TOWARDS FORMALIZATION OF
SPECIFICATION DESIGN

by
WILLIAM N. ROBINSON

A THESIS

Presented to the Department of Computer
and Information Science
and the Graduate School of the University of Oregon
in partial fulfillment of the requirements
for the degree of
Master of Science

June 1987

™~

Approved: /\WL_ /72/”\/\/\

N 0DF. Stephen F. Fickas

ii

i

An Abstract of the Thesis of
William N. Robinson for the degree of Master of Science
in the Department of Computer and Information Science
to be taken June 1987
Title: TOWARDS FORMALIZATION OF SPECIFICATION DESIGN

.-'{/1,-&, QA"/ L/z/] %

Dlz,f"Stephen F. Fickas

Approved:

The primary objective of this research is to investigate the development of an
intelligent environment for managing the complexity of a semantically rich
specification model to assist in the design and evolution of specifications. In support of
this objective, this thesis presents: (1) a model of specification development based on
transformations of specifications and merging of divergent specifications, (2) an
environment which assists in the application of a simplified set of these transforma-

tional operators.

An interesting aspect of the model is that some transformations are not correct-
ness preserving. Such operators modify the meaning of a specification through (1) the
modification of the goals and policies of the requirements which can then be compiled
into the specification and (2} direct modification of the specification rationalized by

goals and policies which have not been fully compiled into it.

iv

VITA
NAME OF AUTHOR: William N. Robinson

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:
University of Oregon

Oregon State University
Mt. Hood Community College

DEGREES AWARDED:

Master of Science, 1987, University of Oregon
Bachelor of Science, 1984, Oregon State University

AREAS OF SPECIAL INTEREST:

Artificial Intelligence
Software Engineering

PROFESSIONAL EXPERIENCE:

Research Assistant, Department of Computer and Information Sciences,
University of Oregon, 1986-1987.

Teaching Assistant, Department of Computer and Information Sciences,
University of Oregon, 1985-1986.

Research Assistant, Department of Computer and [nformation Sciences,
University of Oregon, 1984-1985.

Programmer, Battelle Northwest Laboratories, Richland, Washington,
Summer 1984,

NORCAS Fellow, Battelle Northwest Laboratories, Richland, Washing-
ton, Summer 1983.

PUBLICATIONS:

Fickas, 8., Downing, K., Novick, D., Robinson, B., “The
Specification, Design, and Implementation of Large Knowledge-
Based Systems,” in: Northcon, Artificial Intelligence in the
Northwest (October 22-24 1985) p. 8/2.

vi

ACKNOWLEDGMENTS

I happily take this opportunity to express my sincere thanks to all those that
made this thesis possible and my experience at the University of Oregon enjoyable.
My advisor, Stephen Fickas, constantly offered his gracious support and knowledge,
and to him | owe my greatest debt. I also wish to thank Art Farley and Bill Bregar
(external appraiser) for the time and energy they invested on my behalf. A special
thanks to Martin Feather for his inspirational work. I would also like to express
thanks to the graduate students who commented on parts of this work: Allen

Brookes, Dan Lulich, David Meyer, and P Thyagarajan.

To my father and Alan

¥

viii

TABLE OF CONTENTS

Chapter Page
. INTRODUCTIONccoiririrrenreintrreneneesseereeneesnsesresssessnessesssssasosnns 1
1. Research Goalsccoocceciviivniiiiniiiiceece et 1

2, SPecificatiOn ..c..ocvivviiiieiieiecieeenr ettt e 2

3. Specification Design Modelccooeervveeveviriiieeseeeeccee e 4

Q. OVEIVIEW oottt s e s s s e esae s sensesa st e s e eneean saessasearaene 6

II. FOUR MODELS OF DEVELOPMENTcooocovviiieiieeere e esenaen 7
1. Step-wise Refinement and Functional Decomposition 8

2. Correctness Preserving Transformationsccccccevvvvveveenieserinnenn 10

3. Parallel Elaboration of Specificationsccccoevevvvveveeveveereeceeenn. 12

4. Summary of ISSUEScocvvrveiriieie et e 16

5. Why Parallel ..ot saen e 18

B. SUMIMATY .eooieiececeteererrrer e e e iservseaessreesesnesesessstseosns e neeaemanesanee 19

[II. KNOWLEDGE-BASED PES ..ot 20
1. Specification Modelcooceeeiiiionieei et eeen 20

2. Development Modelocooooeiiiiiiiriie ettt e enann 27

3. PoWer Tools ..ottt e 29

4. SUMMEATY ..ooiiiiiieiiireeecrees st be e e sa s erseessessassasesssestessaesneans 29

IV. CASE STUDY: A PATIENT MONITORING SYSTEMcccecevevun.. 30
L INtroduction ..ot e 31

2 02 ottt ettt sa s st s e eaes s seenane e e 32

3. Oz LangUAZE ...ceoceeiiieiceec ettt et s 33

4. Specification Operator Architecturecccccoviiiicivnirvircriceee . 36

5. KBPES Terminologycccoeecmeireiinnieie it eeveeeseeecesersese e eseaes 37

6. Simple Elaborationccoveeiiiiiieiiee et eeee s e s 39

T MEIBINE ..ottt e ettt e e e e e e neesrneseaeeas 62

8. ConbINUALIONSoooieierietiestieeerceeee e et sea st sereseae 76

9. SUIMMATY ..ooicriiiiiiiie e ceee et s sessstbe s e eesanesresesssnsasseeesaens 76

V. RELATED WORK ...t eseeea et 77

1. Theoretical Aspects (LANGUREES) .vocvovereriivreeireceiiie i, 78

2. CORItiVe ASPECES ...occeeeceeiiceeceaerreereeniesee e s reeretae s e eraeseae s ar e e renes

B. TOOIS ..coeeiniirererrrenieer it st ss st sestee s e s se s e e s esbecabe s ss s sans sanssensrensssosns

4. ANAIYSIS oo s e e e er e srane et s e atenas

5. MOEIS ..ceniriirierrieriiirriritiiseriraneres s snree e ernecr e esarassae e seassesseerseonne

VI, CONCLUSIONScoiiiernteeniesrierrecraesrcsssrerasssssessssessssessssenssessarsoseas

1. MethodOIOZY ..oocveieeceee ittt re e sass e bt e e

2. RESUIES cooeieeeeeee ettt et e st ne e e e e eaneaans

3. Future DIrectionscc.ceovieeiiieriiieccerecieeeseecsissessrbrsesbassessneeesneenne
APPENDIX

A. OPERATOR SUMMARYcoiiirinnecrrensnieenisstosseensseessssssesssssens

B. MERGE RULE SUMMARYcoiiicicrecreereecnresreesseesesresseesseesns

C. GIST SPECIFICATION ...ttt vee e e sesesssessassesesssnssseens

BIBLIOGRAPHYcoorirceirieiieniesiesenieesecenreseaess e sss e sssesssesnssss sesessnsssnesssessese

79
79
80
81

85

85
85
86

88

91

93
99

Figure

© 0 NE oo~

0O B = e e pd e ped et et e e
PO ®®ON®eNh®E =D

o

3 ““Wmmlal@la(olalalaloﬂ
SESESREESRR8REY

TABLE OF FIGURES

The KBPES Model. ..ottt e
Four Models of Development.co..ivieeeeeeeeeereeeeeeeseeesooeoeoeoeoeossn
Step-wise Functional Developmentco.eeeemvevemeueeosiossoooesoooe
Correctness Preserving Transformations.o.oooovevoeoomooooeosoooeoooeoon
Parallel Elaboration of Specifications.coovevovevevvevisieoooooeoeoeo
A Set of Specification Constraints.cocoveeeeeveremereeoeooosoooeoorn
Semantics of Specification ConStraints.o.ocoeorvovevevervoosissosoooeen
An Oz Specification.cocemvemreereeteiereeee e ees oo
An Oz Specification Development Structure.o.o.oooveeeeeeervovosooooov
The Oz Design To0lcceeeerireemriuerieesirieeeiee e e oo
Specification Modification as a Set of Changing Constraints.
Initial Hierarchy of Specification Operators.ococovvvovoroooo
Initial Oz Specification.coooveeieeeveieiieeneeesee e
Illustration of the 6 Basic Elaborations.oooeeveeveversmoooooooooooo
Oz Modifications to Introduce Devices.ocoovvovevervevsoosoooooeoooso
Oz Modifications to Introduce Device Failure.oooovvioovooeooooo
Elaborating Patient Factors in Parallel with Devices.ocoovovooooon
Oz Modifications to Introduce Composite of Factor Values.oooooov.....
The Development Space After Starting the Clock Elaboration.
Oz Modifications to Have the Monitor Read Periodically.cccceovvvnnnnnn.,
Oz Modification to Elaborate Safe to Depend on which Patient It Is,
Oz Modification to Store Patient Values.ocoooveiioroooooooooooo
Ilustration of the 8 Simple Elaborations Followed by 4 Merges.
Summarization of the Interactions Between Specifications.covvun.......
Oz Merge of Factors and Devices.oouerreeeeremrevoooeooosooeooooo
Oz Merge of Clock and Factors.ocouoveuummvomserieosonooooooooooso
Oz Merge of Clock and Devices_fail.ooeueemummererererereees oo
Oz Merge of Storage and Devices_fail, Diagram Section.coceeveuvenren...
Oz Merge of Storage and Devices_fail, Constraint Section.
Cyclic Model of Specification Design.cocoeuevoveeeoesoooooeoe
Initial GIST Specification.ceveeueuerieeveeermeeeeeeeesessoeee oo
Modifications to Introduce Devices.co.weeveeeoouemsoroonioeooooooos
Modification to Introduce Device Failure.coccoovovooooooo
Modification of NOTICE_UNSAFE to Respond to Device Failure.
Modifications to Adjust NOTIFY INVOCRLONS. ...evvrerverrrsosoo oo

—
i = @ =] 1

[T U T B]
N Wt

37
39
41
43
45
48
51
51
35
85
60
62
G4
64
69
72
74
74
75
82
93
94
94
95
95
96
97

33. Modifications to Elaborate Safe to Depend on Patient.ccccceevvnniniccnnnn, g8
39. Modifications to Store Read Values.ccooceiiiiiiiiiiiiiniiiniiinnineer e rnen 98

CHAPTER 1

INTRODUCTION

This thesis is based on the tenet that specification design is a process of compil-
ing the goals and policies of problem requirements with the intention of (1) integrating
goals and policies and (2) discovering unforeseen goal and policy interactions. Based
on this requirements compilation assumption, | am seeking to develop an environment
which supports this process. The next three sections present the overall research goals
of this project and the results presented in this thesis. The fourth and final section of

this chapter presents an overview of this thesis.

1. Besearch Goals

The primary objective of this research is to investigate the development of an
intelligent environment for managing the complexity of a semantically rich
specification model to assist in the design and evolution of specifications. To this end,

the following supportive subgoals are being explored:

(1) Development of a specification representation that facilitates reasoning about

specifications.

(2) Development of operators for goal integration and compilation into the above

representation based on (a) transformations and {b) merges.
(3) Automation of the operators in 2 (a) and (b).
(4) Categorization of goal conflicts.

(5) Development of strategies for goal integration and compilation using

knowledge of goal conflicts to guide the application of the operators of 3 (a)

and (b).

ta

These are the goals of this research and not the results reported here. Rather,
here [present an initial formalization of the environment in which the above issues
will be explored. This environment, called Oz, has the following (corresponding)

characteristics which support this investigation:

(1) A very simple specification language which is useful in reasoning about control

and data flow relations.

(2) A model of specification development based on transformations of

specifications and merging of divergent specifications.
(3) Interactive application of a simplified set of the above operators.

The next section defines a specification as a compilation of the goals and policies
of a requirements document. This is the view also taken by Fickas(19|. Formalization
of the derivation of specifications from requirements is useful in that specifications can
be constructed faster, more accurately, and more cost effectively. Moreover, the results
of this research will function as a front-end to research on automatic implementation
of specifications. Such technology is an area of active and productive research, and
part of a larger endeavor to significantly alter and automate the software life
cycle(4,6,27,44]. This thesis represents an investigation of the design process of
specification construction based on the tenet that this process is one of compilation of

requirements to specification.

2. Specificati

The requirements document expresses the needs of the user in terms of the prob-
lem domain (i.e., goals, policies, and a process model) and must be expressed in a
language that can also express design decisions. This is because of the variety of con-
straints a requirement can express; essentially any property of the system that is
necessary to gain its acceptability, including organization or resource utiliza-
tion[22, 56]. However, it should not include expressions which do not describe the

problem, yet constrain the software implementations. Hence, the requirements

document should not degrade into what is traditionally referred to as a design

specification|41].

When [refer to a specification, it is not as the traditional use of the term, but
rather a compilation of requirements into a formal document. Traditionally, a design
specification describes the internal functional decomposition of the software into
modules and the performance of each of those modules expressed in terms of their util-

ization of resources. Unless this information is contained in the requirements, and it

should not unless it is an explicitly necessity of the user,! it will not exist in the

specification.

What the specification does contain is the integration and compilation of goals
and policies expressed in the requirements. Compilation of goals and policies is the
process by which their explicit, high level, inefficient representation is converted into

an implicit, lower level, and efficient representation. Goals and policies describe what

the system is to achieve, but not how it is to achieve it.> Furthermore, their interac-
tions are implicit. The process of moving what descriptions to how descriptions moves
from higher level abstractions to lower level abstractions and from explicit achieve-
ments to implicit achievements. The lower level representation is more efficient in the

(1) specification and discovery of interactions and (2) derivation of an implementa-

tion.?

Detection of conflicting and interacting goszls and policies is an open problem. In

the form of goals and policies the requirements of the system is explicit but goal

IThe user may in fact explicitly request the specified software interface with other
software, requiring functiona.? decomposition and performance constraints in the re-
quirements. But, despite the request, the analyst may perceive the user’s request an
unnecessary and not incl.ude it.

’A goal is a simple declarative statement of a desired state of the system. Policies
describe desired activities (i.e., transition goals) which take place over time. Hence,
these statements are comparatively more procedural.

3Systems such as Mostow’s FOO [38] and transformational implementation [33)
exemplify goal compilation. See also the workshop on knowledge compilation[13].

interactions are implicit. Compiling these goals and policies makes explicit their
interactions and implicit the rationale behind them. Recording the compilation process

is a way to link these polar representations.

3. Specification Desien Model

The view of specification design taken here is that specification design knowledge
can be partitioned into three major areas: de:qign knowledge, development knowledge,
and specification knowledge. This perspective is begin explored and formalized as the

KBPES model of specification design.

Figure 1 illustrates how KBPES is divided into two major interacting com-
ponents, the case database and the knowledge-base. The case database (workspace)
contains the various aspects of the particular specification being constructed; it
changes with each new system to be specified. The knowledge-base is less dynamic
and is divided into three interacting partitions: the design model, the development
model, and the specification model. Each of these are further divided into general and

domain specific components.

The design model contains general and domain specific elaboration and merge
strategies. Elaboration is the method by which goals are compiled into a specification.
As will be described, elaboration can result in the separation of the specification into
two or more documents. Merge is then used to make the specification a single con-
sistent document again. This part of the model is more speculative; hence, it will not

be discussed in detail.

The development model keeps track of the development structure of the
specification. It supports isolation of specification components, their elaboration, and
the merging of divergent specifications. The development model is based on a new

(and speculative) paradigm for development, PES, which is described in chapter II.

The specification model contains general knowledge of syntactic ‘‘well-

formedness” of specifications. Much of the well-formedness knowledge is based on a

Knowledge-Base

Design Model

Elaborate Strategy (Gotdman)

Merge Strategy

Development Model

Development Lattice
{merge grouping)

Specification

' @ Oﬁﬂ“u :

l

Specification Model

well-formedness

Syntax, Semantics

Figure 1. The KBPES Model.

general model of control and data flow. Domain specific knowledge specifies the syntax
and semantics of the particular specification language being used. The syntax and

semantics are used to determine language specific conflicts during a merge.
4, Overview

Requirements compilation facilitates the discovery and specification of goal and
policy interactions. As the discovery of goal and policy conflicts and the specification
of their resolution are the most difficult parts of the specification process, this thesis
formalizes specification design as a requirements compilation process in order to sup-

port goal and policy reformulation.

Chapter II describes how the model of specification development, Parallel Ela-
boration of Specifications (PES), is similar, but distinct from other. models of
specification development. Chapter III presents a knowledge-based form of this model
in detail, i.e., the development and specification knowledge models are described.
Chapter IV illustrates the use of KBPES in the design of a simple specification.
Related work and conclusions are discussed in chapters V and VI respectively.
Appendices A and B describe the transformational operators used to develop the
specification of chapter IV. Appendix C summarizes the original specification develop-

ment on which the example of chapter IV is based.

CHAPTER 1I

FOUR MODELS OF DEVELOPMENT

This chapter explores four related models of development. Three of the models,
step-wise refinement|34| , functional development{41] , and correctness preserving
transformations (CPT)[16] are well established. The fourth model, parallel elabora-
tion of specifications (PES) [17] is described as a model which subsumes the other

three and is appropriate for investigation of a model of specification design; it is more

speculative.

Figure 2 depicts these four models and their subsumption relations with the use

of a Venn diagram with two discrete axes. As will be explained in greater detail in this

\ Saguential Paraiiel
. 3 L Functional)
Funciongl k Z1ep-wise decormposition |
LY o 1
~. 3 P,
Structural EPT I -
‘ "\ JJ F'E:“
e 7

Figure 2. Four Models of Development.

chapter, step-wise refinement applies functional refinements sequentially to develop a
specification. Function decomposition applies functional refinements in parallel to
develop specifications. CPTs apply refinements sequentially, some of which may be
functionally preserving. However, other refinements may alter the functionality of
subcomponents, yet maintain the global meaning of the specification. This second
group of refinements are referred to as structural refinements {cf. (5]). Finally, the
PES model is introduced as a model which subsumes the other three. It is essentially a
CPT model where refinements can be applied in parallel and also change the global

meaning of the specification.

This presentation now commences with a discussion of the four models of

development, followed by a summary of the salient development issues.

1. Sten-wise Ref + and Functional D it

Figure 3 illustrates the use of step-wise refinement and then functional decompo-
sition to develop a patient monitoring system. In the first bubble of the figure, four
components of the system are shown with their abstract dataflow relations. This
diagram depicts multiple patients (P+) passing values to a single device (D) which
then passes values to a single monitor {M) which communicates with a single nurses’

station (N).

This patient monitoring example will be carried on throughout this thesis to pro-
vide illustrations and serve as the example specification to be developed in chapter IV.
The monitor is the component to be implemented to react to its environment contain-
ing patients, devices, and a nurses’ station, among other things. The basic task of the
monitor is to notify the nurses’ station when a patient becomes unsafe, where safeness

is specified by the nurses’ station.

The second bubble of figure 3 illustrates how the monitor can be functionally
refined by the internal description of two subcomponents, a cache and a processor.

The cache serves to accumulate values received from the device until all patient values

N Dataila

N

{ terge of all componsnts

Figure 3. Step-wise Functional Development

have been accumulated. Then, the processor will do computations to determine

whether the nurses’ station should be notified.

The remaining bubbles of the figure illustrate how each of the components of the
system can be further functionally refined in isolation and then merged into a single

document. This is called functional decomposition.

10

Functional decomposition is just step-wise refinement where multiple refinements
are allowed to be done in parallel. This model of development derives its benefits pri-
marily from (1) verification, (2) multiple designers, and (3) a trivial merge scheme.
Since refinements are restricted to be functionally preserving, verification is consider-
ably simplified. Given any level of the specification, the immediate lower level can be
verified as correctly implementing its functionality(31,37). Also, due to the sole use of
functional refinements, interfaces are fixed and thus allow multiple components to be
refined simultaneously in isolation of one another. Moreover, bringing these com-
ponents back together, merging them into a single document, is trivial; simply consoli-

date the components into a single document.

At this point the concept of a merge may seem foreign or spurious. But, once
the restriction on functionality preserving refinements is lifted, it will become all too

apparent.

e : p ine Transf i

Figure 4 shows a similar refinement to that of figure 2. The first bubble of the
figure is the same as figure 2. But, the second bubble illustrates the introduction of
the cache into the device instead of the monitor. Patient values are accumulated in
the device and when all patient values have been collected they are all passed to the

monitor at once.

This type of refinement is not functional but it is correctness preserving, i.e., a
Correctness Preserving Transformation (CPT). Correctness preserving transforma-

tions maintain the global meaning or functionality of the specification, but not neces-

sarily the local meaning.! Functional refinement is a subclass of CPT.

n this case, even the form of the input into the component to be implemented
(the monitor) was changed. However, the meaning it carries remains constant. CPTs
may alter the functionality of a specification, but maintain its meaning.

11

The primary benefit of CPTs is that they can modify the functionality of multi-
ple components of a specification while maintaining its correctness. For example,
CPTs can change interfaces while functional refinements cannot. Verification of

refinements is still possible with CPTs, but it is more problematic since it can be quite

Figure 4. Correctness Preserving Transformations.

difficult to prove a transformation is correctness preserving.

CPTs are usually done sequentially. Hence, the specification is always

represented as a single document and does not require a merge capability.” However,

control in general does become in issue.

Using CPTs, refinements can be applied in many more places than that allowed
using functional refinements. CPTs can be applied to components, interfaces between
components (two components), and any combination of multiple components. Con-
versely, lunctional refinements can only be applied to single components. While it is
also true functional refinement must determine where refinements are to be made and

what they should do, it is considerably more acute using CPTs.

Intimately tied to where refinements are made is what they should do.
Refinements compile requirement goals and policies into the specification. For exam-
ple, moving the cache into the device as illustrated above was done to satisfy the goal
of having the specification accurately reflect the actual devices that the monitor must
interface with. Control of refinements must (1) determine which goal is to be compiled
into the specification, (2) where the specification should be altered, and (3) which of

many possible refinements should be applied.

3. Parallel Elahoration of Specificati

The proceeding two sections described three established development models,
step-wise refinement, functional decomposition, and correctness preserving transforma-
tions, with respect to several issues that are important in all development models: (1)
verification, (2) parallel refinements (multiple analysts), (3) merge strategies, and (4)
control issues. This section continues this discussion with the introduction of a newer _

development model called, Parallel Elaboration of Specifications (PES)[17].

ICPTs applied in parallel, despite their correctness preserving nature, would re-
quire a complex merge scheme. Note that parallel CPTs could refine subcomponents
which would not interface. Also, see the next section.

13

The primary features of PES is that it supports parallel refinements (multiple
analysts) and modification of the meaning of the specification (noncorrectness preserv-
ing transformations). It is this second aspect, noncorrectness preserving, that requires
us to call such transformations reformulations rather than refinements, as refinements

imply functionality preserving developement. Figure 5 illustrates its use.

Figure 5 illustrates how the last bubble of figure 3 can have two reformulations
applied in parallel to introduce device failure and patient factors. Neither of these
reformulations are correctness preserving because they alter the functionality of the

monitor, the component to be implemented.

Note that either one of these “reformulations” may actually involve the applica-
tion of a sequence of reformulations for their achievement. So henceforth, the term
elaboration will be used to mean the satisfaction of a requirement goal or policy by
the application of a sequence of reformulations. Elaboration is the method of goal

compilation. A reformulation is the application of a single transformation.

The second bubble of figure 4 illustrates the introduction of device failure. When
a device fails the nurses’ station must be notified. But, previously the nurses’ station
was notified when a patient was perceived as unsafe. The introduction of device
failure requires the modification of two interfaces: device to monitor, and monitor to
nurse station. In the second bubble the notify data arc distinguishes between device

failure and patient illness.

The third bubble of figure 4 illustrates the introduction of patient factors; a set
of values such as blood pressure, temperature, and pulse which represent the reformu-
lation of the abstract value patients were modeled with previously. Introducing multi-
ple values necessitates that the device read and accumulate multiple values for each
patient and then pass them on to the monitor. Also, the notion of safeness, as defined
by the nurses’ station, must be reformulated to specify safeness for each patient fac-

tor.

14

ur NnufutP)

P f-\
el =3 ")
5
UryP.F)
N
.
f\

~
@ O }

NatiTy {P F)

.

Figure 5. Parallel Elaboration of Specifications.

The device failure and patient factor elaborations both modify the meaning of
the specification. Noncorrectness preserving changes are the result of compiling a goal
or policy, which is not fully represented in the specification. Goals and policies may

not be fully represented in a specification because (1) the design process has not

15

progressed to the point where they can be elaborated, or (2) introduction of other

goals and policies (requirements modifications) necessitate further elaboration.

PES does facilitate multiple component modification (parallel elaborations) and
meaning changes of the specification. But in so doing, it introduces complexity into
verification and merging. Given a semanticly rich model of PES, this research aims to

automate aspects of verification and merging, and support the directed control of ela-

borations.

For example, after the analysts introduces the failed arc between the device and
the monitor in figure 4, the system will suggest to the analyst that the notification arc
distinguish between device failure and patient illness. Similarly, when the analysts
introduces patient factors it will be suggested that the safe relation should be refor-
mulated to handle patient factors. This is a limited form of validation in which the
analyst is asked to confirm each of his design actions. The system derives these

queries from domain models as will be discussed in the next chapter.

The fourth bubble of figure 4, represents the merge of two divergent
specifications. The merge must integrate the two compiled goals: that of properly

representing and dealing with device failure, and that of properly representing and

dealing with patient factors.

At the level of goal descriptions, it is difficult to recognize these two goals as
interacting. But, in fact, they interact in such a way that a domain decision must be

used to integrate them into a merged specification.

The analyst must determine whether the device should report failure after all
patient factors are read, or after the first sign of device failure. If the later choice is
made, then notify should distinguish which lactor the device was reading when it
failed. Figure 4 depicts the former choice; the device reports failure after ail the fac-

tors of a patient have been read.

18

4, Summary of Isaues

PES is the model of development which the knowledge-based model of
specification design of chapter III is based. It was chosen for two reasons. First, the
other models of development presented in this chapter can be simulated by constrain-
ing PES. Second, by being a less constrained model, PES provides the opportunity to
explicitly examine important issues in specification design. These issues are addressed

in the next two paragraphs.

Step-wise refinement is simply l'unc.tional decomposition where the refinements
are constrained to be sequentially applied. CPT can be constrained to just alter single
components, and thus simulate step-wise refinement. If CPT were allowed to carry
out refinements in parallel, it would be a constrained version of PES where the mean-
ing of the specification could not be modified. Yet, parallel CPTs wanld require a com-
plex merge scheme if refinements altered interfaces incompatibly along parallel lines.
Constraining the parallel CPT model to refine single components results in the func-
tional decomposition model. PES can be considered a parallel CPT model! which also
allows changes in the meaning of the specification. As such, by constraining PES

properly, it can simulate any of the other three models of development.

Two of the difficulties of PES are: validation of reformulations and merging of
specifications which were developed in parallel. Yet, the unconstrained nature of PES
allows one to explore these issues and to provide automated support for their use.
Below is a2 summary of the salient issues.

e Confirmation
It should be assured that each group of actions® results in moving the current

state of the specification closer to its final acceptable state.! In terms of the PES

_3By action, I refer to any operation available to the analyst within the
specification design environment.

*Actions should be allowed to move away from local minima, cf. [18].

17

model, the results of each action should be in support of the compilation of some
goal or policy of the requirements or the integration of the same. This is an
instance of the frame problem. After any action one must determine which
specification constraints are consistent and which have been invalidated by an

action (cf. chapter III).

¢ Elaboration Strategy
An elaboration strategy must: (1) determine which goal is to be compiled into
the specification, (2) where the specification should be altered, (3) which of many
possible reformulations should be applied, (4) when should a specification be split
and modified in parallel, (5) how far should these specifications be allowed to

diverge, and (6) when should they be merged back together.

® Merge Strategy
A merge strategy must: (1) determine which specifications are to be merged, (2)
the order in which they are to be combined, (3) notice conflicting specification
components and the goals from which the conflicts stem, and (4) determine how

to resolve the conflicts,

o Reuse
How can analysis carried out on one part of a specification, be reused on a simi-
lar but different part? Also, figure 4 illustrates the merging of specifications that
were developed in parallel from the same initial specification. Can one also merge

in disparate specifications, i.e., ones developed from distinct roots?

¢ Multiple Analysts
PES supports parallel elaborations, hence, sets of elaborations can be carried out
by separate processors. If multiple analysts are allowed, the elaboration strategy
must deal with issues such as: (1) who can modify the requirements (since this is
global) and to what degree?, and (2} who makes the decisions of when to split off

or merge specifications.

18

The rest of this thesis explores these issues in detail.

5. Why Parallel

At this point one may rightfully question the need for parallel elaborations,
based on the inherent difficulties in merging. However, initial exploration of the
merge problem suggests fruitful research will result. Moreover, arguments against
parallel elaboration can be seen as arguments against the linearity assumption in plan-

ning. Here are the basic arguments [or parallel elaboration:

e Multiple Analysts
A group of analysts can apply reformulations at the same time. Difficulties are
introduced if they are allowed to modify the meaning (global requirements) at
the same time.

e Reduced Cognitive Demands
Components can be designed in isolation of locally irrelevant parts of the
specification. Hence, parallel elaboration is a form of abstraction.

e Reusability by Design
By designing components in isolation, the designer is not as likely to include
unnecessary assumptions which limit the reusability of the design.

¢ Goal Conflict Detection Unnecessary
The linearity assumption assumes goals are independent. So, one need not

attempt to detect conflicting goals. Instead, goal conflicts are determined by

conflicts in their compiled behaviors.

The most powerful argument against parallel elaborations is that many resources
can be wasted on creating a specification aspect that has diverged too far to be
integrated. This can occur with a poor elaboration strategy. PES is not a panacea for

development, but rather 2 rich speculative paradigm.

19

8. Summary

Parallel Elaboration of Specifications (PES), is a model of development that sub-
sumes step-wise refinement, functional decomposition, and Correctness Preserving
Transformations {CPT). However, as a less constrained model of development, it must
explicitly address the issues of confirmation of action, parallel elaboration, and merg-

ing of divergent specifications.

20

CHAPTER HI

KNOWLEDGE-BASED PES

This chapter describes a semanticly rich design model upon which an “intelli-

gent” environment {Oz!) is being created to assist in the development of specifications.
Knowledge-based Parallel Elaboration of Specifications (ICBPES) is the result of

integrating knowledge-based design techniques into the PES development model.

KBPES has three domain models from which it derives its knowledge of
specification construction: the design model, the development model, and the
specification model. The design model is still too speculative to be presented. How-
ever, the specification and development models are described. A briel discussion of

the benefits of “power tools’’ precedes the summary.

L. Sperification Model

In this section, the domain dependent and independent aspects of the KBPES
specification model are presented. This model is discussed prior to the development
model because the development merge operator makes explicit use of the analysis
made available by this model. This specification model serves to (1) define a syntacti-
cally well-formed specification, (2) define reformulation transformations for a

specification language, and (3) recognize confiicting specification constraints.

10z is not fully implemented, but its architecture is based directly upon the
KBPES model described in this chapter and illustrated in figure 1.

1.1. State

A specification in KBPES consists of a set of relations as shown in figure 6.
These relations can be derived from the specification language, and in [act, the analyst

need never see them.

A set of such relations is a specification. It is these sets that the system modifies.
However, the system must also know the semantics of these relations to enable it to
recognize conflicting specifications. Figure 7 illustrates the simple specification of the
semantics for four relations used in the Oz system.’

These relations are often called constraints. For example, the relation

Cardinality(P,natural)

constrains the number of patients (P) to be a natural number. Relations such as these

constrain possible implementations and should not be confused with qualitative con-

Type(P,process) Type(M,process) Type(N,process)
Type PM,uniare Type(MN1,uniarc) Type(MN2uniarc)
Type NM uniare

Connected P.PM, Connected(M,MN1,N)
Connected M,MNQ, Connected N,NM,MZ
ArcValue(PM,Pvalue ArcValue(MN1,Mvaiue)
ArcValue{MN2,Notily ArcValue(NM1,Safe)
Type(Pvalue,relation

TypeﬁMva.lue rela.tlon)
Type{Notily, relation)T ype{Sale,re a.tmn)

Relation Pva.lue P,V U_E),ra.ndom

Relation Mvalue P,VAL)ra.ndom

Relation{ Notify, ()random

Relation(Safe,boolean

CardmahtySP ,natural Cardinality(M,1) Cardinality(N,1)
Eflects{Mvalue, [Safe{true)lSafe(false)|,nil})

Effects Sa.fe(fa.lse) otify,nil)

Figure 8. A Set of Specification Constraints.

>These and other relations are used, but explicit representation of their semantics
and consequently the automated support of merging has yet to be implemented.

22

(Type (symbol x oneof
M{:)roc&is,uniarc,biarc,relation,integer,natural,boolean})
X
(Effects (relation x relation x oneof {relation,nil})
1 xMx M))
(Connecte%process X Arc X process)
x 1 x M)
symetric))
(Ieffect (relation x relation)
Mx
transitzve(E) & Effect()
If (Effect(x,y,z ect(y,v,w
Then (Ieffect(x,v}})))

Figure 7. Semantics of Specification Constraints.

straints.® Henceforth, constraints will be used synonymously with the term relations

with regard to the representation of a specification.

Currently, in Oz both static and dynamic constraints are represented. Type,
Connected, and Cardinality are examples of static constraints. Dynamic constraints
constrain behaviors over time. For example, the Effects relation (see figures 6§ and 7)
specifies that when the first relation is true, the second and third must unify. This
kind of rule is used to specify what must be true after an event. Constraints used in
conjunction with symbolic execution determine the internal consistency of the
specification[55).

As noted earlier, the analyst need never deal with constraints explicitly, rather
the pretty print of them can be manipulated. Figure 8 illustrates the pretty print of

an Oz specification. The Diagram and Constraint sections are pretty printed views of

the set of relations which make up a specification.

3Qualitative constraints constrain a variable to range over a value space. In quali-
tative analysis, processifg of a problem solving component continually narrows value
spaces of several such variables until a set of consistent solutions is found.

0z does not currently represent the relations explicitly, hence the pretty print of
them is a manual process, i.e., the analyst formats the Constraints and Diagram sec-
tions.

23

Figure 8 also shows the two other parts of an Oz specification. Comments are
contained in an unformated text section and are ignored by the system. The Motiva-
tion section is also currently unformated ignored text. But, it has a more formal

meaning in terms of the IKLBPES model as will be described in the section on goals.

The development structure of a particular specification is depicted as shown in
figure 9. Boxs denote specifications and diamonds denote elaborations. Boxes are
created by the Elaborate operator which simply makes a copy of a specification and
links the two. After which, reformulations are applied to alter the specification. This

set of reformulations, an elaboration, is recorded in the diamond.

1.2. Domain Independent

Domain in this model refers to both the specification language and the problem
domain of the specification. Independent of either of these domains is the syntactic
“well-formedness” model of specifications and the general data and control flow model

on which well-formedness is predicated.

The six following features of a specification, referred to as specification sins,
represent an initial model of specification well-formedness. Meyer{36] , in arguing for
formal descriptions, discusses problems that must be dealt with in any specification:
noise, incompleteness, overspecification, inconsistency, ambiguity, and wishful think-
ing. Abstractions in the specification which have no correspondence in the real prob-
lem environment are noise. Incompleteness is the absence in the description of
relevant entities in the problem environment. Features in the specification which do
not deal with the problem, but rather constrain the possible software solutions are
instances of overspecification. Internal specification inconsistency results il two or
more abstractions are incompatible. Finally, wishful thinking describes problem

features which cannot be a realisticly validated part of the solution.

Note that many of these errors have direct analogies in compiler terminology:

unused data (dead variables), and disconnected code (dead processes); missing inputs

t
SE(ee1®))34us | (30V3)32u8] + INTNAH
£{3NTUAd = 3NTUADH] + 3NTEAD
fL(d)uoramida | AJT10M]
fr{anTuAuo v 8s | 33us)

Lr(3nWNA "dIvolIe1es | 3NTHNLM)
f{uopuea || (3nWn‘d)uelaried | 3nund]
fadAy | 3nn

1 2 |dl ft = ln

{8

1
{ | wavaue

" Sua |} Ie3ouue |
[ENIxEY AU0 BJR E3URd SUIWIOD PUR UDLIEALIOV
‘Alausaang "pade|deip 8q ued saued 8|4} roy
noYs 03 PREN £} UDpIRNB)juoa S| ‘usIeds BujJoyjuou
JuBjIed BY3 4O UOLIEDLJ10ede [Ri3)uUl BYY 8) B}

LR

*AJdus 8} uojIEALION I ; [F]

4938

=
Jo31p3 CG..umUtGQO Z0) m “r

Figure 8. An Oz Specification.

uwl
[|

{r3g)a193g
{eLgjadeas
{ucgyaacsc
{eLg)H=0l]

{eid}s2a33=y
{UD5)54R35

TMOFUT M

A1xg
peoy
AnEG
MoAe) uasdsg
_ Fmidwexyool

137
——— rjwndoriavg

¥l

ErEREETEIEED

JOPT uormesyoeds Z0

Figure 9. An Oz Specification Development Structure.

and outputs (parameters); interface mismatches (typing errors). Hence, recognizing
such errors is predicated on analysis of data and control flow as often found in good

compilers[2].
1.3. Domain Dependent

The domain dependent portion of the specification model is concerned with (1)
the syntax and semantics of the specification language and (2) the semantics of refor-
mulations applied to the language. Predicated on the above domain independent flow
model, this partition serves to apply specification transformations and recognize

specification conflicts.

The syntax of a specification language, in this model, is perceived as a way to
view the specification as represented in a relational model. As shown in figures 6 and
7, specifications are represented as a set of relations, where the relations have explicit
semantics. The recognition of specification conflicts is the process of discovering incon-

sistent relations.

Specification operators are transformations which (1) satisfy elaboration subgoals
and (2) have attached procedures to maintain the consistency of the specification. An
elaboration subgoal has the intent of changing a portion of a specification by intro-
ducing a compiled goal’s behavior. But, due to the interdependent nature of the com-
piled goals represented in a specification, such changes may effect a large segment of
the specification. Specification operators rely on the semantics of the relational
representation of specifications and self-knowledge of modification effects to apply
adjustment procedures which insure consistency of the specification after transforma-

tions.

1.4. Analysis

The above analysis is used to insure the internal consistency of the set of rela-

tions that represent a specification. Insuring that specification transformation opera-

27

tors do indeed correctly compile goals and policies is one (difficult) way to insure the
specification represents the desired behaviors. Other analysis techniques which
attempt to elucidate the behaviors represented in a specification are: symbolic execu-
tion, rapid prototyping, and usage scenarios. The knowledge to carry out the first two
of these would be represented in this specification model. A usage scenario is a form of
symbolic execution in which a set of useful problem specific test cases are evaluated.
These test cases would be attached to domain dependent goals and policies in the

design model if they were represented in KBPES.

2. Development Maodel

The development model has three major tasks: (1) manage the development

structure, (2) merge specifications, and (3) resolve conflicts.
2.1. Manage Development Structure

A beliel maintenance system® manges the development lattice. All specification
relations are stored in a global database. Each node of the development structure

represents a complete specification and a view of this global database.

Attached to each .relation is the set ol worlds in which it is valid. Also attached
are the goals and policies from which it was derived. Goals, policies, and reformula-
tion operators justify the existence of relations. Upon the realization that goals or pol-
icies need to be modified, the justifications can be used to determine which relations in

each node of the lattice will be effected.

Justifications also allow default assumptions to be retracted eficiently. Such
assumptions can be created by the analyst or the automated assistant during design.

Many of the suggestions generated by Oz in the next chapter depend on such default

SThis analysis is based on the intended use (not implemented) of ATMS[11] , but
other such systems could be used.

assumptions.

2.2. Merge

Specifications are merged by merging their views (worlds), at which time
corresponding concepts and conflicts must be noted. Assuming that distinct names
reference distinct concepts and common names reference common concepts (i.e., in
divergent specifications), correspondence of concepts is a simple lexical operation.
However, such an assumption places stringent demands on KBPES model and reduces
the applicability of it to a multiple analyst environment.® On the other hand relaxing
this assumption requires a general concept recognition capability if correspondences

are to be recognized automatically. Recognition could be made a manual process, how-

ever, this can be an enormous task for the merge of disparate specifications.’

Once correspondences are found and noted, the specification model determines if
there are any constraint conflicts. These are then passed to the development model

where they are recorded and asserted into the beliel system.

2.3. Conflict Resolution

Automation of conflict resolution is predicated on (1) the development structure,
(2) reformulation operators, and (3) the aggregation assumption. For example, refer-
ring back to figure 4, the merge resulted in conflicting assertions about the source of
values being examined by the device (D). In one line of elaboration, a process (PF) was
spliced into the dataflow between the patient (P) and the device. The other line of ela-
boration did not modify this dataflow, but rather the dataflow from the device to the

monitor. Using the aggregation assumption, that the merge of specifications is

®However, the system could alert the analyst of other uses of a name every time
he creates one. But, this would likely be a long list.

"0z currently employs a manual scheme.

29

intended to represent an aggregation of behaviors,® and the knowledge that splicing is
a reformulation of a dataflow, the conflict is resolved by the removal of the constraint

specifying the source of devices read as the patient.

3. Power Togls

Programmer’s have recognized the power of interactive programming environ-
ments and have applied contemporary hardware technology in their creation. Sheil
graphicly illustrates the need and use of these environments[43]. Program browsers
depict the calling dependencies between subprograms. Sophisticated debuggers show
various views of the run-time environment previous to the detection of an error, facili-
tate its fixing, and then allow continuation of processing. Sophisticated editors such as
Teitelman’s Programmer’s Assistant[50] , use structured commands to view and
modify programs. All of such tools use bit-mapped graphics to increase the band-

width of information flow between the analyst and the tools.

Much of the example presented in chapter IV is motivated by my envisionment
of more complex knowledge based tools such as PegaSys [37] and the programmer’s
apprentice[52] for specification design. But, before such a tool can be constructed, a
formal model of design must be set forth. Only then can one construct power tools
which understand the semantics of the model. This chapter represents my initial

effort in this regard.

4, Summary

KBPES is a semanticly rich model of specification development which incor-
porates issues of knowledge-based design into its supportive design, development, and
specification domain models. Next, the use of KBPES is illustrated via the develop-
ment of the patient monitoring system. This example was constructed using the Oz

environment which only partially implements the utility of the KBPES model.

8Additions or deletions of behaviors can be done prior to, or after a merge.

30

CHAPTER IV

CASE STUDY: A PATIENT MONITORING SYSTEM

This chapter illustrates the use of the KBPES model. The Oz environment,
which partially implements KBPES, is used to develop the patient monitoring exam-

ple referred to earlier.

Currently, the Oz implementation only keeps track of the development structure
and applies simple specification operators. The consistency maintaining procedures
associated with the specification operators are being developed. Their application has
not been automated, but the few rules used in the development of the patient moni-

toring example of this chapter are shown in appendix A.

Similarly, the development model merge operator has not been automated.
Instead, the rules of appendix B were manually applied. Appendix B also contains a

description of the simple binary merge strategy used.

With the above caveats concerning the implementation status, the patient moni-
toring example is shown with the perspective that the system is actually applying
rules of appendices A and B rather than reality of manual application by the analyst.
It is shown this way in the hopes that it will be simpler for the reader to understand

the intended demarcation of tasks between the system and the analyst.

The intent of this chapter is to show that automation of KBPES is [easible, even
though it has not been completed. The existence of Oz demonstrates that aspects of
KBPES can be automated and provide for a useful specification environment. How-

ever, future research goals do include the development of a robust merge operator.

The next section provides an introduction of the patient monitoring system to be
specified. The following three sections describe Oz, its simple specification language,

and the specification operator hierarchy. Section 5 summarizes the requisite [(BPES

31

terminology of chapter IIl. Sections 6 and 7 are the heart of the example, first showing
simple elaborations of the specification and then the merges of divergent specifications.

Possible continuations and a summary are presented in sections 8 and 9, respectively.
1. Introduction

In (17) , Feather applied PES to a Patient Monitoring System which has also
been used by other researchers in specification[46, 56]. In fact, Feather’s transforma-

tional model of design inspired this part of our research.

The [ollowing case study is a recreation of Feather’s development using the Oz
specification system. (Feather’s corresponding GIST specifications appears in appendix
C.) His development does not complete the specification, and correspondingly, the Oz
development does not result in a finished specification. This study was done to pro-
mote comparision and facilitate understanding of the KBPES model and is not meant

to suggest an optimal development or specification.

Feather used the statement of specification appearing in [46] as his problem

statement. It is reproduced here:

A patient-monitoring program is required for a hospital. Each patient is
monitored by an analog device which measures factors such as pulse, tem-
perature, blood pressure, and skin resistance. The program reads these
factors on a periodic basis (specified for each patient) and stores these lac-
tors in a data base. For each patient, sale ranges for each factor are
specified (e.g., patients X’s valid temperature range is 98 to 99.5 degrees
Fahrenhexf?. If a factor falls outside of a patient’s safe range, or if an ana-
log device fails, the nurse’s station is notified. [46]

Feather’s specification was developed from a simple initial stage and elaborated!
via transformational operators toward a more complete specification. The develop-

ment of this specification by Oz will correspond to Feather’s. The discussion will be

concerned with the dimensions of name, motivation, transformational operators, and

1By elaboration, I mean an ordered set of transformations motivated by a require-
ments goal or policy.

software design knowledge:

(1) Name
For reference, each elaboration is named.

(2) Motivation
Each elaboration is justified in terms of domain needs according to the problem
statement.

(3) Operator
The use of each transformational operator(s) and the support it provides at each
elaboration is described.

(4) Knowledge
The software design knowledge needed by each operator to provide the support
described will be discussed. However, as much of the knowledge is repeatedly

used, it will only be described once, after which it will simply be relerenced.

Feather also briefly characterized transformations in terms of domain indepen-
dent modifications as described by Goldman|26] (e.g., structural, behavioral, temporal

changes). This is an area which I am also pursuing, but is not discussed here.

Also, Feather described continuations which may be necessary to completely
cover the problem description, but which were not further described. These are men-

tioned at the end of the example, see § Continuations.

2.0z

Oz is a specification design tool which embodies the KBPES model. It is an
interactive and graphical system. Figure 10 shows the display during a session. Its

operation is roughly modeled after the ZMACS editor on the Symbolics Lisp
Machine([53].

The large pane in the center can be divided into any number of graphic and text

windows. Graphic windows display the Diagram part of a specification and text win-

33

dows display Comments, Constraints, and Motivations.

The pane at the bottom is used for limited forms of I/O. To its right, at the
bottom, a pane displays windows which may not be currently visible; clicking on these

mouse sensitive text items causes their windows to be displayed.

The Screen Layout command allows the analyst to completely specify the layout
of specification windows within the central pane. The Agenda pane simply allows the
user to postpone commands; clicking on these items causes the command to be exe-

cuted. The uppermost right pane provides various views of the development structure.

3. Oz Language

The “language” used to illustrate my analysis of the patient monitoring system
is a subset of GIST{33] chosen to highlight features that are used by the specification
model, e.g., control and data flow relations. Familiarity with either language is not
expected, as relevant details of both will be discussed. However, most of the discus-
sion will be centered around the Oz specifications, so here I clarily the basics of the

model.

An Oz specification consists of four parts: the diagram, the constraints, the com-
ments, and the motivation. The diagram section is a graphical depiction of the agents
(circles), objects (boxes), and dataflow relations {arcs) of a GIST specification; essen-
tially a dataflow diagram. The constraints section specifies constraints on the graphi-
cal entities. There are four sorts of constraints and they are displayed in the order of:
static, type, assertion, and assertion effect. Throughout the example, new and
modified constraints are shown at the bottom. The four sorts of constraints are

defined as follows:

¢ Static Constraints
Static constraints describe nonchanging characteristics of entities across time.

For example, to say that there is only one Monitor we can use the static con-

34

LE-F 1l HOSHIBOY 93: 83 B FAER
e DEUTHECE 40 22L0YI IR DY 326 GO URI DLUT) GENDW. AL | #n2)
AFL1OM
aIn|endy
L] 3ug
anjenyg

-

{leuauepuny}]

f(d)ASIION » (98(0))34uS
f0(38193)34u8 | (9n43)33¥8] « ANWAdH
f[3aNwnd = 3INUNGH] « 3nTund
If{d)uojae(as | AJILON]
'C(3n9n)vesIwtad | 3Jus)
[{3NTUA ‘d)uDiae|as | INTYAH]
fruopues || (3w ‘d)uesae|as | 3nT6Nd]
f3dd3 | anun

T 2 I = [ul ft =

SIULRIISUO ELE]

{1®Iususpung) Janz

"A30U3 S§ UOLIRALION YT AL |03}

[uojawnjacg] 3Jwas

JOIpTg Uoineouiceds Z0)

T TRCEL I

1BnINa] AU 3JF SIUBD SJUILUOD PUR UDEIRN}IOU
‘AlauaLdng ‘pade|ds)p 3q uwd saued atdya N noy

nOYsS 0} PIEN £} u0}IRINELJUOD SlY| ‘wIIsds BujJoyyuou
JuajIed Y3 Joj UD)IRDLJ1I3DR |P4AUL BYY By 8}

Figure 10. The Oz Design Tool.

35

straint, M} = 1.2

e Typing Constraints
Types are like static constraints in that they describe relations that are constant

across time, but they are definitional (i.e., type defining). Some examples are:?

VALUE | type;
[PVALUE rrela.tion(P,VALUE) | random];

o Assertion Constraints
An assertion constraint is of the form <LHS> — <RHS>, where the LHS and
RHS are relations. Whenever the LHS relation is asserted the RHS relation must
also be asserted without resulting in inconsistency. In the following, MPVALUE

results in either SAFE being true or SAFE being false, nondeterministicly.

MPVALUE — [SAFE(true) | SAFE(false)];
SAFE(false) — NOTIFY(P);

Such a relation can be considered an abstraction of both control and dataflow
relations. For example, the arrow (~—) says that somehow, if SAFE(false) is

asserted then NOTIFY(P) must happen (i.e., be asserted).

¢ Indirect Assertion Effect
Indirect assertion effects summarize chains of assertion effects; they show the
implicit flow of effect relations in the specification. Indirect effects are determined

solely by the system via propagated control and dataflow relations.! An example

(used later) is:
(PVALUE, DVALUE, MPVALUE)} —— NOTIFY;
This constraint is a summation of four constraints, each of which directly deter-

mine the next, thus forming a chain, i.e.,:

’This particular problem constraint is not part of the corresponding GIST
specification, but it and several others were added to clarify the example.

3n Oz one uses brackets (C[P to enclose relations rather than the braces ({}) of
GIST because braces are reserved for set notation.

*This part of the system has not been implemented yet,

36

PVALUE — DVALUE;

DVALUE — MPVALUE;

MPVALUE — SomeValue;

SomeValue — NOTIFY;
The value that actually determines NOTIFY (SomeValue), is not listed as an
indirect assertion effect, but instead is a direct assertional effect, (i.e., SomeValue

— NOTIFY;).

Constraints are defined in the constraint section, which is a ZMACS text win-
dow. My intent is to specify most constraints graphically. Those constraints not suit-
able for graphical notation will be modified by specialized operators in a way similar
to that of a structured editor[49]. But for now, the constraint window is simply a

text editor; the system relies on the user to form syntacticly correct statements.

The comments and motivation sections are also simply textual annotations. The

Motivation section was described in more detail in chapter III.

 Specification Operator Archi

Specifications are a set of relations. When a relation is modified, one must deter-
mine which other relations are effected. Given 2 simple language, one can completely
enumerate the types of modification operators and their effects to other parts of a

specification (cf. [5]).

Figure 11 illustrates the modification of a complex specification. When part of a
specification is modified, one does not wish to completely search through all the possi-
ble constraint interactions. Rather, each operator should know which constraints were

likely to be violated, then the search for conflicts can be directed.

Figure 12 shows the hierarchy of specification operators used in the patient mon-
ltoring system. It is a composition hierarchy: each operator is composed of the opera-
tors below it in the hierarchy. Consequently, when an operator is applied, it must exe-
cute operators and rules below it in the hierarchy. By attaching these meaning

maintenance rules to operators in the hierarchy, one need not check all relational

37

—
(/../ '“"'--..\ . ,:“*m?:“h\
Constraints AN W
- = S rlij.r NN
i — ,I;I;. Bq haioos %

Modification

Figure 11. Specification Modification as a Set of Changing Constraints.
interactions [or possible conflicts.

As described in chapter III, these rules attached to the specification operators
serve to maintain consistency of the specification after the application of an operation.
They are based on a general control and data flow model and may be specialized by

the problem domain.

The set of operators and associated rules of figure 5 is sufficient to handle
Feather’s example, but it seems clear that it is only a small subset of a robust set.
Moreover, 1 offer no cognitive justification for these operators. In fact, such
justification may not be applicable since the analyst will eventually apply the goal
intergration operators of the design model. Those operators will then map to these

specification modification operators.
5. KBPES Terminology

Before commencing with the example, I would like to make a clear definition of

each of the following terms: elaboration, transformation, operator, and adjustment.

38

~

——
-

.\‘< No Rules \)
____F‘-'

AddArc
P T

(Rules 12245
- -

.—
(L Pules 8 D,
G

Figure 12. Initial Hierarchy of Specification Operators.

39

An elaboration is an abstract operator which directs modification of part of a
specification in order to compile some goal or policy into it. A transformation is the
way one modifies specifications in KBPES. Transformations may consist of several
specification operators. Specification operators are alter the specification. After the
application of an operator, an adjustment may be necessary to ensure the quality of

the specification with regard to constraint conflicts and specification sins (cf. chapter

III).

8. Simnle Flaborati

In this section, each of the GIST elaborations found in[17] (summarized in
appendix C) are presented as an Oz elaboration and discussed. Figure 13 shows the

initial Oz specification. It represents the three major agents of the system:

Patients (denoted as an oval, labeled P)

There may be several patients, each of which has a value which is a erude meas-

ure of health,

The Monitor (denoted as an oval, labeled M)
There will be one monitor in the final implementation. This is the component
which is to be implemented. The monitor watches the patient's values and

notifies the nurses station if a value becomes unsafe.

The Nurses Station (denoted as an oval, labeled N)
The single nurses station defines what are the unsafe values for each patient and

receives warnings from the monitor,

The initial specification is a simple abstraction of the system’s intended behavior.
Some of the complex details that have been ignored are: devices, patient factors, and
periodic monitoring. We will explore each of these as the development proceeds. In

particular, the six basic elaborations which will follow (in order) are:

(1} A device will be spliced into the dataflow between the patient and the monitor.

This will retract the simplification of having the monitor directly read patient

40

{n37)3.0233
{®iQ}3Leis
{uog}sae
{i5H) 34= 35|
fUS5] 34835
FMOPEI Al

T opusdy

1253y

11x3
peo]

980047 AUl

UlaH:ad | ‘3.l

deJ 5) IND|
ydeaq{gns 133 A112J

EAEE B8
L UTUEUT B a4kl

wtouE 4Juwa B TF

3387

3y A3)30
e1gQ 712|7(
§632044 N2|72Q
ule.nsuo)
N ppy
2e] pey
8522044 PPy
dIS

uumn:%

AJT10H

anjengy
EEL]
anteng

-

{} Ian7]

{1sausuopuny) |

fAJIION e+ (3NN *INTHNA)

{3445 «« 3NTHA

f(d)AIIIO0N « (o®19J)3dH5
f[(@s124)}3348 | (In43)348S] + INTWNIK
f[3NTHA4 = INTEACH] + AN
f(d)uotam1ad | AJTION)
{[(3nWA)uciae|ad | I449)

IL(3nWA dyuoae |3 | 3INTHNCH]
f[uopueds || (3INWN°DIuoIeLads | InTWAL)
13043 | Inn

T 2 |d] ft = [l 1 =

*BUO | IR IoULR

LEN3IN3] AU0 DUE SOUPd SIUIUUDD PUR LD} ITN|IOU
fALIURJAN) pade|ds|p 39 urd sauRd F{d}ILMY noy

NOYE 03 Pasn S} uo|IvJnB) juas gyl ~wIreds Bujuojzjuvou
U3 Ied Y3 JoJ LUDLIRD}IEORds (B4IUE DY B} B}

[S30LRIISUO)) 3935

{SIUIUO] JJe]

{|eavauepuny) JIn7

anEg
ngde] usaaas |

diaH
EQuafy
CHIERE
$quawdo|343]
Juswdo}

"A3dua 8] uoLIRAIOU Y A9

[UB[aeAtaoy] 3793

T30

JOqIpg uoInesyioeds Z

Figure 13. Initial Oz Specification.

41

values by using an intermediate device.

(2) Devices may fail, and when they do, the patient values they pass to the moni-
tor will no longer be valid. When a device fails, the nurse’s station will be

warned. This elaboration must sequentially follow the introduction of devices.

(3) A patient’s value actually consists of a set of factors, each of which must be
verified as safe or result in a warning to the nurse’s station. Here, value is

decomposed into its constituent factors.

(4) The continuous process of the Monitor is made periodic by the introduction of

a clock.

(5) Safety will depend on the patient and the patient’s value, rather than just a

value.

(6) Storing of patient values, at this point, has been left out. Adding it illustrates

how transformations can be used to maintain the specification.

In the next six subsections, each of the six elaborations will be described in terms
of: (1) elaboration name, (2) elaboration motivation, (3) operator(s) used to carry out
the elaboration, and (4) specification model knowledge used in adjustments after a
specification operator application. The elaborations will: (1) add devices, (2) add dev-
ice failure, (3) add patient factors (e.g., pulse, blood pressure), (4) introduce a clock,

(5) make salety depend on a patient, and (6) store patient values in a database.

Figure 14 illustrates an overview of these elaborations. It shows the Oz depiction
of the development structure. Boxes represent specifications and diamonds represent

the operators used to elaborate a specification.

6.1. Elaboration 1: Introducing Devices

Our initial view of a monitor is too simple: a monitor cannot directly read
patient values, but instead it must read values gathered by intermediate devices. Such

devices continually observe the patients’ values and display it unchanged to the moni-

A 1 HIEN HOSHIB0H Skigf:g B b B/ED
D aradq N2 il adel UPAURE S UDNBENTW) dY) RaT,

H:umuuunum
{eLg)aacis
{uc]}asoig
(eLg333aLg
huﬁm...n...uuumu_

[ud53134737%

3
pecy
aneg
nede] uIddg
— _ Aideeiiood

T sjuaudojsarg —.nu:u:j
JOqIpT uomeoyiosas z0)

Figure 14. Illustration of the 6 Basic Elaborations.

43

tor. Hence, we will have to forego our simple view and add devices. Figure 15 shows
the results of adding devices to the initial specification. The elaboration is one of splic-
ing in a new agent (device) between the patient and monitor; the device passes on the
PVALUE unchanged as DVALUE. The monitor is modified to use the DVALUE to
pass as MPVALUE to SAFE rather than PVALUE. Changes are listed at the bottom

of the constraint section.
(1) Name: Devices.

(2) Motivation: The dataflow between the Patient and the Monitor is overly

simplistic; this elaboration refines the model of the Monitor-Patient interaction.

(3) Operator: The SIP (Splice In Process) operator was used to transform the ini-
tial specification to that shown in figure 15. SIP splices a process into a dataflow and
then queries the analyst about the eflect of this splice to the resulting specification.
For example, after determining the name of the process (D) and the outward arc
(DVALUE), SIP attempts to substitute DVALUE for PVALUE through the rest of

the dataflow, so as to maintain the meaning of the specification as much as possible.

Preserving the meaning of the specification may seem at odds with the meaning
changing operators which are allowed in KBPES. However, while most operations are
meant to change just a small part of the specification, they effect a large part. By
showing the analyst what must be done to maintain the meaning of the specification,
he is made aware of the implications of each change made. Oz queries the analyst to

confirm that larger effects are understood.

(4) Knowledge: SIP relies on knowledge of physical devices connected by com-
munication lines, i.e., abstract data and control flow. It does seems possible to general-
ize this notion to any two communicating agents. In this case, SIP proposed preser-

vation constraints to the analyst in the form of the following six queries.

44

R

... .. ‘. "\H.\-_...,.
32104~ B Joy E =43 =0

{ | ¥UBURPUNL) Hmuw—

[GEREECET
{eldjsazjinag
[ucgisaainag

THOPULA

PAJIION e+ (3NTHNGH ‘INTUAC “3NWNd)
1344s «+ (INWNG 3NN}

3N WAH_ ++ INTWN]

f{3nUnd = 3NWNAN] « 3nWnd
f[3nwnd = 3NTWAA] « INTuAd

Hdl = {al

f{d}AJILION « {3%19))3309

TE{a81P4)34u8 | (3043)344S) » NN
f[(d)vopae|ad | AdTL0W)
I[{3nT8A)u0 I8 L3 | T348]

(3NN JIVOLIRL34 | 3NTUAH]

f[uopues [| {(3nT6A‘dIvelIe|34 | 3nT6Ad])
fadAy _ w:._tz

T2 |d] '1 = 11 =

[§3ujeaasucy) Ea9)ne

AST10H

anjengy

uapnmmllllll: ELL)
CR_ w—cy

JOJIpg UoMBoLIoeds Z0)

Figure 15. Oz Modifications to Introduce Devices.

45

= P 7
PVALUE — [DVALUE — PVALUE} 7

DVALUE — [MPVALUE = DVALUE]; ?

PVALUE —— MPVALUE; ?

PVALUE, DVALUE) ——+ SAFE; ?

PVALUE, DVALUE, MPVALUE) —— NOTIFY; ?

= U

They can be paraphrased as:

(3)

(4)
(5)

(6)

Does every patient have his own device? Or is there a single device that reads

all patient values as illustrated in the example of chapter II?

Does DVALUE carry the same information as PVALUE? Or does the device

alter the form and content of it?

Does MPVALUE use DVALUE in the same way as PVALUE previously? Or

does the monitor alter MPVALUE in some way?
Does PVALUE indirectly determine MPVALUE? Yes, if 2 and 3 are confirmed.

Does PVALUE determine DVALUE which indirectly determines SAFE? Yes, if

2 and 3 are confirmed.

Does a chain of effect that start with PVALUE, go through DVALUE and
MPVALUE, and indirectly (through SAFE) determine NOTIFY? Yes, if 2 and 3

are confirmed.

In this example, each constraint was confirmed by the analyst.

Operators such as SIP determine which constraints should be added, deleted, or

modified via rules of typicality based on notions of abstract data and control flow.

For instance, the above proposed constraint, [D| = [P| was determined by

Corresponding Processes, the others by Propagate Spliced Relations. Once such con-

straints are determined, operators call Constrain with the suggested constraints.

Constrain allows the analyst to confirm, add, delete, and modify constraints. It can

also be called directly by the analyst. Once more of the specification model is

represented, Constrain will carry out more of the confirmation process auto-

nomously.

46

The above proposed constraints were generated by two rules which are part of
the specification model. Corresponding Processes suggests that when a process P is
spliced into a communication flow between two sets of processes, the number of
processes spliced in, |P|, should be equal to the number of process at the source. This
rule, and others listed in the appendix, are specific to the example presented, e.g., SIP
assumes a single direction of flow. It is obvious that such rules can be generalized. For
example, to handle bidirectional flow one could specily that if both source and sink
had the same number of processes, then splice in that number; otherwise, splice in the
greater of the two numbers. Domain specific rules could also be used at this point to
further refine Oz’s notion of the typical number of processes which should be spliced
into the flow based on the types of agents and other relevant problem environment
concerns. | am considering the addition of such knowledge to subsequent versions of

the system.

Propagate Spliced Relations simplity states that any relations existing previous to
a splice across the flow of communication should exist after the splice. This is
arranged by substituting the new spliced in values into the existing relations. In this
case above, originally PVALUE — [MPVALUE = PVALUE]|, but alter the splice
DVALUE — [MPVALUE = DVALUE].

6.2. Elaboration 2: Introducing Device Failure

Devices may fail, and when they do, DVALUE may no longer reflect PVALUE
accurately. Thus, one must introduce the notion of device [ailure into the
specification. This elaboration necessarily follows the introduction of devices (see
figure 14). As described in appendix C, Feather does this elaboration in two steps,
whereas I did it in one as shown in figure 16. This is because, unlike Feather’s deriva-

tion, in Oz the application of an operator and its adjustment are encapsulated into a

47

{leIususpuny) I

(nag)aJeis

{ueg}L1R4 sadpnag
{PrQ}Lipg sooLAag
{e1g333218
{uogjjisastinag

i ————— T A

f[anund # 3nHAQD « {d°INTHA SN)TITIMA
SAJLL0N « {0 3NTHA *SN3)a3Tud

L0{0311H4 "d)uajIeiad | AJTION]

f{uopuea || (@*anTen’ueajooqiuojae|as | gITIM4)

41100 «+ (INTWADU “3NTHAT *3NTUAL)
13448 «+ (3NTUN “3NTEAD)
fINIEADH ++ 3NTHAD
{[3InUAG = 3NWNUD + INTUNT
f[aN6Ad = 3INTEAGT « 3INTENd
f(d)AJLION « (@819))3349
1[(a819)3448 | {n431)3348] « INTHNSH
f[{3nwn)uotael3s | 33us)
fL(3INTA ‘d)uotie|as | IMunda)
f[uopuea || (3NTUA‘dIvelIeL=s | 3NT6Ad]
faddy | 3nqun

fd] = fa] It 2 T = |u| it =

o0

Ad1104

JO3IDT Uoineouioeds Z0)

Figure 16. Oz Modifications to Introduce Device Failure.

48

single elaboration.®
(1} Name: Devices_Tail.

(2) Motivation: The modeling of real devices is more precisely modeled as devices

which may possibly [ail.

(3) Operator: The analyst applies AddArc to add failure behavior to the devices
specification. The operator adds the arc, and then it calls Constrain with the follow-

ing proposed modifications to the constraint set:

E'AILED | rela.tmn&l
AILED(...) ALUE [NOTIFY]

(4) Knowledge: Constraint 1 was generated based on the knowledge that all arcs
are represented as a relation. Constraint 2 was generated by the Determine Effect of
Input rule, which assumes that an in going arc determines the value of one of the arcs

in the out going set. The analyst fills in these constraints giving:

Llf‘AILED | relation LSbt:mle:a.n ,VALUE D) | random];
AILED(true, VAL — NOTIFY()

AddAre, via the Distinguish Output rule, now suggests the constraint:
(3) NOTIFY | relation(P,FAILED); ?
In essence, it notes that before only DVALUE was used to NOTIFY, but now both
DVALUE and FAILED contribute to notification. It suggests that NOTIFY distin-
guish between the two in its output. (An alternative would be to have two outputs

from M, but it has been determined that FAILED — NOTIFY.)

AddArc does not presume any relation between FAILED and DVALUE (other
than they originate at the same source), so the analyst must provide the environmen-
tal constraint

(5) FAILED(true,VALUE,D) — [DVALUE # PVALUE];

This constraint is used to correspond to the GIST specification, even though

SAn elaboration is made immutable and hence can be reused by other
specifications (see § Merge). One need not reuse inconsistent specifications, so Oz incor-
porates the adjustment before encapsulation.

49

(5) FAILED(true,VALUE,D) — [DVALUE = random];

is probably more accurate in this case.

6.3. Elaboration 3: Introducing Patient Factors

Next, I return to the initial specification and elaborate it to introduce the compo-
site of patient factors. Note that this is a case of parallel elaboration: instead of
adding a new elaboration to devices_fail in figure 16, the initial specification is decom-
posed into another line of elaboration. Figure 17 shows the development space after

the initial specification has been copied in preparation for modification.

While I could have elaborated the devices_fail specification to account for patient
factors, I returned to the initial specification to begin elaborating so as (1) not to con-
fuse the two modifications, and (2) simplify the factors introduction. This elaboration
is our first case of a diverging specification; the merge section IV.7 discusses the

integration of divergent specifications.
(1) Name: Factors. See figure 18.

(2) Motivation: Patients do not consists of just one value. Rather, each patient’s
safety is determined by the conjunction of several factors: pulse, temperature, blood

pressure, and skin resistance.

(3) Operator: Unpack is a specialized sort of SIP; it splices in a process into a
dataflow in order to refine a data structure by unpackaging it within the specification.
After determining the arc and process names, Unpack calls Constrain with these

proposed constraints:

[0

TSWO 3SR 40 33104a B U0} Loei Gl U I,27 9301w ayg m..:._i;.‘

{nag}adeasg
{€10}34915
{ejr}sJzioey
{era}santnag
RiO}iiR4 $aTInEL

%3

peoq

3NEG
MNCARY Uzalag |
T Teldveavood

djoH
BpUEY (74
SIUsLIEU 3N
~ SIUAWAD|IAB]
TJESEdO; baw(]

JoqIpT uoIneay1oeds z0y

Figure 17. Elaborating Patient Factors in Parallel with Devices,

51

[nan}3idels
[uag)s2oszey
e1(}s4a338
TMOPUT &

HSH I
GBLEYT B ouly 3l QO R

(1s3uauepuny) JIN7

—

£33I20U4-I1vIHD
DHY-I1¥3IHD

BpEITY.

1ix3
pea]
2AEG

AnGAR7 L3aldg
T Swid»ey3o0§

djay

Bpuaty jing
S3L3LWELILBY

i, 53UsWA0IaA3]

fjusmg o] FAvy

fd
£0{INLN "J0 10U "#E1RJ)33HS | (3NHN "¥01IHA2 *INI2)3388] « ANTHADM

1{20u338}1834"UNE, ‘IanEsaad poo(g, ‘IJnIesaduly, ‘IE|Nd,] = IdA3 ¥01343

fA4II0N =+ (INWNAK 3NN "IN)
3348 «+ (INWhdd 'INTHAD)
YAATI0H « (3NTUN "H01JHA32 "9819))33u8

{[3nTuNdd = ANTWAGH] » INTWAL

{(3NTUNd = 23NWnd4n] + 3NTENd

IL{3N7WN "¥0 LOK4? 'ura|ooq)uol3e|3d | J4uS)
LL{3n 70N ‘¥01IY42 *d}uoaeL2 | INTWADH)

£[(3NN "N010H42 *d)uoIe|ad | INTWNId]

el = [4dl

{[{d)uop3e|aa | AJT10M]
f[uwopues || (30700 °d)ucsieiad | 3nTNd]
13d43y | anTwn

Iﬁ\u:!&:

3448

angendd

/h\n\u\aﬂf

9 9

JO3IPT UoI3eoUI08ds Z0

Figure 18. Oz Modifications to Introduce Composite of Factor Values.

PF|= PP} ?

Set |type = {.}; ?

PFVALUE | relation(P,E Set, VALUE)]; ?
VALUE | relation(P,€ Set,VALU % ?

SAFE | relation{(boolean,€ Set, VALUE)]; ?

VALUE — [UPFVALUEE = PVALUE]; ?
PFVALUE — MPVALUE = PFVALUE; ?
MPVALUE —

[SAFE(true,€ Set, VALUE) | SAFE(false,€ Set,VALUE)}; ?
(9) SAFE(false,& Set, VALUE) — NOTIFY(P); ?

10) (PVALUE, PFVALUE)} —— SAFE; ?

11) (PVALUE, PFVALUE, MPVALUE) —+—+ NOTIFY; ?

Q0 =1 O ON o G2 bD =

(4) Knowledge: The first constraint (1) states that each patient process P should
have a corresponding patient factor generator, PF. (Patients are modeled as having an
attached process which generates factors.) Corresponding Processes suggested this con-

straint.

The next two constraints (2,3) suggest that PFVALUE is actually a set of arcs
which correspond to each element of some yet to be specified set. Constraint 2 is an
unnamed set relation which is used in 2, 3, 4, 5, 8, and 9. When I enumerated this set,

I also supplied the name, FACTOR.

Constraints 2, 3, and 6, were suggested by the Determine Composite Set rule.
This rule states that when a process, P, is spliced in to distribute parts of a value in
the source: (1) a set of subcomponents should be named, (constraint 2), (2) this set
should be used as names of the outgoing arcs of P, (constraint 3), and (3) the sum of

these outgoing values is equal to the composite of them in the source, (constraint 6).

The rest of the constraints (4, 5, 7, 8, 9, 10, 11) are just the propagation of 1, 2,

3, and 6 as suggested by Propagate Spliced Relations. In this example, the analyst

confirmed all the constraints.

6.4. Elaboration 4: Introduction of Periodic Monitoring

The next elaboration, that of introducing periodic monitoring, is also done in
parallel with the elaborations of devices and patient values. Figure 19 shows the

development space after the Clock specification has been created in preparation of its

53

modification. The resulting specification is shown in figure 20.
(1) Name: Clock.

(2) Motivation: This elaboration is motivated by the impossibility in this problem
domain of implementing software that reacts instantaneously to changing patient
values. Instead, a monitor that periodicly reads device values will be introduced. The
period may eventually be based on needs of the monitor, individual patients, and flac-
tors. However, this elaboration reads periodic values specific to patients from a data-

base.

(3) Operator: The AddProcess and AddData operators are used in this ela-
boration, during which a small dialogue between the analyst and the system takes
place. First, the analyst uses AddProcess to add the clock process, C, and its arcs,
after which AddProcess suggests that there be a single clock for each monitor, {con-
straint 1 below), and the more tentative constraint that CLOCK_TIME should
somehow be reflected in the Monitor's output (constraint 2 below). These were deter-
mined by the rules Corresponding Processes and Determine Effect of Input respec-
tively.

1) [C| = M| ?
{2; CLOCK_TIME —— [MPVALUE |CLOCILTINIE ~=— NOTIFY]; ?

Both are confirmed, but the second constraint is not specific enough. The analyst
uses AddData to create a database for patient values, DB, and its arcs. Similarly, the
system notes that START_TIME and PERIOD should be reflected in M’s output, and
warns that there is no in comming arc which is being used as input to generate the
outgoing arcs.

3) IDB|= M|, ?

4) START_TIME —— VALUE | NOTIFY]; ?
5} PERIOD —— [MPVALUE | NOTIFY]; ?

6) Warning: {} — START_TIME.

7) Warning: {} — PERIOD.

The analyst ignores these warnings (6 and 7), as their resolution is not part of this

a4

{rag)adess

{usj}sanirag
(ElgjsJosoed
[Pig}it®d sadynag|

14x]
PEOT
FAES
mnmoden REEFs]
T Tuldesyyooq

djay
Epuaty ||nd

L 15337

B R

JOupg uomesyioads Zr)

Figure 19. The Development Space After Starting the Clock Elaboration.

[*r]
uwy

Ly

{ | bausuepund]

{41100 «+ (OHINTINIWATISHT*(TOTYIH SINIL 1MULS “INIL”NI0TD) *3nWAd)
___ 3dys e+ ((D0I¥3d°3WIL"LMY1S ‘IHIL”XI01D) ‘3NAd)
faY3ATINWAT ST + ((DOTHIH "IUTLT LA LS *IHTL4I01D) *3nTund)
E[(a8199)34H8 | (3n43)33uS] »_QYIH INTWATLSHT
HO(~d)3nTund = (A°d)QU3¥"30WATISHT)
{147d)A0TH3d s (JeBa3up ue) (3°d)AUILJEMIS = (3I)3NILTN300 ‘3n7ynd)
fI{3N WA ‘d)uBIIRLEL | QUIN_INTHA_1SHT
13NTundy 990 QUIATINTHA” LSH
nHﬁLumuuc— qmu..-D—uﬂ_.u... _ mauﬂw&u
f[(+aBa3uy "djuojaw|ed | IHIL” LaH]S]
f[(s26a3u} juoiiead | INILITHIDTD}
Ylul = lag) fHul = (3]

f{d)ASTION » (9819J)34US
f[{d)uosamad | AJIL0H]
f[(InWA)wolIeLaL | 34yS)
f[uepues || (3INTWN°d)u0sIRLIS | 3NTHN]
fad43 | 3n7un
'tz dl fr =0l !t= [

T

1

;NN JUIAT 1567

ag
0[¥3d

MILT 18918

IJUTLTNO070 T
= o

JO3ipg UoIReoYiosds Z0

Figure 20. Oz Modifications to Have the Monitor Read Periodically.

56

example.®

Now, the analyst is prepared to describe the specific relation between
CLOCK_TIME, START_TIME, PERIOD, and M’s outputs. Recall that the analyst is
presented with the above constraints via the Constrain operator. In this case, the
analyst specifies that when the clock time is at the end of a patient’s period,

MPVALUE should be updated. But, rather than call it MPVALUE, the analyst uses

Rename’ to rename MPVALUE to be LAST_VALUE_READ, (constraint 11 below).
8 CLOCK_TIME | relation(integer)|;
START_TIME | relation mteger)
PERIOD | relation(P,integer)|;
ST_VALUE_READ was
1"’ LAST_VALUE_READ]rela.tlon P VALUE
PVALUE, CLOCK_TIME(t) = S ART_T

(an mt-eger * PERIOD(PL)E}.
— [LAST_VALUE_READ(P,v}) = PVALUE(P,v)|

Constraints 8-10 are type constraints. Constraint 11 is an annotation linking the
previous specification to the current one. In the current specification all occurrences of
MPVALUE have been renamed LAST_VALUE_READ. Constraint 11 makes a note of
this to: (1) facilitate the analyst’s understanding, and (2) provide the explicit renam-
ing relationship which is to be used during the merge of divergent specifications. Con-
straint 12 is the substitution of LAST_VALUE_READ into the type constraint for
MPVALUE.

The analyst makes explicit the relationship between the CLOCK_TIME,
START_TIME, PVALUE, and LAST_VALUE_READ in constraint 13. It states the
LAST_VALUE_READ should be updated when the CLOCK_TIME is the correct
multiple of the START_TIME as specified by PERIOD.

®During the creation of the initial specification, Oz also gave the warning, Warn-
ing: {} — PVALUE, which was ignored. The Effector of Output rule is the originator
of such warnings.

"Rename is currently the only structured command that is part of the constraint
section editor. Otherwise, constraints are modified in a ZMACS buffer.

57

(4) KCnowledge: After the system parses the constraints, it suggests:
14) LAST_VALUE_READ — [SAFE(true) | SAFE fa.lse%]- ?
15) (PVALUE, {CLOCK_TIME, START_TIME, PERIOD})
=+ LAST_VALUE_READ; ?
(16) (PVALUE, {CLOCK_TIME, START_TIME, PERIODY},
LAST_VALUE_READ} ——+ NOTIFY; ?
(17) (PVALUE, %CLOCILT , START_TIME, PERIOD})
——+ SAFE; ?
(18) Removed: PVALUE — [MPVALUE = PVALUE];
by confirmation of (13).
Constraint 14 is the result of substituting LAST_VALUE_READ into the same rela-
tion involving MPVALUE. 1t is further confirmed by the analysis of constraint 13; it
is determined that LAST_VALUE_READ is a processed form of PVALUE, and thus
should directly effect SAFE, explained below. Given that 14 is confirmed, 15, 16, and
17 are just propagations of eflects. Constraint 18 shows the removal of a previous

constraint due to its subsumption by 13.2

Constraint 14 was suggested by substitution of MPVALUE by
LAST_VALUE_READ and further confirmed by a complex rule dealing with the
splicing of processed data into data flow. The rule Use Processed Data suggests that if
an agent produces a newly modified and/or subset form of a value (e.g.,
LAST_VALUE_READ is a subset form of what MPVALUE contained) which was
previously used by an effector relation (SAFE), then the processed form
(LAST_VALUE_READ) should be substituted in the previous relation (e.g.,
LAST_VALUE_READ — SAFE). More concretely, the example substituted into the

rule yields:

8Removals due to substitution are not shown.

58

Use Processed Data (paraphrased):
IF **old relation. .
MPVALUE — [SAFE(true) | SAFE(false)|;
**old effect relation.
PVALUE — MPVALUE;
**modified form.
{PVALUE, CLOCILTIME&I; = START _TIME(P,t)
(an integer) * PERIOD(P,?)}
= [LAST_VALUE_READ(P,v) = PVALUE(P v)];

**new effect relation.
(PVALUE, {CLOCK_TIME, START_TIME, PERIOD})
— LAST_VALUE_READ;
THEN LAST_VALUE_READ — [SAFE(true) | SAFE(false));
Part of the rule also contains the constraint that the modified form
(LAST_VALUE_READ) and the original form (MPVALUE) used must be determined
by the same effector (PVALUE). This makes certain that the new value is indeed a

modified or subset value of the original.

6.5. Elaboration 5: Link Safety to Patients

At this point, we are ready for the last of the four parallel elaborations. In the
initial specification, the salety of a patient is determined solely by a patient’s value,
without regard to which patient that value is from (i.e., MPVALUE — SAFE(true) |
SAFE(false)]). It needs to be modified to take into account which patient the value
comes from (i.e., [[MPVALUE, P} — SAFE(true) | SAFE(false)|). Figure 21 shows

the resulting specification after the elaboration.

(1) Name: Safety.

(2) Motivation: Diflerent patients may have different levels of SAFEty depending

on such things as their age, gender, etc.

(3) Operator: In this case, neither agents, data, nor arcs are modified. Instead,
the constraints are modified directly by the analyst via the Constrain operator. After
the analyst adds

{MPVALUE,P} — [SAFE(true} | SAFE(false)];

the system resolves a constraint subsumption by removing

59

{ns1}34e18

{e}d}s4030e4!

(2:0] 532428 CAJTION = ({d‘INTHNGH) ‘IMHA)

{ ﬁmwuwuLnum tE(ee1ey)3a08 | (3n43)308] » (dINTWNH)
uog}saninag

ﬁcuuu__.fm.n_ £3dLnai umuxm e W—.—J&DL

Logiganies ’ 1(d)AJLION « (519)}3Ju3

f[anTund = INTEADH] + INTEN

‘[{dyvorie|dJ | AJI10H)

I[{3nWA)uoIn|3s | 3F4us]

{[(3NN ")uotIR|3J | INTWNdU)

f[uopues || (3MN‘dIvorIwad | 3nTHnd]

fad43 | 3nTen

1 2 Idl 1 = i1 =

(83U} RJIEL0]

peo)
0 3NnEQG
1heAeT U3alig
T Yurdevyyoog

djaH
epuaby
LLHEITERRES
uawda ana
= .—....«:Lv_hmoﬂunaﬂ _ CﬂLﬂl—.ﬂu Nl u-u—

JOQIPT uoiIneoioeds Z0) |

[

Figure 21. Oz Modification to Elaborate Safe to Depend on which Patient It Is.

60

Removing: MPVALUE — [SAFE(true) | SAFE(false)];
and then adds the indirect effect:
(PVALUE, {MPVALUE, P}) —— NOTIFY(P);

(4) Knowledge: No new knowledge is needed here; just control and data flow

knowledge.

6.8. Elaboration 8: Add Overlooked Storage of Factors

Finally, note that the specification fails to “store these factors in a data base’.
Such maintenance is as simple as the previous elaborations. One simply transforms

the clock specification to STORE patient values alter each read.
(1) Name: Storage.

(2) Motivation: Add coverage of an overlooked behavior to the specification. Fig-

ure 22 shows the results of modifying the specification.

(8) Operator: AddAre is applied to specify the storing of
LAST_READ_VALUEs. It calls Constrain with:

) SRR il

START_TIME]; ?
which the analyst modifies to be:

&STORE [relation (P,VALUE) l
LAST VALUE_READ CLOC LTIME(S& = START_TIME(P,t)
(an mteger * PERI
— [STORE(P,v} = LAST_VALUE_R (P v);
Constraint 2 was suggested by Determine Effect of Input. But, it was not confirmed
since STORE does not effect either of these outgoing arcs. In fact, the specification up

to this point does not specify the use of stored values, so constraint 2 is eliminated.

Alter parsing 3 and 4, the system suggests the following propagated effects which

are confirmed.

(5) (LAST_VALUE. READ, {CLOCK_TIME START_TIME PERIOD})
— STORE; ?
(6) PVALUE —— STORE; ?

61

{[2Ivauepund]) |

_ _ 135018 ++ INT6AD

f34018 « ({00I¥3d “IWIL]L¥BIS "3WIL™NI0TD} “OU3Y 30760~ 1S67)
[(A°d)IUIY"3NTUATISHY = (n°d)FN0LS] »

{(2°d)00T¥Id » (4969304 ue) (3°)INIL 14W1S = (I)IMILTXI0TI ‘3NIuN QUSH1SUT)

$L(3n7YN "d)uniIvad | F¥01S]

fAJILON ++ {OH3¥™ 3NN LSH (QOI¥IH *INIL” 18U1S ‘IHIL”AT01I) ‘INTWNd)
_ 3443 «+ ((OOIX3d “3HIL-IHH1S ‘IHIL_AD073) “3INWAd)
fau3d”3NTWAT 13U + ({00I¥3d *3IWILT1NYLS "IHELTND073) *INN)
f[(3819J)3468 | (3n3)33uS] « OUIY INTHAT1SHT

TE(A'd)3NTHAD = (A 'd)OY3E INTHATLISYT) »
{{2°d)Q0I¥3d & {49623u} we) (3'd)IUILTI¥MAS = (I)IUIL AD0ID °3nWnd)
{(d)AJIION « {3%|9))3duS

L[(3NWA"G)uBI0LaS | QU3YANTHATLSHT) f[(49B53us “J)uojIwiea | goIydd)
f[(JaB3u; “‘Jjuojae|ad | JulLTjaMis) {[(+49633u})uo|IwL3 | IWIL X3073]
{[(d}uopasiaa | AJILON] I[{2anwn)uojIeLdd | 344s]

f[uopued || (3INTWA‘d)uSlIw(ad | INTHAL]

faddy |

anen
Huj = = |4

Y11 INELS

\w.FqFlaua._u
@ an(eng O

Jo3ip3 uomesyoeads z0

Figure 22. Oz Modification to Store Patient Values.

62

(4) Knowledge: This elaboration did not introduce the use of any new knowledge.

Z. Merging
At this point I have completed the basic elaborations and hence will continue
with the four merges described in[17). Figure 23 shows all the previous elaborations

described and the merges of them which will be described in this section. It shows the

6 basic elaborations which have been completed and the four merges which are

described in this section. Figure 24 summarizes the interactions of the merges.? I wiil
not describe all the possible merges, but rather just the four which are not indepen-
dent (shaded in figure 24) and so are of greater interest. The four merges could have

been done in any order, but will be described as follows:

(1) Factors merged with Devices. The specification which models patients as hav-
ing multiple values and the specification which models an intermediate device
between patients and the monitor will be merged into a single specification.
The analyst uses problem domain knowledge to decide whether there should be

a device [or each patient, one [or each factor, or one for each group of factors.

(2) Clock merged with Factors. Here, the analyst must decide which, if any, fac-
tors should have their own distinct clock period, rather than reading all factors

at the same START_TIME and PERIOD.

(3) Clock merged with Device Failure. The analyst must decide whether the moni-
toring of device failure should be separate from that of patient values, and if it

should be periodic.

(4) Storage merged with Device Failure. The analyst must decide if device failure

should be stored.

%This figure summarizes two figures Feather presented in[17].

63

{n3}342135

(e

Lot _muuuu_ammﬂxuoﬁu
u
37}15€45331n8335901]
EMopuTAl

pE0T]
FAEG
nade uzadlg
—T" Yupdenyyoon

A 350

-Ekd HIISH [
TALCLL R WD esivdd B UDy aoel U0 Ul

B0M 9[:9Z:E B/ %¥8-E8
Caud oaiisd Bgs = o0

2J4033R JYNS01T

“a ..u_ ado1g

[ey n3GYa,015

11948337730 99901D

£33} npgiso E S O

&

.

L1eq £33 mﬂ
QD

JO2ipg UoIn8o1neds Z0

Figure 23. [llustration of the 6 Simple Elaborations Followed by 4 Merges.

Safely
depends on
|_patient
Penodic | anenden
monitoring e Periad:
Factor Indenend 1@2@_&8}_‘1@50@
values L L) factar? .
Devices Pertadic . Independent
, of fapure?’ Considered
Devices independen Independent sequentially
Independen
Store onsidered| Device for: Store.-.-:
read velues Independentequemm“ each.factor? | tecord .of
----------- =2L 2 independeht
faiture?.:.
Safety Periodic Factor Devices [Store
depends on maonitoring fvelues Devices read values
patient |rail
L — —

Figure 24. Summarization of the Interactions Between Specifications.

65

7.1. Merge Strategy

Before continuing with the example,. a more detailed discussion of merge is in
order. As mentioned in chapter III, merging of divergent specifications is a difficult
task, whose major subproblems are:

e identification of corresponding concepts (a labeling problem),
e identification of conflicting constraints, and

e resolution of conflicting constraints

As mentioned in chapter III, I will assume throughout the example that the analyst

determines correspondences explicitly.!® Identification of conflicting constraints is car-
ried out by the specification model. The more difficult tasks of constraint resolution is
done via application of the merge rules of the development model (appendix A) and
the rules associated with the specification operators used during the merge (appendix

B).ll

To simplify the merging process, I assume that the result of merging two
specifications is the sum of the two, less constraint conflicts. That is, merging does not
remove components. Removal of parts of a specification can be done prior to or after

a merge; called the aggregation assumption in chapter III.

A subproblem of merging is the number of specifications which can or should be
merged at once. Also, in which order should they be merged. To look at this problem
in more detail, consider the case where only two specifications will be merged at a
time. One approach would be to simply take the union of the two specifications and
then resolve conflicts. An alternative would be to start with one specification, and
apply operators to it (e.g., AddProcess) to add unrepresented components of the
second specification, resolving conflicts as they occurred. The second approach uses a

more incremental analysis of constraint conflicts and their resolution. It allows one to

OFor example, by using a mouse to click on corresponding pairs of processes,
arcs, and data objects.

UThe application the these rules is currently a manual process.

66

use the operator rules to deal with many constraint conflicts.

However, using the incremental approach to merge very divergent specifications
may necessitate the redundant resolution of constraints, whereas one large grained
step might be more efficient in such a case. For example, one could add a component
of another specification, say a process, to the current specification, which would
require a tentative assumption to resolve a conflict. Later, as other components are
added, the assumption is invalidated by a new constraint. But, this new constraint
resolves the original conflict. Thus, if the union were taken first and then constraint
checking applied, the unnecessary assumption and constraint modifications would not

have been necessary.

The problem with simply appending the specifications and then resolving
conflicts is one of: (1) where to start resolving conflicts and (2) how to specify such
resolving rules. [have found it simpler to understand and specily merges if one con-
siders merge as the addition of subcomponents of one specification into another

specification.

This same notion of incremental resolution of constraints vs. global resolution
turns up when one considers the number of specifications which should be merged at a
time. Given N specifications to merge, one could attempt to lump them altogether and
then resolve conflicts, or incrementally merge each specification to a growing aggrega-
tion, or merge pairs of specifications like a binary tree, or some variant thereof. Merg-
ing more specifications at a time gives one more knowledge of what the final
specification should be. However, it also introduces the danger of information overload
and combinatorial explosion in the number of constraint conflicts. Incremental merge
offers the dual benefits of simplicity and maximum opportunity for reuse; reuse of
intermediate specifications and the processing it took to create them. On the other
hand, using a N-way merge, one can only resue the larger grained specifications embo-
died in those merges. I speculate that more complex merging schemes may be neces-

sary. For example, merge order and number conditionalized on the type and number

67

of constraint conflicts that are expected. Appendix B describes our simple merge

scheme.

During the discussion of the four merges, I shall take the perspective of an incre-
mental merging methodology. Unlike the previous elaborations, I shall just mention
constraints directly involved in a conflict. Other constraints that are added to the
specification without conflict will not be commented on, as they have been described

previously in the simple elaboration section.

7.2. Merge 1: Patient Factors and Devices

First I will consider the merging of patients factors and devices. The analyst
must determine whether the devices are before or after the generation of PFVALUEs.
This is because both elaborations separately spliced in a process into the data fAow
between the patients and the monitor. Oz can not determine whether one process
should be before the other, or the two should be in parallel. However, it does know to

ask, (see the Merge Splices rule of appendix B). It suggests the following Diagram con-

straint:

P->PF->D->M?

This constraint is confirmed. It is just a dataflow relation to determine where to
place PF and D, and is not part of the Constraint section. Merge Splices simply places
the process of the first specification before that of the second in order to generate a
query.

Next the analyst must decide whether there should be a device lor each patient,
or a device for each factor, or a device for a subset of factors. This is also decision
requiring domain knowledge, and cannot be determined by the system without a more
extensive knowledge of patient monitoring. However, the default for splicing a process

into a dataflow is to have 2 single process for each arc in that dataflow. So, in this

68

umaunqca 010442 “d)uoy e[a4 “ w:amﬂnﬂ
‘Idl = la

anEndd «+ 3NN

H{d)AII0N « (INTHA"¥O1DHI2 "98(®))IUS

(3NN "HOLOWA2 72010413408 | (3NWA "H0EIRS? *ana3)A3HS] « 3N THAGH

[3NWAd = 33NTWNddn] « ANTEAd

£0(3N74N "8010H42 ‘ueaooq)uolye(3d | Jius)

fL(3INTUN ‘8010843 "d)uotaelad | Inundu]

f[{3n76N "HO10Y2 "d)uotae(a4 | 3NTWNLd]

I[{azuae|caa”uxe, ‘auanesvudTpoolq, ‘sunedadual, ‘Is|nd,} = 3d43 | ¥OLJW4)
f[{d)ud}ae)as | AITION]

f{uopuea || {30THAd)UotIRL34 | INTHAC]

fld] = [3d

AJJL0M

anjen

803y Q @

JOIp3 uoineoyioeds z0)

Pigure 25. Oz Merge of Factors and Devices.

69

case the default is what the analyst wants, a device for each factor.!® The following
constraints are suggested and confirmed after the ordering of the splices is determined.

See figure 25 for the resulting specification.

= [PF}; ?

E;VALUE | relation(P,€ FACTOR,VALUE)|; ?
FVALUE — [DVALUE = PFVALUE]; ?

DVALUE — [MPVALUE = DVALUE); ?

PVALUE, PFVALUE, DVALUE) —— SAFE; ?

PVALUE, PFVALUE, DVALUE, MPVALUE) —— NOTIFY; ?

O b GO 1D ==

The first of these constraints says that each factor has a device to read its value.
The second is used to distinguish the different arc outputs in the DVALUE relation.
The next two (3,4) just maintain the flow of effected values. While, the last two (5,6)

are propagated indirect effects.

The constraints were determined by starting with the lactors specification and
then adding the components of the devices specification which were missing in factors.
I used SIP to add the devices. The merge rule Merge Splices noted that D and PF

probably should be part of a sequential dataflow, rather than parallel.

7.3. Merge 2: Periodic Clock and Factors

Next, I examine the interaction between a periodic clock and patient factors.
Here, the analyst must resolve the decision as to whether the clock period should
depend on a particular factor, rather than just on the patient as it currently does.
The system has no knowledge of how START_TIME and PERIOD come into
existence (i.e., how they are effected), so it has no basis on which to suggest they be

modified. The system queries with:

2 would rather have the system give the analyst a choice of the possibilities, but
most of the time this involves problem domain knowledge, which is not yet part of
Oz.

70

1 &LAST_VALUE_READ | relation(P,€ FACTOR,VALUE)}; ?
2) {PVALUE CLOCILTIME(t = START_TIME(P,t)
(aninteger) * PERIOD(
A}‘LAST ALUE_READ fv)= PVALUE&P L)) ?
PFV UE,{CLOCK_TIME, STAR _TIME,PER OD}
VALUE_READ
4 LAST _VALUE_READ(P f,v) — [SAFE(true,,v) | SAFE(false f,v)}; ?
5) (PVALUE, PFVALUE, DVALUE
{CLOCK_TIME START_TIME ,PERIOD})
—— SAFE; ?
(6) (PVALUE, PFVALUE DVALUE (PVALUE,
{CLOCILTIME START T PERIOD} LAST_VALUE_READ)
—— NOTIFY;

The constraints simply distinguish the LAST_VALUE_READ by which lactor was

read, and summarize the propagation of those effects. The analyst then adds the fol-

lowing to specily that each factor has a different PERIOD and START_TIME.!3
PVALUE, CLOCK_TIME(= START _TIME(
(aninteger PERIOD(P f

PERIOD | relation(P,c FACTOR integer));
START_TIME |relatlon(P € FACTOR, mtegel))
It

— [LAST_ ALUE_READ(P f,v) = PVALUE(P,f,v)};

The result is shown in figure 26.

7.4. Merge 3: Clock and Device Failure

When combining the clock and devices_fail specifications, one must consider
whether the monitoring of lailure should be continuous or periodic, and should it be
done separately from the read of DVALUEs. The following constraints handle the
interaction between the two specifications. They specily periodic monitoring of failure

at the same time as monitoring of DVALUEs.

BNot part of Feather’s elaboration.

71

{|eaususpung) |

fAJLION »+ (QU3473NEA~ 1S (COF¥S ‘WL 136 1S ‘IRT1907D) *3I0 76 ‘3N THA4 ‘INTUnd)
13445 +o ({OOTHI'INEL™ 14018 ‘TUIL™H001D] ‘3NTHAA *IN WAL *IN KAL)
I(n’afam104)a0ug | (AI79AI3)JpE] « (A%47d)OHIE 3NWA1SUY
fy347 3801547 « ((0DT¥Id'3UIL 13Y1S “FHILNI07D) 3N TWAdd)
I[(A*27d)3nTEnd = (A% °d)aU3d INTBATISHT] «
((2°9'd)00TH3S = {J9833u} UR) (37) d)INLL"INYIS = (3)IWIL"NI01D ‘INTWAd)
$[(4+2833u) "y010gd2 'd)uota9L4 | QU3 INTA"1SUT)
£[(436230} "4 1M 2 ‘d)untae13a | SUTLTI4H1S]
f[(49633u} "¥010Y42 ‘dJu0}IR 133 | 00I¥3d]

19U34° 306N 13U ++ 3NN

f{d)AJIION « (3NN HOIDY2“96(83)349

{(InUnd = 23nTWAddN) « 3INTUNd

fL{3INT6A "H0 1042)u0 30 13a | 3duS)

!L(3NWN ‘4010442 'd)Juoy3v|ad | INTWAL]

{[{2oueis|sad"upe, ‘Inssaud peoo|q, ‘IJuniedadusy, *Ie|nd,} = 2043 | NO|3H4]
![(+3Ba3u} juojIw|ad | 3YIL X2073]

f{uopues || (3Mun‘dluciamiad | 3nwnd] 9943 | 3nun

tul = Jeal f|u| = 1o} f1 2 |d i =

E L g

IMIL %3070

% soLend anjen,
= P

JOqipg woesyoeds zZ0)

Figure 26. Oz Merge of Clock and Factors.

(1) {DVALUE, CLOCK_TIME(t) = START_TIME(P,t) (an integer)
* PERIOD(P,?
AST VALUE_R AD(P,v) = DVALUE(P,v));
(2) (DVAL {CLOCK_TIME, STAR _TIME PERIOD})
——+ LAST_VALUE_READ; ?

(3) (PVALUESEF\%\LUE {CLOCILTIME START_TIME,PERIOD})

(4) (PVALUE, DVALUE {CLOCK_TIME,START_TIME,PERIOD},
LAST. VALUE_READ)
—— NOTIFY(P); ?

These constraints are determined by the system. Given the clock specification and
adding the devices_fail specification to it, one can see that device failure can be added
by SIP-related rules, (i.e., Merge Splices, Propagate Arc Relations). These rules main-
tain the flow of PVALUE to LAST_VALUE_READ through D. The failed constraint

FAILED(true,VALUE,D) — [DVALUE # PVALUE];

is just carried over from the device_failure specification. It is shown in figure 27.

7.5. Merge 4: Storage and Device Failure

In the final merge, that of the storage specification and devices_fail specification,
one must consider whether one should store values of [ailed devices. The constraints
involved in the interaction between these two specifications is along the flow of
PVALUE to STORE. If the analyst simply continues to allow this low unbroken, as
suggested by the system, failed DVALUEs will be stored. Here are just those con-

straints dealing with the flow of PVALUE to STORE:
{(an lntegerz * PERIOD
— [STORE(P,v) = LAST_VALUE_R AD’@[ME
PERIOD}

1) PVALUE — [DVALUE = PVALUE]J; ?
2) DVALUE — [LAST_READ_VALUE = DVALUE]; ?
3) {PVALUE,CLOCK_TIME(t) = START_ TIII;/IE P t)
— [LAST_VALUE_READ(P,v) = DV LJE Pyv)); ?
(4) {LAST_VALUE_READ, CLOCL TME%}) START _TIME(P,t)
(an mteger) * PERIOD(P,?)
(5) (PVALUE,DV. U {CLOCK_TIME,START_
LAST VALUE_READ) —+— STORE; ?
Figure 28 shows the diagram and part of the constraints. All of the constraints are

shown in figure 29.

T3

Fpwe E; r

{1@ausvepung) |

TAJLION ++ (CU3NT3NTEATISYT (ODIN3L *IWILT 13U 1S *SUT1™HI079) “INT8M *3nTHnd)
13448 e« ({00743d°INIL™1AW1S "IHILTXI01D) ‘3N 6N *INTWN)
f0y3¥73n T8N 1SUT + ((00TH3d‘INIL LyY1S "INIL™XI073) “3NWNT)

(A ')IANTWNG = (0 *d)ABIE"INTUN T 1SHT] +

{(¢d)0DT¥3d + {49623uy ue) (I7J)IWILTINHIS = (3)AMILHI0TD *3nTwna)

fQu3¥T3INTWATISY] ++ 30WNd

f({3512)336s | (INJ3)34H8] « OU3IH 3NTUA 181

'[3nnd = 3nWAQ] » 2NTWAJ

H(d}AJIION + (38194)3uS

fE3Nnd # 3INWAT) « (O °3NTWA ‘3n43)a371MA $AJT10M « (@*3NTQA*INI)T TIHS
({03704 ‘dyuolIelas | g311b4)

10(anuA ‘d)uosIe (a4 | QuII-INWA” 1SHT]

{[(J983qu) ‘g)uoyaean | 00I¥3d]

f[{496a3u) *gyuoiaetas | JUrL”I8Y19) I[(49B3a3u} Juoyae|ad | 3NIL1TA2072]
f[(d)uap3wLad [A4110M] f{{3nn)vorIwiaa | Faus]

f[uopues || (3nwn’diuolaetss | anTund)

faddy | ann

= H

IMIL 9079 o any e;f
AW au..E"_AIID O

JO3IpT uUoIneouIoseds Z0j

Figure 27. Oz Merge of Clock and Devices_fail.

74

[ro|@g JJol] [|eusvepun

{{4°d)00TNId » (29B33u} uwe) (3°d)INILTINWIS = (I)IMIL™HI0ND ‘3NWAD)
'0U3¥”3NTWATLSHT + 3NN
f[{22194)3:M8 | (3n43)344S] + QUIY 3NTWA LSHT
f(d)AJIION « (3812))3us

I{3nnd = 3NWAa) + 3NTHA

f{{3N8Ad *# 3n76A0] + (0 ‘3N ‘2043)@31IHL
441100 « (@ °307W0 *3nJ3)a3 110

{{{031Iu3 ‘d)uosae|ad | AJIIGH]

f[uopues || (@3N ‘uea(oogjuoireiss | QITIH)
fL(3NTWA "d)uo}e1oa | 3M01S]

003NN "gIN0LIR9Y | gU3N 3INTHAT 1SHT]
JARLLEEUTRSFITLIETTE N] 001434)

$[(49623u) "9)u01IL |34 | JUII” 14 1S)
f[(uaBaju)juoyaw9d | IWILX207])
f[{3NTWNIuopIe |3 | Jaus]

{[uopuwd [| (INTUA‘A)ulIRL3 | INWNd]

'] = Ja] flu] =

anjeng

& -

JOIp3 uo1neoyoeds zg

Figure 28. Oz Merge of Storage and Devices_fail, Diagram Section.

75

(nsg)3de
LjLe43aninaggae

0331te45331n3793.03

Fmapu]

peay
3NEG
N3AET UaALIG
X ..m:nd«uoﬂ‘

epusby |ind
IEREPER
squawdejan

(el WeiSNSigd AHEALL L A/wnESIZH TBULYT fJEiN 4uiCE 03 @CHiZ

{1v3auauepung) 34

_134018 e+ ((0DIN3d'INIL-IEH1S IHILTHI0TD] '3N WG *3NTUNd)

fAJLAON ++ (QUY3YT3NT8A" 1897 * (B01Y3d ‘IUIL” JuBIS *IHELTHI019) 30 IUNE 3N WNd)
13448 s ((00IN3d 'INI17INB1S ‘TIUIL"N301D) 306N 30N)

§:30)8 » ({OOT¥3d IUTL" 1¥618 3WLL"XI07D) ‘Y38~ IR LSE1)

Tou3y"INA T 1SHY « {(Q0IY¥3dIUIL™1¥HLS ‘IMILTNI019) ‘3nund }

{0 'd)0UININWATISYT = (A'd)IN019] ¢
((£°0)001¥3d + (~3833up uw} (3°d)3UIL 1NHIS = (I)IWIL7NI0ID °InIWn au3N~15u7)
I0(Ad)3INTUND = (A °d)AE3ATINTHAT1SHT) «
({2°d)A0I¥3d & (J2B23uy L@} (I°d)INILTLINMIS = (I)IMIL #3070 ‘anund)

O¥34™3IN WA ISY] e+ RN

f0(351%4)33¥8 | (N43)33u8] + OUIE INTHA LBHT

1(d)AIIION + (9819))34US

f[3NTWAd = 3NA0] + 3NTuAd

'(3anund # 3nWAAY « (0 °3INWA 903)AI VIS

441100 « (@ '3N7GN "31J2)03 116

fL(QIINA *d)uotaelas | AJTIO0N]

f[uopues || (q'3n71un‘ueajooqiuolietad | OTT1IH4]

v £[{3n7un "djuoy3eaa | 3i015)
‘L{3nTun ‘dyvolae s | gHIET 3NN 1S

{[{43Ba3u) ‘y)uo)ietaa | aoI¥3d}

1[{43Ba3u} *g)uoiaeiad | IUIL”1¥YLS]

unauunuuc—-:oeun—UL AL A3077])

f[{anTnjuoraetad | 34us)

f[wopuwa || (3NN ‘d)uoiIeLad | InTund)

£2d43 | 3Inmn

fldl = la] fiu| = |\g 1 2 Id] ‘1 = 1= |u

E3UL@I38UGT) | (e 4R pAag]aI03

JOoqIpg uoineoyicads Zo)

Figure 29. Oz Merge of Storage and Devices_fail, Constraint Section.

76

8. Continuati

There are two dimensions in which the development of the patient monitoring
specification could be continued. The first is simply specilying more of the finer details
of each component. For example, the sale ranges for patient factors needs to be
specified. The other dimension is to bring together the divergent specifications into a
single document. At this point there are four specifications (clock&devices_fail,
factors&devices, clock&factors, storing&devices_fail) that need to be merged into one
(see figure 23). Using the binary merge strategy of appendix B, this would involve

three more merges. However, I stop here, as did Feather.

9, Summary

In t;his chapter I have illustrated the use of an interactive KBPES system and its
use in the development of an example previously described by Feather in[17]. T hoped
to have shown that much of a KBPES model can be automated and incorporated into
an interactive specification environment. Also, due the complexity of this semanticly

rich specification design model, such automation is desirable.

77

CHAPTER V

RELATED WORK

This thesis represents an initial effort to develop a formal model of the process of
specification construction, with the intent of building a semiautomated interactive
environment which supports specification construction. Unfortunately, there has been
little research devoted to studying the process of specification creation. However,
because specification construction is a kind of formal description evolution, many

ideas of program construction are relevant.

Most of the research in the development of formal descriptions can be categor-
ized as either theoretical or cognitive. I consider the theoretical research on description
as the study of: (1) the definition of a representation language, (2) the definition of an
assoclated meta-language of operators which can modily the representation language,
and (3) the formal properties involved in both (e.g., what each of the languages can
describe, optimality of operators in terms of efficiency, etc.). Computer science theory
deals with these theoretical aspects in general. In section 1, I describe some research

more specific to specification descriptions.

I categorize research that studies the aspects of how people currently describe
things as cognitive. Cognitive studies of description attempt to: (1) determine abstrac-
tions people use in descriptions, (2) operators they use to evolve a description, and (3)
the adequacies of both the abstractions and the associated operators. Such research

particular to specification is described in section 2.

Given the above specialized uses of the terms theoretical and cognitive, [consider
language theory to define the space of languages and operators on those languages;
this is the space of development descriptions. The space of development descriptions

defines what can be described and the possible modifications which can be applied to

78

a given description. Cognitive studies are used to determine which abstractions and
operators humans find useful. One may look at currently used operators, or introduce
operators found to be powerful theoretically and test for their cognitive usefulness.
The PES model includes this second sort of operator; ones w'hich are theoretically
powerful, but may not yet be used by analysts. I speculate that studies will reveal

that it is also powerful in terms of its cognitive aspects.

Section 3 and 4 highlights related research in specification tools and analysis
respectively. Finally, section 5 describes research related to the development of

specification construction models.
1. Theoretical Aspects (Languages)

Languages define what can be described, while meta-languages describe how the
associated language can be changed. In[5]| , Balzer describes a frame based language
which is self-described, i.e., structural and functional enhancements are completely
derived from the structure of the language. Such languages are useful in that the
modification operators are apparent from the structure of the language. Similarly, in
the RLL language when an operator is applied, the underlying system alters the
semantics of the representation language based on its self-knowledge[29]. Sell descrip-
tion in a language is useful in dealing with the modification of the language; it for-

mally describes the space of development descriptions. However, such languages are

currently not expressive enough for the needs of complex software specification.

Although not self-described, languages which have well understood semantics
with various orthogonally parameterized abstractions may be suitable for complete
enumeration of their possible meta-operators and their effects. For example,
Goguen|24] describes a hierarchy of operators which can be applied to specifications in
Clear(9] with defined effects. While not exhaustive, such a hierarchy is an initial
categorization of the sorts of operators that are useful to apply in order to develop a

specification. Using operators such as Combine, Instantiate, Enrich, Aggregate, and

79

Compose (to name a few), Goguen is able to compose specifications. It appears that
these operators are sufficiently constrained that they could be applied to similar pro-

gramming languages (e.g., Poly([35] , Apple[32] , Russell[15]).

A survey of more conventional languages reveals some languages which do facili-
tate reuse of descriptions (e.g., ADA[14] and Smalltalk[25]), which is necessary when
using an evolutionary model of specification. However, I speculate that it would be
difficult to develop a uselul set of meta-operators which could be used to develop pro-
grams in these languages, due to the complexity of their semantics. But, these
languages may use attached axioms such as those found in Clear and Meld [30] to

support reuse.

I feel specification language design, with regard to evolutionary descriptions,
should seek expressive languages in which structural and functional enhancements are
completely described. As with many language design goals, solving one tends to defeat

the other.

5. Cognitive 2

Empirical studies of the operators analysts use to evolve a specification are
sparse, and consequently, so is this section. The work of Soloway[45] and Adelson]l]
are empirical studies which show the use of plans in program and software design con-
struction. It seems plausible to assume that similar planning operators are used in

specification construction.

3. Tools

Three tools which embody the plan composition paradigm are IBEmacs, IDeA,
and DRACO. KBEmacs(52] assists programmers in program construction. It does so
by providing a library of abstract program plans and then facilitates their application
to the programming task at hand. Plans form a common language between the assis-

tant and the programmer. Operators apply plans to the program task and fill in their

80

abstractions with program constructs.

IDeA([34] and DRACO[40] are similar to KBEmacs, but assist in specification
implementation. All three systems take the perspective that operators instantiate
plans or their parts. IDeA is similar to KBEmacs in that is assists analysts through an
editing interface. In IDeA, one constructs a traditional design specification from a high
level specification. DRACO, on the other hand, is a set of tools which use domain

models in the transformational implementation of specifications.

Like KBEmacs, PegaSys(37] also provides the supporting editor paradigm for
program design, but does not provide a library of plans. Instead, it verifies consistency

between levels of design diagrams.

Oz takes a more basic perspective of operators: that operators reduce differences
between the way the specification is and the way it should be, as determined by the
progress of goal and policy compilation. Such operators can involve plan instantiation,
combination of plans, and combination of instantiated plans. Each of these system
varies with the degree in which it provides: (1) domain modeling, (2) expressive opera-
tors, and (3) automation. All concur that the automation of combining plans is a

difficult task.
4. Analysis
The four tools mentioned above all provide some level of analysis primarily to
integrate plans, and secondarily to inform the analyst of errors in the designed

artifact, i.e., program or design specification. Other researchers have concentrated

more fully on the analysis issue.

Much of the syntax error detection stems from Petri net analysis[42}. In partic-
ular, Tse describes the formalization of data flow diagrams and their analysis based
mapping them to Petri nets[51]. Rapid prototyping(3,7] , paraphrasingj47] , and
symbolic execution{10, 55] facilitate the detection of specification sins (cf. chapter II).

Finally, analysis of errors due to goal conflicts have received less attention. Fickas[20]

81

shows good preliminary results.

8. Models

Presently, there is not an adequate model of design that explicitly addresses the
compilation of goals and policies of the requirements and also facilitates changes in
meaning of the requirements. Changes is the meaning of the requirements, and hence
the current state of the specification, must be addressed due to the intertwining of

levels of abstraction and their interface with physical devices[48].

Many issues and techniques of Mostow’s work on operationalization of task
heuristics into procedures (FOO)[38] appear directly transferable to requirements com-
pilation. More recently he has applied such techniques to the rederivation of MYCIN's

therapy selection algorithm|39].

This thesis has been primarily concerned with the development of a semanticly
rich specification design model. This model is based on the model being developed at
ISI by Feather(17] and Goldman(26|. In this approach, one is concerned with the
specification language and the operators that apply to it. Goguen[23,24] and Bur-
stall[8] are similarly motivated, but with more emphasis of the theoretical aspects and

less of the cognitive.

Yue[55] and Greenspan|[28] are concerned with how reality is represented in
specifications. They describe knowledge based models which facilitate the construc-

tion of an initial description.

In the domain of knowledge base construction, Freiling[21] deseribes 2 methodol-
ogy by which a knowledge base can be constructed. However, it also addresses initial

construction and not subsequent modification.

Dietterich[12] does address modification of design in his abstract model of
mechanical design. Figure 30 shows a modified version of his model applied to
specification design. It illustrates how analysis of the problem leads to a synthesis of

the specification. After which, the specification is compared with the problem

environment to determine its adequacy.

This design process is cyclic and increasingly more detailed. Soloway[45] shows
how more experienced programmers use composition of plans to create programs.

With regard to program design, Adelson[l| notes that experts expand their mental

Frablem Enviranmant

by ntheszs :

i

b pem ﬁcatmn B

o — —_—

t‘ Im;:uemamannn

Figure 30. Cyclic Model of Specification Design.

83

models of the design, one level of abstraction followed by more detailed levels of
description. Finally, Goldman|[26] notes that slowly evolving the detail of a

specification is desirable, if not for design, at least for explanation.

Analysis leads to a new synthesis of the problem description which results in
modifications to the specification. Each new specification is then compared against the

problem environment which can motivate further analysis and another cycle of design.

The need to modify the meaning of the specification stems [rom three sources:
(1) changing user requirements, {2) unforeseen interactions, and (3) interfacing with
physical devices. One would like to reduce the effects of these causes so as to minimize

the need to change the specification.

Users may often change their decisions regarding the specification of require-
ments. However, a good analyst knowledgeable in the problem domain can minimize

such changes.

An analyst using the proper development model and analysis tools can curtail
the number of unforeseen interactions which are likely to result in specification

modification.

Finally, I speculate that analysts use their knowledge of implementations during
the analysis phase, but this knowledge and its application can be inadequate. Swar-
tout and Balzer argue that it is impossible to construct a satisfactory design without
the feedback of an actual implementation in all but the simplest of descriptions[48].
Thus, the necessity for a continuation of the design process after implementation is

depicted.
Dietterich notes that:

. little attention has been paid to such strategies as (a) using rough or
a.pproxlma.te designs to assess the feasibility of the specification, (b % ap-
plying the method of failure-driven patching to develop designs more
quickly, and (c} employing an existing design as a guide to designing a
new device[12|.

It appears that the IKBPES model can be used to exploit all three of these design stra-

84

tegies. [n particular, rough approximations are the starting point of Oz specifications.
Using analysis techniques such a rapid prototyping, symbolic execution, and formal
analysis, one can use early specifications to determine the feasibility of their final
implementation. Such analysis or actual implementations indicates some sort of error
which then leads to patching. As shown in the example, IV.6.8, patching of
specifications is as easy as the initial development. This is not by accident: failure-

driven patching is the normal way by which specifications are created.

Finally, note that while the examples of chapter II and III showed that the
development space as a lattice containing a single specification, it need not be so. The
development space could contain disparate specifications, and transformations could
merge these designs to develop new specifications stemming from multiple ancestral

roots. While the model allows their transformations, automating such merges will be

difficuls.

85

CHAPTER VI

CONCLUSIONS

This chapter describes the current status of this research and the future direc-

tions which are being explored.

1. Methodology

This thesis describes my efforts in understanding models of the process in which
descriptions of computational systems are created. I have constrained this problem by
just considering the construction of specifications. My methodology has been one of
surveying current models of specification design. The development of I(BPES is the -
result of formalizing Feather’s model{17) and integrating it with knowledge-based
design ideas. Feather’s model was chosen because it addressed many of the issues of
specification design (e.g., multiple analysts, meaning changes, design strategies) and

could easily be integrated with a knowledge-based design environment.

The KBPES model, as put forth is chapter IV, is a paradigm for specification
construction. As such, it still remains to be justified in its cognitive aspects. The
overall theme of developing specifications in an evolutionary style has been
justified[26, 48]. But, a robust set of operators which use parallel elaboration for goal
compilation must be created and then empirically justified as being cognitively useful.
In a completed KBPES, analysts will not apply specification operators such as

AddProcess, rather, they will apply the more abstract compilation operators.

2. Results

This thesis has presented an initial [ormalization of a model of the specification

design process. This model appears to be useful in that it captures much of the pro-

86

cess of specification construction. In particular, KBPES explicitly addresses the evolu-
tionary development of specifications. It does so by providing a new development
operator, parallel structural elaboration, in a structured environment. Chapter IV
shows that significant parts of KBPES can be automated, although the details of an

efficient implementation have not been explored.

Beside.;.-', satisfying many of needs of a specification design model, KBPES facili-
tates the use of various design strategies. As described in section V.5, KBPES sup-
ports such strategies as: (1) evolving simple designs into satisfactory ones, (2) failure-
driven patching of designs, and {3) reuse of previous designs in the current one. How-

ever, KBPES is an experimental model and many issues remain to be explored.
3. Fut Directi

The most pressing problem in KBPES is the formalization of a merge operator.
Other issues are: formalization and automation of goal compilation operators, cogni-
tive justification, demands on the specification language, and reuse of disparate

specifications.

Given cognitive studies of specification development, I presume that formaliza-
tion and automation of many of the syntactic operators found will be relatively sim-
ple. However, the knowledge associated with such operators (i.e., the rules of appendix
A) which are used to maintain the quality of the specification will be much more
difficult to express and automate. Such operators are part of the specification model.
It will be more difficult to glean from such studies the goal compilation operators

which are part of the design model.

The automation of the application of both the operators and their associated
rules will likely place new demands on the specification language, thus leading to the
development of a specification language tailored to KBPES. The view taken here is
that one should start with a simple language in which KBPES can be effectively

applied and then expand the expressiveness of both the KBPES operators and the

87

language based on the experience.

An alluring aspect of KBPES is the prospect of reusing components from
different specifications to develop a new specification. In the merge section of chapter
IV, it was shown how specifications from the same ancestral root could be merged.
More complex specifications will require more complex merging schemes and constraint
resolution knowledge. However, I speculate that a merge operator which could be
applied to specifications with different ancestral roots would be a natural extension of
merge, rather than an order of magnitude leap. This is based on the limited role the
development history currently plays in the merging process. It is used to recognize
correspondences between specifications and record the series of operators applied
which resulted in goal compilation. One can envision slowly extending the merge to
capture a larger class of constraint conflicts, using it to merge disparate specifications.
However, first a satisfactory merge should be constructed for commonly rooted

specifications.

88

APPENDIX A

OPERATOR SUMMARY

This appendix summerizes the operators used in the example of chapter IV. The
operators are only informally described. In the rules, I use the following notational

conventions that:
(1) Processes start with P, e.g., P1, P2,

(2) Arcs start with A, e.g., Al, A2. Their direction is determined by an <, or >,
e.g., P1 Al1> P2, Al provides a flow from P1 into P2.

As explained in section IV.4., rules are organized into a hierarchy and attached
to operators. After a operator and its rules are executed, suboperators and their rules

are also executed, if any exist. These are also noted [or each operator.

1. AddArc

AddArc adds an arc between two processes and determines the arc name. This
is a primitive operator; no subordinate operators are executed.
Rule 1: Corresponding Processes

IF Pl A1> P3, and
P2 A2> is appended to form P1 A1> P2 A2> P3, or
Pl A2> P2 Al1> P3,

THEN suggest |P2| = [P1}

Rule 2: Distinguish Qutput

IF A3 is an input arc added to process P2 from P1, and
P1 Al1> P2, and
Al — A2, and
P2 A2> P3, and
it is confirmed that A3 — A2, and
[A2 | relation(...)];
THEN suggest [A2 | relation(...,A3)|;

89

Rule 3: Propagate Arc Relations
IF P1 A1> P2, and
A2 is appended to form P1 A1> P2 A2> P3, and
Al — A2,
THEN suggest existing relations containing Al, but with A2
substituted for Al.
Rule 4: Determine Effect of Input
IF Al is an input arc added to process P, and
An is the set of output arcs of P,
it has not been determined how Al effects An,
THEN ask the analyst which value(s) (if any) in An
are effected by Al.
Rule 5: Determine Effector of Qutput
IF Al is an output arc added to process P, and
An is the set of input arcs of P,
it has not been determined how An effects Al,

THEN ask the analyst which value(s) (if any) in An
effect Al.

2. AddProcess

AddProcess adds a process to the specification and determines any in or outgo-

ing arcs. AddArc rules are executed as secondary rules.

3. AddData

AddData adds a data entity to the specification and determines any in or out-

going arcs. AddArc rules are executed as secondary rules.

4, SIP

SIP splices a process into a dataflow. It determines the name of the process and
the outgoing arc. After application, SIP’s own rules are executed, followed by those of
AddProcess and AddArc. The work of Propagate Spliced Relations can be done by
Propagate Arc Relations, but is inlcuded for added clarity.

90

Rule 6: Propagate Spliced Relations

IF P1 A1> P3, and
P2 A2> is appended to form P1 A1> P2 A2> P3, or
Pl A2> P2 Al> P3,

THEN suggest existing relations containing Al, but with A2
substituted for Al, or vice versa in the second case.

5. Unpack

Unpack is a specialize sort of SIP which splices a process into a dataflow for
purposes of unpackaging a composite value. The spliced process serves as an intermed-
iary between the original primitive value form and its composite representation.
Unpack determines the process and arc names, then its rules determine the set of

composite values.
Rule 7: Determine Composite Set

IF P1 A1> P2 A2> P3, and
P2 and A2 are the sphce,
THEN then suggest [A2 | rela.t.lon(,E Set))];
A2 — [UA"E —]
Set. | type = {. i
determine the value for Set = {...}
determine the name for Set

8. Constrain
Constrain simply allows the user to alter the Constraints section. As a result,
all constraints must be checked for incounsistencies after this operation. The rule
presented here goes beyond simple constraint conflict recognition. It is explained in
section IV.6.4.
Rule 8:Use Processed Data:
IF A2 — A3, and
Al — A2, and
A2 is added (A2' C A2), and
Al — A2’ is also added, and
THEN suggest A2’ — A3, and

A2 —— A3

m

APPENDIX B

MERGE RULE SUMMARY

This appendix summerizes the rules used to merge the example of chapter IV.
The rules are only informally described. In these rules I use the following notational

conventions that:
(1) Processes start with P, e.g., P1, P2,
(2) Arcs start with A, e.g., Al, A2. Their direction is determined by an <, or >,
e.g., P1 A1> P2, Al provides a flow from P1 into P2,
(3) Specifications start with S, e.g., S1, S2.
The merging scheme I followed was generally: start with the more complex of

two specifications and add components of the simpler to it, until it embodies both

specifications. More concretely:
(1) Merge only two specifications at a time.

(2) Alter the more complex specification S1, by adding components of the other

specification S2, until S1 has all the processes, arcs, and data sources of S2.

(3) During each addition in the above step, resolve constraint conflicts using the

rules of Appendix A and those found here.

1. Merge Order

This rule determines the complexity of a specification, which is used to determine
which specification will be copied and then modified. It does a simple complexity
analysis based on the number of processes, arcs, and data sources. If neither
specification is more complex than the other according to the analysis, then one is

arbitrarily picked as more complex than the other.

Rule 9: Complezity of Specifications

IF

the complexity of S1 is greater than that of S2

THEN start with S1 and modify it using S2, else vice versa.

2. Flow Rules

There rules show how conflicts along flows of effect were resolved in the example.

Rule 10: Chained Input

IF

S1 has P1 A1> P2 A2> P3, and
S2 has P4 A4> PS5, and

Al — A2 and

Al and A4 correspond,

P1 and P4 correspond, and

P3 and P5 correspond

THEN the merge is S1 (and add any of S2’s constraints)
Rule 11: Merge Splices

IF

S1 and S2 correspond except for the sets of processes Px in S1 and
Py in S2, and

Px forms an effect chain between P1 and P2 in S1, and

Py forms an effect chain between P3 and P4 in S2, and

P1 corresponds to P3, and

P2 corresponds to P4,

THEN it is likely that one chain should precede the other in the

merged specification, so the analyst should be asked.

93

APPENDIX C

GIST SPECIFICATION

This appendix presents the four simpie GIST specifications in the order of paral-
lel development found in[17]. Each development is only briefly commented on. For

more details of these specifications and their merge, see[17].

L. Initial Gist Specificati

The initial specification, figure 31, is the same of the Oz starting specification.

The three major components are the patients, monitor, and nurse station.

2. Introducine Devi

Devices are introduced by the addition of a device agent and linking device

values to patient values. See figure 32.

{ value | type

'patient | agent ||
{ PVALUE | relation(patient,value) || random }

monitor | agent ||

{ NOTICE_UNSAFE | activity(patient) ||
if start not SAFE(PVALUE(patient,?))
then NOTIFY(patient)

'nurse’s_station | agent |
}{ SAFE |rela.tion%value , NOTIFY | procedure(patient) }

Figure 31. Initial GIST Specification.

04

device | agent {|
{ DVALUE | relation(device,value) || random

'DEVICE_VALUE_EQUALS_LINKED_PATIENT_VALUE |invariant
|| all dldevice || DVALUE(d,?) = PVALUE(LINK[d,?),?)

'J}LINK | relation(device, patient)

monitor | agent ||

{ NOTICE_UNSAFE] activity(pasient) |
if start not SAFE(DVALUE(LINK{(?,patient),?))
then NOTIFY(patient)

Figure 32. Modifications to Introduce Devices.

device | agent ||
{ DVALUE | relation(device,value) || random

' FAILED | relation{device) || random
'DEVICE_VALUE_EQUALS_LINKED_PATIENT_VALUE | invariant
| a1 d|device || not FAILED(d) implies
DVALUE(d,?) = PVALUE(LINK(d,?),?)

,IfINK | relation(device,patient)

Figure 33. Modification to Introduce Device Failure.
3. Device Fail

Device failure is introduced as an implied nonequivalence of PVALUE and
DVALUE, figure 33. Unlike the Oz development, Feather does this elaboration with
three changes. First, the nonequivalence between PYALUE and DVALUE. Then, the
next two figures adjust the Monitor to make use of the failed relation. Namely, figure
34 modifies the monitor to NOTIFY in case of failure. Next, figure 35 adjusts the

NOTIFY relation to distinguish between patient safety notification and device failure

{ NOTICE_UNSAFE | activity(patient) |
if not FAILED(LINK{?, pat:’cnt&l
and start not SAFE(DVALUE(LINK(?,patient),?))
or start FAILED(LINK,(? patient))
then NOTIFY(patient)

Figure 34. Modification of NOTICE_UNSAFE to Respond to Device Failure.
notification.
4. Patient Factars

Patient factors, figure 36, are introduced by adding the factor relation and modi-

fying the monitor to check each factor separately for safety.

5. Periodic Monitori

Time is modeled by a increasing integer valued clock. The Monitor then, only
updates LAST_VALUE_READ when the correct period comes to pass for each patient

value. See figure 37.

{ NOTICE_UNSAFE | activity(patient) ||
if not FAILED(LINI(?,patient)
and start not SAFE(DVALUE(LINK(?,patient),?))
or start FAILED(LINK,(?,patient))
then NOTIFY(patient, FAILED(LINK{(?,patient)))

NOTIFY | procedure(patient,boolean)

Figure 35. Modifications to Adjust NOTIFY Invocations.

a6

Jactor | type = {’pulse, 'temperature, *blood_pressure, 'skin_resistance }
’composite | type

CFV | relation(composite, factor, value)

PVALUE | relation(patient,composite} || random

NOTICE_UNSAFE | activity(patie F)

;tl'lseiart not all f| factor || SAFE(CFV{PVALUE(patient,?),f,?))

SAFE | relation(value,factor)

Figure 36. Modifications to Introduce Composite of Factor Values.

97

clock | agent ||

{ CLOCK_TIME |relation(integer)

" TICK_TOCK | activity)l
choose { CLOCK_TIME(?) := CLOCK_TIME(?) + 1, null }

"monitor | agent ||
{ LATEST_VALUE_READ | relation(patient,value)

READ_PERIODICALLY | activity(patient) {|
if CLOCK_TIME(?) = START_READING_TIME(patient,?} +
(an integer)*PERIOD(patient,?)
then LATEST_VALUE_READ(patient,?) := PVALUE(patient,?)

' NOTICE_UNSAFE | activity(patien

6 i
if start not SAFE(LATEST_ ALUE)_READ{paticnt, ?))
then NOTIFY(patient)

'nurse’s_station | agent ||

{ SAFE |rela.tionfva.lue , NOTIFY | procedure{patient) }
'START_READING_TIME | relation{patient,integer)
’}PERIOD | relation(patient,integer)

Figure 37. Modifications to Change the Monitor to Read Periodically.
8. Saftey Depends on Patient
In figure 38, the SAFE relation in the nurse’s station and monitor are modified

to take the added patient parameter. This allows safeness to vary beteween patients.

Z. Store Values

Storing patient values is the last of the simple elaboration and was added to
show maintenance via transformations. The periodic monitoring specification was

modified so values are stored at the same time they are read, see figure 39.

o8

monitor | agent ||

{ NOTICE_UNSAFE [a.ctlwty(patlent Il
if start not SAFE(PVALUE(patient,?), patient)
then NOTIFY(patient)

'nurse’s_station | agent ||
{ SAFE | rela.tlon% value,patient) ... }

Figure 38. Modifications to Elaborate Safe to Depend on Patient.

monitor | agent ||

{ LATEST VALUE_READ | relation(patient,value)

' READ_PERIODICALLY | activity(patient) ||
if CLOCK_TIME(?) = START_READING_TIME(patient,?) +
(an integer)*PERIOD(patient,?)
then LATEST_VALUE_READ(patient,?) :== P ALUE(pa.tlent 35
STORE(patient, LATEST_VALUE_READ(patient,?))

’} NOTICE_UNSAFE | activity(patient) || ...

'nurse’s_station | agent |
{ ..., STORE | procedure(patient,value)}

Figure 39. Modifications to Store Read Values.

o

10.

11.

BIBLIOGRAPHY

Adelson, B. and Soloway, E., “The Role of Domain Experience in
Software Design,” Transactions of Software Engineering SE-11 (No-
vember 1985) 1351-1360.

Aho, A., Sethi, R., and Ullman, J., Compilers: Principles, Techniques,
and Tools, Addision-Wesley (1986).

Balzer, R., Goldman, N., and Wile, D., “Operational Specification as the
Basis for Rapid Prototyping,” Sigsoft Software Engineering Notes 7 (De-
cember 1982) 3-16.

Balzer, R., “A 15 year perspective on automatic programming,” Tran-
sactions on Software Engineering 11 (November 1985) 1257-1267.

Balzer, R., “Automated Enhancement of Knowledge Representations,”
Proceedings of the Ninth International Joint Conference on Artificial In-
telligence 2 (August 1985) 203-207.

Barstow, D. R., “Domain-Specific Automatic Programming,” Transac-
tions on Software Engineering 11 (November 1985) 1321-1337.

Boehm, B., Gray, T., and Seewaldt, T., “Prototyping Versus Specilying:
A Multiproject Experiment,” Transations on Sofware Engineering SE-10
(May 1984) 290-303.

Burstall, R.M. and Goguen, J.A., “Putting Theories Together to Make
Specifications,” Proc. 5th Int. Joint Conf. on Al (1977) 1045-1058.

Burstall, R. M. and QGoguen, J. A., “An Informal Introduction to
Specifications Using CLEAR,” in: Eds. J. Strothers Moore, The Correci-
ness Problem in Computer Science, Academic Press (1981) 185-213.

Cohen, D., “Symbolic execution of the Gist specification language,”
Proc. Eight Int. Joint Conf. Artif. Intell., (1983) 17-20.

DeKleer, J., “An Assumption-Based TMS,” Artificial Intelligerice 28
(March 1986) 127-162.

Dietterich, T. and Ulman, D., “Artificial Intelligence Approaches to
Design,” Artificial Intelligence 1in the Northwest, (October 22-24
1985) 8/3.

o9

13.

14.

15.

16.

17.

18.

19.

Dietterich, T. G. (Ed.), Proceedings of the Workshop on Knowledge Com-
pilation, Oregon State University, Otter Crest {September 24-26, 1986).

DoD, “Reference Manual for the ADA Programming Langauge,” in: Eds.
Ellis Horwitz, Programming Languages: A Grand Tour, Computer Sci-
ence Press (1976) 417-752.

Donahue, J. and Demers, A., “Data Types Are Values,” Trans. on Prog.
Lang. and Systems 7 (July 1985) 426-445.

Feather, M.S., “A Survey and Classification of some Program Transfor-
mation Approaches and Techniques,” TC2 Working Conf. on Program
Specification and Transformation, (April 1986)

Feather, M. S. , “Constructing specifications by combining parallel ela-
borations,” Transactions on Software Engineering, IEEE (1987).

Fickas, S., “Automating the Transformational Development of
Software,” Transations on Software Engineering SE-11 (November
1985) 1268-1277.

Fickas, S., “A Knowledge-Based Approach to Specification Acquisition
and)Construction," CIS-TR-85-13, University of Oregon {November
1985).

Fickas, S., “Automating the Analysis Process: An Example,” Proc. {th
IWSSD, (April 1987) 58-67.

Freiling, M., Alexander, J., Messick, S., Rehfuss, S., and Shulman, S.,
“Starting a Knowledge Engineering Project: A Step-by-Step Approach,”
The AI Magazine 6 (Fall 1985) 150-164.

Gane, C. and Sarson, T., Structured Systems Analysis: Tools and Tech-
niques, Printice-Hall (1979).

Goguen, J.A. and Burstall, RM., “CAT, A System for the Structured
Elaboration of Correct Programs from Structured Specifications,” CSL-
118, SRI (October 1980).

Goguen, J.A., “Reusing and Interconnecting Software Components,”
Computer 19 (February 1986) 16-28.

Goldberg, Adele and Robson, David, Smalltalk-80: The Language and its
Implementation, Addison-Wesley (1983).

Goldman, N., “Three Dimensions of Design Development,” ISI/RS-83-2,
ISI (July 1983).

100

30.

31.

33.

34.

35.

36.

37.

38.

39.

40.

Green, C., Luckham, D., Balzer, R., Cheatham, T., and Rich, C., “Re-
port on a IKnowledge-Based Software Assistant,” RADC-TR-83-195,
Rome Air Development (1983).

Greenspan, S.J., “Requirements Modeling: A Knowledge Representation
Approach to Software Requirments Definition,” CSRG-155, University
of Toronto (March 1984).

Greiner, R. and Lenat, D.B., “A Representation Language Language,”
Proceedings, (1980) 165-169.

Kaiser, G., “Composing Software Systems [rom Reusable Building

Blocks,” Twentieth Hawaii International Conf. on Systems Sciences,
(January 1987)

Kemmerer, R., “Testing Formal Specifications to Detect Design Errors,”
Transations on Software Engineering SE-11 (January 1985) 32-43.

Kieburtz, Richard B. and Nordstrom, Bengt, “The Design of Apple-A
Language for Modular Programs,” Computer Lang. 10 (1985) 1-22.

London, Philip E. and Feather, Martin S., “Implementing Specification
Freedoms,” Science of Computer Programming 2 (1982) 91-131.

Lubars, M.D. and Harandi, M.T., “Intelligent Support for Soltware
Specification and Design,” Ezpert, (Winter 1986) 33-41.

Matthews, David C.J., “Poly Manual,” SIGPLAN Notices 20 (Sep-
tember 1985) 52-76.

Meyer, B., “On Formalism in Specifications,” Software 2 (January
1986) 6-26.

Moriconi, M. and Hare, D. F., “PegaSys: A System for Graphical Expla-
nation of Program Designs,” Proc. ACM SIGPLAN 85 Symposium on

Languages Issues in Programming Environments 20 (June 25-28,
1985) 148-160.

Mostow, D.J., “Mechanical transformation of task heuristics into opera-
tional procedures,” CS-81-113, Computer Sci. Dept, CMU (1981).

Mostow, J. and Voigt, K., Explicit Incorporation and Integration of Mul-
tiple Design Goals in a Transformational Derivation of the MYCIN
herapy Selection Algorithm, IJCAI87 (January 1987),

Neighbors, J. M., “The Draco Approach to Constructing Software from
Reusable Components,” Transactions on Software Engineering SE-10
(September 1984) 564-574.

101

41.

43.

44.

45.

46.

47,

48.

49.

50.

51.

53.

54.

Page-Jones, M., The Practical Guide to Structured Systems Design, Your-
don Press (1980).

Peterson, J. L., “Petri Nets,” Computing Surveys 9 (September
1977) 223-252. |

Sheil, B. A., “Power Tools for Programmers,” in: Eds. E. Sandewall, In-
teractive Programming Environments, McGraw-Hill (1984) 19-30.

Smith, D. R., Kotik, B., and Westfold, S. J., “Research on Knowledge-
Based Software Environments at Kestrel Institute,” Transations on
Software Engineering SE-11 (November 1985) 1278-1295.

Soloway, E. and Ehrlich, K., “Empirical Studies of Programming
Knowledge,” Transactions on Software Engineering SE-10 (September
1984) 595-609.

Stevens, W.P., Myers, G.J., and Constantine, L.L., “Stuctured Design,”
Systems Journal 13 (1974) 115-139,

Swartout, W., “Gist English generator,” in: Proceesing of AAAI-82,
AAAI (August 1982) 404-409.

Swartout, W. and Balzer, R., “On the Inevitable Intertwining of
Specification and Implementation,” CACM 25 (1982) 438-440.

Teitelbaum, T. and Reps, T., “The Cornell Program Synthesizer: A
Syntax-Directed Programming Environment,” in: Eds. E. Sandewall, In-
teractive Programming Environments, McGraw-Hill (1984) 97-116.

Teitelman, W., “A Display-Oriented Programmer’s Assistant,” in: Eds.
E. Sandewall, Interactive Programming Environments, McGraw-Hill
(1984) 240-287.

Tse, T.H. and Pong, L., “Towards a Formal Foundation for DeMarco
Da.t;a.) Flow Diagrams,” TR-A6-88, University of Hong Kong (June
1986).

Waters, R. C., “The Programmer’s Apprentice: A Session with KBE-
macs,” Trans. on Software Engineering SE-11 (November 1985) 1296-
1320.

Weinreb, Daniel and Moon, David, Lisp Machine Manual, Symbolics,
Inc., Chatsworth, CA (1981).

Wirth, N., “Program Development by Stepwise Refinement,”” CACM 2
(April, 1971) 221-227.

102

103

35. Yue, Kaizhi, “Constructing and Analyzing Specifications of Real World
Systems,” STAN-CS-86-1090, Stanford University (September 1985).

56. Zave, P., “An Operational Approach to Requirements Specification for
Embedded Systems,” Transations of Software Engineering SE-8
(1982) 211-236.

