meaning there are no pointers to local stacks in other

interpreters,

Chapter Summary

This chapter has introduced the implementation of the

AND/OR Process Model on single processor and multi-processor
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systems. Various data structures used for the
implementation were discussed in detail. The clause data
base is organized as a hash table. The head functor of the
clause and its arity serve as keys for hash table access.
AND-processes and OR-processes are implemented as data
structures, which are kept in process pools. The process-id
is used as the key for storing a process in the pool.
Processes communicate with each other by sending messages.
A message queue is maintained to store all messages. In
each interpretation cycle, the interpreter removes the first
message from the queue and takes appropriate action. This
action may lead to a change in the state of a process and/or
generation of new processes and messages. Closed
environments are passed with "success" and "start" messages.
This ensures that the environments are portable.
Implementation of the system on a multi-processor
system has three kinds of modules. These modules are User
Interface Module, Inter-processor Communication Module and
Interpreter. An Inter-processor Communication Module is
used for routing messages to appropriate destinations.
Implementation of this module depends upon the type of
processors connected to each other. Hence this module is
kept separate from the interpreter, in order to keep the
interpreter independent of the types of processors in the
network and the communication protocol between these

processors. The User Interface Module runs on a separate
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processor and serves as an interface between the user and
the system. An Inter-processor Communication Module and an
interpreter share a processor. A copy of the program is
available at each interpreter. The goal statement is given
to only one of the interpreters. This interpreter starts
solving the goal by creating AND-processes and OR-processes.
To reduce the load on this interpreter, it transports some
of its processes and other necessary data structures to
neighboring interpreters. All the interpreters solve the
goal through a combined effort by communicating

asynchronously with each other via messages.
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CHAPTER IV

EXPERIMENTS

This chapter discusses various experiments carried out

to test the implementation of the AND/OR Process Model and

lists the measurements gathered in the process. The

following statistics were gathered for each test program:

Number of OR-processes created.

Number of AND-processes created.

Number of OR-process pool accesses.
Number of AND-process pool accesses.
Maximum size of the message gqueue,
Number of "start" messages processed.
Number of "success" messages processed,.
Number of "redo" messages processed.
Number of "fail" messages processed.
Total number of messages generated.
Number of unifications attempted.
Number of successful unifications.
Number of successful unifications with assertions.
Number of clause data base accesses.

Size of local stack without garbage collection.
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16. Size of local stack with garbage collection.

17. Size of global stack.

18. Number of local stack frames used.

19. Number of local stack frames garbage collected.

20. Percentage time spent in unification.

21. Percentage time spent in duplicating local stack
frames.

22, Percentage time spent in sending messages (on the
same processor).

23. Percentage time spent in allocating and

deallocating {garbage collecting) memory.

Measurements

The purpose in gathering these measurements is to see
how large data structures become, how often they are
accessed, where the most time is spent, and to collect
statistics about message passing (item nos. 5-10) and
unification {item nos. 11-13). The number of processes
(item nos. 1 and 2), the lcad on the processor (item no. 5),
the number of messages (item nos. 6-10), and size of stacks
(item nos. 15-18) gives an idea about the total size of data
structures. It also reflects the need for an efficient
garbage collection mechanism (item nos. 18 and 19). By
counting the number of accesses to the process pools (item
nos. 3 and 4) and to the clause data base (item no. 14), one

can judge how often the data structures are accessed.
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Timing analysis (item nos. 20-23) helps in identifying often
used parts of the system, so more effort can be expended in
the future for improving those. Other statistics may be
helpful in the improvement of the basic model of the system
itself.

The statistics mentioned in the previous section were
gathered for three programs: "Map Coloring Problem,"
"Expression Grammar,"” and "List Reverse." The listings of
the programs are given in Figures 4 through 6. Tables 1
through 3 summarize the respective measurements obtained
during the experiment. These programs were selected to test
the unification algorithm, message passing space
requirement, backtracking, and analysis of the time spent

among different modules of the interpreter.

Analysis of Measurements

After conducting the experiments, it was evident from
the measurements that the size of the data structures is
very large even with garbage collection. Currently garbage
collection is done for almost all major data structures
except the global stack. Figures obtained for the size of
local stack with and without garbage collection conveys the
importance of garbage collection. A lot of space can be
saved if the global stack is garbage collected in the
problems in which a considerable number of complex terms are

created on the global stack. The garbage collection



color(a,B,C,D,E) <- next(A,B) & next(C,D) & next{(A,C) &
next{(A,D) & next(B,C) & next(B,E) &
next{(C,E) & next(D,E).

next(red,blue).

next(red,yellow).

next(red,green).

next{blue,red).

next (blue,yellow).

next(blue,green).

next(yellow, red).

next(yellow,blue).

next{(yellow,green).

next{green,red).

next (green,blue).

next(green,yellow).

?- color(a,B,C,D,E).

FIGURE 4. Map coloring problem.



TABLE 1. Measurements for "Map Coloring Problem”

Category Measurement
No. of OR-processes 22
No. of AND-processes 2
No. of OR-process pocl accesses 71
No. of AND-process pool accesses 40
Maximum message queue size 3
No. of "start" messages processed 24
No. of "success" messages processed 23
No. of "redo" messages processed 14
No. of "fail" messages processed 13
Total no. of messages generated 75
No. of unifications attempted 253
No. of successful unifications 39
Successful unifications w/ assertions 38
No. of clause data base accesses 22
Local stack size w/o garbage collection 1794
Local stack size w/ garbage collection 303
Global stack size 0
No. of local stack frames used 509
Local stack frames garbage collected 428
% time spent in unification algthm. 24.0
% time spent duplicating stack frames 19.9
% time spent sending messages 4.6

% time spent alloc. and dealloc. memory 29.3
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expr{E,S0,81) <- term(E,S0,Sl).
expr(plus(Tl,T2),50,81) <- term(Tl,S0,52) &

plus(s2,83) & expr(T2,53,S51).
expr(minus(Tl,T2),S80,S1) <- term(T1,S0,S2) &

minus(S2,83) & expr(T2,83,81).

term(T,S0,S1) <- factor(T,S0,81).
term(times(F1l,F2),80,81) <- factor(F1l,50,S82) &
times(S2,S3) & expr(F2,83,81).
term{divide(Fl1,F2),S80,81) <- factor(F1,50,S2) &
divide(s2,83) & expr(F2,83,81).

factor(F,s0,81) <- id(F,S0,81}.

factor(F,s0,81) <- digit(F,s0,81).

factor(F,S0,S1) <- lpar(s0,82) & expr(¥F,S2,83) &
rpar(S3,81).

plus([43
minus([4
times([4
divide([

lpar{[40]L
rpar([41]|L
L
L

id(a,{97|
id(b,[98|
id(c,[99]L

(S ] bl had

digit(0,[48]
digit(1,(49]
digit(2,{50]|
digit(3,[51]|
digit(4,[52]
digit(5,[53|L
digit(6,[54]{L
digit(7,[55/L],
digit(8,[56IL],L
digit(9,[(57IL],L)}

],L)
1,L)
1,L)
1,L)
1.L)
1.L)
]1.L)
)
)

Fi expr(%i§40,97,47,98,43,99,41,45,40,99,43,98,42,97,41],

Note: The expression being parsed is "(a/b+c)-(c+b*a)."

FIGURE 5. Expression grammar.



TABLE 2. Measurements for "Expression Grammar"

Category

Measurement

No. of OR-processes

No. of AND-processes

No. of OR-process pool accesses

No. of AND-process pool accesses
Maximum message queue size

No. of "start"™ messages processed

No. of "success" messages processed
No. of "redo" messages processed

No. of "fail" messages processed
Total no. of messages generated

No. of unifications attempted

No. of successful unifications
Successful unifications w/ assertions
No. of clause data base accesses
Local stack size w/o garbage collection
Local stack size w/ garbage collection
Global stack size

No. of local stack frames used

Local stack frames garbage collected
% time spent in unification algthm.

% time spent duplicating stack frames
% time spent sending messages

% time spent alloc. and dealloc. memory

5836
4642
26700
24316
821
10478
4629
4616
10403
30136
20711
5837
1196
5836
187429
72071
148480
47881
34358
23.4
27.6
8.4
20.4

40



reverse((],[1).

reverse([AIL],R) <- reverse(L,Tmp) & append(Tmp,[A],R).

append(([],L,L).
append([X|Al,B,[X|C]) <- append(A,B,C).

?- reverse([a,b,c,d,e,f,q,h,i,j],L).

FIGURE 6. List reverse.
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TABLE 3. Measurements for "List Reverse"
Category Measurement

No. of OR-processes 66
No. of AND-processes 56
No. of OR-process pool accesses 366
No. of AND-process pool accesses 350
Maximum message queue size 4
No. of "start" messages processed 122
No. of "success" messages processed 121
No. of "redo" messages processed 118
No. of "fail" messages processed 116
Total no. of messages generated 479
No. of unifications attempted 132
No. of successful unifications 66
Successful unifications w/ assertions 11
No. of clause data base accesses 70
Local stack size w/o garbage collection 1654
Local stack size w/ garbage collection 857
Global stack size 1960
No. of local stack frames used 375
Local stack frames garbage collected 185
% time spent in unification algthm, 9.8
% time spent duplicating stack frames 25.0
% time spent sending messages 12.0
% time spent alloc. and dealloc. memory 22.5

42
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algorithm for the global stack is complex because the
references to the structure created on the global stack need
not be to the first cell of the structure and any number of
such references can be made to various parts of the same
structure. 8o it is not easy to deduce whether a structure
on the global stack can be garbage collected.

Most time is spent in unification, duplicating stack
frames, and allocating and deallocating memory. The time
spent in duplicating stack frames and the total number of
stack frames used can be reduced if structure sharing is
employed.

The maximum load on the processor is the same as the
maximum size of the message queue. The maximum message
queue size for "Expression Grammar" was 821, which is a
large number. As the number of processors increases, the
load on the processors will decrease considerably up to a
certain point because the work will be divided among the
processors.

The number of process pool accesses is also a large
number, hence pool accesses should be made as efficient as
possible. A simple hash function was used for organizing
the process pools. A better hash function would increase

the efficiency considerably.

Conclusion

The aim of this project was to develop a parallel
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interpreter for logic programs. The first version of the
interpreter, as described in this thesis report, has been
implemented on a loosely coupled network of UNIX systems.
This implementation is the first step in the ongoing
research work in logic programming at the University of
Oregon. The experiments conducted to test the interpreter
have provided an insight into developing more efficient
versions of the same. As of now, unification and
duplication of stack frames consume a considerable chunk of
the interpretation time; a coprocessor or a smart memory
devoted entirely to the task of unification would probably
save a lot of time. The interpreter is currently being

implemented on a tightly coupled multiprocessor system.
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CHAPTER V
FUTURE WORK

This chapter suggests a few extensions to the current
implementation of the AND/OR Process Model. These include a
graphical interface that shows the execution of processes
and/or shows the status of the interpreters, sharing of
runtime data structures, a dynamic load balancing mechanism
for effective utilization of the processors, and
exploitation of AND-parallelism. The following sections

will describe these extensions briefly.

Graphics Interface

A color graphics interface would improve the user
interface dramatically. The working of the model could then
be graphically displayed, and this will help the user in
monitoring the execution of the interpreters. Statistics
about the number of messages, the number of processes et
cetera could be displayed for each interpreter. Whenever a
message is added to the message queue or a process is added
to the pools, the display could be updated. The display

could be in the form of dynamically changing bar charts or
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simple numbers. Separate bar charts could be maintained for
different types of messages which will give an idea about
how many messages of each type are currently in the message
queue. Similarly, messages for AND-processes and
OR-processes could be shown separately. Instead of numbers,
colors could be used. A picture of the network could be
drawn, using shades of color to indicate activity.

In the second, the process tree of each interpreter
could be displayed separately. The process currently
running in the interpreter could be highlighted and its data
structure could be displayed on the screen. For example, in
the case of an AND-process, the goal being solved, the
current literal being solved et cetera could be displayed.
Details about the message being processed could also be
displayed. This type of interface will form a basis for a
debugging interface. The type of debugging features that
should be provided and how they would be implemented is

currently a major research topic.

Sharing of Data Structures

To keep the implementation simple, sharing of data
structures was not employed in the first version, Clause
data base, process pools, message queue, local stack frames
and global stack could be shared. Sharing of data
structures would increase the efficiency of the

implementation. It would save space and time required in
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duplicating the data structures.

Two types of data structure sharing are possible.
Firstly, the data structures could be shared by processes on
the same processor. This is not so difficult to achieve
because the processes share a common memory. Secondly, the
data structures could be shared by processes on different
processors. This kind of sharing is not possible if the
processors are loosely coupled because memory can not be
shared by the processors. It is only possible if the
processors are tightly coupled. To share data structures in
this case, local memories of different processors or global
memory need to be accessed. This accessing using the common
bus may result in bus contention and an increase in
processing time. Explicit copying of the data structures
may be preferred in this case. The tradeoff involved in the
choice between explicit copying and data structure sharing
depends upon the average size of data structures to be
shared, the average number of accesses to these data
structures, and the architecture of the machine (which
determines how expensive a global memory access is).

Since the current implementation is on a network of
loosely coupled processors, we chose to share as many data
structures as possible among the processes on the same
processor and explicit copying of data structures is used
for sharing information among the processes on different

processors. However, in the tightly coupled multi-processor
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implementation, some experiments can be conducted to choose
between explicit copying and sharing of data structures. 1In
this implementation, a single copy of the source program
kept at a central location will suffice. Also, a pointer to
the location where a data structure is stored in the global
memory can be passed during inter-processor communication
rather then passing a copy of the data structure.

Sharing of data structures on the same processor has
been implemented in a few places in the implementation
described in this thesis. Currently, clauses represented as
Cell-memory and Clause-nodes (described in chapter III),
process pools, message queue et cetera are shared by
processes. How stack frames from the local and global stack
are shared and when explicit copying is done by various
processes during unification and closing operation is
described by Conery [6]. However, there are a few other
places where some more data structure sharing can be done.
During closing operation, a lot of explicit copying of stack

frames is done. This may be reduced.

Load Balancing

Devising an appropriate technique for load balancing is
a very hard problem because the time required by a process
to solve a literal can not be predicted beforehand. An
efficient policy for load balancing would lead to the

optimal utilization of the processors., This would involve
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dividing the work equally among the processors. This can be
done by migrating processes from a processor with heavy load
to another with lesser load. The messages for these
processes should be redirected appropriately to the new
destination. Keller has employed a similar load balancing
technique in the Rediflow Model [7]. Burton and Sleep use a
method in which the processes are categorized into three
sets, viz., pending, blocked and running; in this the
processes which are pending can be stolen by neighboring
processor [2]. The load on a processor can be calculated as
a function of the number of messages in the message queue.

The cost involved in the migration of processes and
redirection of messages from one processor to the other
- should not exceed the cost due to underutilization of a
‘processor. This tradeoff should be considered while
formulating a strategy for load balancing. The
communication cost can be roughly estimated by counting the
number of bytes transfered among the processors.

In the current implementation, we have employed a
"hashing model." A hash function is applied on the
process-id of a process to determine the processor on which
it should run. Better hashing techniques can be employed.

A hashing function can be applied on the functor being
solved to determine the destination processor. This will
not be very effective if a lot of clauses are recursive in

nature; most clauses in a logic programming language tend to
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be recursive. If the hashing function is history sensitive,
i.e., if it remembers the previous hash value for a
particular functor, then a different hash value can be
provided every time the hash function is called for that
functor. This will increase efficiency because the parts of
a recursive clause will be executed on different processors.
The hash function can be improved by using the
knowledge of how clauses are distributed among the
processors. If each processor has a copy of all clauses
then hash functions as described in the previous paragraph
could be used. Otherwise, the value of hash function
applied on a functor would depend upon where clauses with

this functor are situated.

Exploiting AND-parallelism

In the current implementation, only OR-parallelism 1is
exploited. The current model can be enhanced to exploit
some AND-parallelism. This could be done by having an
AND-process create OR-processes for more than one literal at
a time. An effective method for achieving AND-parallelism
is a problem of deciding which literals must be solved
sequentially and which can be solved in parallel. Conery
presented a scheme for implementing AND-parallelism by a
method of ordering of literals, forward execution and
backward execution [4]. This method could be added in the

current implementation to achieve some AND-parallelism,
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