TOWARDS A PATTERN LANGUAGE FOR
USER-INTERFACE DESIGN

by
RUNE ARNT SKARBO

A THESIS

Presented to the Department of Computer and Information Science
and the Graduate School of the University of Oregon
in partial fulfillment of the requirements
for the degree of
Master of Science

June 1990

APPROVED: %z/ /Q;,w/

Dr. Sarah &7/ Douglas

ii

iii

© 1990 Rune Arnt Skarbo

iwv

Abstract of the Thesis of
Rune Arnt Skarbo for the degree of Master of Science
in the Department of Computer and Information Science to be taken June 1990
Title: TOWARDS A PATTERN LANGUAGE FOR USER-INTERFACE
DESIGN

Approved: %(// /@xé"

Dr. Sarah A/Douglas

No effective methodology exists to assist user~interface designers in the
process of translating high-level system requirements and functionai semantics
into user-interface design specifications. Traditional user—interface guidelines
are too limited; they are too vague, do not specify how they can be realized, are
not context sensitive, and insufficiently address program functionality. This
thesis analyzes the feasibility of a user-interface design methodology beneficial
to designers in the transiation process. A user interface may be viewed as a
patterned series—--with the patterns describing sets of conflicting forces which
occur in particular contexts, followed by specific configurations which stabilize
the conflicting forces. Patterns can be used to map requirements and functional
semantics onto user—interface design specifications. The bases for the
30 defined patterns are described. An example demonstrates how patterns are
useful {o transiate requirements and functional semantics into user—interface

design specifications.

VITA

NAME OF AUTHOR: Rune Arnt Skarbo
PLACE OF BIRTH: lovelock, Nevada
DATE OF BIRTH: May 18, 1964

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon

DEGREES AWARDED:
Master of Science, 1990, University of Oregon
Bachelor of Science, 1988, University of Oregon
AREAS OF SPECIAL INTEREST:

Artificial Intelligence
User Interfaces

PROFESSIONAL EXPERIENCE:

Teaching Assistant, Department of Computer and Information Science,
University of Oregon, Eugene, 1989-50

Programmer, IntelliCorp Corporation, Mountain View, California, 1989

vi

ACKNOWLEDGMENTS

I woulid like to thank Professor Sarah Douglas, my adviser, for her
encouragement and guidance throughout this work. Without her, this thesis
could not have been written. To Professor Howard Davis, for his insightful
comments on patterns and pattern languages, thanks are extended for the help
and support. Thanks are also due to Professor G. Z. Brown for his comments
on an earlier draft of this work. I am also indebted to the faculty, staff, and
colleagues in the Department of Computer and Information Science for having
contributed to making my stay here at the University of Oregon an educative
and pleasant experience. Special thanks to Terry Chandler and Ray Vukcevich.
Finaily, I wish to express my sincere gratitude to my parents for their support,

and to Anita, my wife, for her support, love, and patience.

vii

DEDICATION

To Anita.

viii

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION. ...ttt ereen e e essesssssssnsrassnaans 1
Designing Human/Computer Interfaces.........cccoccvviivnnennncnnnnen 2

Translating Requirements and Functionality into a Design
SPECIfiCAION ..o b 3
Problem Basisccociivmnieiirct e 4
Problem Statementccivviviinincininirnenicnnniinieeeee s neane 9

Proposed User-Interface Design—Specification
EthOdOIOZY....cmeirecrrcreecrerrenrirerc st sta s as e 9
Solution COnSITAINESc.coveieiiereiecee e re e esste s sessrssnnensenses 12
SUNMMATY ..ccoeeeiierreereeneeeete s erssresaeesereercssstsssas ssstsessnnsssasesssesennes 14
II. PATTERN LANGUAGES FOR ARCHITECTURAL DESIGN:

AN OVERVIEWciiiiiiinniininienscncsessssssessiessiesscsnsssssasenss 16
Buildings That Work.........ocveieirecceececsercsienssnaseneee 16
Buildings as Pattemsc.ccocevreeiecriiicicnnnersniiniinsiecs e rsasees 18
A Pattern is a Relationship Between Other Patterns................... 19
The Connection Between Patterns of Space and Patterns

OF EVENLS .ot abes st sre e s sne e 21
Using a System of Patternsc.ccoceeeieniicciinnnnniinicieene 22
How Patterns Workc..coovveeriniciiinniiniiininnn it 22
DiscOVering Pattemnsocveirirvercrecernessenescrecnesinecreisessisesnnes 24
UsinEg the Languagecccocvvmevieeiimmenmiciicniiie e nssasnenaas 25
AN EXAMPIE...corioircceeineccnerene et s 29
The Users of the Languageccocovciininiinnenninninnnsnsnen 30
Advantages and Disadvantages.......ccccceerreercrrerccissinrmnsnecnseeicsnnnes 31
CONTOVETSIES .vevverererrrreeererrieeererrneseessssonessnesencsssresssassnsssasasnnass 32
SUMMATY ...ttt ere e e s eeres e e s seeas s aess sobntsssornasesssase 33

III. A PATTERN LANGUAGE FOR USER-INTERFACE

DESIGN ..ottt enensetescesiessascsesansnn s sassnn s sne s sseaas 34
FOUNdationsccoevrcrvrerereneecrrcren oot st s e snssnenan e 35
The Elements of a User-Interface Pattern (UIP)...........cc.c...c..... 45
The User—Interface Patterns (UIPs) as a Language...........ccue.e... 47

SUMMATY c.ceieiiieticrrrtrcree e snssse e e basassassesnesasssssssess e ssenas 54

IV. USER-INTERFACE PATTERNScccoiietseseenne

OVEIVIEW ...ovuivcrscrrnssmnasrmanassessssensssnsensastssssoncssssissssssssnsnassssssnsnass
Thirty Specific User—Interface Pattemns........coooovvreecnnnnniennnnnne
SUMMATY .ot stssstsssresas s ssresasssas s st sesrasr e snesana s

V. A PROTOTYPE: SAMPLE DESIGN FOR A PORTION
OF A DRAWING PROGRAM USER INTERFACE.....................

St? 1: Finding a User-Interface Pattern (UIP) That Best
eSCIibes the Projectcoviiiiiieiinnisnsieienrereseneeeene s
Stf]:)p 2: Starting 10 Search Through the User-Interface
attern (UIP) Network.......cccovveivimmicrinieiicceceieecs e

Step 3: Continuing and Completing the Search Through

the User—Interface Pattern (UIP) Network.......cocvvriiecnnne.
Step 4: Adding Personal Pattems........couvvevnverciesnineninecieecnnnes
SUMMATY ..conciiiiiiniinniintiiesesieestsssserssrese st e s s e st sssaessasasssenens

VI. CONCLUSIONS ... ot citteiieeieeeerrersssssessnsesesseesessacrassassssssarssssnnsens

RESUILSooeerierecrerersvrnrresensreceereneasasensssscssisessecssnisnsessassnssassosanss

The Usefulness of User-Interface Patterns (UIPs).....................

DASCUSSION ..cvveeeieiiiirrarresessrsreeeraeassssssnnmaneaneesasssassossasssssessasssssnnnnss

FINAl NOLE.....covrereerte s cnicrreesreesenetesc st essneasssssassessssssossnanssnsensans
APPENDIX

A. LEARNING ABOUT PATTERNS AND PATTERN
AN (G 18]G 5 USSR e

B. THE USER-INTERFACE PATTERNS (UlIPs) ORGANIZED
IN A NETWORK ...cootintririrerininesieiistisiesiesnenssssstestssassnsssasssssssnes

REFERENCES ittt sasnsss s a s en s ssasseses

Table

LIST OF TABLES

1. Some User-Interface Performance Measures

Figure

© ® N W R WD

[u—ry
<

11.
12.
13.
14.
15.
16.
17.
18.
19.

®i

LIST OF FIGURES

Page
The Elements of @ Pattern......c.ocovreviiiinnnnieenenenecsesncs e 10
Natural Languages Versus Pattern Languages......ccccoooeeeveeencrcnne 23
A Network of Patterns Representing a Garden of Patterns 30
Old and New Versions of the MacPaint User Interface................... 37
The SuperPaint Palette in Draw Mode and in Paint Mode.............. 41
Disk—Locked MESSALEooeeviereennriiistinsneiresinesnsnnsstsstessesosnassssnsens 43
A Palette in a Usual CONtextcccvvvirvirmesirmimmessissnenissssscssisisens 49
A Palette in an Unusual Contextcooveeeriierenieninnnneccnsecsssissienns 49
A Menu Bar and a Set of Words ... 51

Maély User-Interface Patterns £UIP5) Form a Network of
ser—Interface Patterns (UIPS) ...co.ooeeicmieiniinciciiiiniianee 51
An Example of an Activity Center.........ooovnmeimeccnnciinsonnneninans 58
The Activity Center as Central Point of Reference.......ccococevneiane 59
Several Programs Being Managed by MultiFinder............cccooee... 64
Graying Out Inactive User~Interface Elementsccccoveinninenene. 66
Two of Many Ways to Organize a Center of ACHivVityc.cccvnueee. 71
Manipulable WINdOWS........ccccvmivenmnicnriinsiesinssnsssescenssssssarsssaeenns 83
Viewing Data at Different Leveis of Abstraction.........cccevenininns 93
FullWrite During a Save Operation..........cceeeeeresienmsscscrsssssssnssereanans 96

Examples of Actions That Can Be Undone........ccooeenevincnscnnnnas 100

20.
21.
22.
23.

24,

26.

27.
28.
29.
30.

A Waming Message With the Option to Cancelcocoveennnenen 102
A Message Explaining Both a Problem and How to Fix It 109
A Message Indicating Amount of Work Remaining.......ccooceueennen. 110
An Ilustration of the Simplicity Created in an Interface When
Effective Element Boundaries (Simple Lines) are Included....... 113
An Illustration of the Confusion Created in an Interface When
Element Boundaries are Excluded ... 114
An Example of Two Different Functionality/Complexity
LEVEIS ... cceiertirirnnrsnensncecsanesotsessnassssnssnasssiossaresssnassasssanaansansasss 122
A Message Clearly Explaining the Reason for Imposing
8 RESITICHON ..vvivevernereetreeresneeeseersessenstasasesrneesessnnessasasasssessssaasas 125
The Network for the Drawing Interface Pattemnsc..oocoeciinnnens 131
A Rough Sketch of the Facade of a User Interfaceccooccceunee. 131
A Pattern Satisfying Two Conflicting Requirements.........c.cccceene. 153

The Relationships Between User—Interface Patterns (UIPs) 157

CHAPTER |
INTRODUCTION

Designing computer applications is an extremely difficult task.
Traditionally, the main difficulty was to achieve error—free algorithms.
Software companies devoted considerable effort and expense in order to
produce products that were close to error-free. Many companies had separate
quality—assurance teams, or test teams, which often utilized state—of-the-art
testing methodology (Chapman, 1981). And, prior to product completion,
companies typically knew who the users of their products were going to be:
people with a technical background who had the time and money to learn how
to use the products.

Most of this is true today, as well. The present tense, instead of the past
tense, could have been used in the previous paragraph. Producing error—free
software is still very difficult, and software companies continue to invest a
considerable amount of time and money in quality assurance. Today, however,
the user group is typically not limited to people in engineering programs or
technical institutions. People from a vast array of disciplines use computers.
No longer are software producers able 1o assume that users are willing or able
to spend days, or even months, to learn how to use a system. Peopie want to
use computers and computer programs as easily as any other tool encountered

in daily life. Food processors, photocopy machines, telephone—answering

machines, and typewriters are just a few examples of other such tools. One
reason ail these tools have become so popular is that their operation is fairly
easy to learn. Consequently, if a computer system is to be perceived as a
useful tool, then the system must be, at the very least, easy to use. Those
who consider themselves computer experts have many times heard people say
something to the effect that "how can you say that word processors are so
fantastic? I'll stick to my typewriter—~at least it does not take years to learn
how to use it."

Today software companies have a new problem to consider: Programs
have to be easy to learn and easy to use——the human/computer interaction must
work smoothly. The system must be user friendly; that is, it must have a good
user interface. Achieving effective user interfaces is just as difficult, if not
more difficult, than achieving error-free code. Human/computer interaction
has been primarily carried out using character-based displays with very limited
graphical-display capabilities. Improved hardware technology has resulted in
a shift from character—based dispiays to bit—-mapped displays which have the
ability to display detailed graphical images. There are also new means for
communicating with the computer. For example, instead of relying only on
the keyboard, it is now common for users to enter data using a pointing device
called a mouse. The numerous additional elements increase the complexity of

designing human/computer interfaces.

Designing Human/Computer Interfaces

The process of designing a user interface can be divided into five steps:

(a) requirements analysis, (b) functionality analysis, (c) specification,

(d) implementation, and () evaluation. These five steps are ideally repeated
until the user—interface design satisfies a predetermined set of standards or
performance measures. The requirements analysis identifies the type of tasks
that a system should be able to perform. 1 constitutes a high—level description
of what the users wish to do with the system. Consequently, the users should
be part of the development cycle from the very beginning. The functionality
analysis results in a specification of the operations and the operational
semantics. During the specification step, the presentation and the behavior of
the user interface is determined. For example, decisions about menus, palettes,
buttons, and so on are made. The fourth step involves the actual coding of the
decisions made in the third step; and, in the fifth step, the interface is tested on
future users.

Translating Requirements and Functionality
into a Design Specification

One of the primary reasons behind why user-interface design is difficult
is that there does not exist a methodology that effectively maps the system
requirements and the functionality of a system onto a design specification. For
the purposes of this thesis, the word methodology is meant 1o refer to a set of
methods and postulates that indicate how some elements can be combined to
form a whole. (This abstract description of a methodology will become more
concrete later.) The translation process from functions to a design specification
typically occurs under a set of constraints. For example, is the aim to please
novice users, expert users, or both? And, what capabilities are provided by the

system's hardware?

Moran (1981b) developed a command-language grammar that was
intended to aid the user—interface designer in representing high-level goals,
or requirements, and then transforming these goals into a specification. The
command-language grammar is a design methodology in that it provides a
process by which the system requirements can be transformed into descriptions
that are at, or close to, the specification level. However, the problem is that
the current format of the command-language grammar does not produce one
specification, but rather an infinite number of specifications.

Jacob (1985) developed a user—interface specification tool termed
augmented transition networks. These networks are useful for representing the
transitions that occur in user interfaces at the specification level. However,
Jacobs's networks are useful only after the requirements and functionality
analyses have been carried out. A methodology that translates systems
requirements and functionality into augmented transition networks does not
exist.

Rapid prototyping tools have become popular as means for quickly
producing and testing user interfaces. These tools enable the designer to move
quickly from the requirements analysis to the interface evaluation. The time
required for designing a user interface, therefore, may be shortened. A rapid
prototyping tool does not constitute a user—interface design methodology,
however. Methods for combining elements are not provided; and rapid
prototyping tools neither assist in the identification of the evaluation criteria
nor in the basic elements of a user interface.

The preceding discussion indicates that a methodology for translating a

functionality description into a design specification is nonexistent. This thesis

present an attempt to develop such a methodology. The methodology may at
first remind the reader of traditional user—interface guidelines. However, as is
argued in the next section, user—interface guidelines do not constitute a design

methodology.

Problem Basis

The needs and the behaviors of computer users can be captured during the
system requirements and functionality analyses. These are the first two steps in
the user—interface design process. However, the needs and behaviors of the
users are often lost in the process of translating the high—level functionality
descriptions into a lower—level user—interface design specification. Since no
known methodology for this translation exists, the consequence is that the needs
and behaviors of the users are not sufficiently represented in the user—interface
design specification.

The notion of capturing user needs and behaviors in a user—interface
design is not new. For example, the following design principle is stated by
Apple Computer Inc. (ACI): "Users want to feel that they are in charge of the
computer's activities" (ACI, 1987, p. 4; emphasis in original). Obviously, if
there is a need to be in control (over the computer's activities), then somehow
this need should be reflected by the choices made in the design of the
computer's user interfaces. ACI accommodates the user by encouraging a
direct-manipulation interface style.

Another observation made by ACI (1987) relates to a different

fundamental human trait: "Users feel comfortable in a computer environment

that remains understandable and familiar rather than changing randomly"
(p. 8; emphasis in original). In this case, ACI accommodates the user by
providing a set of consistent user—interface elements, as well as a finite set of
actions that can be performed on these elements.

Unfortunately, ACI's (1987) guidelines are not very useful for translating
system requirements and functionality into a design specification. There are
five primary reasons for this situation.

First, user—interface design guidelines provide little indication regarding
the process of designing an interface. Where should the designer start? Shouid
the process be top—down, bottom-up, or some combination of these processes?
How can all the design principles be molded into a user—interface specification
given the requirements and functional semantics? In other words, user—
interface guidelines do not constitute a design methodology; and methods for
combining the different principles are not provided.

Second, user—interface guidelines are typically expressed as a set of
unrelated rules of thumb even though the elements of a user interface are, in
fact, all highly interdependent. Thus, rules need to be made context sensitive.
By establishing context-sensitive rules, the number of exceptions will decrease;
and, the exceptions themselves will become context-sensitive rules.

Third, the Macintosh user—interface guidelines (ACI, 1987) restrict the
elements of the user interface to typical Macintosh objects such as menu bars,
buttons, scroll bars, icons, and so on. Only to a limited degree do the guidelines
consider functions and features of a program as elements of an interface. No

matter how successful a user interface is with respect to the performance

measures outlined in Table 1 (which were derived from Moran, 1981a), the
program as a whole will be unsuccessful if some basic functions and features
are unavailable to the user. For example, people have a need to view data
from different perspectives, or at different leveis of abstraction; and some
information is simply better understood at certain levels. The Page View and
Print Preview options in Microsoft Word are examples of this. Page View
allows the user to view a document in greater detail, relative to the regular
on-screen view; the document is displayed in the exact format in which it
will appear on the printed page. The Page Preview option, on the other hand,
provides the user with a high-level view of the document; the size of the
document page is reduced to fit the screen.

Fourth, most user—interface design guidelines are too vague. Even though
the intention behind a certain guideline may be admirable, it often does not
specify methods for satisfying the requirements. Consider, for example, the
following design principles: "Use concrete metaphors and make them plain, so
that users have a set of expectations to apply to computer environments. . . .
Communicate with the user in concise and simple terms" (ACI, 1987, pp. 3, 14;
emphasis in original). These guidelines will not be useful until questions such
as the following can be answered: What exactly is a "concrete" metaphor?
How far should a metaphor be taken? What exactly is a "concise and simple"
term? (That which may be simple and concise to one user may be utterly
confusing to another user.) A study by Furnas, Landauer, Gomez, and Dumais
(1987) indicated that, if two people were to apply a term to a certain object,

then the probability that they would relate the same term is less than .20.

Finally, user—interface guidelines do not indicate how tradeoffs and

exceptions should be handled. The point is that the guidelines may appear to be

very useful and clear on the surface, but attempts to satisfy the guidelines often

result in hard-to-solve problems. An example of such a problem has been

mentioned previously: How is it possible to make an interface both easy to

learn (for novices) and efficient (for experts). Designing a user interface

without deviating from guidelines is in practice very difficult.

TABLE 1. Some User-Interface Performance Measures

Categories

Performance Measures

Basic Performance
Measures

Subjective Performance
Measures

Extreme Conditions

Functiq,nalily: What functions are available to the
user?

Leaminog: Does user performance improve over
time?

Time: How long does it take to do a task?

Error: Which types of errors are made, and how
frequent are they?

Quality: How good is the output?

Robustness: How does the system adapt to
unexpected conditions or new tasks.

Acceptability: How does the user subjectively
rate the system?

Enjoy%bleness: How much fun is the system to
use’

Fatigue: How does performance degrade over

time?

Stress: How does performance degrade over
adverse conditions?

This thesis primarily address the first three problems. A design
methodology describing a top~down process that combines a set of interrelated
elements in order to form a user—interface specification is explored. These
elements are termed patterns. (A more in—depth discussion of this term is

provided in Chapter I1.)

Problem Statement

Currently, there exists no methodology that assists the designer in the
process of translating system requirements and functional semantics into a
user—interface design specification. (Functional semantics refers to the task
that a function is supposed to accomplish, its preconditions and postconditions,
and the objects on which the function operates.) There is a need to explore
new ways to handle this phase of the user—interface design life cycle. User—
interface guidelines have been and still are being used in this process. As
indicated in the previous section, guidelines are of little use. In particular, a
specific process for choosing and combining the guidelines has not been
developed, methods for satisfying the guidelines have not been included,
relationships among guidelines have remained unspecified, and system features

typically are not addressed.

Proposed User-=Interface Design-
gpemfication Methodology

This thesis proposes the utilization of a user—interface design—
specification methodology. The purpose of this methodology is to map user

requirements, user needs, user limitations, and functional semantics onto a

10

specification that covers aspects of the layout, the facade, and the functional
syntax of a user interface. (Functional syntax refers to how a function shouid
be presented to the user; for example, perhaps the function should be available
from a palette rather than from a menu.) This methodology is based on the
apparent similarities and closeness between user—interface design and
architectural design. The proposed methodology is an adaptation of a
methodology developed within the domain of architectural design. The main
idea is that a user—interface design is composed of several patterns. Alexander,
Ishikawa, and Silverstein (1977) have defined 253 patterns that can describe a
virtually infinite number of architectural designs ranging in size from entire
cities to the individual rooms of a house. A pattern is an instruction consisting
of three basic elements: a context, a set of conflicting forces, and a
configuration (see Figure 1). In other words, a pattern consists of a situation
in which some problem occurs followed by a solution to the problem. This
solution is given in terms of a certain attribute or feature which should be
included in the design. Collectively, all the patterns form a language—-a
pattern language—--that can be used to describe a particular design. (A further

discussion of these three elements of a pattern is contained in Chapter I1.)

Conflicting , _
Configuration

FIGURE 1. The Elements of a Pattern

11

1t should be pointed out that Alexander, Silverstein, Angel, Ishikawa, and
Abrams's (1975) language methodology is more than an intellectual exercise in
design. The language has been used for an extensive number of small and large
real-world projects. As a case in point, the University of Oregon campus and
its buildings were designed using the pattem—language approach.

As was previously presented, there is a problem in that a set of user-
interface guidelines does not constitute a design methodology in any manner.
However, a set of patterns, together with a process that specifies how to use and
combine them, does constitute a design methodology. The patterns in a pattern
language are interdependent; and there are patterns of varying sizes. Chapter II
contains a demonstration of how the patterns actually form a network. That is,
the largest patterns depend on some smaller patterns, and the smaller patterns
depend on even smaller pattems, and so on. For each pattern, the relevant
interdependencies are specified. Pattems typically address user—interface
elements such as windows, palettes, menus, the layout of the user interface, and
features that should be included. The patterns and the processes for combining
the patterns so that they form a user—interface design are presented within this
thesis. The mapping from system requirements to a design specification is
made possible by stating the requirements in terms of problems that can be
addressed by the patterns.

Another problem, also identified earlier, concems the fact that user-
interface guidelines are too vague. A pattern language for user—interface design
is more specific in that the patterns provide solutions to specific problems.

Included in a pattern is a precise specification of the context in which it is

12

relevant. Furthermore, a specific problem that occurs in that context is
described; and, finally, a specific solution is given.

It has been additionally argued that user—interface guidelines do not
sufficiently address the functionality of a system. The domain of guidelines
is typically limited to the graphical elements of a system (e.g., the windows,
menus, icons, etc., on the Macintosh). Patterns, on the other hand, are based
on human needs and human limitations. These needs and limitations can be
addressed by selecting particular interface layouts and elements, and by
incorporating certain functions and features into a system.

The most interesting aspect of the pattern—language approach is that it will
eventually constitute a design methodology. In most fields, it is often the case
that people are equipped with all the tools necessary to accomplish some goal;
but, because these tools frequently exist as fragmented and often unrelated
pieces of knowledge, principles, or whatever, the task becomes how to select
the needed tools and appropriately string them together. This problem also
exists in the field of user—interface design. A designer may comprehend a large
set of design principles, but fail in the process of combining these principles
into a coherent user—interface design. By using the pattern-language approach,

this problem is reduced.

Solution Constraints

The methodology proposed herein captures only a few aspects of the
translation process from system requirements to a design specification. This

thesis is, first and foremost, a feasibility analysis of the pattern-language

13

approach as opposed an effort to present a complete functioning system. The
goal was to determine whether or not the pattemn~language approach is worth
studying and refining in order to achieve a more complete method for user~
interface design specifications. (Chapter 11 emphasizes that a pattern language
never can be compiete. That is, patterns change as human beings change;

and, as more knowledge is gathered in regard to human needs and behaviors,
patterns are added, deieted, and modified. Thus, the development of patierns is
a perpetual process.)

The bases for the patterns presented in this thesis often lack support by
empirical studies. This is not because empirical studies have indicated different
results; but, rather, it is due to the fact that research has yet to be carried out in
many of the relevant areas. Ideally, a pattern should address all the conflicting
forces that are present in a given situation, and the validity of the solutions
should be justified by empirical studies. A related obstacle is that there is no
reliable way to determine exactly which forces are present in a given situation.
This does not mean that it is impossible to discover efficient patterns; in fact,
the proof that this is possible is provided by Alexander et al. (1977). The
patterns in this thesis have been based on several sources. The conflicting
forces have been identified by using the following methods:

1. By observing novice users and identifying the difficulties they
experience, a common set of problems emerged.

2. By relating already-identified problems in architecturai design to
user—interface design, important elements have been revealed.

3. By personal experience and by conversing with a user—interface

design expert, essential theories were generated. In addition, to obtain a

14

more complete understanding of the pattern-language approach, interviews
were conducted with an architect who uses pattern languages. (The principal
findings from these interviews, which were recorded on videotape, are
described in Appendix A.)

Some of the solutions to the conflicting forces were obtained from existing
literature. Other solutions were based on personal experience.

Again, this is a feasibility analysis. The author does not claim to have
identified infallible patterns. Some patterns may capture all the conflicting
forces and suggest a good solution; others may not. Alexander et al. (1977)
devoted more than 12 years to identify their 253 general patterns for
architectural design. However, the important point is that, given a set of
patterns that are based on an underlying theory (and a method that specifies
how to use these patterns), the end result is a user—interface design—
specification methodology. The evolution of patterns is a process that

must be subsequent to this feasibility analysis.

Summary

This introductory chapter motivates the need for new and improved
ways to assist the process of translating system requirements and functional
semantics into a user—interface design specification. A methodology based on
Alexander et al.'s (1977) pattern-language technique has been proposed as a
process for eliminating some of the deficiencies which make user—interface
guidelines incapable of generating a design specification given a set of high—

level descriptions.

15

Chapter II presents an introduction to the theory behind patterns and
pattern languages. Chapter III explicates the existence of and foundations for
user—interface patterns, and specifies the methods for identifying patterns.

In Chapter IV, a small number of user—interface patterns are identified.

Chapter V presents an example that demonstrates how system requirements

can be translated into a set of patterns that represents a user—interface design
specification. Chapter VI includes a discussion of the feasibility of the
proposed methodology and some issues which are important for future research.
Of particular interest is the idea of incorporating the design methodology into
an expert system in order to automate the translation of system requirements

into a user-interface design specification.

16

CHAPTER 1l

PATTERN LANGUAGES FOR ARCHITECTURAL
DESIGN: AN OVERVIEW

In Chapter I, it was argued that there is a need for a methodology that can
transiate system requirements and functional semantics into a user—interface
design specification. Deficiencies of typical user~interface guidelines were
discussed; specifically, they are too vague, they are not context sensitive, and
they do not address the functionality of a system. A new design methodology
that can translate system requirements and functional semantics into a user-
interface design was proposed. This new design methodology is based on
Alexander et al.'s (1977) work in the field of architectural design. In this
chapter, the work by Alexander (1979) and Alexander et al. (1977) is reviewed
in order to establish a foundation for the adaptation of this methodology to

user—interface design.

Buildings That Work

Most people have been in cities, inside buildings, or in places that have
some qualities which generate a feeling of aliveness——in short, these areas
make people feel good. Alexander's (1979) thesis is that there is a timeless

way of building that is so fundamental, so close to the needs of human beings,

17

that it would be impossible to create great towns, buildings, or houses without
following this way of building. Yet, this does not imply that there is only one
way to proceed in terms of constructing physical structures. It simply means
that, among the infinite number of variations that exist to design buildings,
there is some invariant core common to them all. There are some elements that
need to be present in a building in order for that building to work. Furthermore,
there is a sequence of events that forms the basis for the act of building. The
elements of this sequence are definable, as is the context in which the elements
apply. To specify these elements, the level of analysis that is required hinges
upon a representational form which reveais that ail possible processes of
construction are versions of a deeper process.

First, there must be a way to examine the uitimate building blocks of the
environment. Each town, each building, and each room is comprised of these
building blocks. Alexander (1979) has shown that towns, buildings, and houses
are constructed from certain entities called patterns. Understanding such
structures in terms of pattems provides a way to identify what it is that makes
the buildings in a town similar. In the following section, Buildings as Patterns,
the feasibility of such an identification is discussed. Viewing the environment
in terms of patterns cultivates the capability to understand exactly that which
makes a building alive, and that which makes a building dead.

Second, the processes that generate pattems must be understood. This
involves recognizing how patterns come about, and is discussed in the next
section which outlines Alexander's (1979) theory that a pattern is the result of

certain combinatory processes.

18

Buildings as Patterns

In order to define the elements {or patterns) of towns and buildings,
Alexander (1979) argues that every place is provided with its character by
the patterns of events that happen within it. The shape of a town or the shape
of the building are irrelevant; rather, it is the episodes which occur therein that
are of significance. In other words, function precedes structure. However, it is
impossible to think about certain events without also thinking about where the
events are happening. For example, it is impossible to imagine doing dishes
without also imagining doing dishes somewhere. This somewhere could be
many places, but all the places would have a number of commeon attributes.
For instance, soap and water would be available, and there would be separate
places to store washed and unwashed dishes. It is also natural to think about a
place in conjunction with the episodes that happen there. For example, it is
impossible to think about a kitchen without thinking about preparing food,
eating, sitting around the kitchen table, chatting, and so on. Function and
structure interact.

It is given that towns and buildings acquire their characters from
patterns of events, and that somehow these events are correlated with space;
but, then, how exactly are events and space linked together? Knowledge about
how the structure of space supports the episodes that happen there is vital.
This knowledge should be strong enough so that the changes in the patterns
of events could be predicted if the structure of the space was changed. This
would constitute a theory that addresses the interaction between space and

events.

19

A Pattern is a Relationship
- Between Other Patterns

At first, it might seem as if the building blocks of a town include
houses, gardens, shops, workplaces, and parking lots. Similarly, it might
seem as if the essential building blocks of a house are walls, windows, rooms,
ceilings, stairs, door handles, and so on. However, breaking space up into
these elements does not explain how or why the elements are associated with
patterns of events such as cars and buses driving in the street, families living
in houses, and people walking through doors. Moreover, if those were the
building blocks, why are they different every time they occur? Every town'is
different from all other towns, every house is different from all other houses,
and every room is different from all other rooms. Because the elements differ
every time they occur, they cannot be the ultimate building blocks of space.
There must be some other invariants throughout the endless variations that
constitute the atomic building blocks. Instead, the structure of the space that
a town or a building consists of must be examined. What exactly is it that is
repeated?
There are relationships between the elements that keep repeating.
Alexander (1979) uses the following example:
Consider a typical mid—twentieth—century American metropolitan region.
Somewhere towards the center of the region, there is a central business
district, which contains a very high density office block; near these are
high density apartments. The overall density of the region slopes off with
distance from the center, according to an exponential law, periodically
there are again peaks of higher density, but smaller than the central ones;
and subsidiary to these smaller peaks, there are still smaller peaks. Each

of these peaks of density contains stores and offices surrounded by higher
density housing. (p. 86; emphases in original)

20

This excerpt illustrates that a structure, be it a town or a building, is comprised
of patterns of relationships. These relationships are components of the elements
in our environment. In fact, not only are the relationships linked to the
elements, but also the elements themselves are patterns of relationships. The
reasoning is that, once it is understood that an element is part of the pattern of
relationships between the element and the things around it, a greater realization
can be achieved. The element is not merely embedded in a pattern of
relationships, but is itself a pattern of relationships. Hence, the elements that
were considered first can be viewed as labels for the patterns that actually do
repeat-—namely, the patterns of relationships. Alexander (1979) considers each
of these patterns as a morphological law. In this domain, a morphological law
defines a set of relationships in space. In other words, given some context X,
the parts A, B, . . . are related by the relationshipr, X =1 (A, B, . . .-
Alexander provides two examples.

Within a Gothic cathedral — the nave is flanked on both sides by paraliel

Wherzlzlfirséé\;.réy meets an artery — the access ramps of the interchange

take the rough form of a c%verleaf. (1979, p. 90)

Each of these laws are patterns of relationships made up of other laws.
Examining a pattern reveals that it does not merely consist of parts, but that
these parts are patterns as well. Alexander uses the following example to
illustrate this point:

Consider, for example, the pattern we call a door. This pattern

is a relationship among the frame, the hinges, and the door itself: and these

parts in turn are made of smaller parts: the frame is made of uprights, a

crosspiece, and cover mouldings over joints; the door is made of u rights,

crogsi‘. ieces and panels; the hinge is made of leaves and a pin. (1979,
p-

21

These things that first were considered parts are also patterns. Even though
each part may take on an infinite number of shapes, the relationships (which
make them patterns) are not lost.

The Connection Between Patterns of
Space and Patterns of Events

Intuitively, each pattern in space has an associated pattern of events.
Consider, for example, a pattern that describes a kitchen. The associated
pattern of events includes the way in which the kitchen is used; for example,
food is prepared, food is consumed, and dishes are done. It is also intuitively
apparent that a pattern of space does not cause a pattern of events; and, a pattern
of events does not cause a pattern of space. (The consideration of space and
events together as a pattern leads to the realization that a pattern is basically
invented by people's culture.) However, the pattern of space is what allows the
patterns of events to happen; and the pattern of space maintains the patterns of
events. Since the character of a town or a building develops from the pattern
of events, and the pattern of space is a precondition for the pattern of events to
occur, the pattern of space must necessarily be one of the requirements that
provides a town or a building with its character.

What is most remarkable is that a town or a building consists of relatively
few patterns. Alexander (1979) claims that a town (such as London, England)
can, in essence, be defined by a few hundred patterns. Patterns can be
combined in a practically infinite number of ways. Although the patterns
can be combined in a numerous ways, the underlying invariants are still

present.

22

Using a System of Patierns

Consider the question "what is it that an individual farmer did, when he
decided to build a barn, that made his barn a member of this family of bams,
similar to hundreds of other barns, yet nevertheless unique" (Alexander, 1979,
p. 176). First, it may be surmised that the farmer paid attention only to the
function of the barn, and so the bam is beautiful as a resuit of the farmer being
in touch with its function. But that does not explain why a specific farmer's
barn is similar to other bamns. That is, if all barns were created on the basis of
their function, a much greater variety in design would be expected. Perhaps the
farmer is copying the other barns that he or she knows about. But this does not
explain why there is such a great variety of barns. The answer to this question,
according to Alexander (1979), is that the farmer is able to build a barn because
every barn is comprised of patterns. Hence, the farmer is, in fact, copying other
barns. But the farmer is not copying complete drawings of other bams; the

farmer is copying a system of patterns.

How Patterns Work

A pattern describes what to do in order to generate the physical structure
it defines. But there is more. A pattern exists to solve some problem. It is
not merely a pattern that might or might not be used; a pattern is a description
of something that should be used in some particular context. The fact that a
pattern is context sensitive is extremely important. Given a specific context,

certain problems arise. The pattern describes the context and the problems; and,

23

in addition, the pattern provides a solution to the problems. Several patterns,
or a system of patterns, can be said to form a language. A language may be
defined as a set of elements and a set of rules for combining the elements. Ina
pattern language, the patterns constitute the elements. Each pattern describes
how it itself is a pattern comprised of still smailer patterns. In addition, there
are ruies embedded in the patterns which describe how they can be realized, as
well as how they can be arranged and combined with other patterns. It should
be noted that the rules and the elements are indistinguishable; the rules are part
of the patterns. Yet, there is a close relationship between ordinary language
(natural language) and a pattern language. Both ordinary languages and pattern
languages can be used to form an infinite number of variations, with each
variation being appropriate to the different contexts in which they are formed

(see Figure 2).

Natural Language Pattern Language

words = e Patterns

Patterns that
» specify relations
among patterns

Rules of grammar __
and meaning

Sentences - » Places and buildings

FIGURE 2. Natural Languages Versus
Pattern Languages

24

Discovering Patterns

In order to create a patiern language, the ability to "learn how to discover
patterns which are deep, and capable of generating life" is crucial (Alexander,
1979, p. 243). It should be recalled, from the previous discussion of the
elements of a single patiern, that a pattern is a rule with three parts. It expresses
a relation between a context, a problem that occurs in that context, and a
solution to the problem. A pattern can deal with nearly any type of problem.
The following list of probiems will provide some intuition as to what types of
problems are addressed in a pattern:

ENTRANCE TRANSITION resolves a conflict among inner psychic
CCSMOSAIC OF SUBCULTURES resolves a conflict among social and

psychological forces.

WEB OF SHOPPING resolves a conflict among economic forces.
: EFFICIENT STRUCTURE resolves a conflict among structural
orces.

GARDEN GROWING WILD resolves the conflict between forces of
nature, the natural growin %rocess in plants, and people's natural actions
in a garden. (Alexander, 1979, p. 248)

How, then, can a pattern be identified or created? (Notice that a

for

distinction is made between identifying and creating patterns.) First, when
identifying a pattern, it has been already established that there is something
about a place that is worth abstracting. For example, it is worthwhile to spend
some time and energy on identifying why a certain place makes people feel
good. That is, one wishes to determine what the qualities are that make that
place work. When creating a pattern, the goal is to define some physical
feature that does not yet exist. After having identified a set of conflicting

forces, the objective is to create some physical features that resolve the

25

conflicts. The processes of identifying and creating patterns are thus somewhat
different.

Second, when identifying a patiern, the problem must be defined. In other
words, after identifying some physical feature in the first step of the process,
now the conflicting forces which the pattern resolves must be identified. When
creating a pattern, some physical properties that will solve the problems
identified in the first step must be identified.

Finally, in both cases, the range of contexts in which the pattern holds
must be defined. Included in this is a specification of the contexts in which the
system of forces exists. In addition, it must be determined whether the new
pattern has any side effects. If it has created any new problems, patterns that
solve these problems must be identified or created.

As will become more apparent in Chapter III, pattern creation (rather
than pattern identification) is typically used in the process of developing user—
interface patterns. The scheme identifies some conflicting forces, and then
specifies how the conflicting forces may be resolved. Interestingly, a large
portion of the solutions arrived at are embedded in many existing user

interfaces.

Using the Language

In the previous sections of this chapter, the theory behind the existence of
patterns was reviewed. Over a period of more than 12 years, Alexander et al.

(1977) identified 253 general patterns. For each pattern, the following seven

parameters were specified:

26

1. A picture. Each pattern is exemplified with a picture.

2. An introductory paragraph. This paragraph sets the context for both
smail and large patterns; this paragraph also specifies how the current patten
assists in the completion of larger patterns.

3. A headline. The headline is a succinct specification of a particular
problem (or set of conflicting forces).

4. Abody. In this division, the validity of the pattern is addressed. If
there are different ways to use the patterns, they will be included here.

5. A solution. This is a succinct instruction on how to build the pattern.

6. A diagram. Each solution is demonstrated by a diagram.

7. A reference to smaller patterns. The last parameter ties the pattern
together with other smaller patterns. This part specifies which smaller patterns
need to be considered in order for the current pattern to be complete.

By associating these pieces of information with each and every pattern,
the interconnectivity of the patterns becomes clear. Moreover, by stating the
problem and its solution, a pattern can be modified to fit specific needs if that
becomes necessary.

The patterns are ordered beginning with the largest ones. Large patterns
include those for entire cities and communities. Next there are pattems for
neighborhoods and clusters of buildings. Even smaller patterns entail buildings
and rooms inside buildings. The smallest patterns specify the details of
construction——such as roofs, floors, and room layouts. Every pattern depends
not only on some particular set of larger patterns in the language, but also on

certain smaller patterns. In other words, a pattern is supported by a set of larger

27

patterns, and it is embellished by set of smaller patterns. The important point is
that an entity cannot be built in isolation. The world around it and within it are
equally important.

The ordering of the patterns is of great significance. During the design
process, some patterns need to be realized or implemented before others. For
example, the shape of a building needs to be specified before the room
layouts are determined. Each pattern can be considered as being in the center
of a network. Intuitively, in the design process, the larger patterns should be
considered before the smailer patterns. This would imply a top—down design
approach. (In Chapter VI, an explanation is provided to demonstrate that a
strict top—down approach is unrealistic; an effective methodology should allow
for a mixture of top—down and bottom-up designs.)

Alexander et al. (1977) suggest that a pattern should be treated as an
hypothesis. A pattern is an attempt at detecting a solution to a particular
problem. Each of Alexander et al.'s solutions were rated on a 3-point scale,
and the rating was dependent on whether or not the authors thought they had
succeeded in finding a true invariant. For example, the pattern SOUTH
FACING OUTDOORS, has the highest possible rating (two stars). The
problem statement is that "people use open space if it is sunny, and do not use it
if it isn't, in all but desert climates" (Alexander et al., 1977, p. 514; emphasis in
original). The solution is to "always place buildings to the north of the outdoor
spaces that go with them, and keep the outdoor spaces to the south. Never
leave a deep band of shade between the building and the sunny part of the
outdoors" (Alexander et al., 1977, p. 516; emphasis in original). Few architects

would disagree with this pattern.

28

On the other hand, the pattern HALF-PRIVATE OFFICE has the lowest
possible rating (zero stars). The problem concerns "what is the right balance
between privacy and connection in office work?" (Alexander et al., 1977,

p. 717; emphasis in original). The solution is the following:

Avoid closed off, separate, or private offices. Make every workroom,
whether it is for a group of two or three people or for one person, half-
open 1o the other workgroups and the world immediately beyond it. At the

ont, just inside the door, make comfortable sitting space, with the actual
workspace(s) away from the door, and further

back. (Alexander et al., 1977, p. 718; emphasis in original)

In this latter case, Alexander et al. were not contending that their solution
constitutes a true invariant. In other words, they believed that there was room
for exploration in finding a better solution to this problem.

It is interesting how difficult it is to solve problems that arise due to
tradeoffs. Tradeoff problems are difficult to unravel in the architectural
domain, as well as in the domain of user—interface design.

Alexander et al. (1977) describe a procedure for how the language should
be used. The idea is to isolate the patterns that will be part of the language that
describes a particular project. There are eight steps:

1. Compile all existing patterns into list. (This list is used in the second
step.)

2. Select the pattern that best describes the overall scope of the project.
For example, if the project involves building a porch onto the front of the
house, the pattern PRIVATE TERRACE ON THE STREET is highly relevant.

3. Read the description of the pattern selected in the second step. Some

larger patterns may be mentioned in the description; these are the patterns

which are candidates for the language. Larger patterns obviously should not be

29

inciuded if there is no way of enforcing them or no manner in which to create

them. However, all the smaller patterns probably wiil be important. Place all

the small patterns in the list of patterns that will constitute the language for the
project.

4. At this point the list of patterns will have grown. Starting with the
largest pattern in the list, read the instructions for that pattern, and (as in the
third step) extract all the patterns that are relevant for that particular pattern.

5. If in doubt about a certain pattern, do not include it.

6. Repeat the fourth and fifth steps until all the patterns for the project for
the project have been identified.

7. At this point, personal patterns may be added to the list. There may be
patterns which are required, but are not in the list.

8. If a pattern needs to be changed, change it.

An Example

After a set of patterns has been chosen for a particular project using the
eight steps specified in the previous section, the process of unfolding a design
may begin. For example, assume that the goal was to create a garden. The
eight-step process would produce a series of patterns, all of which are part of a
network (see Figure 3). Unfolding a design implies implementing or realizing a
design. Implementing a set of selected pattems is also a step—by~step process,
wherein each step brings exactly one pattern to life. High-level patterns are
realized before lower-level patterns. In the example in Figure 3, the HALF-

HIDDEN GARDEN pattern would be first implemented. (Instructions on

30

implementing a pattern are an integral part of the pattern itself; this is further
explained in Chapter IV.)

Appendix A includes further information concerning the pattern—language
design process and an example of how a pattern is developed on the basis of a

set of requirements.

HALF-HIDDEN GARDEN

COURTYARDS WHICH LIVE

GARDEN GROWING WILD

ENTRANCE TRANSITION

TERRACED SLOPES

TREE PLACES

PRIVATE TERRACE

BUILDING EOGE ON THE STREET

GREENHOUSE

FRUIT TREES

QUTDOOR ROOM

GARDEN SEAT SUNNY PLACE

S1X-FOOT BALCONY

CONNECTION TO THE EARTH

FIGURE 3. A Network of Patterns Representing a Garden of Patterns

The Users of the Language

The pattern language was developed with several intentions in mind.
First, it was believed that it would assist nonarchitects in creating good designs;
applying the language requires no prior knowledge about the architectural

domain. Second, the language should allow people in neighborhoods and

31

communities to design together. People would be able to communicate their
ideas using a common language. It couid also be used as a way for architects to
communicate with clients. Finally, even though many of the principles in the
language are second nature to most architects, the set of patterns can function
as an encyclopedia for those who want to confirm their beliefs or refresh their

memory about some of the less obvious principies.

Advantages and Disadvantapes

The main advantage with a pattern language is that it provides the
user with a set of patterns which enhances architectural design. It allows
nonarchitects to design on their own, and to participate in the design of their
communities. A pattern language can be used as a means for communication.

The main disadvantage is that the patterns are very general and, therefore,
may not suffice for a particular project. In such a case, Alexander et al. (1977)
propose that personal patterns should be created, and they argue that actually
this freedom is what makes the language very powerful. But if the nonarchitect
creates personal patterns, there obviously is no guarantee that the patterns are
good patterns. It has been previously discussed that Alexander et al. (1977)
spent nearly 12 years identifying 253 general patterns. If, however, a pattern is
merely a slight variation of an already existing pattern, the task may be easier
than creating a pattern from scratch. For example, a project may involve a
sauna. Although there is no pattemn in Alexander et al.'s base set of patterns that
addresses the sauna component, there is a pattern called BATHING ROOM

which could be used as a template to create a pattern called SAUNA.

32

Controversies

There is a significant amount of controversy surrounding the pattern—
language design methodology (G. Z. Brown, personal communication,

May 1990; H. Davis, personal communication, February 1990). Some
architects disagree with many of the patterns, as well as with the idea that
architectural design can be captured by a set of pattemns. Moreover, identifying
new patterns when no existing pattern suffices is not a trivial matter; and this
problem reduces the usability of the language. Some architects also feel that
their profession should not be in the hands of the layperson.

However, the language and its principles should be taken seriously. It can
be argued that architects make glaring mistakes in their designs, and that these
mistakes could have been avoided if the patterns had been consulted. What is
meant by a mistake in architectural design, and who decides when a blunder has
been made? QObviously, if a house falls down or a bridge does not hold up, a
finger can be pointed at the architect. But this type of mistake is not relevant in
this discussion. It is the mistakes that prevent a design from working that are
of interest. Few architects would argue against the pattern SOUTH FACING
OUTDOORS. Nevertheless, the Bank of America building in downtown San
Francisco has its plaza on the north side. During lunchtime, the plaza is empty;
there is no sun. People sit on the south side of the building where the sun is
during the noontime, even though the south side of the building was not
designated as a place for people to meet, socialize, and relax. The piaza does

not work.

33

Summary

This chapter has established the primary foundation for this thesis. The
details of the pattern-language design methodology (Alexander, 1979;
Alexander et al., 1977} have been reviewed, and it has been shown that a
pattern is a solution to a problem that occurs in some particular context. The
process of how a particular design project can be matched against an existing
catalog of patterns was described. The eight-step algorithm which was
presented assumes that the user is able 1o identify at least one pattern that is
central to the project at hand. Once this pattern has been defined, the inclusion
of other patterns follows from the structure of the language. A difficuity arises
when none of the existing patterns apply. In such cases, new patterns have to
be identified or created. The differences between pattern identification and
pattern creation was addressed; the relation between natural languages and
pattern languages was demonstrated; and the connection between patterns of
space and patterns of events was identified. Finally, it was established that the
most troublesome disadvantage with patterns is that it is often very difficuit to

create good patterns.

34

CHAPTER 11l
A PATTERN LANGUAGE FOR USER-INTERFACE DESIGN

In Chapter 11, the concept of a pattern language was introduced. The
basis for such a language and the underlying philosophy were discussed. This
chapter presents the foundations for a pattern language for human/computer
interface design.

First, the foundations for the user-interface patterns (UIPs) that have
been defined are discussed. (The specific patterns are separately listed in
Chapter IV.) Some UIPs were identified in the same way that architectural
patterns were identified. For these UIPs, it had been already established that
there was something about a user interface worth abstracting. The task was
to first identify the good qualities, then to discover the problems that these
qualities solved; and, finally, the relevant contexts for the UIP had to be
determined. Other UIPs were discovered using different approaches. For
example, by observing users, a number of problems in the human/computer
interaction became evident. After a problem had been specified, the conflicting
forces that created the problem had to be identified. Then some properties
that would eliminate the conflicting forces had to be found, followed by a
specification of the reievant contexts.

Second, the elements that constitute a UIP are described. The UIPs are

not completely analogous to architectural patterns; the most striking difference

35

is that a UIP does not always have an illustration that represents an archetypical
example of the UIP. (The reason for this difference is discussed in Chapter V1.)
Third, an argument is provided regarding why UIPs are not merely
guidelines similar to those described by, for example, ACI (1987) and Smith
and Mosier (1986); instead, a design—specification methodology is given.
Finally, the properties that make a collection of UIPs a language, or a

design Ianguage, are described.
Foundations
Form Follows Function

Chapter II discussed the interaction between space and events, or form and
function. This issue is relevant not only in the architéctural domain, but also in
the domain of user-interface design (Hooper, 1986). Just as many architects do
not consider the facade of a building effective unless it reveals the building's
function, a computer interface will not be effective uniess the functionality
of the system is revealed. People can walk into a building to evaluate the
informativeness of the facade. This can be said about user interfaces as well;
that is, the user can "waik into" the design. The problem is, however, that if
the user takes a step in the wrong direction, it is often difficult to "back out of"
the design. The user only has the information displayed on the screen. In
user-interface design, careful consideration must be given to how the user is
informed about a system. It is crucial that the basic components of the interface
are chosen in a manner that gives the user a general idea about the functionality

of the system.

36

During the course of this study, elements as fundamental and seemingly
trivial as a palenre1 was studied among other aspects. It was questioned how
a palette might affect user behavior; whether a constantly displayed palette
is better or worse than a palette placed in a pull-down menu; the types of
predictions which can be made with respect to palettes; and whether a theory
could be developed which would address the relationships between user
behavior and palettes.

A consideration of the following simple example illustrates some of the
issues involved. With respect to novice users, it is probably safe to say that
constantly displayed palettes are better than palettes which are placed in pull-
down menus. Palettes seem 1o encourage users to explore a system on their
own because the functionality of a system is better revealed——it is right there
on the screen. Consider the differences between the old and new versions of
MacPaint (version 1.4 versus version 2.0). Even though the old version has
many flaws, the interface reveals the basic functionality of the program (see
Figure 4a). The interface of the new version, however, is ineffective in this
respect (see Figure 4b).

To informally test the informativeness of the two MacPaint interfaces,
10 people who had never used a Macintosh before were gathered; 5 people used
the oid version, and 5 people used the new version. They were asked to draw

a rectangle using MacPaint. Each person, in turn, was asked to explore the

14 palette is a collection of small symbols, usually enclosed in
rectangles. A symbol can be an icon, a pattern, a character, or a drawing that
stands for an operation. When the user has clicked onto one of the symbols, it
is distinguished from the other symbols, and the previously selected symbol
goes back to its normal state.

(a)

(b)

-
[}
[

é
e
o
&

nlalololnl/

<

37

file Edit Goodies Font FontSize Style 11:40700 1

(=—=u—a—xa unlitled e - ==

R|Q|0|8[H|N>=>

35 i XX o'e. yrVAGE
PR B e [o P2 s R *e

O
e e e A T R N M R e T R R IQEI

FIGURE 4. Old and New Versions of the MacPaint User Interface

(a portrays the old version of MacPaint, b portrays the
new version)

38

system until the goal had been accomplished. The subjects who worked
with the old MacPaint version finished the task in an average of 55 seconds.
The other (new-version) subjects finished the task on an average of

125 seconds.

By collecting large amounts of the type of information described in the
preceding paragraph, a theory that relates the presentation of a user interface to
the behavior of the user can be formed. In a pattern language for user-interface
design, such issues are addressed. A pattern language will eventually constitute
a theory regarding how the design of an interface affects user behavior. One of
the ultimate goals of developing a pattern language is to provide the designer
with a set of hypotheses, or UIPs, that should be included in an interface. These
UIPs are fundamental with respect to the relationships among user psychology,

user—interface elements, and system functionality.
Identifying User—Interface Elements

One prerequisite for developing UIPs is the ability to identify the elements
that culminate in a successful user interface. That is, one must determine
whether or not successful interfaces share any common elements. Just as barns
were found to be similar but yet unique (as described in Chapter II), perhaps
successful interfaces also have such a property. Although all interfaces are
somewhat different, interesting simiiarities can be detected. These similarities
include, for example, the manner in which a certain class of functions is
presented, the method with which a certain class of functions is activated/

deactivated, how functionality satisfies the needs of the user, and how

39

an interface adheres to the limitations of human cognition. The UIPs,

herein, address the manner in which interfaces are able to resolve the
conflicting forces that involve user psychoiogy, user-interface elements,

and functionality. The problem of identifying and creating UIPs is approached

from two angies.
Human Psychology as a Basis for User—
Interface I;attems ibIPsi

One of the most important foundations for Alexander's (1979) patterns

is human psychology. In fact, many of his patterns are direct results of
observations related to the needs and desires of human beings. In like manner,
many of these needs are directly related to user—interface design as well. Two
examples iilustrate this comparability.

Alexander et al. (1977) definition for a pattern named YOUR OWN
HOME is that "people will only be able to feel comfortable in their houses, if
they can change their houses to suit themselves, add on whatever they need,
rearrange the garden as they like it . . ." (p. 394). The desire to personalize
one's home is related to personalizing a user interface. An appropriate example
is the Macintosh desktop. Users are allowed to arrange the different elements
on the screen in accordance with personal preferences. Imagine how frustrating
it would be for users if they had been prohibited from moving icons, desktop
accessories, and windows to the positions of their liking. (In fact, the ability to
rearrange user—interface elements is so important that a UIP which addresses
this need—-entitled UIP 7: PERSONALIZABLE SCREEN LAYOUT--is
defined in Chapter IV.)

40

Alexander et al. (1977) have defined a pattern labeled FAMILY OF
ENTRANCES. The problem the pattern addresses is the following;

When a person arrives in a complex of offices or services or
workshops, or in a group of related houses, there is a good chance that
he will experience confusion unless the whole collection is laid out before
him, so that he can see the entrance of the place where he is going.

(p. 500; emphasis in original)
And the solution may be explained in the following manner:
Lay out the entrances to form a family. This means:

1 'they form a group, are visible together, and each is visible from all the
others.

2. They are all broadly similar, for instance, all porches, or all gates in a

wall, .. . are marked by a similar kind of doorway. (Alexander et al.,

1977, p. 502; emphasis in originai)
This pattern can be related to palettes and pull-down menus. All menus are
visible at all times, and it is often the case that the menus as well as their
corresponding items can be accessed from most program states. However,
more subtle analogies can be drawn from this pattern. Consider the program
SuperPaint which is fairly complex with respect to functionality; it provides
a large number of options to the user. In addition, the manner in which the
program presents the large number of choices available in one palette is
interesting. SuperPaint actually combines two paleties into one: one for
drawing functions, and the other for painting functions (see Figure 5). Having
two separate palettes or a single larger palette would have increased space usage
and may have caused added confusion due to the larger number of choices
displayed at the same time. The interface designers needed to convey to the
user that the mode of the palette was adjustable; they accomplished this by
using partly overlapping toggles and, thus, indicated to the user that "there is

more."

41

r

& File Edit Options " & File Edit Options
W Eeeee————= =
AP

b1/
e

o1
i3

P

Y

|/ |l A

1
)|0|0|01+>

T
(ol

/]

(a) (b)

FIGURE 5. The SuperPaint Palette in Draw Mode and in Paint Mode
(a portrays the Draw Mode; b portrays the Paint Mode)

User Performance as a Basis for
User—Intertace Patterns (U]Ps)

Another very effective method for creating UIPs is to study people using
computers. Alexander (1979) used a similar method in his work. Some
patterns may be developed based on knowledge about why a particular structure
is unsuccessful. In other words, instead of attempting to determine which
elements make a structure successful, it is often easier to determine which
elements make it unsuccessful, and to then develop a pattern based on that
knowledge. In the user-interface domain, a large number of problems arise
during the interaction between humans and machines; and, many of these
problems may be attributed to the design of the user interface. Some of the
problems are obvious. For example, the user may not understand a command

name; the user may not know how to move/size/close a window; the user may

42

not know how to select a block of text; and so on. These problems all can be
predicted without examining users. Other probiems, however, are more subtle.
During the course of this thesis study, a iarge number of less obvious
difficulties have been observed. One needs only to consider the following three
examples:

1. Many novices do not know how to respond to the many messages {or
alert boxes) that often appear during the use of Macintosh applications. It has
been observed that, after an alert box has been displayed, users often sit around
waiting for it to disappear by itself. For example, when a disk~locked message
is shown, novices often sit passively waiting for it to vanish (see Figure 6). The
remarkable issue is that the same users have negligible problems terminating a
Print command by clicking the OK button in the standard print window. It is
intriguing that the problem arises in some instances, but not in others. The
underlying reason seems to be twofold. The problem does not arise when a
mouse click is required to terminate an action initiated explicitly by the user
(e.g., Print and Save As). On the other hand, whenever an alert box is displayed
(e.g., the disk—locked message) as a side effect caused by an action initiated
by the user, then the problem occurs. Moreover, this difficulty does not seem to
be as evident when the alert box contains a question instead of a statement.

2. Another type of problem that was observed among novice users
appeared to stem from the fact that some commands do not provide sufficient
feedback when they are carried out. Numerous examples exist, such as the
Copy command which is available in most Macintosh applications. When

selecting Copy, there is no indication of any change; many users selected Copy

43

repeatedly, expecting some visual feedback. Tuming on the grid in MacPaint
does not affect the screen; many users repeatedly selected the Grid command,
but believed that they had done something wrong since no changes were

visible. This problem is related to yet another third observation: Many menu
itemns act as toggles. Some menu items are checkmarked to indicate that an item
is selected, but others menu items simply change (e.g., the Tum Grid On item
shifts to Turn Grid Off). These are all subtle changes that the first-time user
cannot be expected to detect immediately; therefore, the amount of feedback is

insufficient.

fdil Window Seorch Format Spell Macro

CIs120Disk

lllt6l1!||
4

T CIS 120 SpoD - MUl-tner... |
N an%.20
O Form Lattaer
. 0y fivade Baak
Part 1: Hult 5 Harris beode 7 l
=
1 Sove Document As: C1S120Disk
2 Midterm | -~ KEY
S ~ |l
4 l Drive
S Disk is locked.
6
7
a
9

FIGURE 6. Disk-Locked Message

3. An interesting problem arose when users were required 10 manage 2

relatively large number of windows on a small Macintosh screen. The problem

44

occurred during the use of Microsoft Works. The task was to integrate
information from several databases, spreadsheets, and graphs into a single
document. Naturally the screen became cluttered by the large number of
windows; thus, some windows were often completely hidden behind other
windows. The observed students worked with several such problems over a
period of 5 weeks. It was discovered that they spent a significant amount of
time moving and resizing windows in order to find hidden windows. They did
not use the Window menu which could have saved time; although they were
repeatedly reminded of this option, the behavior persisted. Even during the
latter parts of the course, many students did not utilize the Window menu.

In the three preceding case examples, the problems arose because the
conflicts among the different forces involved have not been resolved. The first
case represents a conflict between the willingness of a novice to respond to
events not initiated explicitly by him- or herself versus the large amount of
information the system is programmed to convey to the user. A novice user is
unprepared to deal with events that are initiated by the machine. In the second
case, the conflicting forces partly arise from the differing needs of novice and
expert users. Novices need a great deal of feedback when using a program;
they must feel confident that the correct event is happening——-and even that
something is, in fact, happening. However, most programs are not written
exclusively for novice users. Expert users do not need the same level of
feedback. Hence, the conflicting requirements for feedback among the different
user groups can be said to incorporate the conflicting forces in this case. The

conflicting forces are far from obvious in the third case. The problem might

45

be traced to the fact that dragging and resizing windows are some of the first
actions a user is taught in regard to the Macintosh. Therefore, the move/size
method might be the first method that comes to mind when a window must be
uncovered. Another hypothesis might be that, in general, pulling down a menu
encompasses more time than direct clicking. Furthermore, even though the
Window menu is available, the name of a hidden window might be unknown
(i.e., the user might have forgotten it); and, without the name of the desired
window, the window menu is of little use. In general, considerable effort is
required in order to obtain a good approximation regarding which conflicting
forces may be causing a particular problem.

The Elements of a User—Interface

attern

The elements of a UIP are, in principle, the same as the elements of
Alexander et al.'s (1977) patterns. In Chapter 1V, the elements of each UIP are
presented according to the following system:

1. An introductory paragraph is provided in order to set the context for
the UIP. As previously discussed, there are both small and large UIPs, and
the larger patterns need to be embellished by the smaller patterns. The larger
patterns, which are embellish by the current pattern, are listed in the first
paragraph (under the heading of Context). For example,

The size the of computer screen always will be a limiting factor in
terms of how much information can be displayed at any given time. This
limitation must be minimized as much as possible. Users often want to
view and compare pieces of information displayed in several windows;

this potentially causes a large number of windows to be displayed on the
screen all at one time. In addition, because the user wants to tailor the

46

SEms L ot U LIERSONALZANLE

certain ways. (Chapter IV, pp. 81-82)

2. For some UIPs, a figure is provided in order to show an archetypical
example of the UIP. At times a series of pictures are included to demonstrate
the dynamics involved in the UIP (as is the case with UIP 12: MANIPULABLE
WINDOWS).

3. The problem statement is a succinct specification of the problem
at hand. For example, "The size of a computer screen will never be large
enough to accommodate the user with respect to the information that needs
{0 be displayed" (Chapter 1V, p. 82). In some cases, the problem statement
specifies the conflicting forces. However, in most cases, the numbers of
conflicting forces are so large, or they are so complex, that they are not included
in the problem statement; in such cases, they are addressed within the body of
the UIP instead.

4. The body of the UIP discusses the conflicts and addresses the validity
of the pattern. If there are several ways to include the pattern into a design,
each method is specified. Examples that illustrate cases in which the pattern
is not followed are presented when appropriate. Ideally, the validity of all
statements that are made herein should be backed up by references to completed
research. However, in this thesis, personal experience and ideas provided by
other user—interface experts have been utilized. Not until the field of user—
interface design matures can all the arguments refer to sound findings. (In
addition, the goal of this thesis was to constitute a feasibility analysis, rather

than to attempt the development of a compiete pattern language.)

47

5. The solution is a succinct instruction regarding the construction of
the UIP; or, in other words, it concerns resolving the conflicting forces. For
example, under the heading Therefore, "The user should be able to size, open,
close, move, and select the windows that display information. No arbitrary
limit shouid be set regarding how many windows can be open at any given
time" (Chapter 1V, p. 82).

6. A reference to smaller UIPs specifies which UIPs embellish the current

UIP, under the heading Embellishments; for example,

There are often obgects on the screen (e.g., palettes and menu bars)
that need to be protected from being hidden by the windows that can be
moved around on the screen (this is addressed by UIP 13: PROTECTED
ELEMENTS.) Furthermore, this pattern should be embellished by
UIP 25: ELEMENT BOUNDARIES in order to separate a window from
other windows and other element types, and by a UIP that discusses how
a menu (or other methods) can be used for window handling. Finally,
patterns should be develoEed to address how the window manipulations
should be carried out. (Chapter IV, pp. 82, 84)

The User-Interface Patterns
(UlPs) as a L anpuage

It has been demonstrated that it is possibie to identify and create UIPs, and
the different elements of a UIP have been defined. The UIPs that eventually
may be discovered will cover a wide range of issues which are relevant in user—
interface design. The large UIPs will encompass aspects of the overall interface
structure. The midsize patterns will embellish the larger patterns, often by
describing somewhat smaller problems that arise as a result of including the
larger patterns. For example, there might be a UIP that addresses the use of
palettes. Once a designer has made the decision to inciude a palette, a new

problem arises; for instance, one must determine where the palette should be

48

located on the screen. The smaller patterns deal with the more detailed aspects
of user-interface design; for example, once a palette has been positioned on
the screen, one must establish how the various choices in the palette should be
separated and how the various options should be selected. Although this thesis
has defined various large and midsize patterns, creating patterns that address
detailed aspects of user—interface design not only is very difficult, but also is
beyond the scope of this thesis.

A UIP is not an isolated entity; it is dependent upon other UlPs, and the
latter UIPs depend on yet other UIPs. The structure of a pattern language
follows from the interdependent nature of patterns. The example illustrated in
Figure 7 conveys this idea. Several questions immediately arise: Why is it
obvious that there is a functional palette somewhere on the screen? Why is it
clear that the palette is indeed functioning as a palette? A partial answer is that
the palette contains a related set of smaller UIPs. A palette is usuaily divided
into small rectangular boxes, with each box possessing an icon and/or some
command name; furthermore, in a palette, only one of the functions is active at
any given time, and this active function is distinguishable from the others.

But the partial answer in the preceding paragraph is insufficient because
it considers only the smaller patterns in order to define a palette. There most
certainly is not a functional palette depicted on the screen in Figure 8. A
palette must be defined in terms of larger patterns as well. Thus, a palette,
as a coilection of functions, is just one possible variation of 2 menu where
different functions can be selected. The selection of functions usually transpires

along the edges of the screen. Other activities, such as drawing and writing,

" & File Edit Goodies Font Ffonts

FIGURE 7. A Palette in a Usual Context

€ File Edit Goodies Font Style Patt
s “Poletie Den

00
05

a=tals

L]
[aja
H

100000

R[90(8|B[R[~= >

S
Ty——
e

P
W)
&
e
oeok |1
Qo
o
o
I

FIGURE 8. A Palette in an Unusual Context

49

50

occur closer to the center of the screen. Moreover, a paiette usually does not
cover other entities within the user interface, neither is it covered by other
entities. (However, the new version of MacPaint uses a tear—off menu and
allows the user to position the palette anywhere on the screen; although the
palette may cover other elements, other entities are not allowed to cover the
palette.)

The palette depends both on the smaller UIPs it contains and on the larger
UIPs within which it is contained. This is true of all UIPs. Consider the
menu bar which becomes merely an insignificant sequence of words if it is
placed in a different context. The set of words become a menu bar only when
the words are located on the top of the screen——typically with a different
background color than the rest of the screen, or at least with some sort of
boundary that separates the words in it from all the other interface elements.
The menu bar is protected from being hidden by other elements (see Figure 9).
Similarly, an icon is merely a small picture; it has a different meaning when it
occurs inside a document window, than when it occurs in a window on the
desktop (i.e., in the latter case, it represents a file or an application).

The preceding examples indicate that the relationships among various
UIPs can be viewed as a network. Given a UIP P, there will be some smaller
UIPs that embellish it, say S-1 through S—n, and P may also be used to
embellish some larger UIPs, say L-1I through L—m (as illustrated in Figure 10).
Figure 10 also illustrates that the larger patterns depend on other (midsize)
patterns, and that the smaller patterns can be used to embellish patterns other
than P.

" & File Edit Format Font Document WUtilities Window 11:00:43 7

e Unlilled| e
& File Edit Format Font Document Ulilities Window

FIGURE 10. Many User-Interface Patterns (UIPs) Form a
Network of User-Interface Patterns (UIPs)

51

52

Even though the UIPs form a network which constitutes a language,
further questions arise: How can it be established that the language is
complete? How can it be known whether some patterns should be left out or
other patterns added to the language? When is a set of patterns sufficient for
making an interface work as a whole? Alexander (1979) argues that a pattern
language is complete if and only if it is both morphologically and functionally

complete.
Morphological Completeness

A pattern language is morphologically complete when the UIPs form
a complete interface within which all the details have been addressed. The
language should answer all the questions that a designer might have about the
interface. Suppose, for instance, that UIP 10: PALETTES is being considered
(as is discussed further in Chapter V). Suppose further that there is no UIP that
indicates where to position a palette and there is no UIP that indicates how a
palette shouid be used with respect to function selection; that is, it is unknown
whether or not more than one function, or mode, can be selected at a time. It,
therefore, is not possible for the designer to visualize the use of a palette
because of insufficient information; in other words, there is a significant gap
in the understanding of the issues involved. A language is morphologically

complete only when all relevant questions are answered by the UlPs in the

language.

53
Functional Completeness

A language is functionally complete when the UIPs in the language
resolve all the conflicting forces that arise. An interface which contains
unresolved conflicting forces will result in an unsuccessful interface. The

collection of UIPs must stabilize all the opposing forces.
Discovering Complete Patterns

In order for a language to be complete, each individual UIP must be
complete. The sub-UIPs of a particular UIP must guarantee that this specific
UIP is morphologically complete; and, by resolving the conflicting forces
that this UIP generates, the sub-UIPs must also guarantee that this UIP is
functionally complete. Therefore, it might become necessary to define
additional UIPs as result of having defined a certain UIP. For example, once
a pattern has been defined to introduce the notion of a palette, several new
problems become important. Specificaily, there probably will be some conflicts
between the palette and the manipulable windows that are present on the screen.
Many issues, such as the following, must be addressed by the smaller UIPs:
Should the palette be protected from being ensconced by other screen elements?
Where should the palette be positioned? What is the minimum/maximum
number of functions that should be included in the palette?

In conclusion, a specific UIP is typically a module of some larger UIP,
and the specific UIP exists as a result of the forces in the larger pattern that
must be resolved. Similarly, when a new UIP is created, a need arises for

smaller UIPs to resolve the forces generated by the new pattern. There is a

54

considerable amount of work involved in preparing a pattern language; and it
is this language which determines the finished design. The language shouid

completely specify the interface being designed.
Summary

This chapter has explicated the distinction between identifying and
creating patterns; it also has provided exampies of how patterns can be
created. Although some of the UIPs that were developed as a part of this
thesis document simply have been identified, most were created based on
problems observed among computer users. Human psychology and user
performance, as previously discussed, form the bases for most of the 30 UIPs
which are presented in Chapter IV. A set of UIPs form a network in that a UIP
depends on both smaller and larger UIPs. The notions of morphological and
functional completeness was introduced to emphasize that a pattern language is
morphologically complete only if all the details of a particular user—interface
design project are addressed by the patterns. In other words, there must be 2
complete translation from system requirements and functional semantics to
a user-interface design specification. There must not be any "holes” in the
design specification. In addition, a pattern language is functionally complete
only if it resolves all the conflicting forces that have been identified. (The
reader also has been referred to Appendix A for an example of how an

architectural pattern may be created to satisfy a set of requirements.)

35

CHAPTER 1V
USER-INTERFACE PATTERNS
Qverview

This chapter presents all the UIPs that were identified over the course
of this study. Some user—interface patterns (UIPs) wiil undoubtedly seem
obvious, depending upon the background and experience of specific readers;
nevertheless, other UIPs will offer new ideas. Even within the architectural
domain there were the apparently obvious patterns (such as portrayed in
Alexander et al.'s, 1977, pattern entitled SOUTH FACING OUTDOORS).

Some of the solutions proposed to be parts of the larger UIPs may seem
just as vague as the principles stated in traditional user—interface guidelines. In
such cases, the sub-UIPs will fill in the details and provide specific instructions
regarding how the larger UIP can be satisfied. After the pattens have been

defined, an example that demonstrates how they can be used to design a user

interface is presented.

Thirty Specific User—Interface Patterns

UIP 1: INDEPENDENT PROGRAMS

Context

Once a decision has been made to write a new program, the programs

that the new program will depend on must be taken into consideration. For

56

example, most application programs assume the existence of (as well as depend
on) an operating system. Dependencies upon the operating system or any other
program must be hidden from the user. For example, if a program requires a
particular setting of operating system-level parameters, then the program (not

the user) should set these parameters.

Problem

A program will be of little or no use unless it can be fully utilized without

the user worrying about its dependencies upon other programs.

Discussion

Leamning how to use a program is typically a nontrivial task. A novice
would find this effort even more laborious if the system's dependencies
upon other programs were not hidden. The user should not have to learn
how to use Program A in order to use Program B. In practice, however, it
is close to impossible to avoid this altogether. Consider, for example, the
relationship between an operating system and the applications that run under
the operating system. The user typically must leamn the operating system-
level commands before running the application. In other words, the user
has to learn A before learning B. However, by limiting the number of
commands that need to be mastered, and by carefully choosing how the
commands are to be executed, the learning time of other programs can be

reduced significantly.

57

Therefore

Effort should be directed towards developing programs that do not require
prior knowledge of other programs. The fact that Program A depends on
Program B should not require the user to learn Program B. The dependencies

should be hidden by the system.

Embellishments

On all systems, designate an UIP 2: ACTIVITY CENTER within
which all the independent programs are managed. If it is possible within
the programming c:omrnunity,1 select a few user-interface elements (such
as through UIP 3: STANDARD SET OF ELEMENTS) upon which all user
interfaces within the community can be based. At the same time, ensure that
each program has a UIP 4: DISTINGUISHING FEATURES. Enable and
encourage the sharing of data between the independent programs using UIP 5:
TRANSFER OF DATA, and ensure UIP 6: EASY TRANSITION BETWEEN
PROGRAMS.

UIP 2: ACTIVITY CENTER

Context

For most systems, a wide array of programs are available; and for many

users, several of these programs will be of relevance. In order to complete

_1fI’he term programming community will often be used in the UIP
definitions. A programming community is simply a set of companies and/or
individuals that write software for a specific type of machine or machines.

UIP 1: INDEPENDENT PROGRAMS, a decision must be made regarding

how all these programs are to be managed. Figure 11 demonstrates one such

possibility.

" & FfHe Edit Uiew Spectal ?

Norwaey Spr '
Name

[Copy of Empty Folder

[Cricket Graph Folder

{3 Ecebyn Folder

[Excel Falder

[Prototyper Folder

3 Saunders

[Scheme

[Skarbo

[Statview Foider

O SufFolder

0 System Felder

3 Think Pascal Felder

03 Teols

£ Tutor Folder 5

£ Utilites Folder Ry W

[Virus Software 3 pin e E </

Ll Micregoft Word

=y TTIIVE ;| O calcutator 1o i

FIGURE 11. An Example of an Activity Center

Problem

The user needs a place at which all high—level activities concerning the

organization and the manipulation of all the data and available programs can

take place.
Discussion

This pattern is based on how people orient themselves in their

surroundings. People use mental maps, and mental maps require points of

59

reference (Johnson-Laird, 1983). For example, when considering a complex of
buildings, the point of reference probably would be a building placed in such a
manner that all references to other paths and buildings could be made using this
point of reference (the first building) as a basis. An analogous situation exists
in the domain of user—interface design. There must be a point of reference——a
place or a program——which acts as the functional soul of the entire system. In

Figure 12, Program P acts as a central point of reference for all other activities.

Program P
Display Organize Organize Execute
Information DataFiles Programs Programs

FIGURE 12. The Activity Center as Central Point of Reference

Therefore

On any system, a program should be included that acts as the central
point for all high-level activities (such as organizing application programs,

organizing data files, and executing programs).

Embellishments

The activity center shouid be provided with a facade (such as in terms
of UIP 4: DISTINGUISHING FEATURES) that is different from all other

programs available on the system. The user should be allowed to tailor the

layout of the elements to accommodate personal preferences; that could be

accomplished through UIP 7: PERSONALIZABLE SCREEN LAYOUT. In

addition, limit the number and complexity of the commands (through UIP 8:
LIMITED NUMBER OF COMMANDS) so that the user does not have to
spend a considerable amount of time learning how to use the activity center

prior to learning how to use the applications of interest.
UIP 3: STANDARD SET OF ELEMENTS

Context

60

When it has been established that more than one program will be used by

a single user (UIP 1: INDEPENDENT PROGRAMS), then steps must be taken

to promote learning by the transfer of knowledge.
Problem

People feel comfortable in familiar environments; and people often
feel uncomfortable in unfamiliar environments. The ease of transition from
one environment to another is directly related to the sameness of the two

environments.
Discussion

It is interesting to examine the difficulties and inner conflicts that a
person encounters when the environment changes. Consider, for example,
moving from City A to City B. If City A and City B are neighboring cities,

the environment scarcely changes. However, if City B is located in a

61

different state, the environment may be somewhat more different. And, if
City B is in a different country, the environments are typically significantly
different. The more different City B is from City A, the harder it is to adjust to
City B.

A similar situation exists in the domain of user interfaces. If a user has
been using Program X for some time and needs to use a different program
(Program Y), then the ease of transition from Program X to Program Y is
directly related to the sameness of Program X and Program Y.

Within a programming community, a limited set of user—interface
elements should be defined. The point is that, if the programs have the same
functionality, then they should use the same set of user—interface elements. No
additional elements other than those elements from that set should be included
in the user interface. This does not mean that all user interfaces will be almost
identical in appearance. The elements can be combined in a practically infinite
number of ways. For example, most Macintosh user interfaces are based on a
small set of elements (including windows, icons, menus, menu items, radio
buttons, check boxes, and controls). Some of these elements can be further

refined; for example, there are several window types.
Therefore

The transfer of knowledge should be promoted by defining a limited set
of user—interface elements (as discussed in the preceding). All user interfaces

within a programming community should use only these elements.

62

Embellishments

Most user—interface elements have some functionality attached.
Consequently, not only should the user-interface elements look the same, but
also they should work the same. Given the power to enforce it, include UIP 9:
STANDARDIZED METHODS; and define standard elements that can be used
as vehicles for communication between user and machine. Consider UIP 10:
PALETTES, UIP 11: PULL-DOWN MENUS, and UIP 12: MANIPULABLE
WINDOWS. (The reader should note that, although there are other standard

elements to consider, they are beyond the scope of this thesis.)

UIP 4: DISTINGUISHING FEATURES

Context

Once it has been decided to include UIP 2: ACTIVITY CENTER, some
method to establish the center as unique must be designed. The user must be
able to distinguish the center from all the other programs that can be accessed.
In general, each program within a programming community shouid have
some user-interface element that distinguishes it from all other programs.

In addition, there should be a UIP 6: EASY TRANSITION BETWEEN
PROGRAMS; this implies that, once the center of activity (or some other
program) has been accessed, the user should immediately recognize that a
transition has occurred based on some physical features in the interface. At any
given time there should be no doubt as to which program is currently active. In

other words, there should be no confusion as to which mode is currently active.

63
Problem

If the user is allowed to transfer from one program to another in an easy
and rapid manner, then there is a high probability that the user will at some
point become confused with respect to which program is currently active. In
general, mode changes can lead to confusion as to which mode is currently

active.
Discussion

Most users who have utilized MuitiFinder on a Macintosh will
immediately recognize this problem. MultiFinder allows users to easily switch
from one memory-resident program to another either by clicking on an icon
located in the upper-right comer of the screen (in which case the programs are
presented in a round-robin fashion), by selecting a program from the Apple
menu, or by clicking on an interface element belonging to the target program.
In any case, the screen is often very cluttered, and it is often difficult to
determine the screen elements that are part of the selected program (see
Figure 13).

Although the name of this pattern is UIP 4: DISTINGUISHING
FEATURES, this pattern has several purposes.

First, every program should include at least one element that makes the
program easy to distinguish from all other programs. To be creative in this
respect is not difficuit. The possibilities are virtually infinite in number. For

example, the center of activity on the Macintosh is the Finder which uses the

64

desktop metaphor. There are several elements that assist in distinguishing the
desktop from any other program. For example, the trash—can icon is always
present, and at least one icon that represents a disk is constantly displayed.
What are effective and ineffective distinguishing features? Is a menu bar
effective as a distinguishing feature? Clearly not. Many menu bars are often
very similar, and there is more time involved in examining a menu bar than
there is in Jocating a graphical element on the screen. A user—interface
designer will know when a good distinguishing feature has been found. Other
distinguishing features might include palettes, rulers, grids, and background
color. If in doubt, an experiment that measures the time it takes for the subjects

to identify different programs can be conducted.

r

& File €dit Optlons Windows Paint Font Slze Style *
. | _Thesis

oo for

Wt r v EWE

A 's:i' & t9 which program i currendy scive,

PROBLIM: If the urer iz allowed to wransfer [
in an sary and fan fazhion, then thers s a
ugar will st zome point become confured Mth rerpe
curTenily scuve

I8

-

Mot urers who bave vutiized Multifindar on
= unfaediately recognuts thiz problem. Multifinder al
w)ﬂ ' barwwen programs vhich are memory rasident elih

| 1ocated tn the WppSr Fight corner of the screen {in
l- ars prasenisd 1 8 round-robin fazhion) or by teled

J L) f Bithares Frogterm
T

{ g EEIED. ey Falder
3 B0}

ho s Falder

FIGURE 13. Several Programs Being Managed by MultiFinder

65

Second, this pattern addresses some of the difficulties induced by
MuitiFinder. It is not sufficient with a few distinguishing features if
MultiFinder is "abused." In Figure 13, several distinguishing features are
visible, but they convey little information as to which program is active.
However, all the blame should not be attributed to MultiFinder. The problem
lies in the fact that most programs do not explicitly clear the screen when they
are accessed via MultiFinder. One that does clear the screen is MacPaint; thus,
one solution is simply to clear the screen when changing program context.

The conflicting forces that arise as a result of this solution are due to the fact
that some users prefer to activate programs by clicking on visible elements
belonging to the target program. One way to please these users is to gray out
the areas that are not active. Figure 14 depicts a potential pattern that might be
called Background Inactive Areas (which is not defined in this thesis). The
success of this approach may be questioned; it has not been empirically tested
whether graying out inactive elements will reduce the difficulties discussed.
(The reader should notice that the desk accessories in Figure 14 are not grayed

out.)
Therefore

Elements always should be included that help distinguish a program from
other programs. Such elements may include special icons, palettes, rulers,
grid lines, and background. Moreover, when one program is accessed from
another either (a) erase all the elements on the screen before the new program is
activated, or (b) gray out the elements that do not belong to the newly activated

program.

66

r

& file £dit Options Windows Peint Font Size Siyle : U

7 -

CJE Untitled - 2

RN

ST R ELER

Calculator

anoal
2:06:15 PM m‘

= [P BE
FIGURE 14. Graying Out Inactive User-Interface Elements

Embellishments

It is often necessary to protect certain elements of an interface from being
moved, hidden, and/or destroyed in any way. In order to complete this UIP,
the distinguishing features must be protected (through UIP 13: PROTECTED
ELEMENTS). If they are not protected, they will not effectively serve their
purpose. Furthermore, the layout of the elements of a program, or the state of 2
program, should not change while the user is accessing a different program; this
refers to UIP 14: SAVING THE PROGRAM STATE. UIP 10: PALETTES

should also be considered as a distinguishing feature.

67
UIP 5: TRANSFER OF DATA
Context

In order to complete UIP 1: INDEPENDENT PROGRAMS, methods
that will allow the transfer of data from one program to another must be

included.
Problem

If a program is built independently from all other programs, then
methods for transferring data from one program to another often will be

overlooked.
Discussion

In UIP 1: INDEPENDENT PROGRAMS, it was argued that all programs
should be developed on an individual basis; this means that Application A
should not depend on Application B. Unfortunately, this may undermine the
sharing of data between different programs. For example, even though a
statistics program may serve its purpose by allowing the user to directly enter
data, the program will cause considerable irritation unless it also allows the user
to import data produced by other programs (such as, ¢.g., from a spreadsheet
program).

It might be questionable whether or not it makes sense to import pictures
into a spreadsheet program. However, does it make sense to import pictures

into a word-processing program? The answer to the latter question is

68

undoubtedly yes. Why should not the answer to the first question also be yes?
It might be argued that users should be ailowed 1o import pictures into a
statistics program. One benefit of this would be that the user could enhance the
graphical descriptions of data with informative illustrations. It is not without
reason that some statistics and graph programs have a functionality that allows

the user to make simple drawings that accent the output.

Therefore

The user should be allowed to transfer data from one program to another.
This may be accomplished by including a communication channel that is
recognized by all the programs within the programming community. If
necessary, the receiving program may handle the received data differently
than the way it handles data normally; then the receiving program would be

responsible for any necessary reformatting of the imported data.

Embellishments

In order to implement the capability of transferring data, functionality
should be included for selecting data (UIP 15: DATA SELECTION) and
inserting data (UIP 16: DATA INSERTION). Because data have to be
transferred from one program to another, a means needs to be provided for
temporary storage of the data to be transferred (such as through UIP 17:
SHAREABLE SCRAPBOOK). Finally, the transition between different

programs should be easy and fast (UIP 6: EASY TRANSITION BETWEEN
PROGRAMS).

69
UIP 6: EASY TRANSITION BETWEEN PROGRAMS

Context

In order to complete UIP 1: INDEPENDENT PROGRAMS (and UIP 2:
ACTIVITY CENTER), alternative means for fast and easy transitions between
programs must be provided. The user should not be required to enter the
activity center prior to launching a program; instead, the user should be able to
take shortcuts. In addition, UIP 5: TRANSFER OF DATA between different
programs should be just as fast as moving data from one place within a

document to another piace within the same document.
Problem

Users will avoid switching between programs unless absolutely necessary

if the transition is slow and cumbersome.

Discussion

Users who want to exit Program A and then execute Program B often
have to exit Program A, enter the system's activity center, and then access
Program B. If the user needs to merge data created by several different
programs, this is particularly annoying. For example, in the process of writing
this document, the figures were initially created once the need for them arose.
This involved many transitions between Microsoft Word, MacPaint, and
MacDraw. However, because none of these programs offer the user the
capability to directly launch another program, the activity center had to be

entered between each transition. (MultiFinder was unavailable due to memory

70

limitations.) Consequently, the preferred method for creating a document
was abandoned because the transition between programs was painstakingly

cumbersome.
Therefore

All programs should include a standard method for transferring
directly from one program to another. This can be done in at [east two
ways (discounting utilities such as MultiFinder):

1. Within each programming community, provide a standard utility (such
as Switcher) to manage the transitions between programs that are relevant. It
should not be a necessary requirement for all programs to be memory resident
at the same time.

2. Include a Transfer... option in ail programs.

Embellishments

In order to compiete this pattern, the state of the abandoned program must

be saved (e.g., through UIP 14: SAVING THE PROGRAM STATE).)
UIP 7: PERSONALIZABLE SCREEN LAYOUT
Context

UIP 2: ACTIVITY CENTER is of great importance to most users. This is
where programs, files, folders, and utilities (e.g., desk accessories) are presented
and accessed. In order to complete UIP 2: ACTIVITY CENTER, users should

be allowed to tailor the screen layout to fit personal needs (see Figure 15).

(2)

(b)

.
&€ File Edit Ulew Speclal

Nornwat Sprui
fame
[Excel Folder
3 Protstyper Folder
) Saunders

1 Scheme

) Skarbe

O Statview Folder
[SuFolder

[System Folder

[0 Think Pascal Folder
O Tools

| O Tuler Folder

3 Utilities Felder

O Virus Software

[Werd 4.0

[Q Works Felder

[0 Yrite /Paint/Oraw

r

&€ Flle Edit Ujew Special
Nnrwuy_Spruce

ZilE 8:26:14 PM 9

AL T T W

18 ftems 14,933K in disk

| O calculator |
4,004K available | eI MRS

m 0 (]

Systam Folder Saunders Virus Seftware

I =

EceDyn Foli Think Pascal Felder Tools Pretstyper Folder

]

Scheme Statview Folder Excel Felder

Su Folder

rieresoft vord I

FIGURE 15. Two of Many Ways to Organize a Center of Activity

71

gz portrays a deskiop with all folders listed alphabetically;
portrays a desktop with all folders represented by icons,
and with the most frequently used programs easily

accessible)

72

Problem

The user never will feel comfortable with a user interface uniess the

elements can be displayed in a manner that satisfies the user.

Discussion

In the domain of user interfaces, since people are all different, there wiil
be an infinite set of preferences with respect to (a) how information should
be displayed on the screen, (b) when information should be displayed, and
(c) where information should be displayed. Consequently, the user must
be allowed to tailor the user interface——at least with respect to these three

parameters.

Therefore

The users should be allowed to move, size, position, display, and hide
the various elements of the user interface in order to accommodate individual

preferences.

Embellishments

Even though the user should be given virtually unlimited freedom with
respect to the how and which elements are displayed, some elements must be
protected (such as those described within UIP 13: PROTECTED ELEMENTS).
The user not only should be able to tailor the layout and choice of interface
elements, but also should be able to determine the level of detail at which data

are displayed (e.g., through UIP 18: LEVELS OF VIEW). Finally, in order to

73

make this pattern useful, the system must automatically save the preferences

specified by the user (through UIP 14: SAVING THE PROGRAM STATE).
UIP 8: LIMITED NUMBER OF COMMANDS

Context

If a project involves designing the UIP 2: ACTIVITY CENTER, the
complexity of the center must be limited to a small fraction of the complexity

of the programs that will be accessed from the activity center.

Problem

Users will become frustrated if they are required to spend considerable
effort learning aspects of a system which are unrelated to the specific programs

that they actuaily want to learn.

Discussion

One reason the Macintosh has been called user friendly compared to IBM
machines can be traced 10 the differing pieces of software that implement the
UIP 2: ACTIVITY CENTER. The number of and the syntactic complexity of
the commands and actions that are availabie in the Macintosh activity center
(the desktop) is much less compared to the commands available in the IBM
activity center. For example, to copy a file from one disk to another on the
Macintosh, the user drags an icon representing the file onto the target disk. Ina
typical IBM activity center, copy action has to be literally spelled out; spelling

errors become an important issue. The Macintosh relies on command

74

recognition rather than command recall. However, this comparison may be
somewhat unfair because the IBM gives more power to expert users.

The most important factor that has made the Macintosh user friendly is
the command syntax. Instead of requiring the user to type in commands via the
keyboard, the user selects objects using a mouse. This technique is called direct

manipulation (Hutchins, Hollan, & Norman, 1986).

Therefore

The number and complexity of activity—center commands available 10
the user should be limited to (a) COPY, for copying data from one storage
medium to another; (b) MOVE, for moving data from one storage medium to
another; (c) DELETE, for deleting data from a storage medium; (d) CHANGE
DIRECTORY, and (e) EXECUTE, for running programs. In addition,
commands required for the pattemns described in the next paragraph below must
be included. Finally, command recognition should be relied on (rather than

command recail) by arranging the commands in palettes and pull-down menus.

Embellishments

This UIP is of little or no use unless the user is given immediate feedback
regarding the actions that are executed (e.g., through UIP 19: IMMEDIATE
FEEDBACK). Unfortunately, although all actions should be reversible (e.g.,
through UIP 20: REVERSIBLE ACTIONS), some actions are practically
impossible to reverse. (Consult UIP 21: WARNING THE USER for an in-
depth description of this problem.) Within a programming community,

standard methods must be developed to select and insert data (such as UIP 15:

75

DATA SELECTION and UIP 16: DATA INSERTION). The user should be
allowed to view data at different levels of detail (i.e., with UIP 18: LEVELS
OF VIEW). Finally, UIPs should be developed to address direct manipulation,
command recognition instead of command recall, menus, and menu items. This
UIP 8: LIMITED NUMBER OF COMMANDS will not be complete until these
UlPs exist.

UIP 9: STANDARDIZED METHODS

Context

Most programmers do not have control over decisions that affect a
vast number of programs. However, a programming community can benefit
from identifying all the functions and options that the programs within the
community have in common. For example, to complete UIP 6: EASY
TRANSITION BETWEEN PROGRAMS, the programming community

must agree on a standard way to accomplish the transition.

Problem

Users cannot utilize previous knowledge in the process of learning new

programs unless the programs use the same means to accomplish the same

goals.
Discussion

The assumption behind this pattern is that either we have the power to

define user—interface style standards within our programming community, or

76

we have a set of such standards available. If the goal is to make programs
easy to learn, then the number of functions that the user has to learn shouid
be limited. This does not imply that the number of commands available in
a certain application should be limited; instead, this refers to the fact that
available standards should be followed. In this manner, leaming will be
promoted by the transfer of knowledge, and the number of functions that needs
to be learned from scratch will be limited.

Within the Macintosh community, the functions About..., New, Open,
Close, Save, Save As..., Print, Quit, Cut, Copy, Paste, and Clear are included
in most programs. Other aspects—-such as text selection, dragging, mouse
clicking, and user—interface element appearance~-have also been standardized
to some degree. There are also additional functions that are common to large
subsets of the programs within a community. For example, there exists a
large number of object—oriented drawing programs (MacDraw, MacDraft,
SuperPaint, and CricketDraw). All these programs have commands in common
such as Rotate, Group, Ungroup, Fill, and more.

However, one disadvantage of identifying user-interface standards, is that

bad decisions, or bad standards, are difficult to change.

Therefore

Within a programming community, the syntax of the functions and actions
that are common to ali programs within the community should be standardized.
The performance of the standard functions should be maximized by conducting

empirical tests involving users. Updating of the standards should occur only if

77

the new methods significantly increase overall performance; the programming
community itself must decide whether or not the improvement is significant by

weighing the cost of change against the benefits of change.

Embeilishments

Currently none.

UIP 10: PALETTES

Context

Once the power to define 2 standard set of user-interface elements has
been established (through UIP 3: STANDARD SET OF ELEMENTS), the
palette may be considered as a good candidate for a standard user—interface

element and as one of the UIP 4: DISTINGUISHING FEATURES.

Problem

Many tasks require frequent use of a limited number of different toois.

Performing these tasks will lead to frustration unless the required toois are easy

10 access.
Discussion

A carpenter usually carries his or her hammer, nails, and tape measure in a
utility belt. These are the tools that are most frequently used. For infrequent
tasks, the carpenter fetches the needed tools from a toolbox. The carpenter

knows which tasks are most common, and that there is a limit o how many

78

tools can be carried around at all times. Furthermore, the carpenter knows
that it is unwise to carry very heavy tools. The selection of tools that

the carpenter keeps in the utility beit reflects this knowledge and these
constraints.

There is an analogous situation in the domain of user interfaces. Some
tasks require frequent mode changes or frequent function selections. Once
again, MacPaint may be a useful example. The palette contains the most
frequently used functions. In addition, it is fairly obvious which tool is active
at any given time. There are several alternatives to a palette; for example, there
is the alternative of placing the palette in a pull-down menu. An advantage
is that screen space can be used for other purposes. Yet, there are several
disadvantages. First, selecting a function is more time-consuming. Second,
it may not be apparent which function is currently selected. (One way to
eliminate this problem is to use different cursor shapes; unfortunately, this

would require the user to learn mapping between cursor shapes and functions.)

Therefore

For every program, empirical studies should be carried out to identify
the most frequently used functions. Then the most frequently used functions

should be placed in palettes in order to reduce function-selection time.

Embellishments

The inclusion of this UIP leads to several difficuit questions. What if the

functions that are most frequently used are not related in any fashion? The

79

functions in the MacPaint palette are closely related; but it may not make sense
to place unrelated functions in the same palette. And, what if the set of most
frequently used functions is task dependent? Easy solutions to these problems
do not exist, but the use of tear—off menus may constitute a partial solution. A
tear—off menu is a menu, generally graphic rather than textual, that the user can
tear from the menu bar and move around the screen like a window. "Tear—off
menus save desktop space, allow larger windows, and give the user more
flexibility than do fixed palettes" (ACI, 1987, p. 91). If there are too many
functions available in a palette, then the various functions become increasingly
difficult to locate. One study suggests that the maximum number of codes for
close to error—free recognition ranges from 5 to 10, for geometric and pictoriai
shapes, respectively (Grether & Baker, 1972).

If a palette is included in a user interface, then UIP 13: PROTECTED
ELEMENTS must be considered——especially if the palette is used as a
distinguishing feature (according to UIP 4: DISTINGUISHING FEATURES).
UIP 10: PALETTES should be used in conjunction with UIP 11: PULL-
DOWN MENUS. The selections made from a palette should be carried out
exclusively and deliberately by the user. In no instance should the system alter
a choice made by the user (i.e., UIP 23: USER IN CONTROL). Furthermore,
this pattern should be embellished with UIP 25: ELEMENT BOUNDARIES
in order to make the palette distinguishable from other elements. Finally,
attention needs to be directed towards the patterns that address issues
related to how it can be made clear to the user which functions are currently

selected.

80
UIP 11: PULL-DOWN MENUS
Context

Once the power to define a standard set of user-interface elements has
been established (i.e., through UIP 3: STANDARD SET OF ELEMENTS), and
the fact that screen size is a limiting factor has been acknowledged, means by
which the user can easily access all the available functions without sacrificing

screen realty must be developed.
Problem

Novice users are better off if they do not have to remember command
syntax; thus, users should be able to rely on recognition rather than recall. But
if all available options are constantly displayed, there will be no room left on

the screen.

Therefore

Group functionally related options (or menu items) into a maximum of 8
to 9 groups or menus. The user should be allowed to inspect one menu at a
time; thus, the number of options that needs to be examined is limited. Place

the menu name (e.g., File and Edit on the Macintosh) towards the edges of the

screen.

Embellishments

This pattern is very vague, and there are many conflicting forces that

remain unresolved. Given a large set of options, it is by no means trivial to

81

break them into sets of related options. It is also difficult to decide how to
order and group the items within a single menu. For example, should
menu items that behave in a certain manner be placed directly above or below a
menu item that behaves quite differently? Consider the toggles for bold, italic,
underline, outline, and shadow in Microsoft Word. Each of these options work
independent of the other options; selecting bold does not affect the status of
underline. However, these toggles are grouped together with the plain—text
option, which greatly affects the other options when selected. There are
indications that such differences and inconsistencies add to the confusion
experienced by novices when learning a system.

This pattern does not eliminate the need to remember command syntax.
For example, in many cases, the user must remember that an object must be
selected before a function is selected; however, this problem can be reduced
with UIP 24: EXPLAINING MESSAGES. The selections made from a
pull-down menu should be carried out exclusively and deliberately by the
user. In no instance should the system alter a choice made by the user {(e.g.,
UIP 23: USER IN CONTROL is active). Furthermore, this pattern should
be embeliished with UIP 25: ELEMENT BOUNDARIES in order to make a
menu bar distinguishable from other element types. And, finally, this pattern
should be compiemented with UIP 10: PALETTES.

UIP 12: MANIPULABLE WINDOWS

Context

The size of the computer screen always will be a limiting factor in terms

of how much information can be displayed at any given time. This limitation

82

must be minimized as much as possible. Users often want to view and compare
pieces of information displayed in several windows; this potentially causes a
large number of windows to be displayed on the screen all at one time. In
addition, because the user wants to tailor the screen layout to fit personal taste
(through UIP 7: PERSONALIZABLE SCREEN LAYOUT), it is important to

be able to manipulate windows in certain ways (see Figure 16).

Problem

The size of a computer screen will never be large enough to accommodate

the user with respect to the information that needs to be displayed.
Discussion

Currently none.
Therefore

The user should be able to size, open, close, move, and select the windows
that display information. No arbitrary limit should be set regarding how many

windows can be open at any given time.

Embellishments

There are often objects on the screen (e.g., palettes and menu bars)
that need to be protected from being hidden by the windows that can be
moved around on the screen (this is addressed by UIP 13: PROTECTED
ELEMENTS). Furthermore, this pattern should be embellished by UIP 25:

" & File Edit Diew Special

" & File €dil Ulew Special

::.. BCH Norwoy £011] IR

o 2w A

FIGURE 16. Manipulable Windows

83

84

ELEMENT BOUNDARIES in order 1o separate a window from other
windows and other element types, and by a UIP that discusses how a menu
(or other methods) can be used for window handling. Finally, patterns
should be developed to address how the window manipulations should be

carried out.

UIP 13: PROTECTED ELEMENTS

Context

After the distinguishing features of a program have been determined (e.g.,
through UIP 4: DISTINGUISHING FEATURES), methods for protecting these
features (or elements) from ever being obstructed or hidden by other elements
on the screen must be included. In particular, if the user is allowed to rearrange
the interface elements (e.g., through UIP 7: PERSONALIZABLE SCREEN
LAYOUT and/or UIP 13: MANIPULABLE WINDOWS), then steps must be
taken to protect the distinguishing features and the elements from which the
functions are selected (i.e., UIP 10: PALETTES and UIP 11: PULL-DOWN
MENUS).

Problem

Giving the user total freedom with respect to how the elements on the
screen may be arranged can quickly result in chaos. Moreover, some of the
screen elements are sacred in that they are essential o the identity and

functionality of a program.

85

Discussion

In UIP 4: DISTINGUISHING FEATURES, the importance of providing
each program with its own identity (by including certain elements in the user
interface) was addressed. Typically, these features can be tied together with the
functionality of the program (such as, for instance, with a palette or a ruler). In
general, all user—interface elements from which the user can select a function
should be protected in some way or another. For example, the menu bar should
be a protected element.

The reason such elements should be protected is due to the fact that
they are so essential to the use and identity of a program that users should be
prevented from, for example, moving windows on top of these elements and,
thus, hiding them. This is particularly important if users frequently switch
between many different programs. In addition, because the elements are often
crucial to the functionality of the program, they must be protected so that the

user can easily access the controls for the program.

Therefore

The distinguishing elements and any user—interface elements crucial
to function selection must be protected. This may be accomplished by
(a) ignoring all user actions that attempt to cover such elements by other
elements; (b) disallowing the user to delete such elements from the screen,;
and (c) disallowing the user to move a crucial element on top of other
elements that later can be selected and which, consequently, hides the crucial

element.

86

Embellishments

This pattern should be embellished with messages that explain all
disallowed actions (e.g., through UIP 24: EXPLAINING MESSAGES).
Furthermore, since the focus of attention in most programs gravitates
towards the center of the screen (e.g., by UIP 26: WORK AREA TOWARDS
THE CENTER), all sacred elements should be positioned towards the screen
edges (i.e., with UIP 27: FUNCTION SELECTION TOWARDS THE
EDGES).

UIP 14: SAVING THE PROGRAM STATE
Context

If the user is allowed to tailor the desktop (e.g., through UIP 7:
PERSONALIZABLE SCREEN LAYOQUT), then the screen layout must be
saved so that the user does not have to repeat the process. Furthermore, in
order to complete UIP 4: DISTINGUISHING FEATURES and UIP 6: EASY
TRANSITION BETWEEN PROGRAMS, the state of a program must be stored

prior to deactivation.

Problem

Once a user has tailored the screen layout, the layout information must be
saved either manually or automatically so that the process does not have to be

repeated.

87
Discussion

No matter how flexible a system is with respect to tailorability and
transitions between applications, this flexibility will be of little or no use unless
program-state information is not lost as a result of the transitions or as a result

of other physical interventions (such as a system shutdown).
Therefore

Before transferring from one program to another, the state of the program
that is being abandoned must be saved. Then the target program should be

entered in the same state from which it was abandoned.

Embellishments

Currently none.
UIP 15: DATA SELECTION

Context

If a project addresses the need for moving (a) data from one program 10
another or (b) data within a single program (i.e., through UIP 5: TRANSFER
OF DATA), then the user must be provided with standard methods for seiecting

blocks of data of varying size.
Problem

If a system is laborious with respect to data selection, then the system will

be nearly useless no matter how efficient and capable it is in processing data.

88

Discussion

The purpose of a computer is to accomplish some task. This usually
involves manipulating data, which implies that somehow the data must be
specified by someone or something. Typically, the user is the one who
specifies the data upon which operations will be performed. In fact, data
specification is probably one of the most important tasks a user possesses
during the cooperative efforts of a user and a machine. This suggests that the
user-interface designer must carefully consider how data are selected.

Most often there will be levels of selection. For example, a text document
consists of paragraphs, which consists of sentences, which consists of words,
which consists of characters. A drawing might consist of objects which may be

either overlapping or nonoverlapping.
Therefore

For each program, the smallest selectable object must be defined; and
the user should be allowed to select any block made up of these objects. Ina
mouse-oriented system, the user should be able to position the mouse at the
beginning (or end) of the selection and move it to the end (or beginning) while
being in select mode. If naturai levels of selection have been identified,
methods should be provided that allow data blocks at the different levels to be
selected just as easily as it is to select the smallest selectable object. Several
Select commands may be provided; for example, a Select—All command could
select an entire document, but should be supplemented by a Select—Sentence

command as well as a Select-Word command.

89

Embellishments

In order to complete UIP 15: DATA SELECTION, the fact that some
objects do not fit on one screen and therefore rely on windows that can be
scrolled must be addressed (e.g., through UIP 28: AUTOSCROLL). Inclusion
of UIP 18: LEVELS OF VIEW and UIP 30: ABSTRACTION WITHOUT
RESTRICTIONS allow data selection to be independent of the level of detail at
which the data are displayed. Finaily, a novice user will start with the most
primitive selection methods available, but will quickly want to go about the

process in a more efficient manner (e.g., through UIP 29: SHORTCUTS FOR
THE EXPERT).

UIP 16: DATA INSERTION

Context

If the user has been given the capability to transfer data (i.e., through
UIP 5: TRANSFER OF DATA), then consideration must be extended towards

how and where 10 insert the data.

Problem

Depending on the task and the nature of the data, the point of insertion

may not appear to be well-defined.

Embellishments

At the surface level, this pattern may look trivial; and in some cases it

is. In a word—processing program, the point of insertion is indicated by the

90

position of the caret. If a chunk of text is being inserted, then the leftmost
character in the chunk is inserted at the position of the caret.

However, the point of insertion is not obvious when using programs such
as MacPaint and MacDraw. MacPaint always inserts data in the middle of the
active window, whereas MacDraw places the inserted data in the active window
approximately where the user most recently clicked the mouse. In both cases,
the user may reposition the inserted data without explicitly selecting it; and the

insertion routines leave the data selected.

Therefore

Unless the data—insertion point can be specified in a manner that leaves no
room for error, the user must be allowed to reposition the data immediately after

the block has been displayed on the screen.

Embellishments

In order to complete this pattern, the user must be given some way to
move data (typically graphical data) from one place to another. Therefore, a
pattern must be developed to address the need for and the nature of draggable
regions. Finally, the user should be allowed to insert data independent of the

level of view (e.g., through UIP 18: LEVELS OF VIEW).

UIP 17: SHAREABLE SCRAPBOOK

Context

For any system that allows the transfer of data between programs (i.e., file
import/file export through UIP 5: TRANSFER OF DATA), there must exist

91

some common method to store and access the data that are being transferred.

Therefore, a utility should be provided which has the sole function of moving

data from one context 1o another.
Problem

Users will refrain from merging data produced by different programs

unless the effort required is minimal.
Discussion

Experience has demonstrated that one of the most confusing aspects
of using word processors, database packages, spreadsheets, and drawing
programs arises when a user is asked to merge data produced by the different
programs. A possible reason for this is that users are made aware of such
capabilities late in the leamning process; thus, they may maintain the
misconception that such capabilities do not exist or they believe that they

are difficult to use.

Therefore

On all systems, a utility should be provided which serves as an
intermediate—storage area; ideally, this would allow the user to store data using
any program and also to retrieve data using any program. The user must be
made aware of this utility early on in the learning process; in this way, users
will understand that merging data of different kinds can be the rule, not the

exception.

92
UIP 18: LEVELS OF VIEW
Context

After the elements of the activity center have been defined (in UIP 2:
ACTIVITY CENTER), and after a decision has been made regarding how
the user may tailor the interface (in UIP 7: PERSONALIZABLE SCREEN
LAYOUT), a decision must be made regarding the different ways the user
should be allowed to view the data. In most domains, the ability to examine
data at different levels of abstraction is crucial; in addition, there is a need to

zoom in on and zoom out from particular areas (see Figure 17).

Problem

Users have a need to examine data displayed at different levels of detail.
Discussion

The hypothesis behind this pattern is that people have a need to survey the
world around them at different levels of abstraction. Alexander et al. (1977)
argues that people have a fundamental need to climb up to high places in order
to look down on their surroundings. Similar needs are present in the domain of
user interfaces. One reason relates to the fact that the available work space (the
screen) is very limited in size. Consequently, when users write a document or
draw a picture, they only have a partial view of the data. The screen acts as a
window through which subparts of the data can be viewed. Users often find

themselves editing data without being able to view the data in a larger context.

(a)

(©

93

" & fila €dN Style fonl Line Fii Uew Arrenge Logout 47 " °
Admistions Goal Iree 1.} Beeeeeeeee——=—xx

A — -l

PO ..] _E S
0 ; Bira e
=) =
LY
2 3
=
= i
a0
(b) " & File Eoll siyle Font Line Flli Hrrange layout 43 33°
= Rdmisslons Goel Tree v.3 m
. . ' ol
X} &
At - I
+ {
PO} : 3
9 s
R} B
i .-
o0 i
_ :;.1
""""""""""""" ‘.."’””"--"““”-:-.t:n:n;;w:;éﬁl

" & File tdn Styga Fonl Line Hill Uiew Artenge Logout 0 49317

&]m—ﬂ\mwr

fakivant Quesiisny
Infe fram dpplicants

" Metifyapeut | Hawnidin Meen

; Deciatens far Cammunicatisn Refgrence
ster
t.lmpullr -
-3 ""'"I by Motifyby Genersta Garrete Hy bk P
il Frans Form Intividuslized Cord siPrintes © o
a- ; Leltera Lniters ke Listing

Usa Camputer -« io-oeem oo

o

FIGURE 17. Viewing Data at Different Levels of Abstractjon
(a portrays a tree being viewed at a high level of
abstractlon, '%ortra a selected portion of the
tree; and c po s fhe selected pomon viewed
at a lower level of abstraction)

) e i L ey R

94

A secondary reason concems the fact that it is often desirable to hide detailed
information until the user specifically requests it. In most cases, the need is
sufficed with a high-level view, and the more detailed information is typically
of a lesser concemn.

There are several simple ways the designer can address the needs of the
users in this case. In many programs there is a Reduce/Enlarge command. In
the ideal case, the user may select the data and then reduce or enlarge itto a
specified percentage. There is aiso the notion of node expansion; in fact, an
example of this is Folders on the Macintosh desktop. Since it allows the user to
select the level of detail with respect to file information, the View menu on the
Macintosh desktop also demonstrates an impiementation of UIP 18: LEVELS
OF VIEW.

As long as user—interface designers are aware of the existence of UIP 18:
LEVELS OF VIEW (both as a result of fundamental human instincts and as a
result of hardware limitations), the situations in which it should be embedded

within the design will be nearly unmistakable.
Therefore

The user should always be allowed to view data from different
perspectives; this may be accomplished by including methods for physically
reducing and enlarging the size of the data. In addition, the user must be able
determine the level of detail at which the data should be displayed by using
the idea of node expansion. (That is, when a node is expanded, more detailed

information becomes available.)

95

Embellishments

In addition 1o allowing the user to choose the level of abstraction at
which data are viewed, the user should also be provided with the choice to view
data in different forms. For example, histograms as well as tabular views, and
textual as well as icon—levels. Thus, a pattern needs to be developed to address
this issue. Finally, the ability to edit data should be independent of the level
of abstraction-~as much as is practically possible (e.g., through UIP 30:
ABSTRACTION WITHOUT RESTRICTIONS).

UIP 19: IMMEDIATE FEEDBACK

Context

For every command or option that is carried out or selected by the user,
there must be some indication that the action has been recognized by the
system. This something must also indicate to the user which command was
actually carried out. The user may think that Command A was selected,

whereas the user selected Command B by mistake (see Figure 18).

Problem

Unless the user is given unambiguous, visually representative feedback
when (a) the computer responds to a command initiated by the user and
(b) when a function has been selected, the user will feel insecure about the

activities which are taking place.

96

a4

*

T & File Edil ™Mowe Noles Format Font Size Style

Free Stote 6rill e e s i
&
soving Dotument... =
E
Chaster 1 Page |
Burgers Breakiast
Hambwyer B e ol 3 Al Srvadd it 4% survnld wuh hudk
Chbumburper. S 8F Iroww od daw o wea
Bacopburger -
nlyoom T L= | Bggunyayis. .. 195
e i e
ges Ber i
iches Chavm Omee i=
Humand Cleese Omelotn | 7 5F
BLT. ciierieenens 2951) Drperomeine T
Chickan 2alad 2351 | cagiomelune To
g!;;“cu.. el e .}..:5‘ How Yorx Omelstn Y
Hot Twrhey i AT [dBont sl Qo Closss} 3
with mashed pomoes, ... k-
Gomed Bus! "l zes| |SideOrders L3
Regben Sardwich 255 Tosn an e
Engibh Mutfia . ax |
Bloabery Mutf, . .08 1
Begelapd Cream Chease o8 E
Baton . Sl I8 B

Ervakfast Ham .. v

r
T L T T T e T

) sl

FIGURE 18. FullWrite During a Save Operation

Discussion

This pattern is a first attempt towards specifying how users can feel
confident that they "did the right thing." Experience has demonstrated that
many interfaces are unacceptable in this respect. Five short examples illustrate
this point:

1. The Open and Save commands are some of the most important
commands in most programs. One of the first lessons a computer novice is
given is to "remember to save your data!" One of the most common remarks
about the Save command is typically that "I selected the Save command, but

nothing happened; have I lost everything now?"

97

2. During basic text editing several problems arise. One that is
particularly interesting is a problem due to the Copy command. On the
Macintosh, when a block of text has been specified and the Copy command is
selected there is no visible change. A significant number of novices repeatedly
select the Copy command expecting something to happen which can be seen.

3. An obvious example of the lack of feedback is the manner in which
the Grid command is handled in MacPaint. An informal, 3—year study that has
been carried out in a user—interface class taught by Dr. Sally Douglas at the
University of Oregon has indicated that novices are utterly confused by the fact
that a grid is not displayed when the Grid option is selected. In fact, because a
grid is not displayed the first time, most users select the Grid option yet another
time. In most cases, the users/subjects did not understand the problem until the
experimenters interrupted and explained the situation.

4. The problem with the Grid commands indicates that check—mark
commands (such as the Grid command in MacPaint) and toggle commands
(such as Turn Grid On versus Turn Grid Off in MacDraw) are difficult to grasp
for the first-time user. The users who had problems with the Grid command
obviously did not notice the checkmarks that appeared and disappeared
interchangeably. And, when users select the Turn Grid On command, no
visible feedback is given; the problem is that the change from On to Off (or vice
versa) cannot be seen without pulling down the menu.

5. When the spelling checker is activated in Microsoft Works, the
dictionary must be loaded. Since the load operation requires a certain period of

time, the interface designers chose to display a spinning beach ball in order to

98

indicate that a lengthy operation is in progress. Most students become very
worried when the beach ball appears.

Once the user-interface designer is made aware of the lack-of-feedback
problem, negligible effort is required to eliminate most of these problems.
However, there obviously is no simple solution to all of these problems. In
particular, the Copy problem is difficult to solve in a manner that will satisfy
both novice and expert users. Each problem may be considered separately.

The Save problem is handled nicely in FuilWrite. In fact, all actions that
require a certain length of time should notify the user that ongoing processing is
occurring. FullWrite displays a message while commands are being carried out;
it is simple and effective.

One way that the Copy command can provide feedback is to display
a short message after Copy has been selected. Such a message would
undoubtedly be a nuisance to the more experienced users. This might
indicate that several levels of feedback should be available in a program.

The solution to the third problem is obvious. The grid could be drawn (as
in MacDraw). A related function is the Snap On/Off command,; this command,
however, is far more difficult with respect to visual feedback.

Checking-off menu items and changing menu items has been integrated
into most Macintosh applications. These methods are excellent for proficient
users, but experience has shown that novice users do not discover the many
subtle changes that occur. It becomes even more confusing when checked
menu items, toggled menu items, and regular menu items are grouped

together.

99

Finally, the spinning beach ball and other such puzzling symbois should

be replaced by a message. Whenever possible, words should be used instead of

obscure icons.
Therefore

The solution is to provide the user with ample feedback (a) by displaying
messages which indicate which actions are being carried out by the computer,
(b) by displaying messages confirming that the system has registered a
command selection, and (c) by including auditory signals (as described in

Embellishments, the next section).

Embellishments

There is no point in making users feel confident about their actions
by providing feedback unless the user is able to reverse the actions (i.e., by
performing UIP 20: REVERSIBLE ACTIONS). UIP 19: IMMEDIATE
FEEDBACK should be embellished by considering UIP 10: PALETTES and
UIP 24: EXPLAINING MESSAGES. Another possible solution involves
creating a UIP that addresses the feedback issues which arise as a consequence
of direct—-manipulation interfaces. And, finally, UIPs may be created to address

auditory feedback-related issues (e.g., as discussed by Deatherage, 1972).
UIP 20: REVERSIBLE ACTIONS
Context

It is a fact of life that people make mistakes. In the domain of computers,

both novices and experts make mistakes and spend considerable time correcting

100

the same. Once a user discovers that a mistake has been made, it is part of the

program's responsibility to provide methods for undoing it. This pattern should

be considered within the same context as UIP 8: LIMITED NUMBER OF

COMMANDS and UIP 19: IMMEDIATE FEEDBACK (see Figure 19).

r

: Undo Typing ¥Z2 ==

'l Format Font Document

e | Lt i =
;‘"““ Copy =C
Paste xU —
L ienr
Thel Edit Again XA F“
nraviding 2,11
" & Fnel3M rormat font DBocunm
do Fd d) esis
-
1 Lut] [) I—
Normel Lopy we | B!
Paste ®U
Llenr
The} format Again XA I:f“"
nenvidine mee

= Undo Insert TOC Entry =2 %
FEN—
I [ut N
Lopy o
Paste £
I lear
Edit Again %A
" & Fite I Y Format Font
o d ange
I =
4 Cut %8 -
Normel Copy %C -L
Paste R’ |
Clear B
survey th change Agein XA [T
(*2rplarn

FIGURE 19. Examples of Actions That Can Be Undone

Problem

It is impossible to build software systems that can anticipate all possible

errors that can be made by the user.

Discussion

Anticipating and undoing errors are some of the most difficult problems in

program design as well as in user—interface design. Suppose that a document

consisting of four paragraphs is being edited. The order of the paragraphs is

101

Paragraph A-Paragraph B-Paragraph C-Paragraph D. Further imagine that the
document is to be shortened to Paragraph A-Paragraph B-Paragraph D; but, by
mistake, the resuit becomes Paragraph A—Paragraph D. Obviously, the system
cannot know that a mistake has been made. Should Paragraph B have to be
retyped? A good system would provide the user with a more attractive option:
to undo the command that deleted Paragraph B. Consequently, the system
must, in effect, assume that the user is constantly making mistakes.

Unfortunately, there are some practical aspects related to the Undo option
that are troublesome. Typically, only the most recent action can be undone. If
Undo is selected twice, the first undo will be undone. Hence, in the preceding
Paragraph example, if the user first deleted Paragraph B and then deleted
Paragraph C, Paragraph B would be completely lost. Experience has shown
that mistakes are not discovered right away; thus, the Undo command is
useless in many situations. One possible solution is to provide a variation
of the regular Undo function; this variation may be called Undo From Stack
with its name suggesting that commands can be undone in a last—in/first-out
fashion. Obviously, Undo From Stack would be very memory intensive. In
practice, the size of the stack must be limited; when it is full, the least-recent
action on the stack would need to be deleted in order to make room for a new
action.

There will exist commands that cannot be reversed. Typically, such
commands include Erase Disk (or Format), Empty Trash, Copy one disk onto
another, and in some cases Save. When commands such as these are selected,

the user must be informed that an irreversible action is about to take place.

102

Therefore

In every program, the option to undo the most recent action (Undo) and
the option to undo several actions (Undo from Stack) should be included. If a
command will lead to an irreversible state change (for practical reasons), the

user should be warned and allowed to cancel the command.

Embeilishments

Because there are several actions that are irreversible, this pattern shouid

be embellished with UIP 21: WARNING THE USER.
UIP 21: WARNING THE USER

Context

On most computer systems, there exists a set of dangerous commands.
The user needs to be protected against the consequences of these commands. In
general, the dangerous commands are those that are irreversible-—as previously

noted in UIP 20: REVERSIBLE ACTIONS (see Figure 20).

Are you sure you want to completely
replace contents of
“Word Master” (not in any drive)

with contents of “
“mMS-WORD" (internel drive)?

(- "

FIGURE 20. A Warning Message With the Option to Cancel

103

Problem

Users will become alienated from the idea that a computer is a friendly
and useful tool if mistakes with serious consequences are experienced during

the early periods of learning.
Discussion

Most computer users would probably agree that mistakes leading to loss
of information that is impossible or difficult to recreate are among the most
serious mistakes that can occur within the domain of computer usage. Both
novices and experts make such mistakes. For example, a file may inadvertently
be erased. It seems that the only way such errors can be prevented from
occurring is to provide users with messages that wamn about the consequences
of their actions. One problem is that such wamings are usually followed by a
confirm or disconfirm action by the user, and periodicaily it happens that users
select OK (confirm) instead of Cancel (disconfirm). Such slips are impossible
for the machine to detect.

Seemingly unimportant and subtle aspects of a system can often result in
considerable damage. The following true story will serve to show that users
must be protected from themselves:

Person X had been using Microsoft Word 4.0 for a period of 2 days.

During these 2 days, he had been editing several files that were

eventually going to be transferred to a different type of machine.

Therefore, whenever he saved the data, he saved it as Text Only. He

even set the default file format to Text Only. A few days later, X had

to use the word processor again, but now different fonts, sizes, tabs,

indentations, and so forth were used. When X saved his finished
document, all the layout information was lost.

104

In this case, it would have been relatively simple to implement a routine that
would have prevented the data from being lost:
Program the machine to check for formatting information. If formatting
information exists, warn the user that the format information will be lost

if the Save command is carried out. In addition, inform the user of the
necessary steps that must be taken to save all format information.

Therefore

The user must be warned if an action that will lead to loss of information
(of any type) is about to be carried out. The user also should be allowed to
cancel the command, and/or be informed regarding which steps to take in order

to save the information.

Embellishments

UIP 21: WARNING THE USER requires a UIP which addresses default
actions and states (perhaps a UIP entitled Default Actions and States, which is
not included within this thesis document). For example, when a program asks
whether or not the user wishes to exit from the program without saving the
work that has been performed, it be easier to answer no than yes.

UIP 22: LIMITING THE EFFECTS OF
THE DIALOG BOTTLENECK

Context

There are several bottlenecks which hamper the dialog (i.e., the flow of

information) between the user and the computer.

105

Problem

A computer will never be perceived as a useful tooi as long as
users have the feeling that they are doing work that the computer could

have done.
Discussion

The name of this pattern (Limiting the Effects of the Dialog Bottleneck)
may be somewhat misleading. The actual point is that a system should
minimize the work that must be carried out by the user. This goal can be
accomplished in several ways, two of which are listed:

1. The interaction between a novice user and a system can be
simplified by relying on command recognition, rathef than on command
recall.

2. The system should supply defauit values whenever possible. For
exampie, a statistics program might use p = .05 as a default value when the
user is requested 1o supply the significance level for a t test; as an additional
extension, if the user enters a different value, that value could be used as the

default for the next request.
Therefore

Instead of requiring the user to carry out the trivial tasks, the computer
could be designed to execute these whenever programmatically possible.

Ideally, domain knowledge would be utilized to supply default values, but then

106

would employ the user's previous inputs as bases for default values. This does
not imply that it is necessary to incorporate advanced Artificial Intelligence
technology into every program; it is often the small and simple things that have

the most greatest effect.

Embellishments

UIP 23: USER IN CONTROL should be included, and UIPs should be
created which address issues related to command recognition rather than to
command recall. For example, command recognition could be promoted by the
user interface. Currently, the use of palettes and pull-down menus are popular,
and user—interface patterns for these have been developed; but perhaps there are
different and better methods. A final recommendation would be to restrict
UIP 22: LIMITING THE EFFECTS OF THE DIALOG BOTTLENECK so

that the computer does not control the human/computer interactional dialog that

takes place.

UIP 23: USER IN CONTROL

Context

UIP 22: LIMITING THE EFFECTS OF THE DIALOG BOTTLENECK
addressed the requirement that a system should minimize the work that must
be carried out by the user. However, since there is a danger in taking this
recommendation too far, UIP 22: LIMITING THE EFFECTS OF THE
DIALOG BOTTLENECK must be restricted in some way.

107

Problem

Users should perceive the computer as a tool. Users shouid not perceive

themseives as tools being used or manipulated by the computer.
Discussion

In a series of informal experiments carried out over the last 3 years by
students in an introductory user—interface class taught by Dr. Sally Douglas at
the University of Oregon, several problems with the MacPaint and MacDraw
user interfaces have been recognized. One of the most prevalent problems
can be attributed to mode changes that are carried out by the programs as
side effects of the user's actions. More specifically, in MacDraw, after having
selected and used a palette function (e.g., selecting the rectangle function
and drawing a rectangle), the palette selection resets to a default function.
Consequently, if the user wants to draw several rectangles in succession, the
rectangle function must be repeatedly seiected for each rectangle. In the
informal studies previously referenced, this inconvenience was found to be
one of the most serious problems with the MacDraw user interface.

A user expects to be in control over mode changes. In the MacDraw
scenario, the problem concerns the fact that each function in the palette causes
the program to enter a different mode, and the user seiects a particular mode (or
function) with a deliberate action. The difficuity is that a mode change occurs
as a side effect of the user's actions.

It could be argued that a mode change should never occur unless it is

deliberately initiated by the user. That is, in general, the system should provide

108

default selections and initiate mode changes if, and only if, the following
conditions exist:

1. If the default choice provided by the computer is not what the user
desires, then the user should not need to perform more work to change the
choice than if the default choice had not been provided at all.

2. If the mode change initiated by the computer results in a different
mode than that desired by the user, then the user should not need to perform

more work than if the mode change had not been carried out at all.

Therefore

All actions that lead to a change in a system's state should be deliberately
initiated by the user. The only features which should be considered are those
in which the circumstances involve the system supplying default values or

initiating mode changes without increasing the user's work load.
Embellishments
Currently none.
UIP 24: EXPLAINING MESSAGES
Context

Some of the computer operations which occur are so time-consuming that
the user may be led to believe that something is wrong. In addition, there are
occasions when the system must prevent the user from carrying out certain

actions (which relates to UIP 13: PROTECTED ELEMENTS); there are, as

109

well, some functions which might not be applicable in the system's current state

(see Figure 21).

" £ fHe Edit Profile Control Windows Help

A component in the Work Area must
be selected befare it con be rotated.
select a component by a single click
of the mouse button.

FIGURE 21. A Message Explaining Both a Problem and How to Fix It

Problem

Users need to feel in total control over a computer. If the user ever
perceives the computer to have its own goals, then the user never will be able
to feel comfortable with it; that is, the user will perceive that the computer is no

longer a tool, but a competitor.
Discussion

The following types of comments from computer novices are not atypical:

"It has been doing it for a while now; what's taking so long?," "I don't

110

understand why it won't let me do that," and "This is what 1 selected, but the
computer didn't do anything." One of the most important aspects of user—
interface design is to create an interface that does not lead to such utterances.
Several steps may address this situation:

1. During a lengthy operation, the computer should display a message
to inform the user of the operations that are taking place. For example, this
method would apply when data are being loaded from or saved to a disk. It
shouid be ensured that the message is displayed long enough so that the user is
able to read it, even though the operation itself might require less time.

2. During a lengthy operation, the user should be informed regarding how
much work has been completed and how much work remains undone. If the
user realizes that the operation will require too much time, then the option to

cancel the command should be available (see Figure 22).

r

& Flle Edit Uiew Special 1:01:52 ©

Flles/Falders remaining to be copled: lj‘ ;
Writing: MacBroft

[Statview Folder
3 SuFelder

[System Falder

[Think Pazcal Felder
[Teels

0 Tuter Folder

3 Utilities Folder

) Virus Software

FIGURE 22. A Message Indicating Amount of Work Remaining

111

3. The Macintosh user—interface guidelines (ACI, 1987) specify that
menus, menu items, buttons, radio boxes, and check boxes that do not apply in
a given state of the system must be disabled (i.e., dimmed). This guideline does
more harm than good. The problem is that the user is seidom able to infer the
reason why a command has been disabled; moreover, there are no indications
regarding which steps need to taken in order to enable a certain command. The
problem could be reduced by changing the semantics of the term disabled.
Selecting a disabled command should result in the display of a message that

describes the steps required to reenable the command.

Therefore

The user should always be provided with messages that will help him or
her understand the activities of a program. If the program needs a few seconds
to accomplish X, the computer should simply state this fact so that the user
knows that X is, indeed, being carried out. Furthermore, if 2 command does not
apply within a certain program state, the users should not need to infer the steps

required to apply the command; the users should be simply told what must be

done.

Embellishments

In order to make UIP 24: EXPLAINING MESSAGES work, all programs
within the programming community must use the same kinds of messages. This
is related to UIP 9: STANDARDIZED METHODS. UIP 24: EXPLAINING

MESSAGES also creates a problem related to the differences between novice

112

and expert users. The expert may find the messages annoying; whereas the
novice may find them helpful, even crucial, for understanding the program.
Therefore, this pattern should be embellished with the ideas contained in

UIP 18: LEVELS OF VIEW (i.e., the messages might vary in detail depending
on the user), and those within UIP 29: SHORTCUTS FOR THE EXPERT
(which could eliminate the messages altogether, as implied by UIP 18:
LEVELS OF VIEW). Finally, any lengthy action should be interruptible by the
user, in which case the original program state would be restored (e.g., through
UIP 20: REVERSIBLE ACTIONS).

UIP 25: ELEMENT BOUNDARIES

Context

Once it has been decided which elements to include in an interface (i.e.,
given UIP 3: STANDARD SET OF ELEMENTS, UIP 10: PALETTES,
UIP 11: PULL-DOWN MENUS, and UIP 12: MANIPULABLE WINDOWS),
the problem which stems from dispiaying a large number of elements
simultaneously on the screen must be addressed. The boundaries between
the elements can easily become blurred unless careful attention is given to the

physical boundaries between the elements (see Figure 23).
Problem

Each element of a user interface has unique responsibilities. These
responsibilities cannot be accomplished unless each and every interface

element is visually separable from all the other elements.

113

r % file Edit Profile Control Windows Help

Y

0G0 Hcub

FIGURE 23. An lllustration of the Simplicity Created
in an Interface When Effective Element
Boundaries (Simple Lines) are Included

Discussion

By comparing Figures 23 and 24, one may note that Figure 24 illustrates
the elimination of some of the most important boundaries which are contained
in Figure 23. In Figure 24, there no longer is a well-defined notion of the
work area and function—selection area. It is unclear exactly where the title bar

is, and the exact height of the menu bar is far from obvious.

114

" < fie Edit Profile Control Windows Help

E==s==———m——=x | chornlory
& b

SISk

ICREERES

m

[

FIGURE 24. An lllustration of the Confusion Created
in an Interface When Element
Boundaries are Excluded

Therefore

The various user-interface elements should be separated by including
physical boundaries. Quite often either a simple line between the elements, or

a portrayal which utilizes different background colors/patterns, is enough to

separate the elements.

115

Embellishments

Currently none.
UIP 26: WORK AREA TOWARDS THE CENTER

Context

Once it has been decided how to present the various options and
functions to the user (e.g., through UIP 10: PALETTES, UIP 11: PULL-
DOWN MENUS, and UIP 12: MANIPULABLE WINDOWS), and
elements that need to be protected have been identified (e.g., through UIP 13:
PROTECTED ELEMENTS), a decision must be made regarding where and
how the work area shouid be arranged; after all, the work area is where the

various functions will be applied.
Problem

Given a blank sheet of paper, people prefer to scribble towards the middle

of the sheet and stay away from the edges.
Discussion

UIP 26: WORK AREA TOWARDS THE CENTER involves a very
interesting concept despite the fact that it may seem obvious. It should be noted
that most Macintosh interfaces are designed so that the user works in an area
directed towards the center of the screen. Menus and palettes, on the other

hand, gravitate towards the edges of the screen. There are practical reasons

116

for this arrangement. For example, if a palette were to be placed in the middle
of the screen, the uninterrupted work area would be significantly reduced.
UIP 26: WORK AREA TOWARDS THE CENTER also recognizes the
more fundamental human instincts. If a typical office desk, for example, is
considered, one may note that all the functionality elements (such as the
telephone, the stapler, the pencil sharpener, the pen-and—pencil holders, and so
on) are located towards the edges of the desk; the work space is in the middle of
all this. An informal experiment that provided interesting results was conducted
during the course of this study. The subjects (15 peers) were given a blank
sheet of paper (measuring 8.0 x 11.5 inches) and a pencil; they were then
asked to "draw a circle less than 2.0 inches in diameter." Of the 15 subjects,
14 people drew the circle right in the middle of the paper and only 1 person
drew the circle close to the edges of the paper.

The preceding observations obviously are not provided in order to prove
any theories. They are presented because they are good indications that UIP 26:
WORK AREA TOWARDS THE CENTER should be maintained, both for the

practical as well as the hurnan—factor reasons.
Therefore

Users should be allowed to carry out their work in an area that tends
towards the center of the screen. In addition, users should always be permitted

to move the data inside a window so that the work can be carried out in the

center of the window.

117

Embellishments

UIP 26: WORK AREA TOWARDS THE CENTER depends on UIP 27:
FUNCTION SELECTION TOWARDS THE EDGES.

UIP 27: FUNCTION SELECTION TOWARDS THE EDGES
Context

The function selectors should be located towards the edges of the screen

in order to support UIP 26: WORK AREA TOWARDS THE CENTER.

Problem

People tend to organize their work space so that the tools they need are
conveniently located in a manner such that the tools do not obstruct the work

that is to be accomplished.
Discussion

The discussion for UIP 27: FUNCTION SELECTION TOWARDS THE
EDGES is contained within the preceding discussion for UIP 26: WORK
AREA TOWARDS THE CENTER.

Therefore

Palettes and menu bars shouid be located towards the edges of the screen.
If it becomes necessary to relate functionality to individual windows, then the

selectors should be placed towards the edges of the windows.

118

Embellishmenis

UIP 27: FUNCTION SELECTION TOWARDS THE EDGES depends on
UIP 26: WORK AREA TOWARDS THE CENTER.

UIP 28: AUTOSCROLL

Context

When the means for selecting data (e.g., through UIP 15: DATA
SELECTION) have been included in a system, then the methods by
which large blocks of data can be easily selected must also be

provided.
Problem

The user should be able to select any subset of some data block just as
easily, and in the same way, as the atomic (and, thus, smaller) parts of data

are selected.
Discussion

The pattern UIP 28: AUTOSCROLL is related to UIP 18: LEVELS OF
VIEW. By activating UIP 18: LEVELS OF VIEW, the data could be reduced
to an appropriate size prior to selection. UIP 28: AUTOSCROLL is a pattern
which contends that it also should be possible to seiect any subset of a large

data set without changing the level of view.

119

A rather annoying aspect of MacPaint seems appropriate to this
discussion. If a small part of the work space needs to be selected, it is
relatively simple to utilize the Lasso function. However, if some part of the
picture does not fit into the window, but has to be selected, then additional
steps are required. Such additional steps are great irritation factors for both
novice and expert users. Experience has demonstrated that users learning
MacPaint find the data—selection aspects of the interface extremely
troublesome.

The latest version of MacPaint (version 2.0) handles data selection
excellently. If the selection is larger than the window, then the window
contents automatically move in a direction indicated by the movement of the

mouse.

Therefore

A program must assist the user during the data—selection process. It
always should be possible to select chunks of data in one step—-regardless
of size. In a word—processing program, for example, selecting an entire
document should not be conceptually different from selecting one letter.
UIP 28: AUTOSCROLL is adequately satisfied by having the system
automatically adjust the window through which the document is viewed

(through the technique labeled autoscroll).

Embellishments

Currently none.

120
UIP 29: SHORTCUTS FOR THE EXPERT

Context

Once decisions have been rendered regarding the types of functionality
to include in a program and the plan for how the user is to interact with the
program (i.e., UIP 10: PALETTES, UIP 11: PULL-DOWN MENUS, UIP 15:
DATA SELECTION, and UIP 16: DATA INSERTION are established), then
the fact that users may be categorized into several proficiency groups—-ranging

from novices to experts——must be considered.
Problem

Novice and expert users possess differing, and often opposing, needs with

respect to user—interface design.
Discussion

Some inherent difficulties in user-interface design arise from the fact
that the various proficiency levels of the users must be reflected in the user
interface. A user-interface design is, in essence, supposed to be a model of
user behavior. However, it is very difficult to design an interface which is able
to satisfy the needs of all users at all proficiency levels. UIP 29: SHORTCUTS
FOR THE EXPERT does not totally solve this problem; nevertheless, it has
been included in order to increase designers' awareness of the issue and a few

partial solutions that have been integrated into several software products are

outlined.

121

There is one fact of life that makes it challenging to arrive at a solution
to the preceding problem: Program functionality and program complexity
are positively related. Therefore, how much functionality can be left out
before the expert user becomes unhappy, and how much functionality can
be added before the system becomes incomprehensible to the novice? A
designer must incorporate steps to design easy—to—learn programs which
are, simulitaneously, interesting for expert users. For example, when using
MacDraw, a novice user can accomplish a large number of tasks by adhering
to the functions available from the palette; then, as a user becomes more
accomplished, the more advanced functions located within the menus can be
utilized.

The fact that functionality and simplicity are inversely related does not
necessarily imply that any tradeoffs must exist. Both novice and expert users
can be satisfied. There will eventually be innovative user-interface designs
that will satisfy all user groups; in fact, this eventuality can be already seen in
some products available at the present time. One solution is to allow the user to
select the level of functionality and fo prescribe the complexity of the system to
adjust accordingly. For example, Microsoft Word has two functionality (and,
thus, two complexity) levels (see Figure 25). Microsoft Word also allows
expert users to program keyboard equivalents for all the commands that are
available.

In summary, the problem can be reduced to defining which functions are
appropriate at the various functionality/complexity levels. Unfortunately, this

may in itself be a difficult task.

122

Therefore

In an attempt to increase learnability, functionality should never be left out
from a program. If a function is useful (even if only to an expert user), then it
should probably be included. In order to avoid an increase in learning time, the
option of defining several (two or more) functionality/complexity levels should
be explored. At the most basic level, only those functions which are relevant
to novices would be included; but, at the most advanced level, all available
functions would be available. It is most important to never eliminate functions
as the complexity level increases: In other words, if X is the set of functions at
complexity level x, and Y is the set of functions at complexity level y, and level

y is more complex than level x, then X is a proper subset of Y.

Window F!mﬂm Window
Find... xF Find... 13

£ind flgain ENsf tind Again O 1]
Change... *H Chenge... XK
Go To... 40 Go To... xG6
Go Back xn<Z
Spelling... %L
Speliing... ®L
Hyphenate...
Index...
Table of Contents...
Word Count...
Calculate Re=
Renumber...
Sort

FIGURE 25. An Example of Two Different Functionality/Complexity Levels

Embellishments

UIPs should be developed to address (at a finer level of detail) the issues
discussed in UIP 29: SHORTCUTS FOR THE EXPERT. Ideally, such patterns

123

should be more explicit with respect o solutions for resolving the tension
between functionality and learnability, and they should also address the issue
of command keys (equivalent to menu items) in more detail. For example, any
sequence of actions using the mouse should also be possible without using the

mMouse.

UIP 30: ABSTRACTION WITHOUT RESTRICTIONS

Context

If users are allowed to view data at several levels of abstraction (such as
recommended in UIP 18: LEVELS OF VIEW), then the users also will want to
edit the data independently of the display level.

Problem

One of the reasons a user may wish to view information at differing levels
of abstraction is that certain aspects of the data often are better captured at a
certain level of abstraction as opposed to other levels. In addition, if the user
is allowed 10 modify the parameters being examined but is not allowed to
change the level of abstraction, then UIP 18: LEVELS OF VIEW is of little or

no use.
Discussion

Many existing systems have included a pattern similar to UIP 18:
LEVELS OF VIEW in one form or another. Unfortunately, strange restrictions

often come into effect when the level of abstraction changes. As a case in

124

point, the Page View option in Microsoft Word displays a document according
to the format in which it will appear on the printed page. With Page View, the
user is able to examine margins, headers, footers, footnotes, and page numbers
in addition to the data-—all in normal view. The problem with older versions
of Microsoft Word (versions 3.0 and earlier) was that none of these parameters
could be altered while in Page View; thus, the Page View option was of little
use. However, in the later update, Microsoft Word (version 4.0), the user is
allowed to perform the same editing tasks in Page View as in normal view.
Thus, the recommendations of UIP 18: LEVELS OF VIEW have been satisfied
since changing the level of abstraction no longer, ipso facto, leads to any
restrictions.

In some cases, it is natural to limit the functionality when the level of
view changes. For example, Microsoft Word has a print-preview option. At
this level of abstraction, it does not make sense to edit the contents of the text
because the print is too small to be legible. As a general rule, a function should
never be disabled when the level of view changes uniess it is physically

impossible to support the function.

Therefore

In most programs, there is a default view level and one or more aliernative
view levels. Designers should increase, rather than restrict, the availability of
functions and options when the view level changes——unless the function

becomes useless due to physical constraints.

125

Embellishments

UIP 30: ABSTRACTION WITHOUT RESTRICTIONS should be
embellished with UIP 24: EXPLAINING MESSAGES given instances in which

it is impossible to edit the data. Figure 26 provides such an example.

2:02:07 ¢

B

& File £dit Style Font Line Fill Uiew Arrange Layout

Admissions Goal Tree v.3

=k RSN e o T L P
N}

A} ~= g5 Text size is too smoil a1 this view. Please

+ i change text size, zoom in or return to
1. home view before entering texnt.

T -
PO
T
H E « I By

(] - - :
A .. - = P PSRRI

) S i [e\ ,
D"ﬁ, a:-“' "l‘—..--...-.--...-.-.::
E_ . — — . . ::

e s oo s aaot
———]
B e e T e e i GAD

FIGURE 26. A Message Clearly Explaining the Reason
for Imposing a Restriction

Summary

This chapter, Chapter IV, has defined 30 user—interface patterns.
Succinctly, a user—interface pattern (UIP) consists of a context in which a
user—interface design problem occurs in confluence with a possible solution
to the problem. The designated user—interface patterns were derived from

basic human-psychology tenets as well as from user-behavior observations.

126

Chapter V presents an exampie of how the patterns can be used towards
translating system requirements into a user—interface design specification.
The relationships between the patterns also were transferred into a network

depiction (which is presented in Appendix B).

127

CHAPTER V

A PROTOTYPE: SAMPLE DESIGN FOR A PORTION OF
A DRAWING PROGRAM USER INTERFACE

The set of 30 user—interface patterns (UIPs) delineated in Chapter 1V
obviously cannot represent a complete pattern language for user—~interface
design; but the 30 UIPs do serve to illustrate the approach of the pattern—
language methodology and the configuration of typical patterns. Earlier it
was noted that the patterns form a network, and Appendix B further depicts
the dependencies of these patterns.

The present chapter exemplifies that the user—interface pattern language
can be practically utilized. From system requirements and functional semantics,
a set of patterns are found to represent a user—interface design specification.
This prototype illustrates the manner through which some high-level aspects of
a drawing—-program interface may be quickly designed using a minimal number

of patterns.

Step 1: Finding a User-Interface Pattern (UIP)
That Best Describes the Project

Before the user—interface pattern language is able to be used, the
requirements and functional semantics of the project must be identified. In
this example, the basic requirement is that a set of related functions need to be

available. For example, the drawing program should allow the user to draw

128

freehand, execute circles and rectangles, etc. In other words, there must be a
relatively large number of related functions that will be alternately used. Since
a mouse—-oriented system is considered as a given, the user will be assumed to
typically select functions by using the mouse.

During Step 1, the list/catalog of UIPs must be examined in order to
discover the UIP that best describes the overall scope of the project. In other
words, the UIP that will be most influential with respect to the user interface
must be identified. In some cases, more than one pattern will relevant. For this
example, it is assumed that preliminary empirical studies have indicated that the
functions mentioned within the preceding paragraph will be the most frequently
used (relative to the other functions and options available). In general, utilizing
a drawing program involves a large number of tools and tool changes; therefore,
methods which minimize the time it takes to select and change tools would
be advantageous. The UIP that best fits these requirements is UIP 10:
PALETTES. UIP 10: PALETTES is probably the one that most adequately
depicts the scope of this small project; and, thus, it will be an integral part of
the screen design. In addition, UIP 12: MANIPULABLE WINDOWS also
should be inciuded since all the drawing will occur inside windows; as a
supplementary facet, the program should allow any number of windows 10 be

open.

Step 2: Starting to Search Through the User—
Interface Pattern (UIP) Network

All the UIPs that establish the context for the pattern(s) selected in the

Step 1 must be considered; and, if the power to include them exists, then they

129

shouid be inciuded. In this case, UIP 3: STANDARD SET OF ELEMENTS
is not relevant since the current task does not involve defining a set of user-
interface elements within a programming community. It is to be assumed
that palettes are included in the set of standard elements. In addition, UIP 7:
PERSONALIZABLE SCREEN LAYOUT will be included in the project.
Within this latter UIP, the user should be allowed to tailor the screen layout,
and it is important for the program-state information to not change unless the
user requests it.

It is now appropriate to consider the patterns which embeilish the
pattern(s) selected in the Step 1. First of all, the palette may be used a
distinguishing feature by incorporating UIP 4: DISTINGUISHING
FEATURES; thus, the palette should be protected from being obstructed by
other screen elements through including UIP 13: PROTECTED ELEMENTS.
In addition, the functions not included in the palette should be placed into
menus which may be accessed via UIP 11: PULL-DOWN MENUS. A palette
selection should not change unless the user explicitly changes it; hence, UIP 23:
USER IN CONTROL should be incorporated. Finally, the elements on the
screen must appear physically separated in order to avoid confusion with
respect to the structure of the interface. In this case, the boundaries between
the paiette, the menu bar, and the windows are relevant.

Step 3: Continuinlg and Completing the
B toom I Nomork

Step 2 delineated all the UIPs immediately preceding and immediately
succeeding each UIP (or UIPs) identified in Step 1. Now, Step 2 must be

130

repeated for all the UIPs that were identified in Step 2. Larger patterns should
be included only if the power to enforce them is given. Smaller UIPs should be
included only if they do not go beyond the level of detail dictated by the current
project. After having cycled through Step 2 for every pattern that is relevant,
the following pattern language for this small example emerges:

1. UIP 4: DISTINGUISHING FEATURES

2. UIP 7: PERSONALIZABLE SCREEN LAYOUT

3. UIP 10: PALETTES

4. UIP 11: PULL-DOWN MENUS

5. UIP 12: MANIPULABLE WINDOWS

6. UIP 13: PROTECTED ELEMENTS

7. UIP 18: LEVELS OF VIEW
8. UIP 25: ELEMENT BOUNDARIES
9. UIP 26: WORK AREA TOWARDS THE CENTER

10. UIP 27: FUNCTION SELECTION TOWARDS THE EDGES

11. UIP 28: AUTOSCROLL

12. UIP 30: ABSTRACTIONS WITHOUT RESTRICTIONS

The representational network for the UIPs in the preceding list is
portrayed in Figure 27.

The 12 patterns in the preceding list address the most important aspects
regarding the presentation of the drawing program to the user. Thus, it could
be said that they represent the facade of the program. The rough sketch in
Figure 28 portrays how the interface may be visualized by drawing out some of

the UIPs. Some program functionality is addressed by UIP 18: LEVELS OF

DISTINGUISHING
PERSONALIZABLE FEATURES (4)
SCREEN LAYOUT (7)

PALETTES (10)=s—&=PULLDOWN MENUS (111}

To 26,27

MANIPULATABLE

w w
LEVELS OF VIEW {18} INpoRs 12!

PROTECTED ELEMENTS {13)
To 26,27

ABSTRACTIONS WITHOUT AUTOSCROLL (28)
RESTRICTIONS (30) ELEMENT BOUNDARIES (23)

FUNCTION SELECTION g WORK AREA TOW ARDS
TOW ARDS THE EDGES (27} THE CENTER (26}

FIGURE 27. The Network for the Drawing Interface Patterns

Distinguisheble Featurs

Function Selection - Henu ber

i

Function Selection, space for paleties

Lots of element boundaries

FIGURE 28. A Rough Sketch of the Facade of a User Interface

131

132

VIEW and UIP 30: ABSTRACTION WITHOUT RESTRICTIONS, but these
patterns are also closely related to the facade of the program. As is pointed out
in Chapter VI, one of the problems with the pattern-ianguage methodology
within the user-interface domain is that only a subset of the patterns can be
drawn out on paper. For example, it is difficuit to draw UIP 30:

ABSTRACTION WITHOUT RESTRICTIONS.

Step 4: Adding Personal Patterns

The existing set of UIPs is incomplete. Yet, no matter how many UIPs are
eventually defined, there always will be cases in which new and different UIPs
are required. In the prototype example, it is already known that the paiette will
be placed somewhere close to the edges of the work space. However, no UIP
exists to indicates whether or not a single palette shouid be used for all the
windows (as opposed to each window being associated with a palette of its
own). Therefore, a new UIP is needed. However, this is not a typical personal
UIP, but rather a UIP that illustrates the incomplete state of the pattern set;
given this realization, such a UIP probably should be included within the next
general set of UIPs yet to be delineated. In the absence of specifications, it
will be assumed that the needed (new) UIP indicates that only one palette
should be used (e.g., in SuperPaint) instead of associating a specific palette with
each window. (In this instance, UIP 4: DISTINGUISHING FEATURES is
preserved because, even though no windows are open, the palette wiil remain

visible.)

133

Summary

Given a few system requirements and a description of functional
semantics, an example may easily be provided to represent how some aspects
of a drawing—program user interface could be designed using the patterns
previously presented in Chapter IV. Four simple steps, 1o indicate the proper
user—interface patterns which should be identified, completed the necessary
priorities instrumental to presenting an integrated example.

The foregoing completes an initial atiempt at defining the interrelatedness
of a few relevant user—interface patterns. In Chapter VI, preliminary results and
derivational limitations of the research that has been conducted are discussed.
Comments are presented regarding whether or not the pattern-language
approach is feasible. An outline is also provided in order to clarify the various

issues which remain to be resolved if the approach ever will be of practical use.

134

CHAPTER VI
CONCLUSIONS

This thesis is descriptive of efforts towards analyzing the feasibility ofa
new user—interface design methodology. This new methodology was based
on Alexander's (1979) and Alexander et al.'s (1977) work in the architectural
domain, as well as on several apparent similarities between architectural design
and user—interface design (Hooper, 1986). It has been asserted that the process
of translating system requirements and functional semantics into a user-
interface design specification can be complemented by employing the pattern—
language methodology. A pattern typically addresses (a) a problem that arises
due to human factors, (b) the context in which the problem arises, and (c)one
or more possible solutions to the problem. The main task of this research was
o relate problems observed within the human/computer interaction to the
underlying reasons for the problems, and then to find one or more solutions
that would reduce (and ideally eliminate) the problems. Most of the patterns
thusly unearthed were based on human needs, feelings, perceptions, limitations,
and instincts. Ultimately, the research led to the specification of 30 patterns;
subsequent to the identification of these 30 UIPs, it was possible to demonstrate
how the methodology may be used to produce a user—interface design
specification through presenting an example. Although it was beyond the scope

of this thesis to develop a comprehensive collection of patterns (and regardless

135

that many claims were made which have yet to be empirically proven), the
conclusion arrived at is that the pattern—language approach warrants further

investigation.
Results

Through the presentation of an initial set of user—interface patterns (UIPs),
a pattern language has been presented. It also have been demonstrated that
some aspects of user-interface design can be captured by this specific set of
UIPs. The main contribution of this thesis is that it indicates that it is possible
to generate user—interface design specifications by using a methodology which
incorporates as input the system requirements and functional semantics, and
then produces a design specification. This is a considerable step forward from
traditional user-interface design guidelines (ACI, 1987; Smith & Mosier, 1986)
in which typically all the rules, principles, and postulates are stated as stand-
alone facts with no indication as to when, where, and/or why they are relevant.
This thesis also represents distinctive step forward, relative to previously
existing design methodologies that address the transiation process. For
example, Moran's (1981b) command-language grammar produced a virtually
infinite number of design specifications, whereas the methodology proposed
herein is able to produce a more detailed and categorical specification.

The Usefulness of User—Interface
Patterns (UIPs)

One of the most useful aspects of the pattern-language approach is that it

ties together a large number of individual and fragmented pieces of knowledge.

136

Experts in user—interface design have typically adhered to a coherent set of
principles and experiences that they are able to incorporate into a single
specification; these experts know how the various rules relate 1o and effect

one another, and they are able to identify problem situations and create design
aiternatives. Less experienced designers, on the other hand, may actually be
aware of the same principles as are the experts; yet the less—experienced may
lack the a complete understanding regarding how the principles are interrelated.
Nevertheless, the problem is not to leam the individual ruies; it is, rather, to
understand when the rules apply, how they can be applied, and how they relate
to each other. And, moreover, it must be recognized that each UIP is an attempt
to describe these parameters.

UIPs specify when they apply by describing particular situations; in other
words, UIPs are context sensitive. UIPs describe how they can be satisfied
either (a) by giving specific solutions regarding how the interface should be
designed or (b) by referring to smaller and more specific UIPs. Thus, a UTP
describes its relationships with other UIPs by specifying which other (larger)
UIPs are needed for it to be present, and also by specifying the (smaller) UIPs
that are needed for it to be complete. The fact that only 30 UIPs have been
defined denotes that the existing user-interface pattern language is neither

morphologically nor functionally complete.
Towards Morphological Completeness

As it may be recalled, a pattern language is morphologically complete if

and only if its UIPs form a complete interface within which all the details have

137

been addressed. The UIPs defined in this thesis address only a representative
(but small) subset of all the elements which constitute a user interface and
only a small portion of the design issues that may be involved. Additional
UIPs unquestionably are needed. Within the UIP definitions (contained in
Chapter IV), potential yet—to-be-developed UIPs were suggested. For
example, UIPs that address high-level issues (such as direct manipulation)
and UIPs that address low-level issues (such as the ordering and grouping of
menu items) are needed.

A general pattern language, in itself, never will be morphologically
complete. (This fact introduces the inherent need for project-specific UlIPs

which are discussed in the section entitled Special-Purpose Projects).
Towards Functional Completeness

A language is functionally complete if and only if the patterns in the
language resolve all the conflicting forces which may possibly arise. The set
of UIPs delineated within this thesis does not resolve all possible conflicting
forces. Once again, the fact remains: There simply is not enough UIPs.
However, the ultimate question still arises: If there were an extensive number
of general UIPs, would it be possible to know absolutely that the language was
even close to functionaily complete? The only way to answer this question
would be to evaluate the user—interface designs with respect to a set of
performance measures (refer to Table 1, in Chapter I, on p. 8). In the author's
opinion, functional completeness is inconceivable. Functional completeness

specifically implies that the human/computer interaction would be flawless; but,

138

as emphasized by UIP 21: WARNING THE USER, slips are impossible for the
machine to detect. Thus, accomplishment of perfect functional completeness
appears to be, at least at this time, to be impossible. The conflicting forces
which may be present include (a) the existence of actions which are irreversible,
(b) the system which may assume that the user will respond correctly 10
warnings about irreversible actions, and (c) the users who sometimes make
unexplainable mistakes. These forces serve as a counterexamples which
invalidate the claim that all conflicting forces in the human/computer
interaction can be resolved. Unless it is possible to assume that the user is
perfect with respect to his or her actions, there will always exist conflicting

forces that cannot be eliminated.
Special-Purpose Patterns

No matter how many UIPs that are eventually defined, there will
always be special cases and unique projects for which no existing UIPs
apply. Consequently, it is important to distinguish between general (project—
independent) UIPs (such as those defined in this thesis and those which
Alexander et al., 1977, defined) versus UIPs that need to be specificaily defined
for a particular project in order to meet the special requirements set forth by a
user.

Alexander et al.'s (1977) general set of patterns addresses the most
common issues which arise and the decisions which must be made in
architectural design. However, even within the field of architecture, there

may be projects in which the client has specific requirements that are not

139

addressed by the existing patterns. In such cases, the architect attempts 1o
specify exactly what the client requires by creating new patterns; and, such
new patterns are specific to that particular client and project. A useful example
is Alexander et al.'s (1968) pattern language for a multiservice center (i.e., for
a community facility that provides a variety of special services to citizens).
The multiservice center described by Alexander et al. (1968) was intended
to help solve the problems that arise in low—income communities; and, a
specialized set of patterns had to be designed for this particuiar project.
Scenarios similar to that presented by the multiservice center are likely
to present themselves in the domain of user interfaces. A general set of UIPs
probably will be sufficient for addressing most issues in a large number of
user—interface designs; moreover, the need for some project—dependent UIPs
probably will also arise. This is especially true when designing user interfaces
for particular user groups (e.g., for users with poor eyesight or users with a
handicap that does not allow them to utilize the regular input and output
devices). In such individualized instances, the designer must identify the needs
of the users and the conflicts that must be resolved; and, then, the designer
needs to develop patterns that eliminate the conflicts. There will always be

special projects that require customized UlIPs.
Discussion
Integrating Users Within the Design Process

The pattern-language methodology assumes that the users of a new

system will contribute to the user—interface design process from the very

140

beginning. Two reasons may be provided to substantiate this recommendation.
First, the methodology translates system requirements and functional

semantics into a user—interface design specification; in other words, the

design specification is highly dependent on the nature of the tasks the system
shouid be able to carry out. The design specification also depends on how the
functions of the system should work. If the purpose is to design a user interface
that satisfies user requirements, it is simply sensible for users to be integrated
into the process at its initial stages. Second, a general pattern language will
never suffice for a large project; specialized patterns also will need to be created
as well. These specific patterns are based upon the users of the system, not on

the designers or programimers.
Top-Down Versus Bottom-Up Design

The translation process, from system requirements and functional
semantics 1o a user—interface design specification, produces a series of UIPs
(an example of which was provided in Chapter V). After the UIPs have been
identified, they must be implemented, that is, the UIPs must be satisfied within
the implementation of the user interface. The nature of pattern languages
suggests that a top—down approach shouid be undertaken because the larger
UIPs must be present in order for the smaller UIPs to exist. However, a strict
top—down approach does not seem to be appropriate in the process of
implementing or satisfying patterns in practice.

In the architectural domain, it has been observed that a design unfolds

bottom-up simultaneously with the high-level ideas and concept which are

141

kept in mind. According to G. Z. Brown (personal communication, May 1990),
in practice, there is a mixture of the top—down and bottom~up approach. Thus,
it may be unrealistic to assume that a user-interface pattern language can be

used as a basis for a strictly top—down impiementation process.
Aesthetics

User—interface patterns (UIPs) are useful for increasing the awareness of
the regarding the relationships among different aspects of user—interface design.
The UIPs explain where, when, and why certain problems occur and how they
can be solved; they provide instructions regarding how user—interface elements
should be positioned on the screen; and they suggest the type of functionality
which should be provided in order to satisfy user requirements. Yet, the
element that is missing in all this is aesthetics. This deficiency is well-known
in the architectural domain. Patterns can aid the designer to address all the
issues and problems that arise in the design process, but the implementation of
the patterns does not necessarily result in an aesthetically pieasing structure.
Aesthetics is also an important aspect of user—interface design. A pattern
language for user interfaces wiil suffer from the same shortcomings that have
been recognized in the architectural domain. According to G. Z. Brown
(personal communication, May 1990), this problem is a major obstacle

inhibiting the complete automation of the design process.
Refining UIP Interrelationships

For each UIP defined in this thesis, a related set of smaller and larger UIPs

has been specified in the same manner as Alexander et al. (1977) itemized

142

related patterns. The difference which exists in the domain of user—interface
design concerns the fact that, for every single pattern, the number of related
patterns seems to be much higher. In other words, there seems to exist
user—interface patterns which should and could be used to embellish all
other patterns. For example, UIP 20: REVERSIBLE ACTIONS, UIP 24:
EXPLAINING MESSAGES, and UIP 29: SHORTCUTS FOR THE EXPERT
can be considered as embellishing patterns for most of the other (both large and
small) patterns in the language. In the domain of user—interface design, it is
apparent that there exists some global set of patterns which apply in all aspects
of the design. If such giobal patterns exist, it must be determined how they can
be elegantly included in the language without making them just as vague as
traditional user—interface guidelines.
User—IIJ[lterface Patterns ciUIPs)
ust Be Evaluate

Finally, user interfaces must be evaluated; and, likewise, user~interface
patterns also must be evaluated. This is another reason why the users should
constitute an integral component of user—interface development. A set of UIPs
will be of no use unless each pattern has been empirically tested. Individual
experiments probably will have to be individually conducted for each UIP.
Experiments that will test an individual UIP and produce results that generate
information with respect to a set of performance measures must be developed.

It was beyond the scope of this thesis to evaluate the UIPs. The focus was
directed towards whether it could be possible to form a pattern language given

that the patterns were be validated; that is, the goal was to validate the UIPs.

143

Nevertheless, it should be noted that G. Z. Brown (personal communication,
May 1990) concluded that, even though Alexander et al. (1977) attempted to
justify their patterns, it is generally recognized (within the architectural field)
that it is essentially impossible to measure the goodness of many designs and
design decisions.
Drawable Versus Nondrawable User—
Interface Patterns (UIPs)

Alexander (1979) argues that, if structural relationships cannot be
captured in a drawing, then they do not constitute a pattern. However, it does
not seem reasonable for such an example or an illustration to be required for
user—interface patterns. The dissimilarity involves the fact that dynamics do not
need to be considered in architectural design to the same extent that they must
be considered in user—interface design. To be more specific, user-interface
design requires one or more patterns which address the need for viewing data at
different levels of abstraction; and, furthermore, the level of abstraction shouid
not impose any restrictions with respect to functionality. Such user-interface
patterns are more appropriately depicted using storyboards. The question

concerns, however, whether or not it is possible to develop a more elegant way

of translating user—interface patterns.
Automating the Pattern—Language Methodology

Given a set of patterns and a process for manipulating the patterns, an
interesting question comes to mind: Is it possible to automate the translation

of requirements and functional semantics into a user—interface design

144

specification? The answer is both yes and no; there are interesting aspects of
the design process that can be automated and there are aspects that cannot be
automated.

It is seems reasonable to first examine the aspects that cannot be
automated. A preceding discussion emphasized that UIPs neglect design
aesthetics. In essence, the problem is that automating design creation in a
manner which would be pleasing to the eye is beyond current technology.
Project—specific patterns also hinder the possibility of compietely automating
the translation process. Even though the process of creating and identifying
patterns might somehow be supported by an expert system, patterns are based
on user requirements; and, consequently, a considerable amount of user
participation is necessary.

In the author's opinion, the translation process might be automated (at
least partially) to the extent that a design specification similar to the one in
Figure 28 could be produced (refer to Chapter V, p. 131).

First, each high—level requirement specified by the user would need to be
matched with a UIP. The example in Chapter V illustrated that the need for
frequent mode changes resulted in the selection of UIP 10: PALETTES. To
automate this mapping, a great deal of knowledge must be associated with
every specific UIP. For example, in this case, the condition that the palette is
effective for frequent and rapid mode changes must be encoded. Knowledge
about the shape and size of the archetypical palettes also must be available.

Second, once a requirement has been mapped into a UIP, a production

system might determine the related (larger and smaller) UIPs. As the UIPs

145

become smaller, more information about the design specification is generated.
For example, if the production system accepted UIP 10: PALETTES as input,
it could return a hierarchy similar to the one illustrated in Figure 27 (refer to
Chapter V, p. 131). Such an automated design program would then not only
have knowledge about archetypical palettes, but also would know that the
palette should be located towards the edges of the screen since it is an instance
of a function-selection element (and, thus, subject to UIP 27: FUNCTION
SELECTION TOWARDS THE EDGES).

Even though the scheme described in the preceding is conceivable, there
are several difficult problems that require resolution. Although it is possible
that the scheme could work relatively well for small projects with few high-
level requirements (such as the one in Chapter V), problems would arise if
many (possibly conflicting) requirements needed to be considered (unless
specific patterns for these conflicting requirements existed). For example,
following satisfaction of Requirement A, removal of Requirement A may be
required in order to satisfy Requirement B. In a second attempt 1o satisfy
Requirement A, Requirement B may need to be removed. Consequently,
the system would need to know about tradeoffs, and how to tweak UIPs and
requirements so that all the requirements may be met. In reality, project-
specific patterns probably wouid have to be individually created. Humans are
relatively good at solving such problems, but automating these processes is
difficult.

In addition, problems related to knowledge representation would have

to be solved. Consider, for example, UIP 10: PALETTES and UIP 27:

146

FUNCTION SELECTION TOWARDS THE EDGES. It has been previously
established that knowledge regarding an archetypical palette would need to be
associated with UIP 10: PALETTES. Although there is no logical reason why
knowledge about the position of a typical palette shouid be deferred to UIP 27
FUNCTION SELECTION TOWARDS THE EDGES, given the way the
pattern language is organized this is exactly what happens. The question is
only reasonable: Why is not knowiedge about the shape and size of a palette
deferred to lower—level palettes? Presumably, there should exist patterns to
address the possible shapes of palettes. However, the point is that the pattern
language must be made consistent with respect to the levels at which the
information (of varying detail} is introduced.

In conclusion to this section, it must be emphasized that——before an
attempt is made to automate the translation process——a better understanding is
needed with respect to how the translation process is carried out by the human

designers for the human users.
Some Unexpiored Areas

In conformance with its intention, this thesis embraced a very limited
scope of patterns. For example, few patterns directly address the high-level
requirements which concem direct manipulation or none zero—in on metaphors.
For example, there currently do not exist UIPs which address such notions as
dragging or how to indicate that an object is touching or connected to another
object. Neither are low-level patterns included to address how icons should

look or how menu items should be ordered. In part this is due to the facts that

147

the pattern-language approach does not minimize the problems encountered
in the resolution of such complex issues, and generating UIPs to address these
matters is very difficuit. It may be remembered that UIPs should ultimately
bottom out with specific suggestions regarding how a problem may be solved.
The type and extent of the metaphors are project dependent, and probably
cannot be captured by general UIPs. This seems to be one of the many areas
in which project-dependent UIPs must be created.

In order to estimate the number of UIPs which would constitute a useful
set for a user—interface designer, the power of the language (i-e., the number
of patterns) versus ease of the language must be considered. As the power
increases, the ease of use decreases. Clearly, there exists more than the 30 UIPs
which were defined herein. Throughout the process of defining even these
30 UIPs (in Chapter IV), approximately 15 potentially additional UIPs and
areas of development were specified. Through extrapolation, it is estimated
that there exists a minimum of 50 patterns; it is more difficult to determine
an upper bound for the number of patterns. Nevertheless, any general set of
UIPs should describe similarities which are apparent within the world of user-
interface design. A general UIP should not describe elements which only can
be attested to within a single design. This greatly limits the potential number
of UIPs that may be present in a general pattern language for user—interface
design. In the author's opinion, the number of UIPs in a general pattern
language probably wiil not, and should not, exceed approximately 500. If the
number of patterns greatly exceeded 500, the language might become difficult

and impractical in terms of utilization. The number of UIPs also must be

148

limited in order for the language to be manageable. Experiences with the
Macintosh toolbox (which contains 900 toolbox and operating-system routines)
and large programming languages (such as ADA, with approximately 200
reserved words, predefined attributes, pragmas, operators, and types) indicate
that a tool can become difficult to learn and to use if the number of entities that

the user must be concerned with becomes too large.
Fina] Note

This thesis serves as an inspiration to explore new ways of translating
system requirements and functional semantics into a user—interface design
specification. Traditional user~interface guidelines provide negligible
assistance in this process, and presently there exists no acceptable method by
which graphical interfaces of event-driven systems may be represented. The
presentation, within this thesis, of a user-interface design methodology is an
approach which necessitates further development before any final conclusions
regarding its viability can be posited; yet, the approach does seem to be
promising. The anticipation is that others will be inspired by this work and that
these others will begin to view user—interface designs in terms of patterns.
Identifying, developing, and evaluating user—interface patterns requires a
significant amount of work; but a collective effort among researchers could
lead to a user—interface design methodology, as well as to a set of patterns

which would approach both morphological and functional completeness.

149

APPENDIX A

LEARNING ABOUT PATTERNS AND
PATTERN LANGUAGES

150

LEARNING ABOUT PATTERNS AND
PATTERN LANGUAGES

In the initial phases of this thesis study, it became evident that the notion
of patterns and pattern languages required an expanding understanding.
Specifically, there were two important questions necessitated answers. How are
pattern languages typically used in real-life projects? How are project-specific
pattemns typically created? Since the answers to these questions could not be
found in textbooks, interviews were conducted with an architect who utilizes
the pattern—language approach in order to achieve a fuller understanding of
the relevant solutions. During one of these interviews, the architect and the
interviewer (thesis author) were recorded by one video camera, while a second
camera captured the illustrations drawn by the architect. The answers to the

initial two questions posed at the beginning of this paragraph were addressed.
Using a Pattern Language in a
Real-Life Project

The major revelation from the interviews was a comprehension of how

pattern languages are used in practice. The most important point was that
the clients (of the particular field/discipline involved) should be involved in
the design process from the very beginning. According to the available
information, one or more architects would typically meet with the client(s);

this enables the architect(s) to develop a sense of the physical and social

151

requirements being requested. Although some requirements may be mapped
onto already—-existing general patterns, usually the existing patterns are used
merely as building blocks for the project-specific patterns developed based on
particular requirements.

Clients often have difficulties in expressing their desires; in fact, at
time, even they do not know what they want. One specific project which was
mentioned concerned the University of Massachusetts (in Amherst). The
School of Education had developed a new theory of elementary education, and
a group of architects was presented with the task to design a new school that
would reflect the new theory. The architects needed the developers of the
theory to describe the school as they conceived it. But the developers were
unable to do so; their inability was due primarily to the fact that images of
conventional school designs (which they wanted to abandon) hindered them
from imagining new directions.

The architects were required to be more clever in the way they approached
the clients. They asked more specific questions such as "Can you describe a
typical day in the life of a student?" and "Can you describe a typical day in the
life of a teacher?" Over 1-week period, the architects obtained an overall sense
of the structure of the school. In addition, the week was very helpful for the
clients in that they gained a better understanding of the physical and social
requirements of the new school.

After a series of meetings between the architect(s) and the client(s), an
architect is able to develop a pattern language that is quite specific to the

project and the requirements of the client(s). The language should provide an

152

appropriate sense regarding the design. But, because it does not physicaily
specify the design, the plans for a building may not have been drawn yet; yet,
the patterns that will constitute the building(s) provide both the architects and
the clients with an adequate idea regarding how the finished design will appear.
When the clients are satisfied with the patterns that have been deveioped
and the architects believe that they have captured all the aspects of the project,
the process of integrating the patterns into a complete design is initiated. The
result of this process is a specification from which a structure may be buit.
Thus, the process is comparable: Patterns are used as tools to transiate the user
requirements into a specification, from which a structure may be designed and

then built.

The Creation of a Project Specific Pattern

When architects converse with a client they attempt to attain a sense of
the client's physical and social requirements. It cannot be assumed that these
requirements are nonconflicting. The architect must attempt to create one or
more patterns that will incorporate all the requirements. The following example
illustrates that a pattern can be created to accommodate opposing needs.

The clients in this example were founding a new settlement in the north
of Israel. As usual, the architects worked with the clients in order to obtain an
understanding of the latter's goals. One of the most important issues for the
clients was the relationship within the community. On the one hand, they
wanted to be very close as a community. They defined this to be the ability

to drop in and visit each other often; moreover, within the community, there

153

were smaller groups who were even more solidified. On the other hand, the
people in the community wanted to be able to walk out of their houses and
immediately appreciate the surroundings without coming into contact with
other people in the community. These two opposing needs were solved by the
pattern depicted in Figure 29. (The figure is a re—creation of the pattern that the

architect actually drew on paper during the interview.)

Serjes of
houss clusiers

Housing Units

A ridge that works s way up a nill

Spine

FIGURE 29. A Pattern Satisfying Two Conflicting Requirements

Since the site was on a ridge that worked its way up a hill, the pattern
which emerged incorporated a series of house clusters that would come off of

small nodes. Thus, a series of houses would be clustered around a bit of

154

common land, then another cluster 100 yards up or down the hill wouid appear.
The closeness of the community was preserved by placing the house clusters
close to each other (i.e., within 100 yards). The smaller groups could settle in
particular clusters; and, even in particular nodes, within a cluster. Between the
clusters, open land existed which helped in terms of satisfying the second
requirement.

Even though this example beautifully illustrates how a pattern may be
created to satisfies a set of (conflicting) requirements, the interviews did not
clarify the steps that the architect(s) went through in order to create the
pattern(s). In order to capture this process, a protocol analysis of architects
during pattern creation must be conducted. Even with such an analysis, it
probably would be difficult to understand exactly how patterns such as the

preceding one are created. Creativity is a human phenomenon that is not well-

understood.

155

APPENDIX B

THE USER-INTERFACE PATTERNS (UIPs)
ORGANIZED IN A NETWORK

156

THE USER-INTERFACE PATTERNS (UIPs)

ORGANIZED IN A NETWORK

Figure 30 depicts the relationships between the 30 patterns that were
defined in Chapter IV. The arrow directed from UIP A to UIP B indicates that
UIP A is embellished by UIP B. All the relationships that are depicted within

the figure are also specified as a part of the pattern definitions included in

Chapter IV. Although the figure is of little practical use to a designer, it serves

to illustrate a conceptualization of how the UIPs are interrelated.

A summary of the previously delineated user—interface patterns (UIPs) is

provided, not only to facilitate recognition in terms of Figure 30, but also to

refresh the reader's memory regarding the UIPs which have been addressed and

included within Chapter IV:

1.

© P N N R W N

UIP
ulp
UIP
UIP
UIP
UlP
10) 1
UIP
UIP

1: INDEPENDENT PROGRAMS

2: ACTIVITY CENTER

3:STANDARD SET OF ELEMENTS

4: DISTINGUISHING FEATURES

5:TRANSFER OF DATA

6: EASY TRANSITION BETWEEN PROGRAMS
7: PERSONALIZABLE SCREEN LAYOUT

8: LIMITED NUMBER OF COMMANDS
9:STANDARDIZED METHODS

157

[12

)28

fo7 (129

21 024 23

124

120

FIGURE 30. The Relationships Between User-Interface Patterns (UIPs)

10.
11.
12.
13.
14.
15.
16.
17.
18.
15.
20.
21.
g2

24.
25.
26.
27.
28.
29.
30.

158

UIP 10: PALETTES

UIP 11: PULL-DOWN MENUS

UIP 12: MANIPULABLE WINDOWS
UIP 13: PROTECTED ELEMENTS
UIP 14: SAVING THE PROGRAM STATE
UIP 15: DATA SELECTION

UIP 16: DATA INSERTION

UIP 17: SHAREABLE SCRAPBOOK
UIP 18:LEVELS OF VIEW

UIP 19: IMMEDIATE FEEDBACK
UIP 20: REVERSIBLE ACTIONS
UIP 21: WARNING THE USER

UIP 22: LIMITING THE EFFECTS OF THE DIALOG
BOTTLENECK

UIP 23: USER IN CONTROL

UIP 24: EXPLAINING MESSAGES

UIP 25: ELEMENT BOUNDARIES

UIP 26: WORK AREA TOWARDS THE CENTER

UIP 27: FUNCTION SELECTION TOWARDS THE EDGES
UIP 28: AUTOSCROLL

UIP 29: SHORTCUTS FOR THE EXPERT

UIP 30: ABSTRACTION WITHOUT RESTRICTIONS

159

REFERENCES

160

Alexander, C. (1979). The timeless way of building (Vol. 1). New York:
Oxford University Press.

Alexander, C,, Ishikawa, S., & Silverstein, M. (1968). A pattern language
which generates muiti-service centers. Berkeley, CA: Center for
Environmental Structure.

Alexander, C., Ishikawa, S., & Silverstein, M. 1977). A pattern language:
'll)‘own_s# buildings, construction (Vol. 2). New York: Oxtord University
ress.

Alexander, C., Silverstein, M., Angel, S., Ishikawa, S., & Abrams, D. 51975).
The Oregon experiment (Vol. 3). New York: Oxford University Press.

Apple Computer Inc. (1987). Human interface guidelines: The Apple desktop
interface. Reading, MA: Addison—-Wesley.

Chapman, D. (1981, November). A program testing assistant (Al Memo
No. 651). Cambridge: Massachusetts Institute of Technology, Artificial
Intelligence Laboratory.

Deatherage, B. H. (1972). Auditory and other sensory forms of information
presentation. In H. P. Van Cott & R. G. Kinkade (Eds.), Human

engineering guide to equipment design (rev. ed., pp. 123-160).
Was%mgton, %C: Us. bovernment Ennting Office.

Furnas, G. W., Landauer, T. K., Gomez, L. M., & Dumais, S. T. 1987).
The vocabulary &oblcm in human—system communication [Research
contributions]. Communications of the ACM, 30, 964-971.

Grether, W. F., & Baker, C. A. %972). Visual representation of information

In H. P. Van Cott & R. G. Kinkade (Eds.), Human engineering guide to
equipment design (rev. ed., pp. 41-121).” Washington, %C; Ug
overnment Printing Office.

Hooper, K. (1986). Architectural design: An analogy. In D. A. Norman &

S. W. Draper (Eds.), User centered system design (pp. 9-23). Hillsdale,
NJ: Erlbaum.

Hutchins, E. L., Hollan, J. D., & Norman, D. A. (1986). Direct manipulation
interfaces. In D. A. Norman & S. W. Draper (Eds.), User centered system
design (pp. 87-124). Hillsdale, NJ: Erlbaum.

Jacob, R. J. K. (1983). Using formal specifications in design of a human-
computer interface {Research contributions]. Communications of the
ACM, 26, 259-264.

Johnson-Laird, P. N. (1983}5 Mental models. Cambridge, England:
Cambridge University Press.

161

Moran, T. P. (1981a). An applied psychology of the user [Guest editor's
introduction]. Computing Surveys, 13(1), 1-11.

Moran, T. P. (1981b). The command language graminar: a representation for
the user interface of interactive computer systems. International Journal

of Man—-Machine Studies, 15, 3-50.
Smith, S. L., & Mosier, J. N. (1986, Au si)). Guidelines for designing user
interface software (Tech. Rep. No. ESD-T R-86-278). Beafora, MA:

The Mitre Cargoration. (Available from National Technical Information
Service, 5285 Port Royal Road, Springfield, VA 22161, NTIS

Doc. No. AD A177 198)

	1990a[98].pdf
	1990b[74].pdf

