MICROWORLD

by

GARY MICHAEL SMITHRUD

A THESIS

Presented to the Department of Computer
and Information Science
and the Graduate School of the University of Oregon
in partial fulfillment of the requirements
for the degree of
Master of Science

March 1990

1il

An Abstract of the Thesis of
Gary Michael Smithrud for the degree of Master of Science
in the Department of Computer and Information Science
to be taken March 1990

Title: MICROWORLD

Approved:

Sarah A. Douglas

MicroWorld is a tool for instructors to build computer-
aided instructional lessons. Although MicroWorld’s focus is
a second (spoken) language tutoring system, the design allows
the creation of several different types of lessons.
MicroWorld produces lessons involving manipulation of
graphical objects on a screen, using a direct-manipulation
environment and its own programming language, which is
designed for instructors who have little experience with
computer programming.

This paper is divided into two major sections. The
first section describes the high-level concepts of MicroWorld
and includes a comparison with other similar environments.
The second section describes MicroWorld’s design and
implementation, which includes MicroWorld’s class structure,

its user interface and programming language implementations.

iii

An Abstract of the Thesis of
Gary Michael Smithrud for the degree of Master of Science
in the Department of Computer and Information Science
to be taken March 19290

Title: MICROWORLD

Approved:

Sarah A. Douglas

MicroWorid is a tool for instructors to build computer-
aided instructional lessons. Although MicroWorld’s focus is
a second (spoken) language tutoring system, the design allows
the creation of several different types of lessons.
MicroWorld produces lessons involving manipulation of
graphical objects on a screen, using a direct-manipulation
environment and its own programming language, which is
designed for instructors who have little experience with
computer programming.

This paper is divided into two major sections. The
first section describes the high-level concepts of MicroWorld
and includes a comparison with other similar environments.
The second section describes MicroWorld’s design and
implementation, which includes MicroWorld’s class structure,

its user interface and programming language implementations.

iwv

VITA

NAME OF AUTHOR: Gary Michael Smithrud
PLACE OF BIRTH: Seattle, Washington

DATE OF BIRTH: August 22, 1961

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:
University of Oregon
University of Washington
DEGREES AWARDED:
Master of Science, 1990, University of Oregon
Bachelor of Science, 1986, University of Oregon
AREAS QOF SPECIAL INTEREST:
Object-Oriented Programming Languages
Operating Systems
PROFESSIONAL EXPERIENCE:

Member of Technical Staff, Worldwide Computer Services,
Inc., Boulder, Colorado, 1989-present

Summer Intern, US West Advanced Technologies, Boulder,
Colorado, 1989

Research Assistant, Department of Computer and
Information Science, University of Oregon, Eugene,
Oregon, 1986-88

ACKNOWLEDGMENTS

The author wishes to express sincere appreciation to
Sarah Douglas and Russell Tomlin, who led the team effort in
designing and developing MicroWorld and who were willing to
make me a part of this project. Furthermore, Sarah Douglas
deserves a special thanks for helping me write and finish
this thesis. Without her help, I doubt that I would have
completed it. Finally, I wish to thank David Novick for his
contributions to the project--I could not have done it on my

own.
.

=

vi

DEDICATION

I would like to dedicate this thesis to the following
four people: my mother, Norma Smithrud, and my grandmother,
Grace Miles, without whose support and financial assistance I
would not have completed school; my brother, David Smithrud,
for being my best friend for all these years; and most of
all, my fiancée, Carolyn Avila. Without her love and
understanding, the most frustrating and difficult parts of
thesis writing would have been unbearable. Thanks to all of

you.

wii

TABLE OF CONTENTS

Chapter Page
1. INTRCODUCTION & -« & & o « &« & o o o o s 1
1.1 Introduction to Object-Oriented
Languages . . . e e e e e 1
1.2 MicroWorld’s Introductlon e e e e e e 5
1.3 MicroWorld’s Goal 7
1.4 Scope of the Paper 11
2. PREVIOUS WORK « « « « &+ o« o & o o« &« o = 12
2.1 Programming by Rehearsal 12
2.1.1 Programming by Rehearsal’s Metaphor . . 14
2.1.2 User Interface . . B
2.1.3 Problems with Programmlng by
Rehearsal 21
2.2 HyperCard« . 28
2.2.1 Hierarchy of HyperCard's Objects . . . 32
2.2.2 HyperCard Scripts . . « . « « « .+ . . . 34
2.3 Other Works 44
2.3.1 Building User Interfaces by Dlrect
Manipulation . . .+« « . 45
2.3.2 A Substrate for Object Orlented
Interface Design 48
3. MICROWORID . . . &+ 4 &« + + o « =+ « « o « & « « . b2
3.1 Things, the Worid, and the Tutor . . . 53
3.1.1 Spatial Relations Between Things . . . 56
3.2 User Modification of MicroWorld’s
Objects . . . B 1<)
3.3 Instructor’s Vlew vs Student’s View . 68
3.4 Introduction to the MicroWorld
Environment 170
3.5 User Interface B2
3.5.1 The World Menu 92
3.5.2 The Thing Menu . . e+ e e e e « . . 95
3.5.3 The Tutor and Wlndow Menus 96
3.5.4 Programming Interface 96
3.6 MicroWorld’s Programming Language . . . 104
3.7 Conclusion 104

4. COMPARISON BETWEEN PROGRAMMING BY REHEARSAL,
HYPERCARD, AND MICROWORLD 110

viii

Chapter Page
4.1 Programming by Rehearsal vs.
MicroWorld . . . PSP | 1 ()
4.2 HyperCard vs. MlcroWorld B I
4.3 Conclusion « . «+ .+ . . . 118
5. MICROWORLD’S DESIGN . . . +« ¢« v « « & « « « « . 120
5.1 Introduction to the Object—Oriented
Apprcach 120
5.2 The Effect of the Object Orlented
Approach on the Implementation . . . 127
5.3 Languages Used in MicroWorld 130
5.4 MicrowWorld’s Class Hierarchy 138
5.5 MicroWorld’s Control Structure 153
5.6 User’s Manipulation of Objects 156
5.7 Providing Multiple Worlds 161
5.8 Object Programming 163
5.9 Conclusion « 1869
6. MICROWORLD'’S IMPLEMENTATION 170
6.1 User Interface Implementation 171
6.1.1 Dialogs + i 4 e e 4 e 4w oe .. oo 1M
6.1.2 Menus « + ¢ « « 4 < & & « . . . 178
5.1.3 Windows e e e . . 180
6.2 Implementation of User s Programmlng
Language . . R R RSP £ 55}
6.2.1 UW-Method’s Subclasses o C . 188
6.2.2 Converting Between User’s Source Code
and Lisp Code 189
6.2.3 1Inserting New Code 1nto the Method’
Definition 197
6.2.4 Propagating Changes Through Actlve
Dialogs . . e e e e e e . . . 201
6.2.5 UW-Method’s Problems « s e e e e ... 202
6.3 Information Storage 204
6.4 Implementation Conclusion 209
7. CONCLUSION AND FURTHER WORK 210

BIBLIOGRAPHY . . . & v ¢ v ¢« o« o o o s+ o o o o o« o « « o 214

Figure

10.
11.
12,
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

23.

LIST OF FIGURES

Lifeboat Lesson <« « . . o .
Flatland ¢« .+ « « « . .
Rehearsal World « . .« « . .
HyperCard’s Home Stack
HyperCard’s Object Hierarchy

First Spatial Relationship Test . .
Describing Positions Around an Object .
Global Relationship Between Objects . . .
Position with Respect to Irregular-Shaped
Object with Components
Lifeboat

World Menu . . . « « « o « o o o o o+ +
New World’s Name + . « .« .
Backgrounds Defined in the New World . .
World Contains Backgrounds
Selecting Background File

New Background’s Name
Newly Created World

Thing Menu

New Thing’s Name

New Thing’s Image and Mask
New Thing’s Icon « .« « « +« .

New Thing . . « « +« + « o« ¢ « o« o =

. - -

Objects

1w

Page

10
14
31
32
57
59
60

63
63
71
71
72
72
74
74
75
75
77
77
78

78

Figure
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.

43.

Thing’s Menu When a Thing is Selected
Movement Command
Set Movement Path’s Dialog

Actions Command

Editing Attributes . .

Editing Local Actions

Editing Landing Action . . .

Editing Landing Action’s Move Command
Global Actions . . . « .« « .+ . . .

Editing the Arrange Command .

Editing the If Command
Editing the Sound List
Viewing the Arrange Command . . .
Tutor Menu « .« & & « 4

How the Tutor Teaches
What the Tutor Teaches

Tutor Menu when Tutor Exists

Saving a Copy of the World

UWorld’s and Base-Worlds’ Pointers to

Method Definition’s List Format

Page

c v e e .. T8
« o <« « mm 19
. - « w-a Bl
81

82

« « - . . . B2
e+« . . . B4
.+ B4
e« o+ o @ a 86
86

% 4. B8

. . B8

89

« « « - s« . 89
I |
- I |
92

. . 94

Things . . 151

« « « . . . 188

Table

®i

LIST Or TABLES

Page
MicroWorld’s Programming Language 106
MicroWorld’s Class Hierarchy 139

Results Based on Image, Mask, and Destination
Bitmaps . . ¢ « ¢+ v 4 4 4 e i 4 e 4 e e . . . 174

CHAPTER 1

INTRODUCTION

MicroWorld is a direct-manipulation programming environ-
ment used to build lessons for students. The instructor
builds lessons by manipulating graphical objects on the
screen and programming the response to student-created events
by a menu-driven editor. MicroWorld is the next step in the
programming environment of the Programming by Rehearsal re-
search project.

Two important aspects are discussed in this paper, the
concepts of object-oriented programming languages and Micro-
World itself. The object-oriented approach is an important
tool for conceptualizing problems. MicroWorld is based on
both the work in the Programming by Rehearsal project and

the concepts of object-oriented languages.

1.1 Introduction to Object-Oriented Languages

A wide variety of programming languages exists today and
more are being developed. The design emphasis has moved from
a way to program the machine to a way of conceptualizing a
problem. A prime example is object-oriented programming lan-

guages. MicroWorld uses the cobject-oriented concept as its

foundation.

An object-oriented languages is either fully object
oriented or is an extension of another language. Smalltalk
is an example of a fully object-oriented environment. The
only program entities are objects and messages. Flavors and
Object Lisp are examples of an object-oriented package for
the Lisp language. Program entities are objects, Lisp data
structures, messages and function calls. In other words, an
object-oriented package causes the environment to be a mix-
ture of both the extension and the base language.

In an object-oriented environment, everything is
considered an "object."™ An object is an encapsulation of
data and methods. Data is stored in an object through the
use of instance variables which are unique to the object.
Changing the information in one object does not change the
information in any other obiject. Therefore, each cobject is a
unique entity in the environment.

Executing a program involves sending messages between
objects. When a message is received by an object, the method
that corresponds to the message is performed. A method may
access or set the values of the object’s instance variables,
send messages to other objects, or both.

anh object belongs to at least one class that defines
the structure of the object and its relationship with other

objects. The class contains the definition for both the in-

stance variables and the methods. When an object of a class
is created, the instance variable definition of the class is
used to determine the object’s size. When an object receives
a message, its class method definition is used to perform the
message.

Some object-oriented languages have class variables
(e.g., Smalltalk). Because a class variable is contained
within the class itself, it is global to all instances of the
class. By using class variables, information is shared be-
tween the instances of the class without the use of instance
variables. Multiple copies of information create the need
for a large number of messages to update that information.

Classes are arranged in a hierarchy. A class inherits
both the variables and the methods defined in the classes
above it in the hierarchy. Some languages, like Smalltalk,
only allow a single inheritance between classes. A class is
a subclass of only one other class. Other languages, such as
Flavors, CLOS, and Object Lisp allow multiple inheritance be-
tween classes.

As an example, let Physical-Object be a class for
physical objects. A large number of variations exists in the
real world, but several features are common te all physical
objects; they have mass, dimension, etc. Therefore,
variables for these shared attributes are defined in the

class Physical-Object.

The class Physical-Object can be subdivided in several
ways. One possible division is between animate and inanimate
objects. Since animate and inanimate objects are subdivi-
sions of Physical-Object and both have the attributes of
Physical-Object, it makes sense to have the classes Animate
and Inanimate as subclasses of Physical-Object.

Both the Animate and Inanimate classes have unique
attributes for their class. For instance, Inanimate objects
have a purpose while Animate objects have goals. One method
for handling goals and purposes is to store these attributes
in instance variables. Another method, if multiple inherit-
ance 1is allowed, is to make the Animate and Inanimate classes
a subclass of a second class that defines the goals or pur-
poses. Both classes inherit the attributes from the
Physical-Object class, therefore, Animate and Inanimate have
mass, dimensions, etc.

When an object receives a message, the methods defined
for its class are checked first for the corresponding method.
If the method is not defined for the class, its superclass
(the next class higher in the hierarchy) is checked. The
search continues up the hierarchy until either the method is
found or the top of the hierarchy is reached and an error has
occurred. Methods defined in the class of the object have
the highest priority, therefore, the class can specialize the

methods of its superclasses.

L

For example, most physical objects react the same to
being pushed by another object. A possible method for "push"
determines if the force is large enough to overcome inertia
and if the direction of movement isn’t blocked. If these
conditions are met, the method starts moving the object. On
the other hand, if an animate object is pushed, the reaction
will be different. For example, the animate object will push
the other object in return. Therefore, the method for "push"
is different between the Animate class and the Physical-
Object class.

Writing programs in an object-oriented system is the
process of defining the most abstract, generic classes and
working towards defining the more concrete, specialized
classes. In some cases, subclasses of existing classes are
tailored to meet the needs of the pregram. For example, the
class Window creates a generic window on the screen. Sub-
classes of Window can be used to create special windows, such
as Graphic-Window graphics, Text-Window for text, etc. In
each case, the subclasses are more specialized than the

generic class.

1.2 MicroWorld’s Introduction

MicroWorld is based on the object-oriented concept, but
is slightly different. Objects belong to one of a small

number of classes (discussed later in this paper). These

classes are not part of a hierarchy, with respect to each
other. Furthermore, the MicroWorld designer can only use the
predefined classes and not create new classes. To specialize
an object, two major attributes are modifiable, its image and
its reaction to events.

A unique graphical image is associated with each object.
The image provides the means for the user to interact with
the object. Using the mouse, the user manipulates the
graphical representation and the object is sent the
appropriate event messages. For example, the user can send a
"click event" message to an object by placing the mouse arrow
over the graphical image of the object and clicking the mouse
button.

Providing unique graphical images models the real world.
No two objects look exactly the same in the real world.
Therefore, in MicroWorld, any image, as long as it fits on
the screen, is possible. Objects are allowed to look exactly
the same by choice of the MicroWorld designer.

Another similarity between objects in the physical world
and in MicroWorld is the object’s reaction to events. Some
objects in the physical world react the same to a given
event. For example, two different balls fall when dropped
from a height. Their response to the event is the same.

On the other hand, some objects respond differently to

the same event. For example, one person responds differently

from another person to being hit. In order to model the real
world, the environment needs to be flexible encugh that ob-
jects of the same class can respond differently. The
object’s responses to events are each individually programma-
ble in MicroWorld. An object can respond the same or differ-
ently to other objects in the same class by the choice of the
designer.

Objects in MicroWorld interact with each other on a name
basis. Each object has a unique name given by the MicroWorld
designer. Sending a message to an object only requires its
name. Matching the name to the object is performed

automatically by MicroWorld.

1.3 MicroWorld’s Goal

The goal of MicroWorld is to provide the designer with
an environment to develop graphical and manipulative type
lessons that model both the real world and the way we think.
Instead of writing code in a standard high-level language,
the programs are created by a combination of building the
objects interactively and programming their interactions with
other objects and with the user. This allows designers with
little or no experience in programming languages to develop
these types of programs.

The application currently under development using this

concept is a second (spoken) language tutoring system and

Figure 1. Lifeboat Lesson

provides a good example for the type of programs MicroWorld
can create. The instructor builds lessons consisting of
tasks for the student to perform. These tasks, given in the
language being taught, involve manipulating graphic objects
on the screen. An evaluation of the student’s performance is
used to determine the next task.

One lesscon, called “the lifeboat,” was developed in
MicroWorld (see Figure 1). The student is presented with a
sinking ship. On this ship is a lifeboat, a man, a woman,
and several items needed for survival. The student is asked
to place each item into the lifeboat. When the student has

successfully placed all of the items into the lifeboat, the

lesson is completed.

In this lesson, the lifeboat, the man, the woman, and
each item to put in the lifeboat are all program cbjects.
The process for defining the objects is straightforward.
Each object is given a name, a graphical image that matches
the physical object, and the object’s attributes (including
event responses) are defined. For example, one of the
attributes can indicate that the object is movable by the
student. In “the lifeboat,” all objects, but the lifeboat
itself, are movable.

Another part of the lesson creation process involves
programming the interaction between the objects. An
interaction in “the lifeboat” lesson occurs when an object is
dragged by the student. The dragged object checks its
position with the lifeboat. A response of "yes" or "no" is
given, depending on if the object is "in" the lifeboat.

Another lesson, called “Flatland” was also developed in
MicroWorld (see Figure 2). Instead of teaching object’s
names and positions with respect to a lifeboat, Flatland
teaches the concepts of shape, size, and color. Three
objects are moved into a line in the window’s center. One
object will have a unique characteristic from the other two
objects, which is the concept being taught. For example, the
square shape is being taught in Figure 2. The student is

asked to select the unique object (e.g. the square in Figure

o

10

Figure 2. Flatland

2) in the language the student is learning. Once the student
grasps the first concept, the lesson precedes with the next
concept.

MicroWorld provides the tools and a suitable approach
for this type of program. The programmer does not worry
about bit-maps, event processing, opening windows, etc.
Instead, the programmer thinks about objects and their
interactions. This approach is closer to the way we think

about physical objects in the real world.

1.4 Scope of this Paper

This paper consists of two major sections, the high-lev-
el concepts of MicroWorld and the design of MicroWorld. 1In
the first section, Chapter 2 examines the research that lead
to MicroWorld and work that occurred in parallel. Chapter 3
looks at the MicroWorld environment. Chapter 4 is a compari-
son between MicroWorld, Programming by Rehearsal, and
HyperCard. The latter two systems are presented in Chapter
2.

In the second section, Chapter 5 describes the design of
MicroWorld. Chapter 6 deals with the implementation of Mi-
croWorld at the time this paper was started. This section
may only be of interest to people working with object-orient-
ed languages, or who are working on the next phase of Micro-
World.

Chapter 7 is the conclusion with areas for further re-

search and problems with the current MicroWorld environment.

12

CHAPTER 2

PREVIOUS WORK

Two proijects are of special interest with respect to
MicroWorld. The first project, Programming by Rehearsal
(Gould & Finzer, 1984), is the basis for this project. It
was an early attempt to provide a direct-manipulation envi-
ronment to create instructional programs., MicroWorld is a
more robust environment, allowing a larger variety of les-
sons, and corrects some of the problems found in Programming
by Rehearsal.

The second project is HyperCard™ (Goodman, 1987). Work
on HyperCard occurred in parallel with MicroWorld. Although
Hypercard was designed to be a general programming tool, it
has similar features to MicroWorld and is included in this
paper for that reason.

Other research projects and papers have influenced the
design of MicroWorld. Some of these are discussed briefly at

the end of this chapter.

2.1 Programming by Rehearsal

The purpose of Programming by Rehearsal was to construct

an environment for teachers to build complex graphical

13

productions without the necessity of becoming programmers.
It attempted to combine the design and programming phases
into a single interactive system. The domain of the
Programming by Rehearsal project is restricted to the design
of interactive graphical lessons.

The design and programming phases represent a feedback
loop. The designer gives the programmer a specification.

The programmer, after a possibly long period of time, returns
with an implementation of the design, which is checked and
changes are requested. The loop continues until the
implementation is sufficient.

Considerable time may pass for each cycle of the loop.
During this time, the designer may have lost ideas, lost
interest, or developed a better design. The amount of work
involve may restrain the designer from implementing the
better design.

One solution is to reduce the cycle time by combining
the designing and programming phases in a system that does
not require the designer to learn a programming language. As
the designer specifies the system, the environment implements
the specification and provides immediate feedback. The
designer can then easily modify the design, without waiting

for a programmer to implement the previous design.

e PROGRAMMING BY REHEARSAL o
* fab ! T DY ARt I
{h'-} g’} ¥ TG T j s ,”r i !

* :. = Briaat 110 4 : 1 10 . enr Lir - E *
* Antapriugs], 1 ‘} start | stop - ¥
Y o hello { %1 - 2

Conuel Troum it —— el oot {'! ;i ? | i — s 3
¥ [coruitoup 0 J loooooo l:Hj step |index o &
i GraphnaTroupe D wem
* TimeTroups " LR T == ™ r—‘.‘:!‘: —— i J = *
L i} Caruieas LavwqTrevse l-"? U e Trel twape [IRIEI tﬂz D g *
7] cunverm : B g
X6 f
* PUTT I R %
% [oaf Mmes twenty-five past cleven TN %
leyBunny :.l.
* ‘; Tumbied 1 [] 16 32 1’ 41:.2 *
.L Mambunny e ! L T s *
* :| [i o ; 5] ul ‘ g ¥ 1::"4
* :‘_‘ Ka oyl E “E :..l 5‘:&{?? i *
* - Ifllur-("l.ljll & .’" X *
% H " : “.‘:_ [‘%@gﬂgﬂm : %
* T s gt e e s v ne e s (24385 *
% . Tou (4 start oM PRt by Bakuig Bes HLak ant jrow, e uw rellect *
MV X e ik
* ISTAGESHir| HELP |26 RESHO W] 5[CLEAR] 57| PRINT| 5 *
Figure 3. Rehearsal World

2

1.1

Programming by Rehearsal’s Metaphor

14

Programming by Rehearsal uses a theater metaphor, which

gives the designers a framework to conceptualize programs

with a familiar, real-world reference.

The environment used

by the designers is called Rehearsal World (Figure 3),

Rehearsal World is written in Smalltalk-80,

closely tied to the language.
Smalltalk is an object~oriented language.

World, the Smalltalk objects are considered performers on a

stage in some production.

The messages between Smalltalk

and is

As mentioned earlier,

In Rehearsal

15

objects are consider cues for the performers.

A collection of primitive performers is provided by
Rehearsal World. The designer is free to audition the
performers by sending them cues and observing the responses.
A production is created by copying the performers onto a
stage, and setting their responses to cues.

It was recognized by Gould and Finzer that Rehearsal
World would never provide an adequate number of primitive
performers and that the performers would not have a
sufficient set of cues. Therefore, the designer can create
composite performers, by combining previously defined
performers. New cues can be taught to both old and new per-
formers.

The classes that defines the performers do not belong to
an hierarchy from the instructor’s view!, therefore he or she
cannot augment the performers’ behaviors by creating new
subclasses without programming in Smalltalk. Instead, the
performers’ behaviors are defined by setting instance
variables to Smalltalk scripts. The class forms a prototype
for the performer, which restricts the instructor to the
behaviors allowed by the prototype. Although less flexible
than a class hierarchy that allows subclass creation,
prototype class structure provides a level of protection for

the instructor.

1. The classes do belong to the Smalltalk class hierarchy.

2.1.2 User Interface

The user interface consists of a bitmap graphic screen
and a mouse. The screen displays bitmap representations of
the performers. The mouse is the primary input device. An
on-screen cursor follows the movement of the mouse and click-
ing the mouse button sends a message to the performer under
the cursor.

The screen initially contains a control panel, which
holds six items, and a help area. Stages and performers are
added to the screen during the creation of a production.

The mouse is the main device for interactions with
Rehearsal World. The keyboard is used only occasionally for
supplying parameters. A “cursor” follows the mouse on the
screen as the mouse moves. The shape of the cursor provides
feedback for the operation Rehearsal World is performing.

For example, the cursor changes from an arrow to an hourglass
shape when the desired operation takes time.

The mouse has three buttons used to interact with the
objects on the screen. The Perform Button (left button)
causes the selected item to perform its action, which depends
on the type of the item. For example, if the selected item
is the control button labeled Quit, then the session ends.

The Name Button (middle button) is used to retrieve the
name of the performer. The cursor changes to display the

name and follows the mouse until the user clicks the button

again. If the mouse is clicked in an area that accepts
names, the name is pasted to that area. Pasting in the help
area causes the display of a text description of the item.
The Menu Button (right button) produces a pop-up menu
related to the selected item. The menu appears at the cursor
point, and remains until the next mouse click. If the cursor
is over a menu item when the button is clicked, the command

associated with the item is performed.

2.1.2.1 Rehearsal World’s Theater

When starting Rehearsal World, the designer is presented
with an empty theater. The control panel and help area are
the only visible items on the screen.

The control panel contains six sub-items, STAGES, HELP,
RESHOW, CLEAR, PRINT, and QUIT. These commands are not for
individual items, but work on all items in the theater. For
example, RESHOW redraws all the items on the screen, CLEAR
erases the current production, and QUIT exits Rehearsal

World.

2.1.2.2 Rehearsal World's Stage

The STAGES button presents a menu of available stages.
The first entry is AnEmptyStage, which creates a new stage.
Performers from other stages are then copied into the new

stage.

18

Performers are found in stages with names ending in
Troupe and are grouped by similar functionality. For
example, the GraphicsTroupe contains graphical oriented
performers, such as a Traveler that moves along a defined
path on the screen. To place a performer into the new stage,
the performer’s Troupe is opened, and the performer is copied
to the new stage.

A performer responds to cues sent to it by other per-
formers or by the user. Some cues are specific to the
performer, while others are common among all performers. The
Menu Button presents a pop-up menu to the user containing two
parts. The top part is the cues common to all performers,
such as move, resize, copy, and erase. The bottom part is
the categories of cues for that particular performer.

When the user selects an item from this menu, a cue
sheet containing the cues of the selected category is dis-
played. The performer responds immediately and appropriately
to any cue selected from the cue sheet. Copies of the
performer respond the same to a given cue.

Some cues require parameters to provide more
information. The parameters are set in the cue sheets for
the performer, by either typing the appropriate Smalltalk
expression or by the use of an eye icon. While the eye is
opened (by clicking the icon), Rehearsal World watches the

actions performed by the user. When the eye is closed, a

19

Smalltalk script is made to repeat the actions performed by
the user.

Associated with each performer is a default action, a
button action, and a change action. The default action is
only defined for some performers. When the user selects the
performer, the default action is performed, unless the action
is overridden.

This action cannot be redefined, but can be inhibited,
by the designer. Sending the cue inhibitAction disables the
default action, while the cue enableDefaultAction enables it.

A performer may become a button by sending a
becomeAButton cue. When the performer is selected, the
button action is executed instead of the default action.

If a performer’s state changes, either by the user or
the actions of another performer, then the change action is
executed. What constitutes a change is defined in the
description of the performer’s type. For example, if a
Number changes its value, then the change action displays the
new number.

The designer may create scripts for both the button
action and the change action by sending the cues
scriptForButtonAction: and scriptForChangeAction:. A script
of Smalltalk statements is sent with the cue. For instance,
sending the message: scriptForButtonAction: [x <- x + y]

causes the performer to add two number and store the results

20

when the user selects the performer.

Some performers include other specialized actions. For
example, the List performer executes the action set by the
scriptForSelectionAction: each time the List is told to
iterate. The specialized actions are also programmable by
the designer.

A production consists of the stage, its wings, and the
performers contained within the stage and wings. Performers
invisible to the student (either because they are waiting to
appear or perform their functions backstage) reside in the
wings. A production is different from a troupe, since the
performers interact with each other using scripts and cues.
The performers in a troupe are not programmed.

Each performer has a name assigned by the system upon
creation. The name is created by appending a number to the
type of the performer. For example, two Picture performers
names are Picturel and Picture2. The designer may change the
name by the setName: cue.

Names are unique within a stage. Different stages do
not share the same context. Therefore, the script of one
performer can only send cues to other performers within the
stage. Cues are sent by giving the name of the performer,
followed by the cue and parameters.

A new performer class is created by first creating a

stage with performers and interactions as described above.

21

The stage is then saved under a name using the storeWithName:
cue. The name becomes the type of the new performer.

To create a performer of the new type, the
makePerformerOfType: cue is sent to the stage. The new
performer type is added to the menu of available troupes, if
its name ends with Troupe and is sent the
makePerformerOfType: cue.

Cues are created and deleted by selecting the CUES
category in the stage menu. The scriptForCueNamed: cue takes
a name of a new cue and creates an empty cue template.

Colons in the name are used as parameter markers. For
example, a cue named setX:Y: takes two parameters, one is the
value for X, the other is the wvalue for Y.

The cue template contains two fields, inCategory: and
withScript:. The inCategory: field defines the category of
the new cue. The withScript: field is the Smalltalk code to

execute when a performer of this type is sent the new cue.

2.1.3 Problems with Programming by Rehearsal

Programming by Rehearsal World was an attempt to provide
a direct-manipulation, graphical environment for the building
of lessons by designers with little programming experience.
It succeeded in providing some isolation from such
programming details as bitmaps, event handling, etc. Unfor-

tunately, it does not isolate the designer from the Smalltalk

22

language.

Only simple scripts can be built using the watching mode
(open eye icon) of Rehearsal World. Commands more
complicated than selecting or moving objects on the screen
are written in Smalltalk. Therefore, the designer is
required to learn at least a subset of Smalltalk.

The Smalltalk environment is both large and complex.

The designer needs to learn about classes, objects, and
messages, before creating more than the simplest lessons.

For example a designer created, during a case study, the
following script, which illustrates the problem (the *‘~’
character represents the return arrow in Smalltalk):

[~ Picturel getCenter getX * maxX / Joystick getWidth].

The designer must know the following to write the above

statement.

* getCenter is a message to a picture and returns a
point.

« getX is a message to a point and returns an inte-
ger.

* the order of the messages are getCenter then getX
and not getX, getCenter.

* the multiplication is performed before the
division.

« getWidth is a message to the Joystick object that
returns an integer.

* the getWidth message is performed before the di-
vision operation.

Two items from the list should be noted. First, a point
is not defined as a Troupe, but as a Smalltalk class. There-

fore, even this simple statement is outside the designer’s

23

environment. The situation becomes worse has scripts of
higher complexity are created.

Second, Smalltalk’s evaluation order of mathematical op-
erations are in a left to right order, unless surrounded by
parenthesis. Most other programming languages have an order
of precedence. For example, the precedence order between
multiplication and addition in Smalltalk is the leftmost op-
eration first. 1In a language like C, the multiplication
comes first. A designer familiar to other programming lan-

guages may become confused by this difference.

2.1.3.1 Multiple Processes

The use of multiple process in Rehearsal World is anoth-
er problem area. Three approaches were examined, one process
per performer, one process only, and one process per user
action. Rehearsal World uses one process per user action,
which is not transparent to the designer, and, thus requires
the designer to program a multiprocessing systems.

The following example was given for the problem with one
process per performer:

On stage are three performers, a button named
JumpButton, a Traveler named Rabbit, and a Number
named Height. JumpButton’s ButtonAction is first
to tell Height to increment its value by a fixed
amount and then to tell Rabbit to jump to Height’s
value. How high will Rabbit jump? If the three
performers are totally independent, then we have no
way of knowing what the value of Height will be
when Rabbit starts its jump. Just because
JumpButton is told first to change the value of

24

Height does not mean that that will happen before

Rabbit jumps again (Gould & Finzer, page 53).

Based on the problem above, the builder’s of Rehearsal World
decided against the one process per performer model.

The second approach uses a single process for the entire
environment. Two reason against this approach were given.
First, the designer must explicitly program each step of a
multiple-object animation sequence. For example, Travelerl
and Traveler2 are to move simultaneocusly on the screen. The
designer has to tell each Traveler to move a step in a loop
instead of just telling the Travelers to move along their
assigned paths.

Second, debugging is easier with multiple processes.

One process can display information about another running
process. This allows the designer to watch the actions of a
performer, while the actions are in progress.

Rehearsal World uses one process per user action. In
most cases, a process is spawned when the user or designer
interacts directly with a performer. 1In the example given
above, one process is created when the user selects the
JumpButton. JumpButton changes the value of Height and then
causes the Rabbit to jump, which is the desired behavior.

The problem with this approach is the creation of
multiple processes using the same performer. For example, if
the JumpButton is clicked twice in rapid succession, two

processes are created. The second process may change the

25

Height before the first process starts jumping, or the two
jumps could interfere by one jump starting before the finish
of the other jump.

Rehearsal World’s solution to this problem is to inhibit
the button, with the inhibitAction cue, at the start of the
action. Upon completion, the button is re-enabled with the
becomeAButton cue. In the example, JumpButton’s first
command in its ButtonAction is to inhibit itself and the last
command then re-enables itself. This solution forces the de-
signer to handle inhibiting and reinstating the button - a
person unlikely to understand the necessity.

Some observations on both the problems and the solution.
The difficulty is that their system does not guarantee that
messages are received in the same order that they were sent.
In the example, the Height object receives a message from the
JumpButton object and then from the Rabbit object (i.e. the
request for the height value). The Rabbit will jump the in-
correct height, if the second message is received first.

The underlying system can easily guarantee that messages
are received in the correct order, since Rehearsal World is
on a single processor computer. Only on a distributed envi-
ronment does this become a hard problem. In a distributed
environment, the system must handle lost, delayed, or dupli-
cated messages, and also establish a global time. These

problems are still being studied.

26

If multiple threads of control are allowed for each pro-
cess, then more work is needed. With one thread, the process
finishes processing the first message, before starting the
second message. In the example, the Height object processes
the change value message from the JumpButton object before
starting on the get value message from the Rabbit object.

The Rabbit object gets the value only after the update is
finished, which is the correct behavior.

With multiple threads, the object must block all messag-
es that access a value being updated, until the update is
complete. Furthermore, the update message must be blocked
until all threads that access the value are completed. This
restricts the update “thread” from changing the value while
it is in use by other “threads” and read messages received
after the update message from accessing the value before the
update. The simplest solution is to wait for all previous
messages to complete and to block later messages until the
update is complete.

From the example, the Height process receives a message
to update its value. Since this is a write event, the pro-
cess immediately blocks other messages that access its
variables. The update “thread” waits for the completion of
previous messages, updates the value, and then unblocks the

messages.

27

When the Rabbit receives the message to Jjump, it
requests the height from the Height object. 1If Height has
received the update message, the request from Rabbit is
blocked and, therefore, the Rabbit process is blocked.
Height finishes the update, then processes Rabbit’s request
for information. Rabbit receives the reply, becomes
unblocked, and jumps.

The problem with Rehearsal World’s solution to multiple
processes is that the designer is responsible for provide
mutual exclusion. Providing mutual exclusion in a multiple
processes environment is difficult for experienced
programmers, especially if the production is large.
Rehearsal World purpose was to provide an environment for
designers with little programming experience.

In general, the goal of Rehearsal World was not met. In
all but the simplest productions, the designer is faced with
programming in Smalltalk and providing mutual exclusion
between performers in the system. Two modifications would
help the environment.

First, either restrict the designer to the subset of the
Smalltalk language or provide a new language that is
applicable to the creation of productions. Currently, the
entire Smalltalk environment is accessible to the designer,
although, most of it is not needed. The designer can easily

crash the entire system with a mistake. Providing this power

28

to inexperienced designers is not wise.

Second, guarantee that messages are received in the send
order. Rehearsal World is close to the level of Smalltalk,
but this closeness isn’t required. The designer’s code is
easily checked for such things as accessing or setting of
instance variables. When a message is received that sets the
value of the instance variable, then all messages that use
the variable should be blocked.

The designer’s scripts can easily be surrounded by
Smaliltalk code to handle correct message order. &
performer’s process can be designed to not allow the
processing of a message until the previous message of the
same type is completed. These extensions are invisible and
makes a better environment for designers with little

programming experience.

2.2 Hypercard

HyperCard is an authoring and information tool for the
Macintosh. It shares many similarities with MicroWorld,
although the work was done in parallel and without knowledge
of each other.

HyperCard consists of five components, stacks,
backgrounds, cards, fields, and buttons. A stack is similar
to an application; it is created to solve a certain set of

problems, or provide a certain service. For example, the

address book and the calender provided by HyperCard are both
stacks.

A stack contains a combination of the other components
of HyperCard. A stack may either be homogeneous or
heterogeneous. A homogeneous stack appears to have the same
background for each card, although, several backgrounds may
be used. A heterogeneous stack contains more than one back-
ground with a different look.

Cards in the stack hold the user’s information, with
each card as a single unit. For example, an address in the
address book is a card. The background’s graphic defines the
common look of each card in the stack.

A stack has several layers that are important for
scripts and event handling (see below). An important
division exists between the background and card layers. The
card layer is always higher than the background layer.

When a field or button is created, it is placed on the
top layer. The user can change the layer of a field or
button by moving the item up or down in the layers. For
example, moving an item down one layer moves the next lower
item up one layer.

The background is the lowest layer. Buttons and fields
created before a card is created are placed above the
background layer and below the card layer. These buttons and

fields belong to the background.

30

After creating the card layer, newly created buttons and
fields are above the card layer, unless HyperCard is told
specifically to place the new items above the background.
Buttons and fields above the card layer are unique to the
current card. If another card is selected from the stack, it
does not have the buttons or fields defined for the previous
card.

Both the background and card layers may contain
graphical images. The background defines the base image;
each card’'s information is drawn above the background. If
the card layer contains an image, it is unique to the card.

Buttons contain an icon and are either visible or
invisible. Invisible buttons are useful when the graphical
image at a lower level provides the need information. For
example, a stack to teach a student the different parts of a
car can use invisible buttons over different areas of the
graphical representation of the car. The student is then
able to select a car part by clicking on the representation
(for example, a tire), and the invisible button handles the
click.

Fields are used for displaying text, and are also either
visible or invisible. Invisible fields serve two purposes.
One, hide text to be displayed later. For example, the
answer for a guessing game is in a hidden field; only

displayed when the student gets it right, or gives up.

=

& File Edit Go Tools Objects

I Home Card 2

D B 3

Address Documents

—

=
a1
Calendar Slide Show HyperCale

ee,,

Card Ideas Button Ideas Stack ideas Quotations

Book Shell

Figure 4. HyperCard’s Home Stack

Second, a place holder for the card’s state information.
Figure 4 shows HyperCard’s home stack. The large icons
(such as “Address” or “Calendar”) are in the card level and
an invisible button exists above each icon. Pressing the
button causes HyperCard to load the appropriate stack. The
two arrow buttons are in the background level. Pressing the
right button displays the next card and pressing the left
button displays the previous card. Since these arrows are in
the background layer, they appear in each active card,
therefore, the arrows allow the user to move through all

cards in the stack. The current card in Figure 4 does not

32

HyperCard

t

Home Stack

t

Stack

!

Background

!

Card

Button Field

Figure 5. HyperCard’s Object Hierarchy

contain any fields.
2.2.1 Hierarchy of HyperCard’s Objects

The hierarchy of HyperCard is similar to object-oriented
languages, although HyperCard does not have a class
structure. HyperCard’s hierarchy is shown in Figure 5.

Two entries in Figure 5 need mentioning. HyperCard
refers to the system itself. If a message is received at
this level, and is either not a primitive nor external

command, then an error has occurred.

33

The Home Stack is the stack in charge of other stacks.
For example, it allows the user to select between stacks in
the system, create new stacks or delete old stacks.

When a message is sent, the hierarchy is searched for
the script that corresponds with the message. The entry
peoint in the hierarchy depends on two things, how the message
was created and the position of the mouse.

A message is either generated in a script or by the
system. If the message was generated by a script, then the
search begins at the same level as the script. For example,
if a script at the background level sends a message, the
search begins at the background level and moves upwards until
found.

Messages generated by the system have three possible
entry points, depending both on the message and the position
of the mouse. If the message is either mouseDown,
mouseStillDown, mouselUp, mouseEnter, mouseWithin, or
mouseLeave, then the message is sent to the top button or
field under the current mouse position. Otherwise, the
message is sent to the current card.

The entry point for other messages is based upon which
item uses the message. For example, the messages newButton
and deleteButton are sent to the button level, and newField,
openField, closeField, and deleteField are sent to the field

level, BAll cther system generated messages are sent te¢ the

34

current card.

2.2.2 HyperCard Scripts

Scripts can send messages to the current object or to
other objects. The commands on <command> and end <command>
are the entrance and exit of a script. <Command> is the name
of the message this script performs. For example, on
mouseUp..end mouseUp defines a script to handle mouse up
events.

Information is stored in areas called containers. The
most common containers are text fields and variables. Three
specialized containers, the It variable, the Message Box, and
Selection, are provided and maintained by HyperCard. Some
commands implicitly use these containers.

All containers store information as strings. If the
information is used in another form, such as a numeric value,
the string is converted before use. Results are converted
back into strings before storage. Uniform format allows the
same treatment of all containers.

Fields hold information for a card. This information is
unique whether the field is in the background or card layer.
A different card holds different information in all fields.

Several ways exists for accessing a field in a card.

The domain (background or card), field’s name or number, and

the card’s name or number gives a complete path to a field.

35

The domain indicates which area the field is defined, either
above the background layer or above the card layer.
HyperCard defaults to the background layer, if the domain is
missing.

A field is referenced either by name, local ID, or
global ID. The field’s name is set by the user. Local ID is
relative to the field’s layer level within the card, with
respect to other fields. For example, a field one layer
above the background has a local ID of one.

Global IDs are uniquely assigned by HyperCard on the
creation of any object in the system. HyperCard
automatically saves information to disk, therefore, these
numbers are unique between sessions and stacks.

Cards are also accessed through name, local ID or global
ID. As with fields, the name is set by the user and the
global ID is defined by HyperCard. The local ID is the
relative position of the card within the stack. For example,
the second card in the stack can be referenced as card 2 or
as second card. If the card designation is missing,
HyperCard uses the current card.

For example, the command card field ID 418 of card Cari
accesses the information from the field with the global ID of
418 from the card named Cari. The keyword ID indicates a
global ID. The field is above the card layer, as specified

by the card keyword. If the local ID of the field is three,

36

and Cari has a global ID of 132, then the command card field
3 of card ID 132 provides the same information.

Unlike other containers, information in a field is saved
between sessions. This fact allows invisible fields to be
used as instance variables for the cards; the information is
retained between scripts and between sessions. Global
variables are volatile, and are global to HyperCard.
Therefore, a global variable is a poor choice for use as
instance variable.

Local variables are created by first reference and are
not declared before use. Further references within the
script accesses the same variable.

Global variables are declared before use. Other scripts
must declare the variable before accessing it. The wvariables
are global to all stacks allowing stacks to share informa-
tion. Global variables retain their values when exiting a
script, but not when exiting HyperCard.

The special local variable called It is used as the
storage point for many HyperCard commands. For example, the
get command places the value into It. The user is free to
access the It variable the same as any other variable, but
must remember that a command may change the value.

The Message Box is a window in HyperCard and is conve-
nient for sending messages to the user. Furthermore, the

user is able to type commands and execute them from the

37

Message Box. This container differs from other containers in
one aspect. Only one line of text is allowed in the Message
Box.

The Selection container contains the currently selected
text. The contents of this container is treated as any other
container, which includes replacing the contents with a new
value. The new information is automatically placed in the
field of the currently selected text.

All containers hold strings, which may include many
words and lines of text. HyperCard provides commands to
subdivide the text into components. The text can be divided
into characters, words, lines, and items. Items are defined
as the text between commas.

The keywords character or char, word, line, and item are
used to subdivide the text. If the keyword to is added, then
a range is selected. For example, the command word 1 to 4 of
field 1 returns the first four words of the first field.

Further subdivision is accomplished by nesting the
component expressions. For example, the command character 2
of word 3 of field 1 returns the second character of the
third word of field one. The expressions are defined from
the narrowest to the broadest subdivision.

Commands are typed by the user, with one command per
line. If the command is too long, a soft return is used to

continue the command on the next line. The format of a

38

command is the name of the command followed by the parameters
and are separated by commas.

Commands may contain optional keywords as part of the
command. These keywords are ignored, but provide a more
readable source in some cases. For example, the go command
has an optional keyword of to. Therefore, the command can
either be go <destination> or go to <destination>.

Parameters may also have keywords. In some cases, the
keyword provides more information to the command. Other
times, the keyword makes the command more readable. For
example, the put command is put <source> [into | after |
before <container>]. The keywords into, after, and before
tells the command the location to put the information with
respect to the container. The keywords in the command click
at <location> [with <modifier key>] are used for
readability.

Functions are defined differently than class defini-
tions. The format function <function name>..end <function
name> is used, instead of the on <command name>.end <command
name> format used for commands. Values are returned by the
return command. If the script ends before a return is
reached, then the empty string is returned.

Parameters are also passed differently. The parameters
to a function are separated by commas and surrounded by pa-

renthesis. Parameters to commands are separated by a space

39

and are not surrounded by a special character.
Commands may be grouped into the following categories:

Navigation

Action

Arithmetic

Object Manipulation
Screen Manipulation
Sound

File Manipulation

These commands are too numerous to name individual, but the
following is a general ocutline of the commands.

Navigation commands move the user from one card or stack
to a different card or stack. Included in this group are the
go and find commands. Go makes the destination the current
card or stack. Find searches the current stack for the
occurrence of a string. The search may be further restricted
to a specific field within a card. If the string is found,
the card containing the string becomes the current card.

Action commands modify the user’s information. This
category contains the commands put and get used to store and
retrieve information from a container; the send command for
sending messages to another object; the open command to start
another application; and the doMenu, click, drag, and type
commands to allow the script to input commands into HyperCard
as though the user had performed the action. For example,
the click command at the given location appears exactly the

same as the user clicking the mouse at the same location.

40

Most math functions are defined as functions in
HyperCard. The four arithmetic functions, add, subtract,
multiply, and divide are also defined as commands. The
commands take a source and a container, performs the math
function on the two values, and store the results into the
container. Alternatively, the put command could be used,
therefore these commands are shorthand for the longer put
command. For example, the command add 5 to it is equivalent
to put 5 + it into it.

Object manipulation commands are for accessing and
changing information about an object. 1In most cases, the
objects are fields and buttons. Commands in this category
include hide and show, which makes the object invisible or
visible, and get and set, which gets and sets the properties
of an object. The properties are further subdivided into
global, window, stack, background, card, field, button, and
painting, depending on the area of the system affected by the
property. The same property name may affect more than one
area. For example, the property name is applicable to the
stack, background, card, field, and button.

Three commands, visual, answer, and ask manipulate the
screen, but are not associated with a particular object.
Visual produces a visual effect on the screen. The effects
are defined by HyperCard, and the user is only allowed to

choose one from the set, but not define a new effect. Answer

41

and ask presents dialog boxes to retrieve information from
the user.

HyperCard allows the production of two types of sound, a
system beep and sound resources. The resources are digitized
from an external source and are played back as recorded, or
with a variation of speed and pitch. Varying these
parameters plays the sound resource as notes. 1In this case,
the resource is used as the base for the note.

The standard file manipulation commands are provided by
HyperCard, which includes open, close, read, and write. Only
the text file type is supported and the user is responsible
for the delimitations between fields and cards.

HyperCard also includes a set of functions that may be
grouped into the following categories:

Time and Date
Keyboard and Mouse
Text

Math
Miscellaneous

* @& ® * @

The HyperCard function returns one value, formatted as a
string. To return more than one value, a string is built
with the values, and separated by commas. Individual values
are retrieved using the “item” subdivision commands.

The time and date functions return the wvalue of the
internal clock in the Macintosh in several different formats.

The smallest time increment available is 1/60th of a second.

The keyboard and mouse functions return the current
state of the user interface, such as the current mouse
position, the state of the mouse button, the state of the
modifier keys, and the location of the last mouse click.
These functions allow special interaction between the script
and the user.

The text functions provide information about the
contents of containers. These functions give the length of a
container, find the position of one string inside another
string, and find the number of components within a container.

HyperCard also has the standard math functions, such as
abs, annuity, atan, average, compound, cos, etc. These
functions cover both business and scientific calculation, as
shown in the example. Furthermore, the function the value of
<contaliner or expression> processes the string as a
mathematical expression and returns the results. This allows
the evaluation of text within a field, useful for teaching.

Several useful functions are grouped under the
miscellaneous category. Functions for accessing parameters
(described below), retrieving the results of the last go or
find command, and retrieving the ID of the object the
received the last message (called the target) are in this
category.

The target function is similar to the reference to self

in an object-oriented language. A script defined higher in

43

the object hierarchy can send messages to the original object
that received the message using this function. The target
and the command pass are similar to the reference of self and
super in Smalltalk.

The values of parameters are accessed by two possible
methods. First, parameters can be declared as part of the
function or command definition. The parameters are bound to
the given names. If less parameters are passed than are
defined, the excess parameter names are bound to the empty
string. If more parameters are passed, the excess parameters
are only accessible by the following method.

The second method for accessing parameters are the three
functions, the param of <parameter number>, the paramcount,
and the params. The function the param of <parameter number>
returns the value of the parameter at the given index. The
paramcount returns the total number of parameters passed into
the script and the params returns the list of the parameters.
Any parameter passed to a function or command are accessible
by these functions, including the named parameters.

For example, observe the following definition for foo:

on foo name, date

end'fbo
The named parameters to foo are name and date. The statement
foo Cari binds name to Cari and date to the empty string. On

the other hand, the statement foo Cari, “8/22/88”, bar binds

44

name to Cari, date to “8/22/88,” and bar is only retrieved by
the statement the param of 3.

Parameters in HyperCard are flexible, but debugging the
scripts is more difficult than other programming languages.
Required parameters must be tested individually to insure
they contain values. The programmer may forget to test a
parameter and create bugs that are hard to trace. An
improvement is a command, such as require <parameters>, that
automatically test each parameter for a non-nil value.

In general, HyperCard is a good environment for building
user interfaces and information processing packages.
HyperCard fits in well with the Macintosh’s operating system
and event handling, although it does not use the Macintosh’s
standard interface At least two problems exist with
HyperCard, the difficulty in debugging caused by using the
empty string by default, instead of reporting an error (see
above), and the scripts are interpreted, which slows the

system.

2.3 _Other Works

Two papers, Buildi rf Dir
Manipulation (Cardelli, 1987) and A Substrate for Object-
Oriented Interface Design (Smith, et al, 1987) influenced the

design of MicroWorld. A brief description of each paper is

given below.

45

2.3.1 Building User Interfaces by Direct Manipulation

Building User Interfaces by Direct Manipulation de-
scribes a system for building the user interface’s dialog
boxes separate from the application. A set of interaction
primitives, called interactors, is provided by the system.
An editor is used to assemble them into a dialog box.

The editor is similar to HyperCard and MacDraw. The
interactors are placed and positioned in the dialog editor
similar to HyperCard's method for buttons and fields. Moving
the sides of the bounding rectangle resizes the interactors,
similar to MacDraw’s resizing of objects.

Interactors can be grouped together on the screen or as
logical units, called interactor groups. The interactors of
a screen group are moved and resized as a single unit, same
as object groups in MacDraw. The interactors in a logical
group work together to perform a function.

For example, a radio button group is a collection of
independently operated on-off buttons. Only one button is
“on” at a time, so the previous “on” button must be turned
“off,” when a new button is selected. A radio button is a
logical group, since they only have one function, namely to
select one item.

New interactors may be composed of other interactors, or
created entirely from scratch. Building a new interactor

requires programming in Modula2+. The interactor belongs to

46

the Interactor class, and has the following four methods:

* GetProperty: gets a property value of the inter-

actor.

» SetProperty: sets a property value.

*» GetDescription: provides a standard data

structure to describe the interactor.

*» SetDescription: conforms the interactor to the

provided description.

Interactors have several properties. Some attributes
are apparent to the user, such as the loock of the interactor
and its “reactivity” to events. Other attributes are
internal, such as the interactor’s type and the event
produced when activated (see below). Individual properties
can be changed with the editor without using the SetProperty:
method.

The appearance of the interactors is specified by
several data structures, called looks. A look is used for
each state of activation. This information includes the look
of the frame, the alignment of the interactor with respects
to the dialog, and the margins.

Looks do not contain size information. The look must
adapt to the geometry of the interactor. For example, a look
may specify color of a border, but the size of the border is
set and changed by the size and resizing of the interactor.

In general, looks are composed of an image and a frame.
The image is either a pattern, a bitmap, or a text field.

The frame has a background, a border, and an overlay. The

overlay is used for translucence effects.

47

Five levels of activation exists for each interactor.
The meaning for the activation levels are:

Active: Functions normally.

ReadOnly: Functions, but not modifiable.

Protected: Needs special action to become active.

Passive: Does not function.

Dormant: Does not function, and looks “dim.”

The interactor may have a different look for each activation
level, or the same look for several levels.

When an interactor is activated, such as clicking a
button, an event is posted. The event’s name 1s contained
within an attribute of the interactor and is set by the user.

2 procedure is registered with the dialog for each type
of event by the application. When an event occurs, the
procedure associated with the event is called with a single
user-defined parameter and four standard parameters: the
dialog, event name, event value, and event time. The same
information is passed for each type of event.

Several interactors are provided by the system,
including buttons, pulldown menus, scroll bars, browsers,
fatbits, and text. A browser is used to select one or more
items from a variable-sized set. Fatbits presents a
magnified view of a bitmap. It can be used in a graphic
editor. The other interactors are typical user interface ob-
jects.

This system is intended for a different class of user

than in MicroWorld, which is designed for people with little

48

programming experience to build graphical-oriented lessons.
This system is designed as a tool for programmers to easily
build the user interface portion of the project. The
internals are still written in a standard programming
language, in this case, Modula2+. 5till, it provides a model

for using objects in the user interface.

2.3.2 A Substrate for Object-Oriented Interface Design

A for j -Qrjien
describes the GROW (GRaphical Cbject Workbench) system, that
supports the development of graphical interfaces. As with
the system describe in Building User Interfaces by Direct
Mapipulation, GROW separates the interface from the
application. The interface built for one application is
modifiable and reusable in other applications.

GROW is built upon a set of interrelated graphical
objects, arranged in a hierarchical class system. Each
object contains the attributes and methods necessary for
interaction with other objects, displaying the object within
a window, moving the object, etc. Multiple inheritance is
allowed, therefore, an object may share common attributes and
methods of several objects.

Graphical objects can be grouped into a single, complex
object. Operations performed on a complex object are applied

to all of its components. Furthermore, a composite object

may consist of other composite objects.

Composite objects are handled by slots containing the
name of the components. The components also have a slot that
points back to the composite object. When an instance of a
composite object is created, the components are created
recursively, and these links are established.

The first step in creating a graphical object is to
define the class for the object. The programmer is prompted
for the name, its superclass, and its composite relationship
to the other objects in the system. Objects provided by the
system are not used directly.

The next step is to define the graphical dependency.
The attribute for one object may depend on the values of
other attributes, both within the object and from other
objects. For example, the size of a name box is dependent
both on the size of the font and on the number of characters
within the name.

When an attribute is updated, all dependent attributes
are updated. A simple and efficient updating algorithm is
used to propagate the changes throughout the dependencies.
This algeorithm only allows an acyclic dependency graph.

Each attribute contains a list of the other attributes
on which it depends. If the other attributes are in other
objects, then a path is given from the first object to the

other object along with the needed attribute. For example,

50

if the needed attribute is DisplayRegion of the ModuleBox of
the object’s Module, then the path is: (DisplayRegion of
(ModuleBox of (My Module))).

The attribute’s dependencies can be declared either in
the class or in an instance of the object. If declared in
the class, then all instances of the class have the same
dependency.

Creating an instance of a graphical object involves four
steps. First, the object itself is created. If the object
is a composite, then the components are recursively created
and the component links are set. Second, the dependency
links are constructed. Third, the display attributes are
computed. The dependency links are traversed for each
attribute needed for the display. Four, the object is
displayed.

As stated earlier, the interface and application are
separate. The GROW environment responds to high-level
messages from the application. Each object is created with
an application-defined key, which the application uses to
identify the object. The key and graphical instance are
saved in an association table.

Both the application and the interface have access to
the association table. Messages are sent from the
application to the instances associated with the key. The

key can be used as an argument in calls from the interface to

51

the application. The functions to retrieve instances and
send messages via a key are provided by GROW.

The separation of application from the interface allows
the easy reuse and modification of the user’s interface. The
application only knowledge of the interface is the names and
keys of the objects. This separation allows the use of
interface components in different applications, including
applications written in other languages.

The goal of GROW is similar to the project outlined in
Building User Interfaces by Direct Manipulation, which is to
provide interface building tools for programmers. Although
MicroWorld’s goal is different, useful information was
provided by studying GROW.

MicroWorld was influenced the most by Programming by Re-
hearsal, which was the starting place for MicroWorld. The
papers Building User Interfaces by Direct Manipulation and A
Substrate for Object-Orjented Interface Design served more as
a way to conceptualize the use of objects in a user inter-
face, than as a blueprint for MicroWorld. HyperCard was in-
troduced too late to have a direct influence in our design.
Chapter 4 gives a comparison between MicroWorld, Rehearsal

World, and HyperCard.

52

CHAPTER 3

MICROWORLD

Computer systems are increasingly more powerful as new
designs in hardware are implemented. Today, desktop
computers provide more power than some mainframes built a few
years ago. Unfortunately, software development has not kept
pace with hardware development, especially in the area of
computer—-aided instruction (CAI).

In most cases, CAI systems are built from one of the
standard programming languages, such as C or Pascal. These
languages are designed for general purpose programming and
are not well suited for building CAI systems. As a result,
the program is designed to teach one particular area and is
not flexible enough to teach a different area. For example,
a CAI system to teach math is not easily modified to teach
reading.

Programming by Rehearsal is one of the first attempts to
provide an environment for the development of CAI systems.

It provided a set of classes, called Troupes, to create
object used in the lesson. These classes were specialized

for certain functions {see Section 2.1).

MicroWorld uses an approach similar to Programming by
Rehearsal’s approach, but contains several modifications,
which improves the development of CAI systems. Both systems,
use the prototype model instead of a class hierarchy for
their interface objects. In Programming by Rehearsal, each
object is created from one of the Troupes defined in the
environment. All of MicroWorld’s objects are created from
the Thing class, which is more generic and flexible than the
objects created from Programming by Rehearsal’s Troupes. The
instructor programs the object’s responses to events, thus
the instructor has complete control over the lesson.

Although MicroWorld’s focus is a second language
tutoring system, the design allows the creation of several
different types of lessons. MicroWorld provides the tools
for producing lessons involving manipulation of graphical
objects on a screen. Future design plans include handling

text and numeric representations.

3.1 i he W he T r

A world metaphor is used by MicroWorld. A lesson
consists of a World and the objects contained within it. The
World provides a structure for objects to exist, similar to
the Earth providing a structure for humans to exist. A

familiar metaphor helps the instructor work with MicroWorld.

54

Each World has one or more backgrounds, which defines
the lesson’s setting. The background can change as the stu-
dent progresses through the lesson. For example, a lesson
can begin on a city street, with an appropriate city back-
ground. The student enters a store (possibly by clicking the
mouse on the door) and the background changes to the interior
of the store.

Objects, both visible and invisible, reside in the
world. The base object is called a Thing and is similar to,
but not restricted to, a physical object in the real world.
For example, some physical objects are rocks, computers,
cars, men, and women. These objects can be represented in
MicroWorld.

Associated with each Thing is a graphical image and
programmed responses to events. The students uses the
graphical image to manipulate the object during lessons. No
restriction is placed on the size or shape of the image, al-
though, an image larger than the world is not entirely shown.

When an user-created event occurs, the Thing’s pro-
grammed response to the event is performed. The set of pro-
grammed responses defines the behavior of the Thing.

Several events are possible. A click event is sent to
the Thing under the mouse cursor when the user presses and
releases the mouse button. Clicking twice rapidly sends a

double click message to the Thing. Holding the mouse button

55

down and moving the mouse moves the Thing’s image on the
screen. During the move, the Thing receives dragging events.
When the mouse button is released after a dragging event, the
Thing is sent a landing event.

The responses are programmable by the instructor and are
unique to each Thing. For example, the response to a "click"
event for one Thing is to say its name, while the response
for another Thing is to "flash" its image. Unique responses
provides a more flexible environment for the instructor in
designing a lesson.

Several other features uniquely define a Thing. A
movement path can be defined for each Thing. The path can be
followed in response to an event, a message from another
Thing, or a message from the Tutor. The path is unique to
the Thing.

The recording of history and the evaluation of
performance are also unique to each Thing and programmable by
the instructor. For example, the task of a lesson is to move
Things into a landmark Thing. Part of the history kept by
the landmark could be the names of the Things that were moved
and landed correctly. Performance evaluation could be based
on whether the Thing was suppose to move and if it was moved
to the landmark. Programmable history and performance evalu-
ation creates a more flexible environment for the instructor

and a larger variety of lessons is possible.

56

Some objects do not have a physical form and reside in
an aether associated with the world. Currently, the only
object that exists in the aether is the Tutor, which controls
the lesson.

The Tutor acts as a supreme being over the World. It
gives a task for the student to perform, evaluates the
performance, and decides on the next task. Some possible
tasks are: repeat the previous task, teach a similar concept,
teach a different concept, or quit the lesson.

The Tutor communicates with Things by sending messages
using the Thing’s name. The Tutor may ask the Thing to set
some instance variables, or to provide information. For
example, the Tutor could ask the Thing to become stationary
(i.e. can not be dragged by the user) or perform an
evaluation of the student's performance of a task.

Things relate to other Things in two respects, through
communications and spatial relations on the screen. A Thing
can ask another Thing by name to perform a command or
function. The more difficult relationship between Things is

their spatial relations on the screen.

3.1.1 Spatial Relations Between Things

Determining the spatial relations between Things is a
more difficult problem than it appears at first glance. One

way to determine if a Thing is to the left of another Thing

D

Figure 6. First Spatial Relationship Test

is to compare the two Things’ positions and the distance
separating them. This calculation is easy, but does not
match how humans perceive spatial relations.

When humans are given a choice, why do we say that an
object is to the left of another object instead of above, for
example? In several cases the choice is easy, but other
cases are not so clear cut. 1In order to have a good system
for building graphical interaction applications, the choices
that the system makes must match the choices a human would
make.

The difficulties involved were first noticed when we
presented the diagram in Figure 6 to a small number of
subjects. Several questions were asked about the spatial
relations between the objects. For example, one of the

question was, "Which block is above C?" The typical answer

58

was B, although both A and B are above C.

The interesting section of this diagram contains the
squares C, D, and E. When asked which square was to the left
of the square E the answer was C, with only one exception.

If the simple method of comparing the horizontal position and
the separation distance was used, then the answer would be D.
Therefore, the simple method does not determine what we, as
humans, consider to be the correct answer.

This observation lead to the corridor theory, which
states that prototypical locations exist for an object based
on its dimensions. Another object's position is compared to
the prototypical locations to determine the spatial
relationship with the first object.

In Figure 7, A is the position considered the
prototypical position for an object to the left of the square
and C is the prototypical position for above the square. The
line at B is the point of the most ambiguity between left and
above. As an object's position moves from A to B and then to
C, the description of the object's location changes from
being left to being above. It is called the corridor theory
because the horizontal and vertical lines makes corridors for
the prototypical locations.

When an object is near the line at B in Figure 7, most
people use both directions to describe the location of the

object. In other words, a person will describe a circle

59

Figure 7. Describing Positions Around an Object

(assuming a circle exists at line B) as being above and to
the left of the square. An interesting study is whether a
person describes a location using the spatial relation closer
to the prototypical position first, or just by a random
selection. In other words, if an object is between A and B,
would a person describe it as being to the left and above the
square, and if it was between B and C, describe it as being
above and to the left?

As to the question of why people chose the rectangle B
over square A when asked which object was above the square C,
(Figure 6) two factors may play a role. First, the rectangle
B is larger than the square A. Because of size, rectangle B
may be more prominent in the mind of the observer, and thus

its selection over square A. Second, the square A is on top

60

Figure 8. Global Relationship Between Objects

and contained in rectangle B, which is a three-dimensional
relationship. Since the objects are on a two dimensional
plane, some people may rule out that possibility. Other
issues may also be involved.

One problem with the corridor method is its locality in
terms of describing spatial relations between objects. Aan
experiment, which illustrates the difficulty, is shown in
Figure 8.

The task was to describe the location of the black
square next to the white square. The question, "Describe the
location of this square," was asked of each subject. Based
on the corridor theory and the fact that each object has a
unique feature (i.e. only one circle and ocne white object
exists), the predicted response was either, "the square to
the right of the (black) circle” or "the square to the left
of the white square.” Instead, the answers were in the form,
"the second square from the left (or right)" or "the square
between the (black) circle and the white square."

The corridor method uses a very local relationship

between objects. The expected answers were derived from

Figure 9. Position with Respects to Irregular-Shaped Objects

taking the objects in the most prototypical positions and
using those as the point of reference. In the diagram
(Figure 8), the objects are in line. The observer groups
these objects together, and thus creates a frame of reference
for that group. The corridor method does not handle this
situvation.

Note the response of, "the square between the black
circle and the white square." The possible reason for this
response is based on the question. If the query was less
formal, such as, "tell me..", instead of "describe the..”, then
less information may have been provided. The more formal
query implies a more informative answer. A language tutoring
system needs to take this into consideration.

The second problem with the corridor theory is with
irregular shapes. Figure 9 shows an example of the problem.
An object at point C is described as being above the object

A. On the other hand, an object at point B is described as

62

being to the left of object C, although, object B is in the
vertical corridor more than the horizontal corridor. These
two problems lead to the centroid theory, which was combined
with the corridor method to form the present method for
determining spatial relations.

A centroid is the center point of the image. The
calculation is based on a modification of the center of mass
calculation. The object is consider to have uniform density,
since the object is on a two dimensional plane. The centroid
is used to determine where the object is in the corridor.

For example, in Figure 9 the centroid of object C is in the
right corridor of the object B.

Another observed phenomena is the breaking of an image
into segments. For example, the standard description of an
object at location A in Figure 10 is a variation of "the
object is below the horizontal bar and to the right of the
left vertical bar." It appears that the object is segmented
into three sub-objects, and the description is based on the
segments.

When an object has a more complex image, another problem
arises. If the object has a perceived notion of a front and
back, such as a man or woman, then determining the objects to
the left or right is more difficult. For example, in Figure
11 (from Chapter 1), the rope is to the woman’s left, based

on their positions on a two dimensional plane. Since the

63

Figure 10. Object with Components

Figure 11. Lifeboat

woman is facing the viewer, the object is also described as
being to the woman's right. 1In order to determine the

correct spatial relationship, this case must be handled.

64

The algorithm to determine if an object is in a spatial
relationship with another object (for example, "Is the man to
the right of the woman?") is not difficult. The centroid of
the objects and the position of the first object's centroid
in the corridor of the second object are compared. If the
object is closest to the prototypical location of the spatial
relationship in question, then the answer is yes.

Determining a prototypical location to place an object
into a spatial relation is also relatively easy. MicroWorld
aligns the centroids in the direction of interest. For
example, if "left" is the desired spatial relation, then the
object is placed to the left, with the two object’s centroid
on the same vertical line. The two objects are separated by
a distance equal to one-tenth of the larger object, or by a
minimum of 10 spaces. This distance was defined arbitrarily
and more study is needed to determine a more accurate
separation value.

On the other hand, determining which object is the
closest to the prototypical location is very difficult. Two
indicators need consideration. One indicator is the
relationship of the centroids. An object whose centroid is
in line with the comparison object’s centroid on the axis of
interest (either horizontal or vertical) is closer to the
prototypical location than an object not on that line. The

second indicator is the distance between the objects. If two

65

objects are on the same line, then the closer object is near-
er the prototypical location.

The difficulty is determining the relationship between
these two indicators. If one object is not as close in one
indicator, but is closer in the other, which object is in the
more prototypical location? Does one indicator have a higher
priority than the other indicator? If one indicator does
have a higher priority, then how close does the other
indicator have to be before it becomes the deciding factor?
Is this relationship concrete, or does it wvary between the
viewers of the objects and their locations?

It appears that the relationship is subjective, varying
from person to person. We have no way of measuring the
relationship either, so designing an algorithm to perform
correctly appears difficult, if not impossible. MicroWorld
makes no attempt at determining which object is closest to
the prototypical location. If the user asks for the objects
in a certain spatial relationship with another object, a list
is returned of all the objects that fit the relationship.

Dividing an object into segments is also a difficult
task. A simple object, like the one in Figure 10, is
relatively easy. The more complex an object becomes, the
more difficult the task. Also, the segmentation may be along
functional units and not geometrical units. MicroWorld has

no concept of the items’ functions. Again, the determination

6a

is subjective, therefore, no algorithm was designed to handle
this problem.

MicroWworld can determine if an object is in a certain
spatial relationship with another object, a good prototypical
location to put an object, and all objects that are in a
certain spatial relationship with another object.
Unfortunately, the problems of determining which object is in
the most prototypical location and the segmentation of the
objects were too great for us to design an algorithm to

handle these cases.

3.2 User Modification of MicroWorld’s Obijects

MicroWorld has two levels of modifications to the
environment. In authoring mode, the instructor can create
the world; create, modify, and delete Things and Tutors;
change the size and position of the world; change the
background, and change the lexicon file used to generate
sounds. In running mode, the internal state of the Things
and the current background are changeable via the
instructor’s program.

The student can create four different events in
MicroWorld. A Thing may be clicked, double clicked, or
dragged from one location to another. Clicking and double
clicking sends the event directly to the Thing. On the other

hand, when a Thing is dragged from one location to another,

67

two event types are sent, dragging events during the movement
and a landing event when the object is released. For
example, when objects in the “Lifeboat” lesson (see Chapter
1) receives a click event, it says its name. When an object,
such as the rope, receives a landing event, it ask the
lifeboat if it’s within the lifeboat’s boundaries and it
either says “The rope is in the lifeboat” or “The rope is not
in the lifeboat” depending on the object’s position with
respect to the lifeboat’s position.

Two internal actions, history and evaluation, are also
programmable by the instructor. In a tutoring system,
recording and evaluating the student actions are important
for determining future tasks in the lesson. The responses to
events are programmable, therefore, it is difficult to
determine the type of information to record and how to
evaluate it. A comprehensive history and evaluation
mechanism will not handle all possible cases. Our solution
is to provide the instructor with these two programmable
actions.

Things have a unique program for each action. Changing
the program for one Thing does not affect the programming of
other Things. This approach allows specialized Things to
exist in the world, but it is too time consuming to program
several Things to perform the same task. Therefore, two

mechanisms are provided to make programming responses easier.

68

When a Thing is copied, the programs for the Thing's
responses, history, and evaluation are also copied. The
instructor can make copies of one Thing, change their images
and other information, and make a collection of Things with
identical responses.

New commands and functions can be created by the in-
structor, using a set of primitives and any previously de-
fined commands and functions. Instead of several Things
using the same response action, one command can be created by
the instructor and the action just calls the new command.

Dialogs and pop-up menus are used extensively throughout
the programming phase. Only rarely does the instructor use
the keyboard. Pop-up menus provide lists of available
commands, functions, and items, depending on the position of
the mouse. For example, if the mouse points to a field that
expects a command, then the pop-up menu contains the list of
available commands. Selecting a menu item places the command

in that field.

3.3 Instructor's View vs., Student's View

MicroWorld operates in two modes, authoring and running.
The instructor works in the authoring mode. The lesson is
built by a combination of creating Things in the World,

programming the responses, and creating the Tutor.

The student uses the running mode of MicroWorld. The
lesson built by the instructor is given to the student to
perform. The two modes differ in the available commands and
the Thing's responses to events.

All menu commands described in Section 3.5 are available
to the instructor. Most commands are used for creation and
modifications of the World and Things that it contains. The
only command available to the student is Quit. This command
signals the Tutor that the student wants to quit the lesson
prematurely.

In authoring mode, the Thing's responses are programmed
by the instructor. When the instructor sends an event to a
Thing (for example, clicking it), the programmed response is
not performed, unless the instructor is testing the lesson.
When the student is taking the lesson, the Thing's programmed
responses are performed for the events.

All Things that are declared invisible are still visible
to the instructor. This allows the instructor to interact
with the Thing. During the lesson, the student does not see
either the invisible Things, nor the Aether window. Only the
World and visible Things are presented.

This paper is primarily concerned with the authoring
mode of MicroWorld. Therefore, the term "user" is equivalent
with "instructor." "Student” refers to a person performing a

lesson created by the instructor. The student does not have

70

access to the authoring system.

3.4 Ipntroductjon to the MicroWorld Environment

This section walks through a session to create a new
world in MicroWorld. The final product is not complete, but
this description will give an idea of the steps involved in
using MicroWorld. The next section describes the user
interface in greater detail.

When the instructor first begins a session, only the
World menu is activate (see Figure 12) and the available
choices are to create a new world, open an existing world, or
quit MicroWorld. The text of active menu and menu items are
printed in black, and the rest is printed in gray. Other
menu and menu items become available when certain conditions
are true. For example, the other three menus become
available when a world exist within the environment.

Since we are creating a new world, the New menu item is
selected from the World menu. MicroWorld first requests the
new world’s name with a default setting of “Default World”
(see Figure 13). The world will be saved in a file with the
same name as appears in the box when the OK button is
pressed.

Next, the world’s current background is set. Figure 14
shows a list of backgrounds defined in the current world.

Since the world is newly created, it contains no backgrounds

& IR ming Tutor Windaws

New %N
Open 0
{ ‘kose

Saue H#S
Save fls

Run HR
Stap ST
Leriton sl
Backgraund =B
Print

Quit

Figure 12. World Menu

€ World Thing Tutor Windows

Figure 13. New World’s Name

__ & NI thing Tutor Windows

Backgrounds
(| gy
= [Accept]
|

f

Figure 14. Backgrounds Defined in the New World

_ &Y ing Tutor Windows

Backgrounds
alps Y
city [Accept]
landscape
space

| F“9*|

<

Figure 15. World Contains Backgrounds

12

73

and the list is empty (Figure 15 shows a non-empty background
list). Selecting the File button allows the user to load a
background from a file into the current world.

Figure 16 is a file list dialog (provided by the
Macintosh Operating System), which shows the available files
from which to select the background. Selecting an item (in
this case “LBBackground”) and pressing the Open button loads
that background into the new world. Pressing the Cancel
button exits this dialog without loading a background.

MicroWorld requests the new background’s name when the
Open button is pressed (see Figure 17). The file name is
used as the default name for the background. The
background’s name is added to the list of available
backgrounds (see Figure 15) when the user accepts the name
(in this case, the default name was accepted). After this
step, the bare minimum world is completed and is shown in
Figure 18.

The next two major steps are to populate the world with
Things and assign the world a Tutor. These objects can be
created in any order, so we will start by creating a new
Thing.

The only available Thing menu item is Create (see Figure
19). The other menu items become activate when at least one
Thing exists in the world. Selecting Create begins the

process of adding a new Thing to the world.

74

& N ming Tutor Windaws

8 Lifeboatfiles
O drawings ¥ oPenfold
O films
D Images et

0) LBBackground Iive

JalkcE

<l

Figure 16. Selecting Background File

_Cmmlng Tutor UHndoaws

Name of the background

LBBa(kgruund |

Figure 17. New Background’s Name

&€ World Thing Tutor Windows

Default Worl |
a |_ Default Rether sl

ol

Figure 18. Newly Created World

& Wortd GILE Tutor Windows

- GalSiDe foult World
Gupircnte el
lename
{rnagae i |
e Set Positian 3P P RRPSHA B R R a

!IIHIIIHHJHIIIIH Exchange Planas mﬂ“ﬂ“ﬂmﬂmﬂumﬂmmmllHmml|ii|“ﬂﬂﬂﬂﬂﬂﬂﬁﬂ

Mavemaent

““““":!LMHMMII!H Actinns '“'"""""mrm EHEH””IHHIH mi E‘l mnmnm
T T .,.,uu“uuuuuufilizuu T @@ g

Figure 1%. Thing Menu

76

The next task is to give the new Thing a name (Figure 20),
which must be unique amongst all Things in the world.
Information about the Thing is saved using its name and the
name provides the means for other objects (Things and the
Tutor) to communicate with this Thing, therefore the name is
checked for duplication before allowing the user to accept
it. Pressing the Cancel button aborts creating the new
Thing.

After accepting the name, the new Thing’s image and mask
are defined (Figure 21). The mask gives the graphical object
its shape and the image gives the object its color. The
scroll bar below the image and mask boxes allows the user to
scroll from one picture to the next. Figure 21 shows the
image and mask for the lantern.

After accepting the Thing’s image and mask, its icon is
chosen next (Figure 22). The icon provides an alternative
way of graphically representing the Thing, plus allows the
user to defer setting the Thing’s image and mask until later.
Each Thing is required to have at least an icon, therefore
acceptance is the only choice. Figure 23 shows the newly
created Thing,

The next step is to program the Thing’s behavior
{although this task can be deferred until any time later).
The Thing must be selected (as shown in Figure 24 after it

was moved to a new location) before its attributes and

i € lllorld!!m‘rutnr Windows

Default Warid

R AAHINE QNS ARLART QAR B I SIS ST Rt BRRAH T HnNIRIIiclwlinluluInaﬁnluluirlnlsrlaiqﬁulu’siaﬁnﬁﬁ:ﬁl&{fﬁaﬁialt.s[uluinluﬁulniﬁuﬁci;iﬁulxiiulului!uixlti&lrﬁull

e S T S I ——

AT s T MMNWI!&JM&ME&Q&.&EEEM = ?E‘ ﬂ@@
JlfmmqunTnﬁl M

Type name of thing:

[Jelault Thing Name I

Figure 20. New Thing’s Name

& World Tutor Windows

Default World

ST LI QR U andin RARIR

| e |
ey TR =

T T

o N o O
ey)

Figure 21. WNew Thing’s Image and Mask

-

& lllorld!lmTutor Windows

Default World

AU UL SUTAAS JEUIEL S5 [uRgt Ul UL

llIllHﬂﬂﬂﬂﬂﬂlﬂﬂﬂﬂﬂﬂﬁﬂﬂﬂﬂﬂmﬂﬂﬂ
_'__._

_. _—— <Al R o>

78

Figure 22. New Thing’s Icon

&€ World Thing Tutor Windows

e lefault ol Ficl’]r———————

| | AR n o

i

Figure 23. New Thing

& World BGIEE Tutor Windows

== Create #C hHefault World %'

Duplicate %D
Rename
Image ®xi

304 AHHHH CHHIH LRI G sat Posltlon *P FIJHJUHUIUEIUUH.II.IHIlll'UlﬂJlUHHUlHﬂ““"‘”"1mml““"“"’“"ﬂl"l“"““ wibifidfidnniapaem

llIll IHIIIHIIIHI Exchenge Planes [ﬂllﬂlill!ll!ﬂlllli]l!llﬂmlltlll!IliIIII!Ilﬂﬁﬂllfllllililﬂﬂl}ﬂ

Howemeni Ml —mt————————————

I umul Actions i “——mli =
! T et e T T e T

Figure 24. Thing’s Menu When a Thing is Selected

) & wurldlIMTulor Windows

Default World

Run or set the movements?

.....

T T [Aun] G0 (CamceD
. - moi it

Figure 25. Movement Command

80

behaviors are accessible. 1In this example, only the Movement
and Actions menu items are used.

The Movement menu item defines the Thing’s movement
path. The user can either watch the Thing move through its
currently defined path by selecting Run or modify its path by
selecting Set (see Figure 25). Since the new Thing’s path is
undefined, the Set button is pressed.

Figure 26 shows the dialog box used for modifying the
Thing’s path. Currently, the path is partially defined and
the next position (offset in pixels from the upper left
corner) is about to be added to the end of the list using the
Add button. Each position along the path can be typed in or
the path can be defined by following the mouse (using the
Follow mouse button), which is quicker, but less accurate.
Once the path is ready, the Accept button changes the Thing’s
path to its new value.

The Actions menu item allows the user to modify the
Thing’s attributes and actions. The dialog box in Figure 27
allows the user to select between the Thing’s attributes,
local actions, and global actions. 1In this example, we will
first examine the Thing’s attributes, then its local action,
and, finally, the actions global to all Things, although this
order is arbitrary.

Figure 28 shows the current Thing’s attributes. Using

the Replace Value button, the animate? attribute was set to

. % I.Uorldllmi'utor Windows

U RN RIAY (WAL TURE §eTEE TSHL (LRI AN a0 i 1 nl 1 5

IHHRHUUHL DD EHHIENHIL D 26, 48 | (8

o=
I Z— 57, 52

e

Movement for Default Thing Nam:

Figure 26. Set Movement Path’s Dialog

i & morldIIMTutor Windows

| Follow mouse]

Movement Mode

Default World

G LRI

Default Worid

Thing Actions and Attributes
(Edit Attributes)

AR
. L3

j i (Edit Globa! Actions }

(Edit Local Actions |

T T

Figure 27. Actions Command

s & lllorldlim‘l'utor Windows

L8 HHICH UU 04 SHHIOE

LT M8 S8 S MSLESLS AT B

T T]

e R —

i

::;H"m"'sv Ij;“;m""‘
| .]
T AT TR nuuu

il
i}

Figure 28.

Default World

Attributes
anilmate? (Replace Ualue)
current position (New Attribule)
initial position
R (Delele Attribute}
draggable? _
click 27 | Accept |
click 17
[Concel]
O
Value: [t j
Type: [<boolean>)]

Editing Attributes

) & wqud!!mwtor Windows

Default Worid

T

Figure 29.

Actions

evaluation action
history actlon

dragging action
2 click action
1 click action

O]

Type: [

<COMMAND>

b

Editing Local Actions

82

83

true, which indicates that the Thing is an animate obiject.
From this dialog box, new attributes can be added and old
ones removed, although built-in attributes are not removable.
These attributes are accessible from the local and global
actions.

Figure 29 shows the Thing’s list of local actions. By
default, these actions do nothing when called. Therefore, in
order to define the Thing’s behavior, the appropriate
action(s) needs editing. 1In this example, the landing
action, which the Thing performs upon completion of being
drag from one location to the next, is the action that will
be editing when the Edit button is pressed.

The dialog box in Figure 30 contains the outer-most
layer definition for this Thing’s landing action, which is
empty since the Thing performs no action upon landing.
Placing the cursor over the single blank line in the Code:
box and pressing the mouse button activates the pop-up menu
shown in Figure 30. Since this line expects a command, only
the commands defined for this world are shown?. Selecting
the move command and releasing the mouse button places the
command in the code.

The move command expects two parameters, therefore
another dialog box is created above the current dialog box to

set the parameters’ values (Figure 31). Both parameters must

2. Actually, the commands shown are a small subset of MicroWorld's commands.

& World Tutor Windows
= londing aclion E==mm——————

Name: landing actlon

Coda: Tl ot |
preywwn (O (| Occept

o
Type: [<COMMAND>]
I_'——'_"—-—_—.__.-_.__li

Figure 30. Editing Landing Action

¢ worid [N rutor Windows
tanding action

=] =_

Cd Nama: mouva

Paranaters: | <thing?
<locatlaon»

)

things to the left of
things to the right of
things above

things below

sell
foo

<l

Figure 31. Editing Landing Action’s Move Command

85

be set to appropriate values before the command is accepted.
In the place of actual values are the parameters’ types (in

this case, <thing> and <location>), which lets the user know
the expected values’ types.

Pressing the mouse button while the cursor is over one
of the parameter activates a pop-up menu that is appropriate
to the parameter’s type. In Figure 31, the cursor was over
the <thing> parameter, therefore the menu contains all the
functions that return a Thing plus the name of all Things
defined in the world. The expand menu item creates another
dialog box to show a function call, if the parameter had been
set to a Thing-returning function. After setting both
parameters to appropriate values and pressing the Accept
button, the previous dialog is activated and updated to show
the changes.

Global actions are commands and functions that can be
called by any Thing defined in the world. Pressing the Edit
Global Actions button in the dialog box shown in Figure 27
creates the dialog box that shows the list of the available
global commands and functions (Figure 32). Arrange, which is
currently selected, is a user-defined command that was
created earlier. Similar to editing a local action, pressing
the Edit button creates a dialog box that shows the command’s
definition (Figure 33). Unlike the dialog box for local

actions, this dialog box contains an extra field for the

é worldTulor Windows

Default World

Actions

things below

things above

things to the right of
things to the left of
below

above

to the left of

to the right of
difference-of

— sum-of

Is below

Type: | <COMMAND>

Figure 32. Global Actions

& World Tutor Windows
LU ————— |

Name: arrange

Parameters:
thing! <thing»
thing2 <thing»
thingd <thing>
thing4 c<thing>
Coda; <>
move thingl to the left of thing2 1

move thing3 to the right of thing2

If thingd Is to the right of
thing4 soys [sounds) Delete

O]

Figure 33. Editing the Arrange Command

87

parameter list., The Arrange command has four parameters of
type Thing. A blank line exists between each parameter to
allow the insertion of a new parameter at any position.

Arrange command’s body contains four commands: two move
commands, an if statement, and a says command. Expanding the
if statement creates the dialog box shown in Figure 34. The
user can set the conditional function (first field), the
commands to perform if the conditional result is true (second
field), and the commands to perform if the conditional result
is false (third field). Currently the conditional test is
whether thing4 is to the right of thing2. 1If it is, then
thing4 is moved to the right of thingl, otherwise it is moved
to the left of things3.

Figure 35 shows the dialog box for editing the list of
sounds that thing4 says during the last command in Arrange’s
code body (Figure 33). Again, blank lines exists between
each list item to enable the user to insert a new item at any
position. Currently, the Arrange command moves two Things,
moves another based on a test’s result, and says “Good
morning students” when called by a global or local action.
Pressing the Accept button adds the command to the command
pop-up menu shown in Figure 30.

The same Arrange command can also be viewed, which shows
the command’s definition, but does not allow the user to make

modifications (Figure 36). 1In this mode, blank lines do not

& World Tutor Windows
arrange
e [= |
P{ 1f [thing4 is to the right of thingd)
movae thing4 to the right of thing3 Q "@‘P
[
D
alsa
move thing4 to the left of thingl
jump
Ir
O
Whnisiagy
Figure 34. Editing the If Command

3 I.Uorldllmrutnr Windows

Delete

— 3

[Accept |

(Concar)
[Deletel
{Done |

<l

J

arran g a
Ng___
P4 N
Py
Paramaters:

good
merning

C4 students

Figure 35. Editing the Sound List

g8

& World Tutor Windows
[R——————————

Naome: arrange

|

Parameters: [thing) <thing?
thing2 <thing O ([Accept Y | —
thingd <thing>
thing4 <thing?
i
o
R A <
mouve n o tha r o ng2 =1
If thing4 s to the right {H
thing4 says [sounds] W -
[Done |
) hd> '

Figure 36. Viewing the Arrange Command

& World Thing Windows
Create| pefault iorl]
How I= Default Aether |
by t
Detelp

I T T T e

7
| l f
authisnunil
— - -— = ——

Figure 37. Tutor Menu

8%

o0

exist between each line of code, therefore the user cannot
insert new lines. Furthermore, the only command available in
the pop-up menu is to expand (for viewing) the selected line.
Viewing code protects the user from making accidental
changes.

The other major step (besides populating the world with
Things) is assigning a Tutor to the world. A Tutor is
created using the Create menu item under the Tutor menu
(Figure 37). Since the Tutor is an invisible object that
resides in the Aether window, it does not have a graphical
image and is represented by its icon. The Tutor’s icon is
set using the same dialog box for setting the Thing’s icon
(Figure 22).

How and what the Tutor teaches are set using the dialog
boxes in Figures 38 and 39. 1In this example world, the Tutor
teaches by allowing the student to explore the environment,
which means that the Tutor does not control the lesson,
therefore the selection made in Figure 38 does not change the
Tutor’s behavior. Only one Tutor can exist in the world,
therefore the Create menu item is deactivated when the Tutor
is defined (Figure 39).

The above description gives a general idea of the steps
needed for building a lesson, but is incomplete. The
following sections give greater details about each menu item,

the programming interface, and MicroWorld’s programming

& wWorld mlng_mwlndoms

Default World

i Default Aether

Choose how the tutor teaches:

Coach l

Teach

LHHAM LRt mrnnuvaﬂ!

uuunﬂimuuummmmuuammmum

Figure 38. How the Tutor Teaches

& World ThingMndows

Default Worfs

Default Aether

Choose what the tutor teaches:

sl point-to-attributes g
LA HHER TR EHTEHHH put-in-fifeboat

Figure 39. What the Tutor Teaches

91

& World Thing Windows
Crdute | pefault World

1
How Default Rether BB
What
| Delete

theTutor
Wi HEHHY AR RO NG

T e

i I i R]

O { T Mﬁm%ﬁ i
Sl I

Figure 40. Tutor Menu when Tutor Exists

language.

3.5 User Interface
3.5.1 The World Menu

Three commands are available from the World menu when
MicroWorld is first started: Open, New, and Quit. Open uses
a file list dialog similar to the file list dialog shown in
Figure 16, except files with a different type are displayed.
Selecting a file loads the previously saved world. The New
command was describe above. Quit exits MicroWorld, but

checks for unsaved changes before proceeding. An alert is

92

93

displayed asking the user to either save or discard the
changes.

When a world is loaded into MicroWorld (using either the
Open or New commands) The rest of the World menu commands
become available, plus the Create commands in the Thing and
Tutor menus. Since MicroWorld only allows a single world
loaded at a time, the Open and New commands are deactivated.

The Close command closes the current world. If the
world was modified, then the user is asked whether to save
the changes, or cancel the close operation. If the user
selects yes, then the Save command is performed, before
closing. The menus are returned to the previous state
(Figure 12).

The Save command saves the file under its current name.
Similarly, the Save as command saves the file, but under a
different name. A file list dialog is present for the new
file name (Figure 41). The old file is copied to the new
file and the old file remains unchanged.

Both the Run and Stop commands are used to test the
lesson. Run starts the lesson as though the instructor is a
student. Stop returns the system to authoring mood.

Sound files used by MicroWorld are kept in separate
files from the world files. A sound file may be shared
between several different worlds. The Lexicon command

presents a file list (same as Figure 16, except a different

6 MY hing Tutor iindows

Q) Allegro Lisp

£y Autharing Eawviren,.. {3 <Penfold
O Code

DY Bevelapmnent Eavir ..,
D Studeat Enphranment

E——

Save world as:
New World Cancel

il [

Figure 41. Saving a Copy of the World

type of files is shown) of available sound files, and sets
the current lexicon to the file chosen by the user.

The Background command changes the current background.
The same steps are performed as setting the background for
the first time (see Section 3.4). Print prints useful
information about the world to the printer.

If a world is currently loaded, the Quit command
performs a Close command before exiting to the Finder. The
Close command, as described earlier, checks for unsaved

changes and gets confirmation from the user.

94

D
Ln

3.5.2 The Thing Menu

The Create, Movement, and Actions commands’ description
are given in Section 3.4 and are not repeated here. The
Duplicate command creates a copy of the selected Thing with a
new name. The user types the name (Figure 20) and it is
checked for a name conflict. If a conflict exists, the name
is not allowed and the user must try a different name. If
the user cancels the command, the copy is removed.

The Rename command also requests a new name from the
user, but it just changes the name of the selected Thing. 1If
the user cancels this command, the name remains the same.

The Image command sets the image of the selected Thing,
as described above (Figure 21). If the user cancels the
command, then the image remains the same. The Thing's icon
is not set by this command.

Set Position sets the initial position of the Thing.

The user determines the position by moving the Thing in the
environment of the lesson, instead of typing a numeric value
for the position. Although this method is not as exact, di-
rect visual feedback makes the task easier.

Each Thing is assigned the next highest plane number
upon creation. This number determines the stacking order of
the images on the screen. Exchange Planes switches the plane
numbers between two Things. Unlike the other commands, only

two Things can be selected during this command.

The Delete command removes, after user confirmation, the
selected Thing from MicroWorld. If all Things are removed
from MicroWorld, the Thing menu returns to its previous state

(Figure 19).

3.5.3 The Tutor and Windows Menus

The Create command’s description is given above and is
not repeated here. The How command resets how the Tutor
teaches the lesson (see Figure 38). Similarly, the What
command resets what the Tutor teaches (Figure 39%9). Delete
removes the Tutor from the aether. The How, What, and Delete
commands become active when the Tutor is created and become
unavailable when the Tutor is deleted. The Create command
becomes unavailable while a Tutor exists.

The Windows menu selects between the different windows.
Currently, only two windows are defined, world and aether.
If more windows are defined later, the names are added to

this menu.

3.5.4 Programming Interface

This sections describes, in greater detail, the dialog
boxes used for the Movement command and for editing a thing’s
attributes, local actions, and global actions. The dialog
boxes were describe briefly in the world-building example

given above,

The dialog in Figure 26 sets the movement path for the
selected Thing. The box on the left presents the currently
defined path in horizontal and vertical components, separated
by a comma. The Add button adds the values in the H: and V:
fields to the end of the movement path.

The Replace button replaces the selected point in the
defined path with the values in the H: and V: fields. Insert
adds the values in the "H:" and "V:" fields before the
selected item.

The Delete button removes the selected point from the
defined path. Clear removes all of the points in the path.
The Follow Mouse button defines the path by following the
mouse as the user drags the Thing. Currently, this command
is unavailable.

The movement mode selects the method used to moves from
one location to another location. If the mode is Drag, then
the Thing moves smoothly from one point to the next point.
The size of the movement is determined by the Drag Increment
field. If the mode is Jump, then the Thing disappears at the
current location and reappears at the next position.

The dialog box in Figure 28 presents the attributes to
the user. The box on the left shows the Thing’s defined
attributes. The Value: and Type: fields display the value
and type of the selected attribute. In Figure 28, the

selected attribute is animate? and its current value and type

are t {(for true) and <boolean>.

The Replace Value button sets the current value of the
attribute. The type of the attribute is set upon creation
and can not change during its lifetime. The attribute must
be deleted and a new one created to change the type.

New Attribute creates a new attribute under the name
given by the user and a type selected from a list. Delete
Attribute removes the attribute from the list, if it was
defined by the user. The attributes shown in Figure 28 are
defined for the Thing by the system, and can not be deleted.

The dialog in Figure 29 is used to editing local
actions, which are shown in the left-side box. These actions
are defined by MicroWorld only; the user can not add or
delete local actions.

The return type is shown in the Type: field for the
selected action. All local actions are of type <command>.
Global Actions (described below) can also be functions, with
return types of either <boolean>, <integer>, <location>,
<sound>, or <thing>.

After selecting an action, the user can either edit,
view, explain, or run the action. Figure 30 shows the user
editing the local action called landing action.

In Figure 30, the script for landing action has not
been written, therefore, no action is performed when the

Thing lands. The Code: field contains the commands for the

action, if defined.

The pop-up menu in Figure 30 was created when the mouse
button was pressed on the first line of the Code: field. The
menu presents the list of available commands to insert at
that position. The menu in Figure 30 is an example of the
commands available in MicroWorld, but it is not a complete
set.

When a choice is made from the menu the command, in this
case move, it is inserted at the selected line. Another
dialog is created for the user to set the parameters of the
command. As the user programs an action, the dialogs are
stacked to give visual feedback on the current position in
the code. Figure 31 is an example for the move command.

Two fields, Name: and Parameters:, are used to present
the call of a command. The user can view or edit the
definition of the global command (if user defined) by
selecting its name with the mouse, and choosing Definition
from the pop-up menu (see below). In the example, selecting
move creates a new dialog with the definition for move, if
move was user defined.

In Figure 31, the parameters to the move command are not
defined, instead the expected value’s type is shown for each
parameter. 1In this example, the move command expects a Thing
and a location. Pressing the mouse button when a line is

highlighted creates a pop-up menu containing the allowed

100

items for the selected parameter. The selected line in
Figure 31 is the <Thing> parameter.

Values have several different sources, therefore, the
pop-up menu is divided into fields, separated by lines. The
first field contains the command to expand the current
definition, only if the parameter is a function call.
Expanding the function creates the same type of dialog as
shown in Figure 31.

The second field contains the functions that return a
value of the appropriate type. This example contains some of
the Thing-returning primitive functions defined in
MicroWorld. If the user defines a global function that
returns a Thing, then the name of the defined function is
added to this field.

The third field contains the names of the Things defined
in the system. Things are referenced by name, therefore, the
name can be used anywhere a parameter of type <thing> is
expected. The name of self refers to the current Thing. 1In
this case, it is the Thing with this landing action. Foo is
the name of another Thing defined in MicroWorld.

A fourth field (not shown) is used to display the
attributes and the parameters of the definition of type
<thing>. Currently, no attributes are defined as type
<thing>. BAlso, since the current definition is a local

action, no parameters are passed. If the definition was a

101

global action (see below), then all parameters of type
<thing> would be in the fourth field.

The pop-up menus for the other types only contain three
fields, the first, second, and fourth fields defined above.
Instead of the list of Things defined in the world, the first
field contains another menu item to define a constant for
that type.

If the Accept button is clicked, a test is performed to
determine if all of the parameters are set. In the example,
the user can not accept the changes until both the <thing>
and <location> are replaced in the Parameters: field. If the
Cancel button is clicked, then the newly added line is
removed from the previous dialog. In both cases, the
previous dialog is updated and becomes active.

When viewing the code, the user can not make changes to
the definitions. The only commands available are to expand a
command or function, or to expand the definition of another
command or function. Blanks line are not inserted between
lines in the Code: field, as these lines exists for the
insertion of new commands. See below for an example of the
differences between editing and viewing code.

The Explain button gives an explanation to the user
about the action. For example, the explanation of landing
action is: "This user-definable action occurs after the user

drags the thing."” This mechanism provides the means to

102

explain the purpose of built-in primitives and actions, and
for the user to comment their definitions.

The Run button performs the command. This allows the
command to be tested without the need to return to the
windows, selecting Run from the World menu, and then
performing the action on the Thing.

Editing global actions is similar to editing local
actions. A list of available global commands and functions
is presented to the user (Figure 32). Two new buttons are
added to the dialog. The Delete button removes the selected
definition, unless it is a primitive command or function.

The New button creates a new global action. First, the
name and the return type are determined by the user. Second,
the appropriate dialog is presented to display the new
action.

Figure 33 is an example of the top level definition of a
command in the editing process. The Parameters: field
displays the name and type of each parameter used in a call
to this command. In this case, all parameters are of type
<thing>. Blank lines exists between the parameters to allow
the user to insert a new parameter at any position.

The Code: field contains the commands to perform the
arrange command. The blank lines are used as described
above, to allow insertion of new lines of code. If the user

selects a blank line in the Code: field, then a pop-up of

103

menu of available commands is presented (see Figure 30).

The code for this definition contains four commands, two
moves, an if, and a says command. The currently selected
line is the if command and the menu selection of Expand
creates the dialog in Figure 34.

The format of an if statement is: if <boolean> then
<commands> else <commands>. In the example, the if field
contains a function that returns a Boolean value. Selecting
this field creates a pop-up menu that contains all constants,
functions, and variables of type Boolean. The then field and
else field contain commands to perform if the test is true or
not true. The same commands are performed on these fields as
the Code: field for the arrange command (Figure 33).

Figure 35 shows the editing of the list of sounds from
the fourth line of code in the arrange command (Figure 33).

A list is presented in the outer definitions as the type
surrounded by the '{' and ']' characters (in the example, the
list is [sounds]). The dialog in Figure 35 was created by
expanding the says command and expanding the [sounds] parame-
ter.

When editing, the lists contain blank lines between each
item. An item can be inserted at any position. When the
item is inserted, blank lines are added to allow for more
insertions. Pressing the mouse button at the current

position presents a pop-up menu with all available sounds.

104

Figure 36 is the arrange command when the user is
viewing the code. Since the user can not insert new items,
no blank lines exists between each line. Also, the pop-up

menu contains only the commands that do not modify the code.

3.6 MicroWorld’s Programming Language

MicroWorld’s programming language is divided into five
categories: commands, functions, arithmetic, assignment, and
flow of control. The user is allowed to define new function
and commands, which are accessible by all objects in the
world.

Table 1 is a list of primitives currently defined in Mi-
croWorld. Parameter types are surrounded by ‘<‘ and ‘>’,
such as <thing> for a parameter of type Thing. If the
parameter’s type is plural (e.g. sounds or things), then a

list of items is expected.

3.7 Conclusion

MicroWorld provides an environment for instructors to
generate lessons easily. Its programming language is well
suited for direct-manipulation type lessons and is less ge-
neric than most other languages. The instructor is directing
the objects, instead of programming the host machine.

Providing an easy-to-use and intelligent environment is

important for building good instructional lessons. The in-

105

structor will develop better lessons, if he is provided with
an easy-to-use environment, which gives direct visual feed-

back. Furthermore, the instructor will create more lessons,
if the less work is required.

MicroWorld attempts to provide the instructor with the
necessary tools for creating direct-manipulation type les-
sons. How well it succeeds is unknown, since the environment
has not been tested with actual instructors. Through limited

in use, it appears to be a good environment overall.

106

Table 1. MicroWorld’s Programming Language

Commands

move <object> <location>
noves {movement shown on screen) the object from its
current location to <new location>.

Jjump <object> <location>
jumps (movement not shown on screen) the object from
its current location to <new location>.

move <object> along <path>
the object moves to each point in the path.

jump <object> along <path>
the object Jjumps to each point in the path.

say <sounds>
each sound is played in order.

animate <objects>
the objects are moved along their path simultaneously.

highlight <object>
inverts the image of the object. An object appears
selected when highlighted.

un-highlight <object>
restores object to the original image.

flash <object>
highlights and then un-highlights the object.

set <attribute> of <object> to <value>
Sets the object’s attribute to value. The type of the
attribute determines the type of the value. The value
of the attribute is retrieved by using the name of the
attribute, instead of an explicit get function.

Flow r

repeat until <boolean> <commands>
the commands are repeated until the boolean test is
true.

107

Table 1 (continued).

repeat while <boolean> <commands>
the commands are repeated while the boolean test is
true.

repeat for <count> <commands>
repeats commands for n number of times, where n is an
integer great than or equal to zero.

if <boolean> then <commands> else <commands>
if the boolean test is true, then the commands
following the “then” keyword, but before the “else”
keyword are performed. If the test was false, the
commands after the “else” keyword are performed.

Arithmetic

sum-of <integer> <integer>
returns an integer that is the sum of two integers.

difference-of <integer> <integer>
returns an integer that is the result of subtracting
the second integer from the first integer.

multiplication-of <integer> <integer>
returns an integer that is the multiplication of two
integer.

quotation-of <integer> <integer> - returns the integer
result of dividing the first integer by the second
integer. A zero is returned if the user tries to
divide by zero.

Functions

to the left of <object>
returns the prototypical “left” location of the object.
Calculation is performed in the context of another
object, such as move objectl to the left of object2.
The prototypical location is based on both the center
of mass of the second object, and on the vertical size
of both objects.

108

Table 1 {continued).

to the right of <object>
returns the prototypical “right” location of the
object. The calculations are performed in the same
manner as the “to the left of <object>” function.

above <object>
returns the prototypical “above” location in
relationship to the object.

below <object>
returns the prototypical “below” location in
relationship to the obiject.

<object> is to the right of <object>
returns true if the first object is to the right of the
second object. Both the centroid and corridor methods
are used to determine the relationship of the two
objects. Information about the object determines which
side of the screen is the right side. For example, an
object that represents a human facing out from the
screen (i.e. towards the user) has the right side
opposite of an object representing a box. When viewing
an image of a human, the right side is determined by
the right hand on the image and not by the view on the
screen.

<object> is to the left of <object>
returns true if the first object is to the left of the
second object. Again, information about the object
determines which side of the screen is the left side.

<object> is above <object>
returns true if the first object is above the second
object. The concept of “above” is based on the two
dimensional plane of the screen and not on what the
objects represents. In other words, an object is above
another object if it is closer to the top of the
screen. This test would return false if one object was
above another object, but the view was from above
looking downwards.

108

Table 1 (continued).

<object> is below <object>
returns true if the first object is below the second
object. Again, the position on the screen determines
the results, not what the object represents.

<object> is on <object>
returns true if the first object is on the second
object. This tests whether the image of the two ob-
jects overlap and the first object is on a higher plane
than the first object. If the viewpoint is overhead,
then this function tests whether the first object is
above the second object in the real-world
representation.

<object> is under <object>
returns true if the first object is under the second
object. This is equivalent to <object2> is on
<objectl>.

things to the left of <object>

things to the right of <object>

things above <object>

things below <object>

things on <object>

things under <object>
each function returns a list of things for which the
corresponding test is true. For example, things to the
left of <object> returns a list of things for which the
test is to the left of <cobject> is true.

the location of <object>
returns the centroid location of the obiject.

110

CHAPTER 4

COMPARISON BETWEEN PROGRAMMING BY REHEARSAL,

HYPERCARD, AND MICROWORLD

This chapter discusses the similarities and differences
between MicroWorld and Programming by Rehearsal (see Section
2.1), and between MicroWorld and HyperCard (see Section 2.2).
MicroWorld shares many similarities with Programming by Re-
hearsal, but also corrects many design flaws. MicroWorld
shares less similarities with HyperCard, but HyperCard is

also suited for building instructional lessons.

4.1 Programming by Rehearsal Vs MicroWorld

Programming by Rehearsal forms the basis for the Micro-
World project, therefore, they share many features. Both en-
vironments are built upon the object-oriented concept. A
screen image corresponds to an object within the environment
and these objects communicate through messages. From another
view point, the screen’s graphical images forms a bridge be-
tween the user and the internal objects.

Not all objects are visible to the student in the
environments, but both provides means for the instructor to

communicate with the invisible objects. Programming by Re-

111

hearsal’s invisible objects are placed in the wings, which
are offstage in the theater metaphor. The wings are visible
to the instructor, but invisible while the student studies
the lesson. MicroWorld’s invisible objects reside in one of
two locations. If the object is normally invisible (e.g. the
tutor), then it resides in the aether Base-World. Otherwise,
it resides in the world Base-World, but stays invisible until
made visible while the student studies the lesson. While the
instructor builds the lesson, all objects are visible.

The instructor positions screen objects by dragging the
object to its location. Rehearsal World automatically sets
this location as the object’s initial position. MicroWorld
requires a menu selection before setting the object’s initial
position, which allows the instructor to view the objects at
different locations without changing the initial position.

Furthermore, the object’s movement path can be created
by following the mouse’s movement. Rehearsal World uses only
this method for path definition, but the user can also type
location constants in MicroWorld, which makes editing the
path definition easier.

Object programming is primarily performed by pop-up menu
selections. Rehearsal World's pop-up menu contains the meth-
ods to which the selected object responds. Programming is
performed through a cue sheet and interacting directly with

the object. The instructor is not required to use the pop-up

112

menu and can program the cbjects with the keyboard, thus
allowing errors which could crash the system (e.g. sending an
inappropriate message to a Smalltalk glcbal variable).
Furthermore, errors are not caught until run time. The error
could occur while the student is using the lesson, which is
less than ideal.

MicroWorld uses a structure editor, which helps the
novice user with programming the objects. MicroWorld sepa-
rates the commands and functions into separate pop-up menus.
The functions are further separated by return value’s type.
Only the appropriate menu is displayed when the instructor
presses the mouse button. MicroWorld’s approach provides
strong type-checking during programming, which avoids runtime
errors.

From within the Programming by Rehearsal environment the
instructor can test a lesson by using two different methods.
First, the instructor can send a single message to an object
and watch its behavior. Second, the instructor can place the
environment into “student” mode, which runs the lesson. The
instructor can view the lesson for possible problems.

The lesson types that Rehearsal World can build is re-
stricted for four reasons: event types are limited, no spa-
tial relationship between objects, no lesson history or
evaluation, and no sound. Rehearsal World's graphical images

represent a simple user interface object that the user can

113

only select, which limits the environment to a single mouse
click. Although Rehearsal World increases the flexibility of
object’s behavior by evaluating two separate methods for this
event, which depends on the object receiving the becomeABut-
ton message, it restricts the lesson to a simple point-and-
click type, i.e. exploratory.

MicroWorld’s graphical images represent real-world ob-
jects and, therefore, the objects can receive more event
types, which includes the user dragging it from one location
to another. Smalltalk does provide a method for following
the mouse (usable by Programming by Rehearsal’s objects), but
it does not send events to the object during motion nor sends
an event when the user releases the mouse button. The
instructor is required to program in Smalltalk to provide
this functionality.

MicroWorld uses four event types, mouse click, mouse
double click, dragging, and landing. Although MicroWorld
does not allow runtime modifications to the object’s
behavior, which Rehearsal World performs by the becomeAButton
message, individual event responses can be turned on or off
during the lesson.

Programming by Rehearsal’s objects cannot determine
their locations with respect to other objects, which makes
lesson based on spatial relationship impossible.

MicroWorld’s objects can calculate their spatial relationship

114

with other objects, although the results are not guaranteed
correct. For example, MicroWorld cannot find the object
which is closest to another object’s prototypical location.,

Programming by Rehearsal neither records nor evaluates
students’ actions, which makes it a less effective teaching
tool. MicroWorld provides instructor-programmable history
and evaluation actions, which tailor the lesson to the
student’s particular needs.

Sound is another important feature missing in
Programming by Rehearsal. Digitized sound is important for
teaching spoken language, but it also increases the interac-
tion between the student and the lesson.

The instructor creates simple lessons easily using
Programming by Rehearsal, but as the lesson’s complexity in-
creases, the instructor must write more Smalltalk code (see
Chapter 2). Smalltalk is a large and complex environment,
which increases the instructor’s learning curve and increases
the potential for errors. MicroWorld shields the instructor
from its development language (Lisp) by providing its own
programming language, which is specially designed for build-

ing lessons.

4,2 rCard v MicroWor

HyperCard is a Macintosh generic programming environment

and is not a specific environment for developing instruction-

115

al lessons, although several lesscons have been built using
HyperCard, which leads to the following comparison. Hyper-
Card shares some features with both MicroWorld and
Programming by Rehearsal, but, in general, its approach is
far different.

The user creates and positions graphical images slightly
different in HyperCard than either MicroWorld or Programming
by Rehearsal. The three environments position objects using
the mouse, but HyperCard includes a built-in paint program
for creating the images. A separate program creates
MicroWorld’s and Programming by Rehearsal’s images.

The user can test a program by returning HyperCard to
browsing mode, which is similar to MicroWorld’s and
Programming by Rehearsal’s testing mode. HyperCard sends
events to the objects beneath the cursor and the objects
evaluate the user-created scripts, until the user enters edit
mode. Any user (including students) can activate edit mode,
which makes HyperCard susceptible to malicious modifications.

HyperCard’s and MicroWorld’s programming language syntax
are similar. Objects receive direct commands to perform an
action. For example, HyperCard’s statement “go to <card>” is
syntactically similar to MicroWorld’s statement “move <ob-
ject> to <location>.” The first statement activates the
former object and the second statement moves the latter

cbject to a new location.

11¢€

Although the languages are syntactically similar, The
method for entering the program is quite different. Micro-
World uses pop-up menu exclusively, except for numerical con-
stants and variable names. HyperCard uses the keyboard ex-
clusively. Furthermore, HyperCard’'s does not have a
structured editor and errors occur during runtime (not during
compilation nor editing), therefore it is less helpful to the
novice user and allows errors to occur while the student is
using the lesson.

Furthermore, HyperCard has two distinct features not
found in MicroWorld. First, HyperCard’s has untyped and
variable-numbered parameters. The programmer must explicitly
test the parameter’s type and test for the correct number of
parameters, otherwise runtime errors can occur. To protect
novice programmers, MicroWorld checks the parameters’ types
and only allows the correct number of parameters. Second,
HyperCard has separate syntax for commands and functions,
which can confuse the novice programmer. MicroWorld keeps
its syntax consistent between commands and functions.

HyperCard makes a distinction between objects’ types.
Some message are receivable by all objects and other messages
are only receivable by objects with a particular type. Ob-
jects can not change their types during their existence, but
objects can be created and deleted during the program’s exe-

cution. MicroWorld’s objects belong to a single type and

117

contains instance variables and event responses, which indi-
vidualize the objects.

A one-to-one correspondence does not exist between
graphical images and HyperCard’s objects. The programmer can
place an invisible button above the graphical image, but, in
most cases, the button won’t completely overlap the image,
therefore the user can select the image without touching it
with the cursor. A graphical image is a MicroWorld object’s
attribute.

MicroWorld’s and HyperCard’s event types are different.
HyperCard using the Macintosh’s operating system event types,
whereas MicroWorld uses a higher conceptual event model.
HyperCard is a tool for programming the Macintosh, therefore,
it provides the same event types. MicroWorld’s focus is
building lessons that model real-world object, therefore, it
groups events based on conceptual actions, such as selection,
movement, etc.

HyperCard’s “stack of cards” concept is missing
completely from MicroWorld. Each card is similar to a
separate world in MicroWorld, which only contains a single
world. Furthermore, HyperCard allows the selection of a word
or phrase to activate another card, which could contain more
information about the word or phrase and is a great feature
for teaching and browsing textual information. No mechanism

exists in MicroWorld that allows a Thing to activate a

118

different window, which is a limitation.

4.3 Conclusion

MicroWorld provides the tools for creating a larger va-
riety of lessons than Programming by Rehearsal by having uni-
form objects with more event responses and a programming lan-
guage that shields the user from the development environment.
MicroWorld’s environment can create lessons based on spatial
relationships and lessons that use sound production.
MicroWorld’s built-in language avoids run-time errors, plus
protects the development environment from corruption by an
error in the user’s program. The user can modify the Small-
talk environment from Programming by Rehearsal, which could
easily corrupt the environment.

MicroWorld’s environment is more suited for building
lessons than HyperCard’s environment. HyperCard is good at
creating button and text interfaces, but its separation of
graphical images from the objects and inability to drag ob-
jects on the screen during run-time limits the types of les-
son that can be created. Furthermore, HyperCard’s program-
ming language does not adequately protect the user from run-
time errors, nor does it help the novice user.

MicroWorld can generate several different lesson types,
which includes selecting objects on the screen (easily creat-

ed in both Programming by Rehearsal and HyperCard) to moving

119

objects in relationship to each other (hard to create in
Programming by Rehearsal and HyperCard). Furthermore, a les-
son can contain digitized sound, which is unavailable in
Programming by Rehearsal.

MicroWorld was especially designed for user with little
programming experience. MicroWorld provides a direct-manipu-
lation environment for lesson creations and the user can view
or edit objects’ behaviors at any time. The programming lan-
guage is type-checked during editing and avoids run-time er-
rors. Novice users do not receive the same level of support
from either Rehearsal World’s or HyperCard’s programming en-

vironment.

120

CHAPTER 5
MICROWORLD'S DESIGN

The design of any large system goes through many
revisions and MicroWorld is no exception. The following is
the design of MicroWorld, with suggested changes and
improvements, at the time this paper was started. The work
on MicroWorld continues, therefore, some information is
outdated. Still, it is worthwhile to examine the design at

this point.

5.1 JIntroduction to the Object-Oriented Approach

The development language for a project influences the
overall design. In a procedural language, such as C, a
global approach is used. Data important to the system are
either kept in global variables, or are passed as parameters.
Functions are written to perform particular tasks on only
certain types of data.

Object-oriented languages take a different approach. An
object is an encapsulation of data and methods into a logical
unit. For example, a graphical object’s data could be its
bitmap representation and position on the screen. A possible

method is for it to draw itself on the screen.

121

Sending a message is the only access to an object. An
outside object can not change the internal state of an
object, only the methods of the object itself can modify its
data. The object’s representation of data can change without
affecting other objects that communicate with it.

Take, for example, an object that represents a point as
a pair of integers for the X and Y coordinate. One of the
object’s methods returns the current X and Y values.

Changing the object’s representation of a poeint only requires
changing the object’s method to return the same values. 1If
the point were represented as an angle and distance, then the
previous method would need to calculate the X and Y coordi-
nate. Other objects would still receive the same values,
therefore, no modification are needed.

In contrast, changing the data’s representation in the
global approach is not so clean. The data can be accessed by
several functions in different files. If even one function
expects the data in the wrong format, then the program will
give incorrect results or crash. Finding every use of the
data is an error prone and time consuming task. The larger
the project and the number of people working on it increase
the difficulty of the task.

Objects provide more than a modular approach to a prob-
lem. They are a method for conceptualizing a problem through

the use of class hierarchy and inheritances.

122

A class defines the structure and methods of an object.
Several objects can belong to the same class and are called
instances of that class. Each instance has its own set of
data (in instance variables), but shares the same methods as
other instances in the class. Therefore, each instance re-
sponds to the same messages, but it keeps its own version of
the data.

Classes belong to a hierarchical structure. A class
inherits the instance variables and methods of the class
above it on the hierarchy, until the root class is reached.

When a message is sent to an object, its class is
checked for the associated method. If the method isn't
found, then the class above it on the hierarchy (i.e. super-
class) is checked. This search continues up the hierarchy
until the method is found, or until the root object is
reached. If the method isn't found, then an error occurs.

This search mechanism allows the class to override the
methods of its superclass. The method can also invoke the
superclass method during its execution. The procedure for
calling the superclass’ method is dependent on the language.
In Smalltalk, for example, the method sends a message
"super." Therefore, the methods of a class can specialize or
augment the methods of its superclass.

Three important areas need consideration when designing

an object-oriented system, the structure of the class

123

hierarchy, the relationship of the classes and the data, and
the relationship of the classes and the methods. The class
hierarchy depends upon the conceptual model of the system and
the problems it was designed to solve. For example, a system
for modeling transportation vehicles has the classes Car and
PickupTruck as subclasses of PersonalTransportation, which is
a subclass of Transportation.

The class hierarchy contains the most abstract classes
at the top of the hierarchical tree and the most specific
classes at the leaves. The superclass should provide at
least some support to the subclass. If a class uses a mini-
mal set of instance variables and methods provided by the su-
perclass, then the class probably shouldn’t be a subclass of
its superclass.

For example, the Tutor class is a subclass of the Thing
class in MicroWorld (see Section 5.4). Tutor uses a very
small set of the instance variables and methods defined in
Thing. The Tutor is considered an invisible Thing, therefore
it was defined as a subclass of Thing. A better design has
two subclasses, Aether-Thing and World-Thing, of the class
Thing. Aether-Thing represents the invisible and World-Thing
the visible objects in the world. Tutor would be a subclass
of Aether-Thing.

Separating the Thing class is not solely based on the

object’s visibility. Several instance variables are used for

124

handling the user's events. For example, an instance
variable contains the method for a click event. The Tutor
does not handle any events directly, therefore, the Tutor
should not have instance variables for handling these events.

In the future, the Tutor will handle events posted to a
queue from several different sources. Although both classes
will then handle events, the processing involved is
different. The Tutor will accept events that Things do not
use. For example, the Tutor will handle a null event, which
is not used by Things. Separating the classes into Aether-
Thing and World-Thing is still valid.

As the example shows, in which class the instance vari-
ables and methods are defined is important for good system
design. An instance variable should be defined in the
highest class that uses it. Methods, on the other hand,
should be defined in the lowest class possible. If two
classes use the same method, then the method should be
defined in the immediate superclass.

Using the example above, the instance variable for the
Thing's image should be defined in World-Thing, which is the
highest class that uses it. On the other hand, both World-
Thing and Aether-Thing have an icon, therefore, the icon
instance variable should be defined in Thing.

Both the image and the icon representation of Thing are

bitmaps and the methods for drawing them are the same. The

125

method can be defined using one of three alternatives.
First, since World-Thing is either drawn as an image or an
icon and Aether-Thing is only drawn as an icon, a method for
drawing either the image or the icon is defined for World-
Thing and a method for drawing the icon is defined for
Aether-Thing.

Second, the method for drawing an image or icon is
defined in Thing. The subclasses then provide information
for which item to draw, either by passing the information
with the message or the draw method request the information
from the subclass.

Third, an instance variable in class Thing holds the
current representation. The subclass is responsible for set-
ting the instance variable to the correct representation, ei-
ther an image or an icon.

The second and third alternatives are preferable over
the first alternative as less code is duplicated between the
objects. The best choice between the second and third alter-
native is based on the usage of the current representation.
If the representation is used often and set seldom, then the
third alternative is preferred since the information is
easily accessible.

This illustrates another design decision, using an
instance variable versus sending a message. Accessing the

contents of an instance variable is faster than a message

126

send, but uses more memory. Two factors are involved in the
decision, the frequency of use and the difficulty in finding
the information. 1If the information is used often, or
several messages are needed to get the information, then an
instance variable should be used. Otherwise, a message
should be sent for the information.

Another problem is getting information to the object
that needs it. Two alternative are available, send the
information with the message, or have the object send a
return message requesting the information. If the
information is passed to several objects that don't use it
before it gets to the final object, it is better to have the
final object request the information. On the other hand, the
possible difficulty in determining which object to request
the information from may make passing the information in a
message the better approach. Again, it depends on the design
of the entire system.

Another design problem is determining which object or
objects should control the system. Global control uses one
object to control the entire system, while local control uses
several objects. The project and the operating system of the
host machine determines the best approach. If the operating

system is event driven, then local control is better.

127
5.2 The Effect of the Object-Oriented Approach on the
Implementation

Using the object-oriented approach affects the
implementation as well as the design. Sending a message
between two objects is expensive in comparison to keeping the
information local in terms of speed of execution, but is less
expensive in terms of space. This decision is made through-
out the implementation phase of any project.

For example, a Thing object has two instance variables
for the UWorld and Base-World objects. Furthermore, the
Base-World and UWorld objects both contain an instance vari-
able that makes reference to the other object. Therefore,
Thing contains redundant information by using two instance
variables. The Thing object can communicate indirectly with
one object by using the other object as an intermediary. The
Thing object could access the UWorld object through the Base-
World object or vice versa. Although it requires more space,
Thing sufficiently accesses the UWorld and Base-World objects
to warrant having an instance variable for both objects.

Determining the information contained within a class is
another design choice. If one object makes frequent request
for information from another object, then duplicating the in-
formation increases the performance of the program.
Duplication of information is contrary to the object-oriented

design approach. When several objects contain the same in-

128

formation, especially instances of different classes, the lo-
cality of information is lost. Changes must propagate to all
objects that contains a copy of the information. If an ob-
ject often uses the information defined in a different class,
then the information probably belongs to the first object.

In MicroWorld, two classes in frequent conversations
contain an instance variable that points to the other object.
Duplication of object pointers are restricted to three class-
es. UWorld points to all Things, all Base-Worlds, and all
instance of UW-Method’s subclasses. Base-World also points
to Thing’s instances contained within the Base-World’s
boundaries and the UWorld cbject. A Thing object points the
Base-World and UWorld objects. The increased performance
outweighs the complex connections between objects created by
this design. Other information is not duplicated between ob-
jects.

In an object-oriented system, another trade-off exists
between sending information with a message or letting the
receiver request the information from the sender. For
example, an object obtains the user’s selection from a list
of items., Completing the selection sends a message to anoth-
er object, which indicates this event. Two choices exists,
either sending the selected item with the message or saving

the item and let the receiving object request it.

125

The best choice depends on two factors, the number of
times objects forward the selection until the value is used
and the ease in which the receiving object can locate the
sending object. The object should send the selection with
the message, if the receiving object makes use of the infor-
mation. If the message goes through several objects before
the information is used, the choice is less obvious. For ex-
ample, object A sends a message to Object B, which forwards
it to Object C, and finally reaches Object D. If Object A
sends a value to Object D, the Object B and C pass unused in-
formation. If the final object requires several messages to
determine the original object, the sending the information
with the message is the best solution, even with a long path
of messages.

A case exists in MicroWorld where unused information is
sent to an object. When a dialog item pops up a menu, the
dialog item sends a reference to itself with the menu’s
message. The menu forwards the information to the current
UwW-Method instance, which uses it to request the code posi-
tion of the user’s selection. The pop-up menu, on the other
hand, does not use this information, but UW-Method can not

easily determine the dialog item.

130

5.3 Languages Used in MicroWorld

Three criteria were used in choosing MicroWorld’s devel-
opment language. First, the language had to be available for
the Macintosh computer, which was chosen for its user
interface and its use in the education field. If someone
wants to use MicroWorld, chances are good that the equipment
is available and the person has experience using the
Macintosh.

An object-oriented language is the second criteria. The
combination of modularity, inheritance, and overall design
approach, makes an object-oriented language well suited for
the building of large programs. A true object-oriented
language was not a necessity; it could have object-oriented
extensions. For example, Lisp with the Flavors package is a
suitable language,

The third criteria is a good development environment.

It is essential when building a large system, even with the
modular approach of an object-oriented language. This
environment should provide:

* error detection,

* a backtrace of the current objects and methods

leading to the error,
* inspection of the objects and instance variables,
. zggp and trace functions.

Error detection is an obvious choice. A backtrace provides

the activation stack of objects and messages. Any object can

131

send the same message to an individual object, therefore the
activation stack is important for determining the message’s
path. Inspection allows the programmer to examine the
object’s state. Coupled with the backtrace ability, the pro-
grammer can also view the object’s state within the current
activation. Step and trace functions allow the programmer to
watch the dynamic behavior of the program.

At the start of MicroWorld’s development, the Neon pro-
gramming language met the most criteria. Neon was used for
early prototypes to explore the feasibility of object-
oriented languages. Neon is a version of Forth (stack-based,
threaded-interpeted language) with object-oriented
extensions. Forth’s syntax has the parameter list before the
function or procedure call (i.e. reverse polish notation).
Neon uses the same syntax for messages. The parameter list
comes first, followed by the message, and finally the object.

Unfortunately, Neon is lacking in two important areas.
First, its extension te Forth is not truly object-oriented.
Second, its total lack of a development environment.

Neon has one global object called the stack, which is
used throughout the system, including the object package.
This leads to difficulty in several respects. One of object-
oriented concepts is modularity; objects only interact
through messages. 1In Neon’s case, objects interact through

the stack. Although message’s parameters are pushed on the

132

stack, methods can use any stack value, including values that
are not part of the message. 1In other words, a message with
too few or too many parameters is hard to detect.

Determining when the program uses a stack value is also
difficult. Many messages and function calls could exist
between placing the value on the stack and using the value,
which increases the difficultly maintaining the program.

Stack overflow and underflow are the two major bugs
sources in Neon. Stack overflow occurs when used values are
not removed from the stack. Neon provides a function to test
the stack’s depth of the stack, but determining the
responsible function or method is difficult.

Stack underflow occurs when too few values exists on the
stack, caused by either not enough parameters for a function
call or message, or not enough return values. Neon is very
inconsistent about catching stack underflow errors. Only a
subset of available functions check for stack underflow, thus
the error isn’t shown at the correct position, which increas-
es the difficulty in debugging the problem.

The lack of a good development environment is compounded
by bugs in the language itself. Several functions provided
are not documented nor perform correctly. For example, the
SIGN function is defined to return either -1, 0, or 1, based
on the parameter’s sign. Instead, the function returns

nothing, causing a very difficult to find stack underflow

133

errgr.

Another difficulty exists with Neon’s local variables
and parameters. The programmer can only define names for six
parameters and local variables. For example, if four
parameters are given names, then only two leocal variables can
be given names. This limitation causes the programmer to
write complex stack manipulation to access the parameters and
local variables above the limit.

Neon’s source code is very difficult to read. Even with
adequate documentation, determining how a function behaves is
difficult. Stack manipulations, which are unavoidable, makes
it harder to establish the parameters’ wvalues and their order
on the stack. For example, MicroWorld contains a number of
instances where one parameter (or more) stays on the stack
through several calculations before its use in a message.
These code segments are harder to read, especially for some-
one besides the author.

As shown above, Neon is a poor choice for building large
systems. The global stack, lack of a development
environment, and the lack of sufficient named parameters and
local variables, increases the development time when compared
to other languages. Debugging the program takes a larger
percentage of the programming cycle. MicroWorld would be
nearer completion, if a better language was available at the

project’s inception.

134

Fortunately, Allegro Common Lisp became available in the
project’s second year. Lisp does not have the problems found
in Neon. Unlike Neon'’s global stack, Lisp allows, but
doesn’t require, the use of global variables. Furthermore,
the parameters follows, in order, the function call, and thus
the programmer can easily determine the parameters’ values.
Lisp does not restrict the number of parameters and local
variables with names.

Lisp’s most important feature is a good development
environment. Allegro Common Lisp provides the four essential
tools outlined above. Building a large system using Lisp is
easier than Neon, since it requires less debug time.

Allegro Common Lisp provides an object-oriented package
called Object Lisp, which is different from Flavors and
CLOS3. 1In Flavors and CLOS, objects are sent messages, which
activate the corresponding methods. On the other hand, Ob-
ject Lisp’s objects are sent functions to evaluate within the
receiving objects’ environment.

For example, the message:

(ask a-window {move-to 5 6)

(let ({x (+ 5 6))

(y (* 5 6)))
{move x vy})
(print "I am here!")))

asks a window (called “a-window”) to evaluate three

statements. The first statement is a method defined for the

3. Two common object-oriented packages used with Lisp.

135

wWindow class. The second statement is a let statement,
which allocates two local variables and then performs another
method defined in the *Window* class. The third statement is
a Lisp function, which is performed within a-window’s
environment.

The first statement has the following equivalent
statement in Flavors:

{send a-window :move-to 5 &)

Only messages specified in the object’s class and
superclasses can be sent to the object, therefore the
object’s behavior is well defined. Objects’ behaviors are
not well defined in Object Lisp since any Lisp function can
be included in the message, including functions that modify
the object’s internal state. No equivalent statement exists
in Flavors for the second statement above.

Accessing instance variables is similar to accessing
local variables within the object’s environment. For
example, suppose the class Window has “next-window” as an
instance variable. The message:

(ask a-window next-window)
returns next-window’s contents. Within Window’s method
definitions, using the atom “next-window” returns the same
value as the previous message.

An equivalent statement in Flavors is:

{(send a-window :get-next-window),

136

which is a method either created automatically by the
compiler (when the variable is declared “gettable”) or
written by the user. The user determines which instance
variables are accessible from outside the object in Flavors,
which is not the case in Object Lisp. All instance variables
are visible and can be set outside the object.

Object Lisp matches Lisp’s semantics. A message is a
request for the object to evaluate one or more functions
within its environment. On the other hand, Flavors and CLOS
distinguish between a function call and a message. Objects
created in Flavors or CLOS can only receive messages defined
for its class and its superclasses. Objects created in Ob-
ject Lisp can also receive functions defined in the Lisp en-
vironment.

Object Lisp’s message technique causes three problems.
First, methods can not have the same names as functions de-
fined within the Lisp environment. The conflict does not
occur between methods defined in different classes, only
between methods and Lisp functions. A method calling a
function is exactly the same as the method calling another
method defined within its class. The compiler can not deter-
mine which definition to use if the method and function share
the same name, therefore, the names must be unique.

Second, instance variables are not hidden from functions

and methods defined ocutside of the object’s class. Any

137

function or method that knows both the object and the
instance variable’s name can get and set the instance
variable’s value. From the previous example, the message:

(ask a-window next-window)
returns next-window’s value, even if the programmer desires
restricted access to the data. In a large system,
unrestricted access to an object’s instance variables
increases the probability of errors.

Third, messages can not directly include instance
variables’ wvalues. For example, suppose a-variable is an
instance variable defined for object-1. A method defined for
object-1 can not send a message to object-2 of the form:

{(ask object-2 {perform-method a-variable))
because “perform-method” executes in object-2's environment.
A-variable is only bounded within object-1’s environment and
is either unbounded or bounded to a different value within
object-2’s environment. Binding the instance variable to a
local variable (normally within a let statement) and sending
the local variable with the message is the solution for this
problem.

The first two problems are contrary to the object-ori-
ented concept. Method definitions within a class are local
to the class, which include the methods’ names. By
conforming to Lisp’s semantics, naming conflicts are possible

and thus, the class locality is lost.

138

Information hiding is an important concept in object-
oriented languages, which Object Lisp lacks. In a true
object-oriented system, all interactions between objects are
through messages. Access to an object’s instance variables
is only achieved by sending a message to the object,
therefore the value’s internal format can be different from
the external view. Furthermore, the value’s representation
can change without affecting other objects. Object Lisp’s
method evaluation within the receiving object’s environment
makes the object’s instance variables visible to all outside
objects.

Although Allegro Common Lisp has the two problems out-
lined above, its environment is a vast improvement over Neon.
MicroWorld was rewritten in Lisp and the following sections

describe the Lisp version.

5.4 MicroWorld’s Class Hierarchy

An important design area in an object-oriented system is
the class structure. The class determines the relationship
between instances of different objects, and the inheritance
of an object. The class structure is a tree with the most
abstract classes at the top, and the leaves are the most
specialized class.

Table 2 shows the class hierarchy in MicroWorld.

Subclasses of a class are indented to the right one level.

Table 2. MicroWorld’s Class Hierarchy

139

Object
Category
Concept
Dialog
Code-bialog
Dialog-Item
Button-Dialog-Item
Static-Text-Dialog-Item
Code-Name-Dialog-Item
Table-Dialog-Item
Sequence-Dialog-Item
Default-Choice-Sequence~Dialog-Item
Image-Sequence-Dialog-Item
Icon-Sequence-Dialog-Item
Code-Sequence-Dialog-Item
Function-Popup-Menus
Menu
Popup-Menu
List-Popup-Menu
Menu-Item
UWorld-Menu-Item
Movement
Sound
Thing
Tutor
UW-Bitmap
UW-Background
UW-Image
UW-Icon
UW-Method
UW-Command
Glecbal-UW-Command
Local-UW-Command
UW-Function
Boolean-UW-Function
Integer-UW-Function
Location-UW-Function
Sound-UW-Function
Thing-UW-Function
UWorld
UWorld-Auther
Window
Base-World

140

For example, Tutor is a subclass of Thing and Thing is
Tutor's superclass. Both Thing and Tutor are subclasses of
Object.

Allegro Common Lisp, the language MicroWorld is written
in, provides an object package that interfaces with the
Macintosh Toolbox. The names of the classes start and end
with the '*' character. Three classes, *Table-Sequence-
Item*, *Sequence-Dialog-Item*, and *Window* are used as su-
perclasses to classes defined in MicroWorld, but no instances
are created. MicroWorld uses instances of the other classes
defined by Allegro.

At the top of the class hierarchy is the class called
Object, which is the most abstract class in an object
oriented system. All other classes are subclasses of this
class.

Object provides the most generic methods, usable by all
instances. Some examples are the function self, which
returns the current object, and have, which creates instance
variables. In general, Object is responsible for creating
and maintaining objects.

Class Category and class Concept are related. Concept
defines the concept which the associated Thing represents.
For example, a large black square has the concepts of
“large”, “black”, and “square.” Category groups the concepts

of the same type. For example, the category for color

141

contains the concept of “black” and “white.”

A Thing can be selected to teach a concept to a student
by using objects from the Category and Concept classes. For
example, if the student is learning the concept of shape,
then the Things with unique shapes are selected from the
category of “shape.” Therefore, a circle and two squares
could be selected to teach the shape of a circle.

Dialog provides an object-oriented interface into the
Macintosh's Dialog Manager. A dialog is a type of window for
displaying information and retrieving the user’s responses.
The *Dialog* class uses a list of #*Dialog-Item* (or
subclasses) instances and sends user-created events to the
appropriate item. For example, if the button is pressed
while the mouse is within the bounds of a *Dialog-Item*, it
is sent a dialog-item-click-event-handler message.

Dialogs are either modal or modeless. A modal dialog
retains control until the dialog is closed or until the
dialog passes contreol to a menu, window, or another dialog.
The user can change control to a different window or dialog
when using a modeless dialog.

Code-Dialog specializes the Dialog class by sending null
event messages to a list of dialog items. The dialog items’
type determine the response to this event. Code-Sequence-Di-
alog-Item uses null events for highlighting the item under

the cursor (see below).

142

The abstract class *Dialog-Item* provides the generic
support for any dialog item. For example, the instance
variables for text, position, and size are defined in this
class. Event processing is also handled by *Dialog-Item*.
When an a mouse up event occurs, for example, *Dialog-Item*
evaluates the expression contained in the dialog-item-action
instance variable.

Button-Dialog-Ttem supports the buttons used in a
dialog. Clicking the button evaluates the dialog-item-
action. One *Button-Dialog-Item* can be designated as the
default button and is drawn with a three-pixel deep rounded
rectangle border. Pressing the return key is the same as
clicking the default button with the mouse.

Static-Text-Dialog-Item presents un-edittable text to
the user in the dialog. *Static-Text-Dialog-Item* overrides
the *Dialog-Item* class’ mouse down event handler. *Static-
Text-Dialog-Item* evaluates its dialog-item-action for a
mouse down event, instead of a mouse up event.

Table-Sequence-Item displays a sequence of items,
which are listed in column format with the current selection
highlighted. The selection can either be only one item, a
consecutive group of items, or any group of items, depending
on the setting of an instance variable. Scroll bars are
supported for lists that are too large to display at once.

Sequence-Dialog-Ttem is used when the sequence is a list.

143

Another subclass of *Table-Sequence-Item* is used for arrays.

The four classes, Code-Sequence-Dialog-Item, Default-
Choice-Sequence-Dialog-Item, Icon-Sequence-Dialog-Item, and
Image-Sequence-Dialog-Item are subclasses of *Sequence-
Dialog-Item*, Code-Sequence-Dialog-Item uses null events to
highlight the list item under the cursor. A pop-up menu as-
sociated with the list item is activated when the mouse
button is pressed.

Code-Sequence-Dialog-Items can be used in either edit or
view mode. The code is presented on every other line in edit
mode, but on every line in view mode. Each Code-Sequence-Di-
alog-Item has two pop-up menus. One menu is for the odd-
numbered lines and the other menu is for the even-numbered
lines. 1Instead of using an instance variable to keep track
of which mode is in use, the menus determine the mode. When
editing, the two menus are different, since the even-numbered
lines have a different function than odd-numbered lines.

When viewing, the two menus are the same.

Multiple items can be selected at the same time from a
Sequence-Dialog-Item#, therefore the selection is returned
as a list. Default-Choice-Sequence-Dialog-Item provides a
shorthand method for returning the first selected item.

Other then this minor difference, Default-Choice-Sequence-Di-

alog-Item is the same as #*Sequence-Dialog-Item*,

144

Icon-Sequence-Dialog-Item and Image-Sequence-Dialog-Item
have the same functionality, but on different graphical
formats. Each class allows the user to scroll through a
group of pictures. When the accept button is selected, the
current picture is converted into a bitmap. Icon-Seguence-
Dialog-Item handles ‘ICN#’ resources and Image-Sequence-Dia-
log-Item uses ‘PICT’ resources.

The Function-Popup-Menus class has a pop-up menu for
each function type {(i.e. boolean, integer, location, sound,
and thing) in MicroWorld. When the user selects a dialog
item in a code dialog that needs a function (e.g. a parameter
field or the return value), this class determines the
function’s type and displays the appropriate menu.

Menu is an interface with the menu manager in the
Macintosh Toolbox. An instance of *Menu* is created for each
menu in the menubar. When a menu-type event occurs, such as
a mouse-down event in the menubar, the appropriate *Menu* in-
stance is sent the event. If an item from a menu is
selected, the menu determines which instance of *Menu-Item*
(or subclass) that corresponds with the selection and sends
the instance a menu-item-action message.

Popup-Menu provides the same functionality as *Menu*,
except the menu "pops up" at the position of the mouse and
not from the menubar. The user’s previous selection is the

highlighted item and is the default choice.

145

List-Popup-Menu’s items are not instances of *Menu-
Item*. Instead, each item is a list. The first element is
the display string for the menu. The second element is the
item’s type. *Menu* and Popup-Menu items are instances of
Menu-Item (or subclass).

Selecting an item from a List-Popup-Menu returns the
corresponding list. Dynamic pop-up menus are easily created
and updated. MicroWorld uses List-Popup-Menus for selecting
an item from a list in a menu format instead of a dialog
format. For example, the list of all available commands is
an instance of this class.

The UW-Method class makes extensive use of pop-up menus,
but the menus are created in the UWorld class (see below).
Creating dynamic menus for each instance of UW-Method is
expensive in memory and execution speed. Furthermore, UWorld
contains the information needed to create the menus. There-
fore, UW-Method retrieves the menus from UwWorld, add items
(1f needed), before activating the dialogs.

An instance of *Menu-Item* is an item in a menu and
contains the text of the item, active indicator, keyboard
equivalent character, and the processing of the user's
selection. 1In most cases, a message is sent to an object to
perform the function corresponding with the menu item. For
example, the menu item "New" sends a “create new world”

message to the UWorlid-Author.

146

UWorld-Menu-Item has an added instance variable that
points to the current instance of UWorld-Author. The menu
item can send messages directly to the UWorld-Author. 1In all
other respects, UWorld-Menu-Item acts the same as *Menu-
Item*.

Movement defines an on-screen movement path for a Thing.
Currently, the user defines a path as a list of points in X,
Y coordinates. Future plans include defining this path by
following the movements of the mouse.

The class Sound provides an interface with the
Macintosh’s Sound Manager. An instance of Sound is sent a
list of ‘snd’ resource names. The resources are loaded
first, before any sound is produced, to minimize the delay
between playing each sound resource.

Only one instance of Sound is created in the environment
for two reasons. First, the information is the same for each
instance. The Macintosh’s Sound Manager is stored in ROM and
each open call returns the same information. Second, the
current version of the Sound Manager does not handle several
simultaneously active sound channels. Therefore, one
instance is created and is stored in the instance of UWorld.
Thing’s make requests for the Sound object through UWorld.

The class Thing defines the objects the student
manipulates on the screen. A Thing can be clicked, double

clicked, or dragged, depending on the setting of instance

147

variables, which the user can access.

Each Thing reacts uniquely to events with respect to
other Things. Four instance variables contain Local-UW-
Command objects (see below) which are evaluated when the
Thing is clicked, double clicked, while it is being dragged,
and when it is released.

Two more instance variables are used to record history
of events and evaluate the performance of the student. It is
impossible to determine the needs of the instructor, there-
fore, these instance variables contain instances of Local-Uw-
Command.

Each instance of Thing has several instances of other
classes. The class Concept defines the concept of the
object. Movement defines an on-screen movement path. UW-
Image and UW-Icon defines the images used on the screen.

Things can be grouped together into a composite object.
For example, a Thing modeling a calculator could be divided
into several Things, each one is a button. A composite ob-
ject can work as a unit or as individual Things, depending on
the programming by the instructor.

Tutor, a subclass of Thing, assigns tasks to the stu-
dent. The Tutor does not contain all instances used by
Thing. The student can not manipulate the Tutor, therefore
the classes, Concept, Movement, and UW-Image are not used.

Two more instance variables were added to specify how and

148

what to teach.

The class UW-Bitmap is responsible for the bitmap images
and provides low level graphic support for loading, saving,
copying, and testing pixels of an image. Objects that
contain instances of UW-Bitmap are responsible for drawing
the bitmaps.

Uw-Background is a subclass of UW-Bitmap. Backgrounds
are saved in compressed format, therefore, UW-Background
overrides UW-Bitmap’s lcocad and save methods to compress and
uncompress the bitmap. Furthermore, backgrounds are not pre-
loaded into memory to save space. The memory used by the old
background is released when a new background is loaded into
memory.

The class UW-Image uses two instances of UW-Bitmap to
define a graphical image. One bitmap defines the object’s
color and the other bitmap defines its mask. 1If a pixel is
“on” (a 'l' in a black and white bitmap} in the mask, then
the corresponding pixel in the image is drawn to the
destination bitmap. If a pixel is off (a '0' in a black and
white bitmap), then the destination bitmap remains the same.

UWw-Icon, a subclass of UW-Image, converts a resource
of type "ICN#" and the name of the Thing it represents into
an image. The icons are similar to the icons used by the Ma-
cintosh Finder, except the name can not be edited using the

name field. Implementing the Finder-type icons added

149

complexity to the Base-World and UW-Icon classes, therefore
the Thing’s name is changed with a menu item. Base-World
just selects the object under the cursor with this approach,
instead of handling events differently if the mouse event is
in the icon’s name field

UwWw-Method (described in greater detail in the Section
6.2) is the top level class for the user's programming
interface. It handles the presentation, editing, compiling,
loading, and saving of the code.

The two subclasses UW-Function and UW-Command subdivide
UwW-Method into code that returns a value and code that does
not return a value. UW-Function displays its definition with
an added field for the function, variable, or constant that
determine the results.

Instances of Global-UW-Command are commands usable by
all Things. Instances of Local-UW-Command are commands local
to one Thing. Modifications to a Thing’s local command does
not change another Thing’s local commands.

The five classes, Boolean-UW-Function, Integer-UWw-
Function Location-UW-Function, Sound-UW-Function, and Thing-
Uw-Function define functions for its return type. For
example, an instance of Boolean-UW-Function defines a
Boolean-returning function.

When a new method is created, it is either an instance

of Global-UW-Command, Boolean-UW-Function, Integer-Uw-

150

Function, Location-UW-Function, Sound-UW-Function, or Thing-
UW-Function. UW-Method, UW-Command, and UW-Function are all
abstract classes. Local-UwWw-Command are created automatically
when a new Thing is created.

Figure 42 shows the structure between UWorld, Base-
World, and Thing objects. The thick arrows shows the origi-
nal design and the thin arrows were added later for better
communications between Things. At first, the Base-World
provided the communication link between two Things. When a
Thing needed to send a message to another Thing the Base-
World was given the name of the second Thing and it would re-
turn the object.

Under the original design, Things could not communicate
between different Base-Worlds. Since the Tutor exists in a
different Base-World from the visible Things, the Tutor could
not direct the actions of the Things. Therefore, the UWorld
handles both the Base-Worlds and the communication between
the Things.

Not only do all Things need to communicate with each
other, but they also need access to the global commands and
functions. UWorld keeps a table of the Global-UW-Command and
Uw-Function objects. Furthermore, instances of Function-Pop-
up-Menus, Popup-Menu, List-Popup-Menu, and Sound are kept in
UWorld for efficient use of memory. UWorld contains the

“global” knowledge for the environment.

151

UWorld

Base-World Base-World

Thing Thing Thing Thing Thing

Figure 42. UWorld’s and Base-Worlds’ Pointers to Things

Currently, UWorld contains two Base-Worlds, called the World
and the Rether. The World contains the objects of manipula-
tion by the student and the backgrounds. It is the only
visible Base-World when the student is running the lesson.
The Aether contains the objects invisible to the student
(i.e. the Tutor). The RAether provides the means for the in-
structor to manipulate the invisible objects when defining
the lesson.

The UWorld-Author class provides the interface between
the menu items and the UWorld class. A menu selection by the
instructor executes the corresponding method in UWorld-
Author, which send messages to the UWorld cbject. UWorld-

Author provides the support for MicroWorld’s authoring mode.

152

Another class will provide the support for MicroWorld’s
run mode and is responsible for the sequence of movies,
sounds, and worlds defined by the instructor. For example, a
possible sequence is an introductory speech, a movie, a
second speech, another movie, and then a lesson. The lack of
a foreign function interface in Allegro Common Lisp delayed
the definition of this class.

The #*Window?* class provides the interface with both the
Macintosh’s window and event managers. An event sends a
message to the instance of *Window* associated with the front
window. A Macintosh window is divide into a title bar (with
optional close and zoom boxes), a content region, and an op-
tional grow region. *Window* handle events directed at the
title bar and grow region., Events sent to the content region
are the subclass responsibility.

Base-World, as mentioned earlier, is the subclass of
Window, which handles the windows for UWorld. When a Base-
World receives an event, a search from the highest to the
lowest plane is made of the cbjects it contains., If two
objects overlap and the cursor is over the area of
intersection, then the top item is selected. If an object is
not found, then the event is ignored.

Base-World forwards the event to the selected object for
processing, except when the user is dragging the object. For

efficiency, Base-World handles the actual movement of the ob-

153

ject. As the object moves, it receives “dragging events.”

5.5 MicroWorld’s Control Structure

At the core of any Macintosh application is an event
loop that retrieves events from the operating system and
starts processing it. The event loop is contained within Al-
legro Common Lisp environment and is not defined as a
separate class. Instead, the event is sent to different ob-
jects depending on the cursor’s position and the event type.
Events associated with windows are sent to the active in-
stance of *Window* (or subclass). Events directed at the
menubar are sent to the appropriate *Menu* (or subclass) ob-
ject.

Two approaches for event processing are possible in an
object-oriented system. One centralized object could process
all events {(global control} or individual objects could be
responsible for events directed at them (local control).

The difference between global and local control can be
shown by using a mouse click as an example. Using global
control, the centralized object sends a “highlight” message
to the Thing. Using local control, a “click event” message
is sent to the Thing and it decides to highlight itself. A
different type of Thing could decide to behave differently

for the same event.

154

MicroWorld uses local control as much as possible.

Thing decide how to handle all the events it receives. For
example, a mouse click sends either an authoring-click-action
or a perform-l-click-action message, depending on if the
Base-World is in authoring or running mode.

As mentioned above, the actual event messages Things re-
ceive depends on the mode of MicroWorld. 1In authoring mode,
the methods authoring-click-action and authoring-unclick-
action are used when the Thing is clicked and when another
Thing is clicked. Dragging and landing events are not sent
to the Thing, instead they are handled directly by Base-
World. Furthermore, a double-click event is ignored.
Authoring-click-action highlights the Thing and authoring-un-
click-action unhighlights it.

In authoring mode, a mouse click selects the Thing.
Holding the shift key during the mouse click adds the Thing
to the list of selected Things. All the list items are af-
fected by the commands of the “Thing” menu, with the excep-
tion of the command “switch planes”.

In run mode, Things are sent the messages perform-1-
click-action, perform-2-click-action, dragging-action, and
landing-action for the mouse click event, mouse double click
event, during the Things movement by the user, and when the
Thing is released. Each method evaluates a different in-

stance variable, which contains a Local-UW-Command object.

155

For example, the perform-l-click-action method evaluates the
l-click-action instance variable.

Two instance variables, history-action and evaluation-
action, are used in run mode. Each contains an instance of
Local-UW-Command and is programmable by the instructor. The
Tutor plans the student’s next task by using history-action
and evaluation-action. The Tutor uses history-action and
evaluation-action to plan the student’s next assignment.

The Tutor’s “style” dictates the lesson’s content and
when it terminates. For example, in exploratory style, the
Tutor waits until the student selects “Quit” from the “World”
menu. Control resides with the Thing objects when the
Tutor’s style is exploratory.

The coaching or teaching styles give the Tutor more con-
trol over the environment. An evaluation of the student’s
performance determines the next assignment. Possible new
assignments include repeating the previous assignment,
teaching a new concept, teaching a concept related to the
current concept, or exiting the current lesson.

Another class (not implemented) supports control between
lessons. It regains control when the current Tutor
terminates the lesson and activates the next phase, which in-
cludes starting another lesson, showing a movie, generating
sounds, or exiting the program. The sequence can consist of

any combinations of the first three items.

156

In general, two control levels exist in MicroWorld’s
“authoring” mode. UWorld-Author handles the menu commands
and Base-World handles the other events. Three control lev-
els exist in MicroWorld’s “run” mode. Things handle the
events, the Tutor handles the lessons, and the class men-
tioned above is responsible for the sequences of lessons,

movies, and sounds.

5.6 User's Manipulation of Objects

In the original design of MicroWorld, pop-up menus were
the primary input for manipulating objects. The pop-up menus
contained only the commands appropriate to the selected ob-
ject. For example, a pop-up menu contains the “change
background” when the background is selected.

Unfortunately, the Macintosh did not support pop-up
menus when this section of the user’s interface was written.
Instead, the Macintosh’s menubar was used. Pop-up menus be-
came available later, therefore, the Thing’s programming in-
terface makes extensive use of them (see Section 5.8).

The Macintosh’s menubar user interface is poorly de-
signed. It contains menu items whose contexts are outside
the application, global to the application, global to the
windows, and local to the front window. The “Apple” menu
runs Desk Accessories and selects between different

applications currently running under MultiFinder. Selecting

157

an “Apple” menu item places the current application into
background processing. The application regains control only
by choice of the user. “Apple” menu items are outside the
application.

The “World” menu include commands to save, print, and
exit the world, which are are global to the application. The
“Window” menu activates the selected window, therefore, it is
global to all windows.

The commands from the “Tutor” menu and the “Thing” menu,
except for the “Create” command, are local to the active
window. The “Create” makes a new item in the appropriate
window, which does not necessarily affect the active window.
Therefore, the “Create” command is global to the windows.

Mixing global and local commands in the same menubar
makes the user's interface less clean and possibly more
confusing to the user. A better approach is placing commands
global to the application in the menubar and pop-up menus for
all other commands. The global commands are selected outside
the windows and local commands are selected in the window
affected by the command.

The local commands are further subdivided into commands
local to the window and commands local to an item within the
window. The menu appears in the context that it effects.

For example, the pop-up menu displayed when the user selects

a Thing only affects the selected Thing.

158

The UWorld-Author class handles the menubar. The
structure is similar between the class and the menubar. All
menu items work through UWorld-Author to perform the
commands, no matter if the commands are global to the
application, global to the windows, or local to the windows.

A menu selection executes the function stored in an in-
stance variable defined in the *Menu* class. In MicroWorld,
the function sends a message to the UWorld-Author object.
The actual processing of the menu selection can occur in an
ocbject far removed from the UWorld-Author object.

For example, the “Create” command in the “Thing” menu
sends a message from the UWorld-Author object to the UWorld
object, which sends a message to the appropriate Base-World
and a new Thing is created. Selecting the “Set Position”
command from the same menu sends a message from UWorld-Author
to UWorld, which requests the Thing selection list from the
appropriate Base-World and then sends a set-position message
to each Thing. As these examples show, separating the object
that first receives the menu selection and the object which
processes the selection leads to a confusing mess.

In the ideal design, no separation exists between the
object that receives the menu selection and the object that
processes it. Furthermore, the position of the cursor gives
the context in which the commands are performed. Pop-up

menus vastly improve MicroWorld’s user-interface design.

159

The menubar is now outside the context of the applica-
tion and contains the “Apple” menu. The user either switches
between applications or runs desk accessories from the
“Apple” menu. Neither alternative directly affects Micro-
World, which stays suspended until it becomes the front-most
application. The “Apple” menu is outside MicroWorld’s con-
text and, thus, resides in the menubar.

UWorld combines the “World” and “Window” menus into a
single menu in the menubar. The commands found in these
menus are global to the application and windows. UWorld has
control over the Base-Worlds and all other objects in the en-
vironment, therefore, it is the ideal class for the new pop-
up menu. Although the menu commands are not global to the
application, conflicts with Multifinder? requires the menu to
be a part of the menubar.

A Base-World is responsible for creating objects which
belong to it, setting its background, and exchanging planes
between two of its objects. The two currently defined Base-
Worlds have different needs. The “aether” Base-World has
neither background nor objects on planes®, therefore, the
only menu selection creates a new Tutor. The “world” Base-

World’s menu contains three items to create new Things, se-

4. A mouse click outside the application’s window causes Multifinder
to switch to a different application.

5. Not strictly true. Each cbject created in the “aether” Base-World
is assigned a plane number, but the objects are invisible to the
student. Therefore, it doesn’t make sense to switch between the
planes.

160

lect backgrounds, and exchange planes between two Things.

The Thing and Tutor classes each contain the menu items
that directly affects their instances. A menu item selection
executes the command on the object beneath the cursor. sends
a message to the object beneath the cursor. The Thing class’
pop-up menu contains the entries from the original “Thing”
menu, except for the “Create” and “Exchange Planes” commands.
Likewise, the Tutor class’ pop-up menu contains the entries
from the “Tutor” menu, except for the “Create” command.

This design is a large improvement over the current
design, both from the standpoint of the user's interface and
the object oriented approach. The cursor’s position deter-
mines the available menu and the context for its commands.
For example, the menu whose commands affect instances of the
Thing class is only available when the cursor is above one of
the instances.

A class handles the menu that affects only instances
created from it or its subclasses. Control becomes more
localized, since the object now controls the interaction with
the user. The object determines the conditions necessary to
activate the menu and handles the menu selection. Currently,
the object indirectly control the menus by sending messages
to the UWorld-Author obiject.

As mentioned when designing the pop-up menu structure

above, the “world” Base-World is different from the “aether”

ie6l

Base—-World, therefore, they should be separate classes. The
methods and instance variables for handling the backgrounds
and planes, the methods for spatial relationships (e.q.
things-to-the-left-of) and the methods for autodragging ob-
jects are not needed by “aether” Base-World. Furthermore,
Base-World’s method for dragging Things can be simplified. A
better design has two subclasses of Base-World, one is the
current “world” Base-World, the other is the “aether” Base-

World.

5.7 Providing Multiple Worids

More structural changes to the UWorld class are needed
if windows are increased in MicroWorld. Instead of two
instance variables for the “world” and “aether” Base-World,
an instance variable would contain the window list. When a
session continues, the same windows must exists as existed at
the end of the previous session. Therefore, UWorld must save
the number of existing windows and their titles in addition
to sending the save message to each window.

The cleanest method for saving arbitrary number of
objects is to save the information under the same type and
with an unique name, using the resource manager provided by
the Macintosh Toolbox. The window’s title determines the
name of its resource. To restore the windows, each window

resource is loaded and the resource’s name becomes the

162

window’s title. UWorld does not remember the number of
windows between sessions. Section 6.3 gives greater details
about loading and saving worlds using the resource manager.

In a multi-world environment, Things can communicate
with other Things across the world boundaries, because UWorld
binds the Thing’s name with its object and UWorld has a
pointer to all Things in the environment. For example,
“Fred” in “World One” can move “Julie” in “World Two” by
sending the message, “move Julie to the left of Sam.” This
raises an interesting question of what does it really mean to
have multiple windows in MicroWorld? Conceptually, is a win-
dow considered a separate “world” or is it a separate view
into the same world? Under the current design, a window is a
different view of the same world, because Things are allowed
to refer to each other across window boundaries.

According to MicroWorld’s metaphor, Things should only
communicate within the boundaries of the “world.” This
implies that the Base-World class handles the references
between Things. The difficulty with this approach is
handling the reference to the Tutor as it resides in a
different Base-World.

Two possible solutions are to include a pointer to the
Tutor in each Base-World or UWorld handles references to the
Tutor. The latter solution is superior for two reasons.

First, it alleviates the need to propagate changes to several

163

objects, if the Tutor is replaced. The UWorld and Tutor ob-
jects communicate using the “aether” Base-World as mediatory.
The first solution requires finding each Base-World that
referenced the Tutor to update the pointer.

Second, Base-World can send unresolved references to
UWorld, therefore allowing the creation of specialized object
in the “aether” window without modifying either the Base-
World or UWorld classes. Suppose, for example, a special
help Tutor was created and a Thing tries to communicate with
it. The Thing’s Base-World can not find the new Tutor and
forwards the request to its UWorld, which asks the “aether”
Base-World for the Tutor and the connection between the Thing
and the new Tutor is made. Creating a new type of Tutor only

requires modifications to the “aether” Base-World.

5.8 Object Programming

The design of the user's interface for programming an
object is vastly improved over the interface to manipulate
the objects, but not without problems. MicroWorld makes
extensive use of dialog boxes and pop-up menus for displaying
and modifying user’s programs. Creating a new dialog box
places it on top and slightly below the previous dialog box,
thus, giving an indication of the current code depth. Dialog
boxes are created by expanding a line of code, asks for a

method’s definition, etc.

le64

Once created, a dialog box stays active until the user
creates a new dialog box on top of the current dialog box or
until the user closes the current dialog box. Although the
Macintosh Toolbox supports it, the user can not switch be-
tween dialog boxes. The potential for confusion is too great
and, therefore, the user can not make a dialog box active
without closing the boxes created later. Possible areas of
confusion are:

* more than one dialog box opened on the same line

of code.

* dialog boxes opened on different lines of code

with the same appearance.

* dialog boxes closed between the original dialog

box and the current box.

* accepting changes at a dialog with dialogs,

created by the current dialog, still open.

The first three areas illustrate problems with
determining the current position in the code. For example,
if two dialog boxes contain code that looks the same, the
user can not determine whether the code is the same,
different, nor, if different, where the code belongs with
respect to the method definitions. If the user changes one
of the dialog boxes, the user does not know which method was
changed until the change is accepted and the other dialogs
are examined for the occurrences of the change.

If dialogs are closed along the path from the method
definition (i.e. the first dialog) to the current dialog,

then the presented code may not be visible in the other

dialogs. For example, the “if” statement has a “then” code

165

segment and an “else” code segment. Unless both the test
condition and the “then” code segment are very short, the
“else” code segment is not visible when the “if” statement is
presented on one line. If the user doesn't remember where
the code is from in the current dialog, then an undesirable
search is required to find the position again.

One solution to the problem is to provide feedback with
the dialog box as to the current position in the code.
Unfortunately, the further in depth the user goes (i.e. the
more dialogs that are opened by expanding the previous
dialog), the more information is needed to indicate the
position. For example, if line numbers and positions within
the line indicates the current position, several numbers may
be needed for a large depth and will confuse the user.

When the user accepts a change in a dialog box, then all
changes made from the dialog box are accepted, including
changes made from dialog boxes opened by the current dialog
box. If the dialog boxes are still open, the user can later
cancel the changes that were already accepted. The user
could be trying to cancel all changes made while the dialog
was open, which is contrary to the previous acceptance of the
changes, or the user could be trying to cancel the changes
made since the previous accept command.

A solution to this problem restricts the user from

closing a dialog until all dialogs created by this dialog are

166

closed. Unfortunately, this requires that dialogs know about
other dialogs and their current states. Given the
difficulties described above, it was decided to only allow
the user to make the previous dialog active by closing the
current dialog.

This solution isn't without problems. Currently, the
user must close the current dialog to view the previous
dialog’s contents. The user may want to review a previous
dialog while making changes to the current dialog, without
accepting or canceling the changes. A possible solution has
the dialog box becomes visible for a short period of time.
For example, placing the cursor over the dialog box and
pressing the mouse button makes the dialog visible until the
button is released.

Pop-up menus are used to present choices to the user,
depending on the location of the mouse when the button is
pressed. Each instance of #*Dialog-Item* (or subclass) that
uses a pop-up menu contains the instance{s) of either Popup-
Menu, List-Popup-Menu, or Function-Popup-Menu. When a *Dia-
log-Item* receives a mouse down event, the *Dialog* sends a
dialog-item-click-event-handler message to the *Dialog-Item*
and it displays the menu.

Each pop-up menu points to the instance of UW-Method (or
subclass) currently in use by the instructor. A menu selec-

tion sends an appropriate message to the object contained

167

within the menu’s instance variable. The dialog box regains
control after executing the command.

Originally, UW-Method contained an active dialog stack.
If the code changes, a message is sent to the top *Dialog*
item with the name of the changed *Dialog-Item* and the
update information. The #*Dialog* searches the #*Dialog-Item*
list and forwards the information to the item it finds.

Each object has instance variables for the objects it
communicates with directly. UW-Method has instance variables
for the *Dialogs*, which have instance variables for Popup-
Menus, List-Popup-Menus, and Function-Popup-Menus. Further-
more, each *Menu* subclass has an instance variable for the
current UW-Method. UW-Method creates and updates the
Dialogs, which are responsible for "popping up" the menus,
and the menus send the user's choice to the UW-Method.

The design achieves the minimum number of connections
between objects, but does not completely work. UwW-Method can
not determine which section needs modification, when two or
more section of the same type exists within the same dialog
box. For example, the Lisp function 'cond' has two areas to
insert, delete, or expand a command, the section for the
'then' part and the section for the 'else' part. The method
add-method (defined in UW-Method) does not know which section
to add a new command, since it only receives the command and

the commands position.

168

Providing more information in the *Dialog-Item* solves
the problem. Upon creation, the *Dialog-Item* receives a
type and an ID number, which is based on the order it was
created within the group of *Dialog-Items*. Using the previ-
ous example, both Code-Sequence-Dialog-Item objects receive
the same type (:commands-without-first) with different ID
numbers. UW-Method requests the ID number to determine the
section that needs modification.

UwW-Method must communicate with the #*Dialog-Item* that
activated the pop-up menu for the correct ID number. Two
possible approaches are to pass the *Dialog-Item* object with
the pop-up menu message to UW-Method or the #*Dialog* object
saves the currently selected *Dialog-Item*. The first
approach allows the UW-Method object to directly communicate
with the *Dialog-Item* object, although the pop-up menu has
unused information passed to it. The second approach forces
the UW-Method object to use the *Dialog* object as
intermediary, but useless information is not passed between
the objects.

The first approach was used in MicroWorld, because of
the frequency of use for the *Dialog-Item* in some of the
methods. Upon further reflection, the second approach is
better. The methods that make frequent use of the #*Dialog-
Item* object frequently should request the object from the

Dialog object. Methods that seldom communicate with the

169

Dialog-Item objects should use the *Dialog* objects as

intermediary.

5.9 Conclusion

MicroWorld’s design is still evolving. For example,
Thing's action instance variables for processing events are
now contained within a single class. Also, user-defined
instance variables are contained within their own class.
Hopefully, the suggestions outlined above will be implemented

in the near future.

170

CHAPTER 6

MICROWORLD’S IMPLEMENTATION

This chapter describes the major sections of
MicroWorld’s implementation. It is written for the people
who are working with MicroWorld’s source code, therefore it
probably isn’t interesting to the general public. The
chapter assumes both a knowledge of Common Lisp and the Ma-
cintosh Toolbox, although it isn’t required.

MicroWorld’s first major version is near completion.
The Tutor is incomplete and is the hardest class to design
and implement. Therefore, completion of the first version
may require large amount of time Furthermore, MicroWorld
needs extensive testing and debugging before it is ready for
use.

The implementation needs another major revision. Some
methods are not well designed nor well written due to time
constraints and poor design decisions. The classes used for
programming Thing’s responses and the Tutor class require the
most work.

This chapter gives an overview of MicroWorld’s
implementation, which is still being written and debugged.

Therefore, the description is not of the most current

171

implementation. However, examining the implementation, both
past and present, provides useful information about the
object oriented approach, the usefulness of different
programming languages, the problems and areas of difficulties

in the project, and improvements to the project.

6.1 User Interface Implementation

MicroWorld’s user interface consist of three items,
dialogs, menus, and windows. Allegro Common Lisp provides an
interface between its class system and the Macintosh Toolbox
(outlined in Chapter 5). Subclasses are used to specialize

the characteristics of dialogs, menus, and windows.

6.1.1 Dialogs

Dialogs present information to the user and allows
selection and/or modification of the information. MicroWorld
uses dialogs in several areas, including retrieving file
names, selecting a Thing object’s image and icon bitmaps, and
editing or viewing the user-defined methods. The next four

sections outline MicroWorld’s dialog types.

6.1.1.1 File List

Allegro Common Lisp provides two functions, choose-file-
dialog and choose-new-file-dialog, which creates two file

list dialogs using the Macintosh’s Standard File Package.

172

Choose-file-dialog presents a list of available files of a
specified file type and creator. Selecting a file and press-
ing the “open” button returns the file’s name and its direc-
tory identification number.

Choose-new-file-dialog saves a file under a new name.
For example, if the user selects "Save As..." from the File
menu, choose-new-file-dialog displays the current directory
and the default file name. From this dialog, the user can
change the current director and the file’s name. Upon press-
ing the “Save” button, choose-new-file-dialog tests the
current directory for a file with the same name. The user
must confirm writing over an existing file. Similar to
choose-file-dialog, this function returns the file’s name and
directory id. Both functions use the Lisp statement, (throw
:cancel), when the user presses the “Cancel” button.

MicroWorld uses two file types, ‘HWWSV’ and ‘LEXI’. The
‘UWSV’ type is the main resource file, which contains a com-
plete world’s definition. The ‘LEXI’ type is the sound re-
source (or lexicon) file. The sound rescurces are separate
from the main resource file, therefore, a lexicon file can be
shared between several worlds. Both files’ creators are the

‘UWWRD' type.

173

6.1.1.2 Image Dialoda

Any Macintosh Paint program can create images for Micro-
World by copying the images to the scrapbook file. These im-
ages are saved using the PICT format, which consist of sever-
al Quickdraw commands that reconstruct the images. The image
dialog uses the PICT format for displaying the images, but
MicroWorld converts them to bitmaps before their use in the
environment.

The dialog uses two regions for displaying the final
image’'s components. The first region contains the “image,”
which defines the final image’s color (black or white). The
second region contains the “mask,” which defines the final
image’s shape. The “image,” “mask,” and destination (normal-
ly the screen} bit patterns determines the resulting bit pat-
tern using the formula in Table 3. Each region is an Image-
Sequence-Dialog-Item object.

The dialog keeps a list of all PICT handles contained
within the scrapbook file or another file selected by the
user. When a scroll bar position changes, the appropriate
Image-Sequence-Dialog-Item object receives a draw-cell-
contents message, which includes the new image’s list index.
Image—-Sequence-Dialog-Item uses this index to retrieve the
picture’s handle and draws the picture using the Toolbox call

DrawPicture.

174

Table 3. Results Based on Image, Mask, and Destination
Bitmaps

:
E

in n

Image

PFREROOODO
HROOKRRBOO
HORORORO

PFHHEPRPOORO

The dialog requests the current picture handle from each
Image-Sequence-Dialog-Item when the user presses the “Accept”
button. The unused picture handles are released to reclaim
memory. The dialog returns the two picture handles, which
are converted to bitmaps using a temporary, off-screen graf-

port.

6.1.1.3 Icon Dialog

The Icon and Image dialogs uses similar techniques. Mi-
croWorld provides a set of predefined icons. The user can
not add to this set. The icon resource contains its image
and mask, therefore, the Icon Dialog uses one region to dis-
play the icon.

The ICN# and PICT formats are different. The ICN# for-

mat contains two 32 x 32 bit patterns instead of the PICT’s

175

Quickdraw commands format. The first bit pattern is the
icon’s “image” and the second bit pattern is its “mask.”
Icon-Sequence-Dialog-Item uses two temporary bitmap struc-
tures to draw the icons. These structures are shared between
all MicroWorld’s icons, instead of converting each icon to a
bitmap. The temporary bitmap’s base addresses are set to the
dereferenced ICN# handle for the icon’s image and the deref-
erenced handle plus 128 for the icon’s mask. Switching be-
tween icons only requires updating the two base addresses.

Unlike the Image Dialog, Icon Dialog returns the icon’'s
resource number when the user presses the “Accept” button.
Several Thing objects can use the same icon, therefore, less
disk space is used by saving the icon’s id versus saving its
bitmap representation.

A Thing’s icon representation contains both the icon se-
lected by the above method and its name. Therefore, the two
sub-components are combined before displayed on the screen.

A bounding rectangle is created, which contains both the icon
and the name. The name’s size is calculated by its length
and the current font size. The smaller length sub-component
is horizontally centered above or below the longer sub-compo-

nent.

176

6.1.1.4 Code Dialog

Code-Dialog, a subclass of *Dialog*, is used for viewing
and editing user-defined local and gleobal actions. Code-
Dialog uses “null events®” to track mouse positions, whereas,
Dialog uses the same event to flash the active text field’s
caret. Code-Dialog keeps a list of objects (subclasses of
Dialog-Item), which process null events. A dialog-item-
null-event-handler message, which includes the current mouse
position, is sent to each list item. One dialog item can not
block another item from receiving null events. Code-Dialog
does not process null events besides forwarding the message
to each list item. Further processing is handled by the dia-
log items.

Normally, the item list is composed of Code-Sequence-Di-
alog-Items, which uses null events to highlight its list item
currently under the cursor. Code-Sequence-Dialog-Item keeps
the previous highlighted item to unhighlight it, if the cur-
sor moves to a new item or moves cutside the Code-Sequence-
Dialog-Item’s bounds. Interrupts are suspended until the
dialog-item—-null-event-handler’s method completes, otherwise,
another null event can occur before the items are correctly

updated, causing incorrectly highlighted items.

6. The Macintosh’s Operating System returns “null events” when
GetNextEvent is called and no other event types are available.

177

Pressing the mouse button activates a pop-up menu, whose
commands affect the currently selected item. Two factors
determine which pop-up menu is activated, the current active
dialog and whether the user is editing or viewing the code.
These factors are outlined below.

Two dialog types are used in the presentation of user-
defined code. The first dialog type displays method
definitions. The second dialog type expands a single code
statement into the method’s name and its parameter list. The
pop-up menus contain different commands for each dialog type.

When editing code, a blank line exists between each code
statement, which allows the addition of new code statements
from the pop-up menu created when the user presses the mouse
button. Selecting an existing code statement activates a
pop-up menu, which either expands or deletes the statement.
Expanding a code statement creates a new dialog box for edit-
ing the statement. When viewing code, each lines contains an
existing code statement and the pop-up menu contains a single
command to expand the statement.

Code-Sequence-Dialog-Item does not contain an instance
variable for the current mode (either editing or viewing).
Instead, two instance variables contain pop-up menus. One
menu activates when the user selects an even-numbered line
(blank line in editing mode) and the other menu activates for

odd-numbered lines (existing code statement lines). When ed-

178

iting code, the two instance variables contain different pop-
up menus. When viewing code, the instance variables contain
the same pop-up menu. Code-Dialog sets these instance vari-

ables based upon its mode.

6.1.2 Menus

Two Allegro Common Lisp classes, *Menu* and *Menu-Item*
provide an interface to the Macintosh’s Menu Manager. A
menubar entry is an instance of *Menu* (or subclass) object
and each item contained within a menu is an instance of
Menu-Ttem (or subclass). A *Menu-Item* has two components,
the item’s name and a Lisp expression, which is evaluated
when the user selects the item. MicroWorld added two
methods, which activates and deactivates a list of menu
items, to the standard *Menu* class. Furthermore, UWorld-
Menu-Item (a subclass of *Menu-Item#*) contains an instance
variable, which points to the object that receives the menu
selection’s message. Besides these two minor modifications,

MicroWorld’s and Allegro’s menus behave the same.

6.1.2.1 Pop-up Menu

On the other hand, Allegro Common Lisp does not support
pop-up menus, therefore, the Popup-Menu class was created.
Popup-Menu uses the NewMenu Toolbox call to create an empty

menu structure, from which the menu is built dynamically.

179

The Macintosh’s menu structure contains a pointer’ to the
Popup-Menu object associated with it, therefore, a random
menu identification number is created and checked against the
existing menu entries. A non-object oriented language (e.g.
C or Pascal) uses this id number to determine which menu was
selected.

The Macintosh’s Menu Manager builds menus from strings,
therefore, the menu item’s names are combined into a Pascal
string. Meta-characters can be appended to the menu items’
name, which provides additional information to the AppendMenu
Toolbox call. The meta-characters are used to set the
command key equivalent character, enable flag, icon
information, mark character, and character style for a menu
item. Popup-Menu requests the previous information from each
Menu—-Item (or subclass) it contains and appends the appro-
priate meta-character to the item’s name before adding the
item to the Pascal string. For example, the string to define
"Copy" with the keyboard-equivalence command-C is “Copy/C."

Instead of a *Menu-Item* object list, List-Popup-Menu
takes a list consisting of menu’s names and a Lisp symbol
associated with each name. When selecting a menu item from
Popup-Menu, the item’s menu-item-action is evaluated. On the

other hand, List-Popup-Menu returns the selection instead of

7. Actually, the menu structure contains a generic programmer-defined
long integer called RefCon. Allegro object packages stores the ob-
ject pointer in RefCon and later accesses it when a menu item is
selected.

180

sending a message to the individual menu item, which is de-
sirable when selecting an item from a list. For example,

List-Popup-Menu handles the list of available fonts better
than Popup-Menu. The Lisp symbol’s defines the individual

menu item’s type.

6.1.3 Windows

Base-World, a subclass of *Window#*, controls
MicroWorld’s windows. Base-World keeps an array of Things
contained within its boundaries. The Thing’s plane number
provides an index into this array. When drawing the window,
the background is drawn first and then all visible Things are
drawn from the lowest to the highest plane, which overlaps
the images correctly. An offscreen bitmap is used to compose
the final image, before drawing it on the screen, to reduces
fiicker.

Base-World shadows three *Window* methods, window-event,
window-click—-event-handler, and window-draw-contents.
Allegro’s event manager sends the front window a window-event
message for each event occurrence. The standard window-event
method determines the event type and then sends itself the
appropriate message. The front window receives the window-
click-event-handler message from the standard window-event
method during a mouse down event. Window-draw-contents draws

the window’s contents and is called for several reasons, in-

181

cluding window update events.

Base—-World’s window-event method determines if the cur-
sor is in the window’s grow box and the user is pressing the
mouse button. If the cursor is not within the grow box’s
bounds, the method forwards the event to its superclass’
window-event method. Base-World’s window-event method also
forwards the event to its superclass’ method when the cursor
is within the grow box, but it resizes Base-World’s bitmaps
upon return.

Base-World contains five window-sized bitmaps, which are
used for temporary images while the user moves a screen ob-
ject. When the window’s size changes, Base-World deallocates
memory the temporary bitmaps use and allocates memory for
them at the new window size. Furthermore, the method re-
loads the background from storage and draws it to the back-
ground bitmap. Drawing the previous background’s image
contained in memory cause progressively worse images as error
were compounded each time the window size was changed.

Changing the window’s size is slow, but the alternative
uses screen-sized bitmaps, which has a high memory cost, es-
pecially with the large monitors and eight-bit planes (or
higher) color systems available today. Resizing the window
is not a frequent operation, so the delay is more acceptable

than the memory cost.

182

Base-World’s window-click-event-handler method first
determines which object?®, if any, is selected. The method
checks the object array from the highest to the lowest plane
number. Each object’s mask is checked at the mouse’s posi-
tion when the button was pressed. The mask defines the
object’s shape. A value of one at the mouse’s location in
the mask’s bit pattern selects the object. Performing the
test from the highest to the lowest plane selects the top
object when the images are stacked, which is the desired be-
havior.

When the user selects an object, window-click-event-
handler updates three bitmaps in case the user moves the
selected object. First, the objects are divided into two
groups. One group contains objects on a higher plane than
the selected object. The other group contains objects on a
lower plane. The first group is drawn to two bitmaps, upper-
plane (contains the images) and upper-plane-mask (contains
the images’ masks). The lower-plane bitmap contains both the
background and the second object group.

After window-click-event-handler updates the three bit-
maps, it tests the mouse button’s state. If the user releas-
es the button before the cursor moves outside a four-pixel

radius, then the object receives a mouse click. Otherwise,

8. An object is either an instance of Thing or Tutor. The “world”
contains Thing cobjects and the “aether” contains the Tutor object.
The “world” and “aether” are both instances of Base-World.

183

the object receives a dragging event (details given below).
The four-pixel radius allows the user to slowly click an
object, without the intended click becoming a dragging event.

If the object receives a mouse click, window-click-
event-handler performs another test to determine if the click
is part of a double click. The distinction between a single
and double click is the delay between the preceding mouse up
event and the following mouse down event. In authoring mode,
window-click-event-handler performs the same function for
both a single click and double click events. In running
mode, the two click event types perform separate actions.

The drag-always method? (called from window-click-event-
handler when dragging an object) performs the following steps
each time through a loop until the mouse button is released:

{1) Calculate the update rectangle, which is the
union of the moving object’s bounds rectangle
at the old location and the new location.

{(2) Copy the image contained within the update
rectangle from the lower-plane bitmap to a tem-
porary bitmap, using the CopyBits Toolbox call.

(3) Copy the object’s image to the temporary
bitmap, using the CopyMask Tocolbox call.

(4) Combine the upper-plane and upper-plane-mask
bitmaps and draw it to the temporary-bitmap,
using CopyMask and the update rectangle.

{(5) Copy the image contained within the update

rectangle from the temporary bitmap to the
screen bitmap, using CopyBits.

9. Window-click-event-handler calls drag-always when MicroWorld is in
authoring mode. O©On the other hand, window-click-event-handler
calls drag when MicroWorld is in running mode, which checks the
object’s draggable? instance variable before calling drag-always.

184

The update rectangle reduces the amount of data copied be-
tween bitmaps. The data outside update rectangle’s bounds is
correct, therefore, needless copying is avoided by using the
update rectangle in steps 2, 4, and 5. The CopyBits commands
in step 2 and 5 replaces the destination’s bit pattern with
the source’s bit pattern alleviating the need to erase the
bitmaps before making the copy. The above algorithm is memo-
ry intensive, but objects move smoothly.

The window-draw-contents method draws the window’s con-
tents. The method draws all images to an off-screen bitmap
and then transfers the final image to the window, which re-
duces screen flickers. The objects are drawn, in order, from
the lowest plane to the highest plane, which correctly over-
laps stacked images.

Base-World contains several non-window related methods.
Base-World performs the things-to-the-left-of, things-to-the-
right-of, things-above, and things-below methods, which re-
turn a list of Things within that spatial relation. For ex-
ample, the message (things-to-the-left-of a-Thing} returns
each Thing in which the statement (ask Thing (is-left-of? a-
Thing) returns true. Spatial relationships do not exist
across window boundaries, therefore, Base-World is the logi-

cal class to contain these methods.

185

6.2 Implementation of User's Programming Language

UW-Method is an abstract class used for viewing or edit-
ing user-defined methods. Each instance defines a single
method and contains the following information:

Method’ s name.

Method’s creator type, either :user or :builtin.
Format for displaying the method to the user.
Syntax for calling the method either :send or
:function.

Method’s explanation.

« Method’s source code.

The user can edit or view code with the :ruser creator type.
The :builtin type declares the method a MicroWorld primitive.
Although the user can not edit or view these primitives,
defining an UW-Method for them provides a uniform interface
between primitives and user-defined code.

The display string provides formatting information about
the method’s source code and includes both the method’s name
and parameter types. The method's symbol name can be
different from the name visible to the user. For example,
the Lisp function ‘cond’ is presented as “if.”

The display string includes the method’s parameter
types, which marks their positions. Although the actual type
isn’t necessary, it is included for convenience when loading
and saving methods. The parameter types are replaced by the
actual parameters’ string representations.

For example, the Lisp S-expression:

(ask thingl (move (to-the-left-of thing2)))

186

is displayed as:

move thingl to the left of thing2.

The “move” command’s display string is “move <thing> <loca-
tion>” and the “to the left of” function’s display string is
"to the left of <thing>.” The thingl parameter is first con-
verted to a string, then the (to-the-left-of thing2) parame-
ter is converted next. Since it is also a list, a recursive
call is made, which returns “to the left of thing2” and the
strings are combined to make the final output.

The convert-form-to-string method, which converts lisp
functions to strings, has six separate cases. If its
parameter is an atom, a separate conditional tests for the
Lisp symbols ‘t’ (converted to “true”) and ‘nil’ (converted
to “false”)}, otherwise, it converts the symbol’s name to a
string.

If convert-form-to-string's parameter is a list, it
tests the first element for the Lisp symbols ‘ask’ and
‘cond.’ If the first element is ‘ask, convert-form-to-string
uses the template (ask <parameter 1> (<method’s symbol> <pa-
rameter 2> ...)) to convert the expression to a string. If
the first element is ‘cond,’ it uses the template (cond
{(<boolean test>) <then statement>) (t <else statement>)).

If the first element is neither ‘ask’ nor ‘cond,’ convert-
form-to-string uses the template (<function’s symbol> <param-

eter 1> <parameter 2>...). Convert—-form-to-string is

187

recursively called for each <parameter>, <boolean test>,
<then statement>, and <else statement> found in these tem-
plates.

The s-expression (ask thingl (move (to-the-left-of
thing2))) demonstrates the need for the :send and :function
constants, which indicates the method’s calling format. Both
the move command and the to-the-left-of function are methods
defined in the Thing class. The to-the-left-of function uses
both Things to determine the second Thing’s prototypical
location with respects to the first Thing. Object Lisp eval-
unates functions in the receiving object’s environment, there-
fore, formatting to-the-left-of as a function, instead of a
message, causes the evaluation to occur within the first
Thing's environment, which is the desired behavior.

UW-Method keeps the method's source code in the list
structure shown in Figure 43, which is very similar to the
Lisp syntax’s for function definitions. Some modifications
are necessary to compile the source code, which depends on
whether the action is local or global. If the action is
local, the method’s symbol is replaced with ‘lambda.’ A
Thing’s instance variables points to the local action and the
local action is not visible outside the object’s boundaries,
therefore, the action is not assigned a name. If the action

is global, the ‘defobfun!'? symbol is inserted at the list’s

10. Defobfun is Object Lisp‘s function for method definitions.

188

(<method's symbol> (<parameter list>)
(let ((.self (self))

)
{<statement 1>)
{<statement 2>)

{(<final statement>)))

Figure 43. Method Definition’s List Format

beginning and the method’s symbol is replaced with (<method’s

symbol> thing), which assigns the method to the Thing class.
6.2.1 UW-Method’s Subclasses

The abstract class UW-Method has two subclasses, UW-
Command (used for commands) and UW-Function (used for func-
tions). UW-Function’s dialog for displaying its source code
includes an extra field, which contains the exprassion that
calculates the return value (<final statement> in Figure 43).
Each class creates its own dialog, although most editing
functions occur in the UW-Method class. Furthermore, the
Local-Uw-Command (UW-Command’s subclass) also creates its own
dialog, which lacks the method’s name and the parameter
fields. UW-Method activates these dialogs and not the class-
es which created them, since UW-Method handles the source
code modifications.

The abstract class UW-Command has two subclasses,

Global-UwWw-Command and Local-UW-Command, which was mentioned

189

earlier. A Global-UW-Command object contains a command that
is available to all Thing objects A Thing object’s six us-
er~-programmable responses are instances of Local-UW-Command,
which has neither a method name nor a parameter list. A
method name makes the command accessible from other objects,
which is not desirable. Furthermore, local actions are
activated by messages received from the Base-World object,
which is outside the user’s domain, therefore, local actions
can not receive parameters. Local-UW-Command creates a dif-
ferent dialog than the dialog created by UW-Command, because
Local-UW-Command lacks a method name and a parameter list.

A UW-Function subclass exists for each function return
type, which currently are Boolean-UW-Function, Integer-UnW-
Function, Location-UW-Function, Sound-UW-Function, and Thing-
UW-Function. Each class defines two methods, my-res-type,
which returns the method’s resource type, and get-action-
type, which returns the function’s return type. Two instance
variables defined in the UW-Function class would provide the
same information, but this approach requires other objects to

set these wvalues.

6.2.2 Converting Between User’s Source Code and Lisp Code

Uw-Method converts user’s source code into Lisp code as
the user makes changes and not during a separate compilation

step. Although this approach requires extra work to undo

1390

user modifications, UW-Method handles editing and viewing
code uniformly.

Two dialog types are used throughout the viewing or ed-
iting session. The first dialog type contains the method’s
formal parameters and definition. The second dialog type
contains the method’s name and actual parameters of a calling
sequence. For example, UW-Method uses the first dialog type
to edit or view the following function (in C syntax}:

float foo (int x, float y)

{ float results;

resuits = pow (X, ¥);

return (results);

}
and it uses the second dialog type to edit or view the pow
function call.

When editing source code, the user can perform the fol-
lowing functions using the first dialog type:

Change the method’s name.

Add formal parameters.

Delete formal parameters.

Change formal parameters’ names.
Insert source code.

Delete source code.

Expand source code.

When viewing source code, the user can only perform function
seven from the same dialog.

Changing the method’s name removes the old name and
method definition from MicroWorld’s environment. To avoid

runtime errors, UW-Method updates all references found in

191

other method definitions to the new name. Currently, UW-
Method, with UWorld’s help, searches all user-defined global
and local actions, therefore, changing the method’s name is
time consuming.

The user adds a formal parameter by selecting a blank
line in the parameter list’s display box (see Figure 33).
The mouse down event activates a List-Popup-Menu object and
the user selects the parameter’s type from the menu. After
making the selection, the user types the parameter’s name.

Adding a parameters modifies three objects, Code-Se-
quence-Dialog-Item, Function-Popup-Menu, and UW-Method. The
parameter display box in the dialog is an Code-Sequence-Dia-
log-Item object and its parameter list is updated with the
new parameter’s name and type. Furthermore, the parameter is
selectable from the Function-Popup-Menu, therefore, it up-
dates its menu items. UW-Method requires two steps when add-
ing a parameter. First, it updates the display string (see
above), the parameter type list (used for finding the
parameter’s type quickly), and the source code’s parameter
list (see Figure 43). Secondly, it informs UWorld of the pa-
rameter change and UWorld finds and edits each call to the
modified method, which avoids runtime errors.

Deleting a parameter reverses the process outlined
above. Code-Sequence-Dialog-Item and Function-Popup-Menu re-

moves the entry from their lists. UW-Method removes the type

192

from the display string, the parameter type list, and the
source code’s parameter list. Currently, UW-Method does not
correctly handle parameter references within the method’s
source code, which is a major bug. Two possible choices are
that the user can not delete a parameter until all references
are changed or change the references to the parameter’s type
needed for the call and the user must change the parameter’s
type to actual parameters before accepting the changes. UW-
Method again informs UWorld of the parameter deletion and the
other methods are updated.

The user can not cancel either operation once it begins
for two reason, the original method is not copied and finding
the methods that needs restoring is difficult. If the user
cancels while editing a modified method, then UW-Method must
undo all previous changes. Otherwise, some methods will have
more parameters in the method call than other methods, which
will cause a runtime error.

A possible solution uses a hash table, keyed by the
method’s name, and each entry contains the method’s defini-
tion that calls the key method. When the user selects “can-
cel,” UW-Method tells each entry to restore itself to its
previous state. Unfortunately, this requires a changes
stack, since the modified methods can be active in a differ-
ent edit dialog. Canceling the changes should affect the

modifications the added parameter creates and not other

193

changes that the user has neither accepted nor canceled.
Therefore, providing cancellation will potentially use large
amounts of memory.

Changing the parameter’s name changes the entry in the
source code’s parameter list. Each parameter reference in
the method’s body is replaced with the new symbol.. Other
changes are not necessary.

To insert a new command into the method’s definition,
the user starts by selecting the command from a menu that
will return the command’s name and symbcl. The command’s
definition provides the calling format and the parameter type
list, which are needed to generate the correct Lisp code.

If the calling format is :function, then UW-Method cre-
ates a Lisp expression from the template: (<command’s symbol>
<parameter 1> <parameter 2> ...). On the other hand, if the
calling format is :send, then UW-Method creates a Lisp ex-
pression from the template: (ask <parameter 1> (<command’s
symbol> <parameter 2> ...)). The new lisp expression is
inserted into the method’s definition using destructive Lisp
operations, which reducing the memory used for list copies.
This approach requires that only one pointer exists for each
code definition.

Modifying the Lisp structure when the user inserts a new
command instead of waiting until the user accepts the chang-

es, allows UW-Method to use the same display code for viewing

194

both the new and existing Lisp expressions. Placing the
parameters’ types within the new Lisp expression provides the
user with visual-feedback of the expected parameter types.
Furthermore, UW-Method checks for actual parameters in the
method’s definition by testing for parameters that begin and
end with the characters ‘< and “>. The user can not accept
the metheod’s definition until the parameters are set to ap-
propriate values, which avoid runtime errors.

Deleting a command destructively removes it from the
method’s source code. Since MicroWorld does not support the
undo function, UW-Method should receive confirmation from the
user before deleting the command. Currently, UW-Method de-
letes the command without confirmation.

Expanding a command or adding a new command creates an
instance of the second dialog type, which presents the
command’s name and each actual parameter on a separate line.
The user is allowed to do the following at this level:

« Expand the method’s definition.

* Edit actual parameters.

* Expand actual parameters.

Expanding the method’s definition creates another instance of
the first dialog type, if it is a user-defined method.

The user edits a parameter by selecting an item from the
pop-up menu displayed when the user presses the mouse button
over the parameter., This pop-up menu contains only the

allowed constants, parameters, variables, and functions for

195

the parameter’s type. For example, the boolean pop-up menu
contains the constants "true" and "false", the parameters and
instance variables of type boolean, and the Boolean-returning
functions.

Constants for the <integer>, <location>, and <string>
types are entered from the keyboard by the user, since too
many possible values exist. UW-Method checks the input for
the correct value type. The user can not accept the change
until the wvalue is the correct type.

In edit mode, a blank exists between each <locations> or
<sounds> list item, when UW-Method displays the list to the
user. A blank line between each parameter allows the
insertion of a new parameter at any list position. The list
item’s type is the parameter type’s singular form, in this
case <location> and <sound>.

Pop-up menus behave differently between the dialog items
used for the <locations> and <sounds> parameter types and
normal parameter types. A method or function call can
contaln many parameter types, therefore, UW-Method sets the
Code-Sequence-Dialog-Item’s pop-up menu to a Function-Popup-
Menus instance, which contains the ncrmal parameter types’
pop-up menus. When the user activates the pop-up menu (by
pressing the mouse button in an active field), Function-Pop-
up-Menus requests the parameter’s type from UW-Method and

then displays the menu for that type. Since each item in the

196

<locations> and <sounds> list has the same type, the Code-Se-
quence-Dialog-Item’s pop-up menu is set to the appropriate
Function-Popup-Menu upon the dialog’s creation.

Determining the <sound> parameter's value requires spe-
cial processing. The sound Function-Popup-Menu contains the
available sound resources, the sound-returning functions, the
parameters and instance variables of type sound, and the “new
sound” constant, which displays a list of SoundWave™ files.
UW-Method converts the sound file into the Macintosh’s ‘snd’
resource type and it is saved under a user-defined name.
Normally, the name is the same as the sound (e.g. the name
“*hello” for the sound “hello”).

Instantiating a <thing> parameter type also requires
special processing. If the user selects a Thing’s name from
the Function-Popup~Menu, two modifications are made to the
method’s source code. First, UW-Method declares a local
variable in the let statement (Figure 43) that holds the
Thing’s object pointer, if the local variable is not already
defined. For example, selecting a Thing named “bike” creates
the local variable declaration:

{.bike (find-thing “bike”))

The let statement binds the wvariable ‘.bike’ to bike’s object
pointer found in UWorld. Secondly, each reference to the
name “bike” is changed to the local variable ‘.bike.’ With

this approach, only one search is made for each Thing refer-

197

enced in the method’s definition.

The user can only expand actual parameters that are
function calls or the <locations> and <sounds> parameter
types. Expanding a function calls creates another second-
typed dialog. Expanding a <locations> or <sounds> parameter
creates a third dialog type instance, which edits or views a
list. The user can not expand symbols further, for cbvious

reasons.

6.2.3 Inserting New Code into the Method’s Definition

When the user selects a pop-up menu’s item, the menu re-
turns a pointer to the dialog item and, in most cases, a line
number, which marks the insertion point. The line number is
not needed to change the method’s name or expand a method's
definition,

UwWw-Method’s two instance variables, code-level-stack and
parameter—-level-stack, keep the code’s current positions.
Code-level-stack’s top value is the current line number in
the method’s definition. For example, if the user expands
the third code line from the top-level dialog, the code-lev-
el-stack’s top value equals two (both stacks are zero-based).

UW-Method uses a stack for the code level, because the
user can display the method’s definition again, without
closing the first dialeg. For example, the user can display

another method’s definition that contains a call to the first

198

method. If the user expands the call and then expands the
method’s definition, two dialogs will contain the same defi-
nition. The stack separates the line selection between the
two dialogs.

The parameter-level-stack keeps the current position
within a line. A nil pointer in the parameter-level-stack
separates the entries in the code-level-stack. A nil pointer
also indicates an entire line is selected. Determining the
current code position involves transversing, in reverse
order, each item between the stack’s top and the highest nil
pointer on the stack. Each list item is applied to the Lisp
nthcar function with the nthcar previous results.

The actual item’s number depends on whether the list is
a message (first list item is the ‘ask’ symbol) or a function
call (first list item is not ‘ask’). As stated earlier, the
first parameter in a message is the second list item, and the
other parameters are the third list item minus the first
element.

For example, if the parameter-level-stack contains (2 0
nil ...), then the current position is the third item within
the first item at the code statement marked by the code-lev-
el-stack’s top value. Parameter-level-stack’s and code-lev-
el-stack’s items are zero-based.

Uw-Method determines the currently active position from

the dialog item’s type and index number. The dialog item’s

199

types are :commands (command list), :commands-without-first
(command list minus the first element), :item (single
function), :item-at-first (use only function list’s first
element), :parameter (parameter list), and :return (calcu-
lates function’s result). The dialog item’s index number is
its type’s creation order.

The :commands dialog item’s type specifies that the item
contains a list of commands. The :parameter type specifies
that the dialog item contains a function’s or command’s
formal parameters. The :return type specifies that the dia-
log contains the code that calculates a function’s return
value. The :item type specifies that the dialog item con-
tains a function’s or command’s actual parameters. UW-Method
commonly uses these four dialog item types; the first dialog
type uses the first three item types and the second dialog
type uses the fourth item type.

UW-Method uses the :commands-without-first and :item-at-
first dialog types for displaying the Lisp function ‘cond.’
The :commands-without-first type is the same as :commands,
except the first element is not included. Also, :item-at-
first is the same as :item, except the item is the first list
element and not the entire list.

MicroWorld uses the Lisp ‘cond’ function’s syntax:

{cond (boolean-~test command ...)
(t command ...))

200

for its if-then-else command. The dialeog for display this
command has three items for the boolean test, the commands to
evaluate if the test returns true, and the commands to
evaluate if the test returns false. The first dialog item’s
type is :item-at-first, since the boolean test is the first
item of the second list element. Furthermore, the second and
third dialog item’s type are :commands-without-first, since
the commands start at the second list element.

Selecting a pop-up menu’s item sends a message to UW-
Method, which includes the item’s name, item’s symbol, and
the dialog item’s selected line number. In most cases, this
message provides UW-Method with enough information. The dia-
log item’s type and index number are needed when the menu se-
lection involves the method’s body or a command.

In the method’s body case, if the dialog item’s type is
:commands, then the line number gives the actual position!?,
If the dialog item’s type is :return, then the actual posi-
tion is the method’s body last line, which calculates the
function’s return value.

Some commands contain one or more command blocks (e.g.
repeat-until and if-then-else). Since the line number is
local to the dialog item, its index number tells UW-Method
the correct command block. Furthermore, the dialog item’s

type :commands and :commands-without-first indicate the

i1, When editing, this line number is divided by two to compensate for
the blank lines.

201

starting position within the command block.

As noted earlier, the :commands-without-first and :item-
at-first types are used for the Lisp ‘cond’ function, which
was a mistake as it lead to more complex code. Defining a
macro that takes a boolean test and two command blocks is a

better solution, since it removes the special types.
6.2.4 Propagating Changes Through Active Dialogs

When a change occurs in a dialog, the previous dialogs’
information needs updating. UW-Method keeps a changes stack,
which is a list of flags that are in a one-to-one correspon-
dence with the active dialogs. When activating a dialog, UW-
Method pushes false onto the stack, which marks the dialog’s
information as unchanged. If a change occurs, all stack
entries are changed to true. When closing a dialog, UW-
Method checks the stack and updates the previous dialog’s in-
formation if the top value was true.

This approach causes several updates to occur
simultaneously when reactivating the dialog, instead of
propagating the changes, as they occur, along the current
path!?, Also, only the dialogs that need updating are marked.

Dialogs created later, but not changed, are not updated.

12. A path is defined as the open dialogs from the top level definition
to the current dialog.

202

6.2.5 UW-Method’s Problems

UW-Method uses destructive list operations, which could
cause problems. A large number of user-defined methods could
exist within the system and copying a method each time a
change occurs will increase the time spent garbage collecting
and slow the system. Destructive list operations require
that only one pointer points to a method, otherwise, changes
occurring in one method will affect other methods.

For example, the original method for copying a Thing
blindly set the copy’s local action instance variables (which
contain instances of Local-UW-Command) to the original val-
ues, which creates two pointers to the same list. Modifying
one Thing’s local action changes the other Thing’s action.
This problem was easily fixed by using the Lisp function
"copy-tree", but it illustrates the potential trouble with
destructive list operations.

UwWw-Method has a major design flaw when changes occurring
to a method while the user has the method’s definition in an
inactive dialog. For example, the user first edits methodl’s
definition, but does not accept or cancel the changes.

Later, the user edits method2’s definition, which methodl
calls, and adds a new formal parameter. UW-Method creates a
new dialog box for each method that calls method2, which in-
cludes methodl. Therefore, another dialog contains methodl’s

definition, which raises two questions. First, should the

203

dialog display the original definition or the definition with
unaccepted modifications? If the second dialeog displays the
original definition, it becomes difficult to combine the
changes when the user returns to the first dialog. On the
other hand, the two dialog can use the same list structure
and changes made to one dialog automatically updates the sec-
ond dialog.

Second, what is the result if the user cancels methodl’s
first dialog? If the second dialog displays the original
definition, canceling just removes the modifications made in
the first dialog. On the other hand, if the second dialog
displays the unaccepted modifications and the user accepts
the second dialog’s changes, UW-Method does not know that the
changes have previously been accept, therefore, canceling
causes UW-Method to undo what it thought were the changes.

The best solution uses the modified method’s definition
in the second dialog and accepting the changes within the
second dialog also accepts the changes in the first dialog.
Currently, UW-Method uses the original definition and neither
correctly updates the first dialog (and dialog created later)
nor marks the changes as accepted in the first dialog.

In general, UW-Method naively assumes that changes made
when opening a dialog can be undone when the cancel button
closes the dialog by simply reversing the list operations.

As shown above, this apprcoach does not correctly handle

204

changes occurring in the dialeg’s children. Further study is

necessary to develop a better approach.

6.3 Information Storage

MicroWorld uses the Macintosh’s Resource Manager to save
the world’s information. The Resource Manager associates a
resource type, an index number, and optionally, a name with a
programmer-defined data structure and saves the unit as part
of a disk file. MicroWorld retrieve information using the
resource’s type and name, which is the object’s name.

MicroWorld uses three resource files, the main-resource
file, the added-resource file, and the deleted-resource file,
when a world is active.. The main-resource file contains the
resources that defines the original world, which is empty
when creating a new world. Creating a new object or modify-
ing an existing object writes its resource to the added-
resource file. Deleting an object moves its resource to the
deleted-resource file.

Saving a modified world copies the resources from the
added-resource file to the main-resource file, which over-
writes the resources with the same name. Closing a modified
world without saving copies the resources from the deleted-
resource file to the main-resource file. 1In either case, the
main-resource file contains all the world’s current objects

and the added-resource and deleted-resource files are re-

205

moved.

The classes that save information in resources are:
Movement, Thing, Tutor, UW-Bitmap, UW-Background, UW-Icon,
UW-Method, UWorld, and Base-World. Movement defines a path
for a Thing to follow, which is a list of points. The first
resource item is the Thing’s step size as it moves from one
location to the next. The second resource item is the path’s
size, followed by the path’s points. Movement’s resource
type is ‘MOVE’ and its name is the Thing’s name whose path
the Movement defines.

Thing’s first four resource entries are its centroid,
its plane, and two boolean flags, which indicates that the
Thing has an image and, if it does, that the image was the
current representation. The user can save incomplete worlds
and therefore, a Thing’s might not be defined when it is
saved. When restoring the Thing into the environment, it
tests the first flag to decide whether an UW-Image instance
should be created or not. The second flag indicates whether
the Thing’s image or icon is its current visual representa-
tion.

The next resource entry is the Thing’s Base-World, which
uses the Base-World’s name, instead of a boolean flag, to
allow for more than two Base-Worlds within a single world.
Following the Base-World’s name is the Thing’s name in which

this Thing is a subcomponent and a list of Thing’s names,

206

which are this Thing’s subcomponents. After the world is
loaded, each Thing converts these names into object pointers
using UWorld’s find-thing method. A Thing resource’s type is
‘ACTR'’ and its name is the Thing’s name.

Another resource type, 'ivar,' saves the instance
variables accessible by the user. Currently, Thing saves the
instance variable’s symbol name, string name (used to display
the wvariable to the user) and type as strings, followed by
the instance variable’s value, the storage of which depends
on the variable’s type. The <boolean>, <integer>, and <loca-
tion> types are saved using their Lisp representation. Thing
saves the <sound> and <thing> types using strings with the
<sound> type using the ‘snd’ resource’s name and the <thing>
type using the Thing’s name.

Thing saves the <sounds> and <locations> types as null-
terminated list with each element saved as the singular type
{<sound> or <location>). Fortunately, Lisp sets a point’s
high bit to one, which distinguishes it from a null termina-
tor. On the other hand, the Macintosh Toolbox’s (0, 0) loca-
tion and a null terminator have the same value.

MicroWorld’s Tutor class is not completely designed, and
thus, it doesn‘t save information. Some information the
Tutor needs to save is how and what to teach, which should be
saved as strings to allow easy addition of new teaching

methods.

207

Uw-Bitmap saves its bounding rectangle, which defines
its size and location, and its bit pattern. The other UW-
Bitmap instance variables are recalculated from the saved
information. UW-Image sends UW-Bitmap its resource type and
name, which allows saving the image and mask under different
resocurce types and under the same resource name. The image
bitmap has the 'IMAG' resocurce type and the mask has the
'MASK' resource type. The two UW-Bitmaps, which creates the
Thing’s screen representation, use the same resource name as
the Thing.

Since MicroWorld provides the icons used in the environ-
ment, UW-Icon saves only the ‘ICN#’ resource ID, which is
Macintosh’s standard resource type for icons, for its icon.
When reloading a UW-Icon, it retrieves the ‘ICN#’ resource
and converts the resource into an image and mask bitmaps.
UW-Icon is saved under the Thing's name and ‘HICN’ type.

UW-Method’s resource name and type depends on the
object’s subclass. If the object’s class is Local-UW-
Command, the resource’s name is the Thing’s name which creat-
ed it and its type depends on the local action it performs.
Currently Local-UW-Command rescurce’s types are ‘lcla’,
‘2cla’, ‘drga’, ‘lnda’, ‘hsta’, and ‘evla’, which stands for
“one click action”, “two click action (or double-click ac-
tion)”, “dragging action”, “landing action”, “history ac-

tion”, and “evaluation action”.

208

UwWw-Method’s other subclasses use the method’s name as
the resource’s name. The resource type depends on the
method’s return type. Global commands are saved under the
'UCmd' type and the functions are saved under the 'WUBFn',
'WIFn', 'MLFn', 'uSFn', and 'uTFn' types, which stands for
functions that return <boolean>, <integer>, <location>,
<sound>, and <thing> types.

UW-Method saves its message-send? flag, display-string,
and creator, which is either the constants :builtin or :user.
UwW-Method saves its creator as a string constant to allow for
more than two creator types.

The last two entries are the method’s explanation string
and definition, which is converted from the Lisp’s list
structure into a string. Since the resulting string’s size
is arbitrarily long, it is broken into 255 character blocks
and saved as Pascal strings and the block’s end is null
terminated.

UWorld saves the current lexicon file’s name and the
world and aether Base-Worlds’ sizes and screen positions.
UWorld uses the ‘lexd’ resource type and the resource id
equals 128, since only one ‘lexd’ rescurce exists and it
doesn’t require a name. The ‘Hwnd’ resource type is used to
save the Base-Worlds’ sizes and positions with the ID of 128
for the world and 129 for the aether. UWorld save this in-

formation since it is responsible for creating the Base-

209

Worlds.

6.4 Implementation Conclusion

As noted above, and in chapter five, several problems
exist with MicroWorld’s design and implementation. The user
interface, with the exception of the user's programing
environment, needs redesigning. The changes outlined in
Chapter 5 provides a cleaner interface than the current
design.

The programming environment’s user interface and class
structure are better designed, but the implementation is
poorly done. Due to time constraints, several methods are
hastily written and not well thought out. Also, solutions
are needed for several problems caused by global changes to
user-defined method and support is needed for undoing chang-
es.

MicroWorld’s design and implementation needs extensive
work. The knowledge gained by implementing MicroWorld’s cur-

rent version will vastly improve the next version.

210

CHAPTER 7

CONCLUSION AND FURTHER WORK

Developments in Computer Aided Instruction are far be-
hind other Computer Science areas for two reasons. First,
instructors lack necessary tools for building lessons.
Second, defining what makes a good instructor is very
difficult, which makes developing a program that imitates an
instructor equally difficult. MicroWorld attempts to solve
both these problems.

The usual lesson building process has two entities, the
instructor and the programmer, and, in most cases, the two
entities are separate people, which lead to communication
problems, misconceptions about the system’s operation, and
long turnaround time. Usually, the programmer and instructor
have different areas and levels of expertise.

MicroWorld provides an environment in which the instruc-
tor programs the lesson, which has two major benefits.

First, the instructor does not need to communicate ideas with
another person whose expertise is in a completely different
field, which could easily lead to misunderstandings.

Instead, the ideas are given directly to the MicroWorld’s en-

vironment.

211

Second, MicroWorld is programmed by direct manipulation.
The instructor receives visual feedback as he or she builds
lessons. At any time, the instructor can view the objects’
behaviors, the objects’ appearances, the lesson’s behavior,
and the lesson’s appearance. With a short turn around, the
instructor is more willing to experiment and is less frus-
trated, therefore, the results will be a better lesson for
the student.

MicroWorld’s environment is also beneficial for the stu-
dents. An interesting learning environment keeps the
student’s attention longer and the student learns more.
Restraint is necessary to keep the lesson from becoming too
flashy, otherwise, the learning material will become lost in
the glamour.

Defining what makes a good instructor and writing a pro-
gram that imitates the instructor is more difficult and is
currently unsolved. We do not know what makes a good in-
structor, although some information can be gathered from
watching several instructors giving lessons. Unfortunately,
this only provides techniques for teaching one lesson type,
which may not be transferable to another lesson type.

MicroWorld provides programmable evaluation and history
mechanisms for each object. The instructor provides the
know-how on teaching a lesson to the student. We, as comput-

er scientists, do not have the expertise to build lessons for

212

every field, therefore, we should provide tools to the people
who do have the expertise, the instructors.

Unfortunately, MicroWorld’s tutor is not programmable.
Instead, the instructor selects between different tutor
types, which limits the lesson types a student can receive,
and, therefore, MicroWorld is not the ideal environment for
building lessons. Providing a fully programmable tutor re-
quires more research.

Another research area is spatial relationship.
MicroWorld provides tests for determine if an object is
within a certain spatial relationship, such as “to the left
of,” with another object, but this work is based on a small
number of observation. If spatial relationships are the
basis for a lesson, then MicroWorld’s spatial relationship
calculations and a human observer must reach the same conclu-
sions.

A third research area is determining how much of the
programming task can be done by direct manipulation?
MicroWorld has a nice environment for programming the
object’s event responses, but it is still programming at the
basic level. Is it possible that complicated lessons can be
built without writing code, whether by typing or by menu se-
lection? If it is possible, then how does the user make mod-
ifications to the program, without starting over at the be-

ginning? This raises interesting questions on displaying and

213

modifying intermediate steps.

MicroWorld needs work in several areas, including reor-
ganizing the class structure and the programming environment.
Currently, some classes should be separated into smaller
classes, and some classes should be made subclasses of other
classes. Although this does not affect the user’s environ-
ment, it is important as the research continues.

The programming environment’s design and implementation
requires extensive work, especially concerning consistency
between changes made in separate dialogs on the same method.
Currently, MicroWorld does not correctly handle accepting
changes in the method’s second dialog and then later cancel
the changes in the its first dialog, which was open while the
second dialog was active. Furthermore, MicroWorld does not
correctly support undoing changes. The programming interface
should be completely redesigned for MicroWorld’s next
version.

Although MicroWorld is incomplete and several difficult
problems remain, the environment is functional. In fact,
most of the MicroWorld project formed the basis for the QUICK
project, which is a rapid prototyping tool for building user
interfaces. The QUICK project contains few bugs and is quite
solid. Interest in both projects are high, which increases
the probability that they will become actual tools in the

future.

155

214

BIBLTIOGRAPHY

Cardelli, L., “Building User Interfaces by Direct
Manipulation,” Technical Report #22, DEC Systems Research
Center, 1987.

Goodman, D., The Complete HyperCard Handbook, Bantam
Books, New York, 1987.

Gould, L. and Finzer, W., “Programming by Rehearsal,”
Technical Report #SCL-84-1, Xerox PARC, Palo Alto, Ca,
1984.

Ssmith, R.G., Barth, P.S., and Young, R.L., “A Substrate
for Object-Oriented Interface Design,” Research Directions
in Object-Oriented Programming (B. Shriver & P. Wegner,
eds.), MIT Press, Cambridge, MA, 1987

	1990c[94].pdf
	1990d[55].pdf

