PERTUTOR: AN INTELLIGENT TUTORING SYSTEM
IN THE DOMAIN OF PERCENTAGES

by
LILLIANA SANCHO-CHAVARRIA

A THESIS

Presented to the Department of Computer
and Information Science
and the Graduate School of the University of Oregon
in partial fulfillment of the requirements
for the degree of
Master of Science

December 1991

APPROVED: Nv—\w\ T(Mhd\

Dr. Arthur M. Farley

An Abstract of the Thesis of
Lilliana Sancho-Chavarria for the degree of Master of Science
in the Department of Computer and Information Science

to be taken December 1991

Tide: PERTUTOR: AN INTELLIGENT TUTORING SYSTEM IN THE DOMAIN OF
PERCENTAGES

& t
Approved: '\mmb&‘l

Dt Arthur M. Farley i

The focus of this study is on a tutorial system in the domain of percentages. We
present PerTutor, a system developed under the framework of Intelligent Tutoring
Systems. The purpose of the system is to provide reasonable explanations and guidance
and to adapt the level of difficulty of problems 1o each individual’s knowledge about
percentages. PerTutor is comprised of four main modules: the expert, the student model,
the tutor, and the user interface. It relies on previous tutorial interactions to determine both
the explanations and the level of difficulty of the problems that will be presented next. An
inital implementation of the system demonstrates that PerTutor exhibits some degree of
flexibility and intelligence. It generates problems of different levels of difficulty, identifies
different ways in which students can approach a problem, and responds according to each

situation. Improvements for a future version of the system are also discussed.

v

VITA

NAME OF AUTHOR: Lilliana Sancho-Chavarria
PLACE OF BIRTH: Cartago, Costa Rica

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon

Instituto Tecnolégico de Costa Rica
DEGREES AWARDED:

Master of Science, 1991, University of Oregon

Bachelor's Degree in Computer Science, 1987, Instituto Tecnoldgico de Costa Rica
AREAS OF SPECIAL INTEREST:

Artificial Intelligence

User Interfaces
Computers in Education

PROFESSIONAL EXPERIENCE:

Instructor, Department of Computer Science, Instituto Tecnoldgico de Costa Rica,
Costa Rica, 1986-1989

Instructor, Instituto Latinoamericano de Computacién, Costa Rica, 1987-1989

Computer Consultant, Private Practice, Costa Rica, 1988-1989

AWARDS AND HONORS:
Fulbright-LASPAU Scholarship, 1989-1991

PUBLICATIONS:

Aguero, U. & Sancho, L. (1990). La computadora como herramienta educativa.
Tecnologia en Marcha. 94), 3-7.

ACKNOWLEDGMENTS

I wish to express my sincere gratitude to my adviser, Dr. Arthur Farley, for his
continuous support, assistance, and encouragement throughout the development of this
thesis.

I would also like to thank the Fulbright-LASPAU organization, without their
support my Master’s program would have been only a dream. I would like to extend my
appreciation to my adviser at LASPAU, Mrs. Julie Leitman, for her assistance and her
willingness to help.

1 am also grateful to my family, especially my mother, for teaching me the value of
education.

Finally,] would like to thank my friends in Eugene, for the support that they have

given me, especially during the last stages of this project.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTIONctieiiiiiiiiiiiiiniiiiniiesennrneareaeeieneanans 1
The Domain of Percentagesc.ccovvviiiiiiieiininnirnnnmnanenn., 2
Existing Software for the Instruction of Percentages 3
[I. OVERVIEW OF THE USE OF COMPUTERS IN EDUCATION 7
Evolution of Computer Assisted Instructionc.o.coiiinnnn. 7
Intelligent TUtOTINg SyStemMSuiviininiieniiiiiiieren e 10
III. A PERCENTAGE TUTOR...cocciiiiiiiiii vt nisan e 16
The Expert Moduleoooiiniiiiiiiiii e 16
The Student Modelooiniiriiiiiii e 25
THE TUIOT «eneineenteriiientene et iaee e eiaraesreasensansanesneatansaaann 26
The User INterface ...ooeivtiierioaitiiiiiintiiies i e iesare e 30
IV. EXAMPLES FROM AN INITIAL VERSION OF THE SYSTEM....... 35
V. DISCUSSION ittt et e e st ea e v saes 46
APPENDIX: SOME DETAILS ABOUT THE IMPLEMENTATION................. 50

REFERENCES ...ttt iara ettt stec s sa s sa e 57

vi

Table

th W

LIST OF TABLES
Page

Examples of Different Types of Problems..................o 18
Rules for the Generation of the Percent and the Total 20
Equations to Solve Percentages Problemscooiiiiiins 23
Rules for the Level of the Next Problem ..o, 27
Specific Tutorial Rules by Type of Error and Number of Trial when It

Is the First Time the Error Occurs in the Session 28

Specific Tutorial Rules by Type of Error and Number of Trial when the
Error Has Already Occurred in the Sessionovneinan. 29

Examples of Possible Operations or Clauses for Problems of Type I 53

vil

viii

LIST OF FIGURES

Figure Page
1. AnExample of a SUPERPILOT Programcocooiveiiiiiininninnnns 8
2. Components of an Intelligent Tutoring Systemcccccvvninennnn. 12
3. AViewofthe UserInterfacecoovviviiiiiiiniiiiininini, 31
4. TheFIe MENU ...oviiieieiniiieeeiem ettt ss e aaaea e eaens 32
5. TheEdiMenuoviiiiiiiiiiiii i 33
6. TheSpecial MENU ...oveiriiniiiiiii 33
7. The Windows Menucocviiiiiiiiiiiiiiiiiiiiic s 34
8. User Interface After Problem Statement Has Been Given 35
9. Student Gave the Correct Solution to the Problem in the First Tnal....... 36

10. Use of the Operations Windowocciiiiiiiiiieninininiiciinan.. 37
11. StudentIs Missing One Stepc.coiviiiiiiiiiiii i, 37
12. Student Computed the Missing Step and Gave the Correct Answer....... 38
13. Tutor Determines that Steps Do Not Correspond to Any

Partial or Complete Solution of the Problem........................... 39
14. Tutor Determines that Steps Do Not Correspond to Any

Partial or Complete Solution of the Problem (Continued)............... 39
15. End of the Tutor's Explanation for Example 3..................ccoonae 40
16. Student Gives Correct Answer after Failing First Attempt..........cooou. 40

17. Tutor Determines that Steps Correspond Neither to Partial Nor
to Complete Solution of the Problem (Short Explanation)............... 41

18. Tutor Determines that Steps Correspond Neither to Partial Nor to
Complete Solution of the Problem (Short Explanation Continued)..... 42

19. Student Divides Rather than Multiplying......ocoovimiieviniininnnennn. 43

20.

21.
22,
23.
24,
25.
26.
27.

Student Corrects the Buggy Procedure, and Multiplies Instead
Of DIVIdING c.vvvviininiiniiiin e

Student Does the Same Error, Divides Instead of Multiplying.............
Tutor Bases Explanation on Previous Problemoooiiiiin,
Student Solves Problem after Tutor’s Reference to Previous Problem....
Elastic Ruler for Percentagescccovviiiiiiiiiiiiiiiiiiiiiiinnnnn,
A General Data Flow in PerTutorcccociiiiiiiiiiiinenn,
Student’s Interaction ina Problem ..o

N By EY R 102 v o1 1[0) DL

ix

Page

43

CHAPTERI

INTRODUCTION

Percentages have become a necessary concept with which to understand modern
society. Nowadays, it is common to hear about the percentage of unemployment,
percentage of taxes, percentage of people in agreement or disagreement on a certain issue,
percentage of discount, the percentage of inflation, and even the percentage of cotton in a
T-shirt.

Although the understanding of percentages seems to have become important,
research has shown that many students have little comprehension of problems that involve
percentages. In 1978, the National Assessment of Educational Progress reported that only
about 50% of seventeen-year-olds and about 33% of the thirteen-year-olds could convert
9/100 to a percentage, and also that only about 50% of the seventeen-year-olds and about
20% of the thirteen-year-olds could state the percentage of games won by a team that won
five of twenty games (Wiebe, 1986). In a study of 669 first and second-year algebra
students, Blohm and Wiebe (1980) found that the average score of students when asked to
solve problems in the form "A% of B =" and "B - (A% of B) =" was only 32%.

These results suggest that the traditional methods for teaching percentages are not
effective. Glatzer (1984) claims that the problem is that the emphasis is placed on
mechanical procedures and the concept and applications of percentages are very often left
out. However, the above results also suggest that there has been little success in teaching
the mechanical procedures to solve percentage problems, and it is clear that students have

difficulty in understanding how to solve the equations for percentage problems. Therefore,

not only the concept of percentage needs to be emphasized but also the methods by which
percentage exercises are solved.

Most teaching methods present the material uniformly to all students without
considering individual differences and paces of learning. This usually happens as a result
of the amount of students per teacher. The lack of individual instruction might also affect
the student's understanding of a subject. Computers, on the other hand, can be viewed as
instruments that can help teachers to fill the gap of individualized learning. The claim is that
computer tutors have the potential to provide instruction that is dynamically adapted to the
learner {Ohlsson, 1987).

This study presents a proposal for an intelligent tutorial system for percentage
problems, which we have called PerTutor. It consists of a system that gives reasonable
explanations and guidance, adapting the level of difficulty of the exercises to each
individual's degree of knowledge about percentages. Description of an initial implemented

version of the system is also presented.

The Domain of Percentages

Percentage problems usually deal with finding one of three variables, either the
percentage, the part, or the whole (total); consequently, we can identify three basic types of
percentage problems. Type I problems seem to be the most common of all three. In Type I
problems both the percent and the total are given, and the student is asked to obtain the
amount of the part; for instance, what is 30% of 50 ? In Type II problems the percent and
the percentage are given, and the student is asked for the total, for instance, 4 is 10% of
what ? Finally, in Type III problems the percentage and the total are given, and the student

is asked for the percent; for instance, what percent is 15 of 50 7 Further types of problems

can be created by dealing with parts directly and their effects on the total amount (e.g.
mixture problems).

In order to solve a basic percentage problem, a student must identify the type of
percentage problem and apply the corresponding equation. However, there is more than
the solution to the equations involved in the understanding of the concept of percentage.
Students should also be able to understand when a resuit actually makes sense.

In addition to the three basic types of problems, we could consider a fourth type
that can give the student a broader view for the understanding of the concept of
percentages. Type IV problems involve situations in which the student is required to do an
addition or subtraction afier the percentage has been computed. The following is a typical
situation. The store has a bicycle on sale at 20% off. If the original price of the bicycle
was $90, how much would it cost now ? Notice that the level of difficulty of the problems
increases from Type I to Type IV problems.

Textbooks typically present percentages as follows: the concept of percentage,
changing fractions and decimals to percentages, changing percentages to decimals and
fractions, finding percentages, and solving percentage problems and applications. An
alternative approach to teaching percentages is to present problems in sequence from Type I
problems to Type IV problems, providing the appropriate guidance when the student
commits mistakes, and advancing according to the level of knowledge of the student. Itis

this approach we will investigate with one tutorial system.

Existing Software for the Instruction of Percentages

Most of the existing software for the instruction of percentages falls into the

category of drill and practice (see chapter IT). Three recent percentage programs were

studied: MEEC's Automotive Math II, Gamco's Percent, and QED's Proportions and
Percents.

Automotive Math II is a program for the instruction of decimals and percents. For
the instruction of percents, the system presents a main menu from where the student
chooses to see examples, to do a practice, or to do a test. Both the examples and practice
parts are divided into sections for multiplication (type I), division (type II), or mixed
operation (type IIT) exercises. In the examples section, the system displays a problem
statement and then a step by step solution of the problem. In the practice section, the
maximum number of exercises is pre-established, but the student has the option of
choosing a number of exercises less than the maximum amount. All data in the program is
generated randomly, so the system has no conwro! on the level of difficulty of the problems
being generated. In the practice section, a problem statement is given, and the student has
to type in the final answer to the problem. The system requires a very precise response in
order to identify it as a correct answer; in other words, the student has to be careful with the
amount of decimal places included in the final answer. If the student did not give the
correct answer, the system will ask the student to give data for each of the steps involved in
the solution of the problem. In the case that the student can not solve the problem, the
system will give the solution to it.

Gamco's Percent also has one section for each type of problem. Each section
consists of ten problems. The data is generated randomly, but with certain rules to generate
problems of different levels of difficulty. For instance, let's consider the distribution of
data for Type 1 problems. In 20% of the problems of Type I, the percent is a whole number
from 10% to 99%. In 10% of the problems, the percent is a whole number less than 10%.
In 30% of the problems, the percent is a whole number greater than 99. In 10% of the
problems, the percent is equivalent to 1/3, 2/3,1/6, or 5/6. In 10% of the problems, the

percent is a mixed number less than 100%. And in 20% of the problems, the percent is

less than 100% and has one or two decimal places. Similar distributions are used for the
other types of problems. Although this program makes an effort to take into account the
level of difficulty of the problems, the program shows a great amount of randomness, and
does not tailor the level of difficulty of the problems to the student's needs.

In Gamco's Percent, the student gives the solution to the problem by typing the
final answer. If the answer is incorrect, the system will give one more trial to student; if
still the student did not give the correct answer, the system will display the answer and
require the student to type it in. This program does not provide tutoring when the student
makes mistakes, instead it provides a help option which the student can select to obtain a
general explanation about percentages.

QED's Proportions and Percents is the Jargest of the three systems, and provides
more guidance than the other two systems. It contains 24 sections, and the level of
difficulty increases from section 1 to section 24. The first sections provide exercises in the
domain of proportions as an introduction to the topic of percentages. Some other sections
contain exercises by type of problem and by common situations where percentages can be
used. For example, section 10 consists of exercises that include discounts and taxes.
Students can work in any section. If the student makes many mistakes in a section, the
system would recommend a change to a previous section; it is the student’s choice to do so.
Explanations in this program are very elaborate, and solutions are given step by step. The
general quality of the system is good; however, as in other percentages systems, the data is
generated completely at random, and the system does not take into account the student’s
procedure to solve the problem.

In general,the systems studied exhibit some degree of flexibility by allowing the
students to choose the type of problems they want to solve; however, all interactions in the
systems are pre-established. QED's Proportions and Percents was considered superior to

the other two programs. All of the systems studied disregard the procedure used by the

student when trying to solve a problem, which is a critical factor in determining the kind of
assistance required by the student. Additionally, the systems can not identify partially
correct solutions; that is, they can only determine if the solution was right or wrong.
Another drawback of these systems is that they generate the data completely at random, and
do not take into account that the level of difficulty of the problems varies depending on the
data; consequently, the level of difficulty of the problems is not adjusted according to the
perceived student state of knowledge about percentages. It is clear that the amount of
domain knowledge available to these systems is very limited.

The rest of this document describes PerTutor, a tutorial system for the instruction of
percentages. The system will arempt to solve some of the problems that often appear in
current educational software. Chapter II presents a brief overview of the use of computers
in education and discusses Intelligent Tutoring Systems as the framework used to develop
the proposed system. Chapter III presents the design of the system. Chapter IV provides
example interactions with the initial implemented version of the system. Finally, chapter V
evaluates the system, and discusses some issues for future research in the field. An
Appendix presents details of data structures used to implement the percentage tutoring

system.

CHAPTER I

OVERVIEW OF THE USE OF COMPUTERS IN EDUCATION

Evolution of Com T isted In ion

Computers have been thought to be useful for education since the 1950's (Yasdani,
1987). Computer Assisted Instruction (CAI) started as drill and practice programs, which
led the students through a linear path and presented and evaluated the same material. The
purpose of these systems was to reinforce knowledge. However, students could advance
through the material by trial and error without obtaining enough feedback and without
learning. Drill and practice systems were too rigid and provided little evidence of the
advantage of using computers in education.

In the 1960's, the approach was to use the student's response to control the material
that would be shown next. This idea led to the development of branching programs, which
would contain a limited number of pre-established scripts that would be triggered by the
student's responses. The main benefit from this idea was that programs would display at
least some degree of flexibility. However, programming these branching scripts was a
very laborious task. As an atiempt to provide teachers with a simple programming language
to develop educational software, authoring languages emerged (Gagné,Wager, & Rojas,
1981). SUPERPILOT is an example of an authoring language. It has instructions to
present text, accept responses, perform computations, display special effects, and control
program flow. Figure 1 presents an extract from a SUPERPILOT program. The

instruction T: is used to display text, the instruction A: is used to accept the student's

responses, the instruction M: is used to match the teacher's response with the student's
response, and the control instruction J: is used to branch to various places within the
program, depending on the student's answer. The program begins by asking the student
about the amount of planets in the Solar System. If the student responds 9, which is the
correct answer, the program will say that it is the correct answer and will branch to the third
segment. Otherwise, the program will branch to the second segment where the program
explains that there are 9 planets and asks the student if she knows their names. If the
student knows the names, the system will branch to the fourth segment; otherwise, it will
say the names, and then will branch to the fourth segment. The rest of the program

operates in a similar fashion.

* first
T: How many planets are there in the Solar System ?
A

M:9

JN: second

T: Correct! There are 9 planets in the Solar System.
J: third

*second

T: No, there are 9 planets in the Solar System.

T: Do you know their names ?

A:

TN: Their names are: Mercury, Venus, Earth, Mars, Jupiter, Saturn,
Uranous, Neptune and Pluto.

IN: fourth

*third
T: Which is the biggest planet ?

A
M: %Jupiter%

Figure 1. An example of SUPERPILOT program.

SUPERPILOT also provides instructions that support graphics and audio. The

graphics editor is quite rudimentary, and it takes a long time to prepare the graphics.

Although it might be easier to learn and use than regular programming languages,
SUPERPILOT requires a significant level of skill from the teacher for it is actually a non-
structured programming language. The idea of providing teachers with tools to develop
instructional interactions was good; however, similar problems to the ones encountered in
SUPERPILOT are also found in other authoring languages. Most of these problems are
due to fact that the computer technology of the 1960's did not facilitate the development of
educational software.

In the 1970's, generative systems evolved (Woods & Hartley, 1971; Sleeman &
Brown, 1982). These systems had the capacity of generating some of the teaching
material. Woods and Hartley proposed models to generate teaching material for arithmetic
computation tasks; particularly addition. They first developed an experimental model of
task difficulty, which would be used for the generation of the examples. They found that
the probability of successfully adding a column, regardless of the number of columns that
form the example, varies both with the size of numbers and with the number of numbers to
be added. From the model, they derived a formula to express the effects of number of
rows and size of numbers on the probability of success and time taken to complete an
example. The formula is used by the computer to extrapolate and interpolate from
experimental data and generate examples at other difficulty levels. Thus, the computer
would generate examples for a pupil to work at a specified level of success.

Since the idea was to use the computer for individualized instruction, an important
issue was how to adjust the level of difficulty of the examples to the student's competence.
This problem was approached by allowing the computer to operate in an optimistic or
pessimistic mode. When the level of success of the student is greater than the specified
probability of success, the program becomes optimistic and gives a greater weight to past
performances at lower difficulty levels (where the student should have been more

successful). The pessimistic mode, on the other hand, operates in an opposite way. The

10

computer would have to readjust continually the limits of the difficulty class in which the
student was working in order to generate suitable problems. Generative systems are also
called adaptive systems because they were devised to select problems at the level of
difficulty appropriate to the student's performance.

As the above example shows, generative systems could actually function for
personalized instructional purposes. Their strength is in their capacity to generate teaching
material, and they have been mostly used in the domain of arithmetic. The application of
this technique in other domains could be more difficult because randomly generated data
might produce incoherent situations. In addition to that, most of the criteria they follow to
provide individualized learning is based on parametric summaries rather than on explicit
representation of the student’s state of knowledge in the domain (Sleeman & Brown,
1982).

By 1980, the research community seemed to agree that computer-based
instructional systems must exhibit some degree of intelligence. The notion of knowledge
became central to the development of instructional systems. It was deemed for the systems
to show flexibility and adapt to the needs of individual students as a human tutor would. At
this point, research in computer-based instructional systems bonded to the field of Arificial
Intelligence because the representation of knowledge within intelligent systems was a
common interest. Intelligent Tutoring Systems emerged as an attempt to deal with the

shortcomings of generative systems (Sleeman & Brown, 1982; Yasdani, 1987).

Intelligent Tutoring Systems

Intelligent Tutoring Systems go a step beyond traditional CAI (Burns & Capps,
1988). In traditional CAI, both the specific domain and the teacher's knowledge are pre-

programmed, so traditional CAI systems are neither flexible nor adaptable to the individual

11

behavior of the students. The idea of ITSs is then to develop domain-specific tutoring
systems capable of displaying some degree of intelligence; that is, systems that approximate
the behavior of an expert human tutor and are adaptive to aspects of the student’s behavior
rather than responding according to a fixed pattern (Bregar, Farley, & Bayley, 1986).

The notion of knowledge communication is central to ITSs. Wenger (1987) defines
the task of teaching and learning as a task of knowledge communication. This refers to an
instructional situation that involves a tutor (either a tutoring system or a human tutor) and a
student, where the object of communication is knowledge or expertise in some domain.
The power of a tutoring system is found in the amount and types of knowledge that it has.

Wenger identifies four main components of an ITS. They are the expert module,
the student model, the pedagogical model (or tutor), and the user interface. Figure 2
indicates the interactions among the components of an ITS. The expert module contains a
representation of the knowledge to be communicated. An ideal expert module would be
able to perform well in the domain, as a human expert would; that is, it would generate
problems and their complete solutions, including intermediate steps. It would also generate
different solution paths in order to compare its solutions to the student’s solution.
Anderson (1988) describes the expert module as the backbone of any ITS, for it provides
the domain intelligence. He claims that an adequate expert module must have an abundance
of knowledge, and consequently, a great deal of effort needs to be expended to discover
and codify that knowledge.

There are basically three approaches to encoding expert knowledge. One approach
refers to "black box" expert systems, which encode the knowledge without actually
codifying the underlying human intelligence. Black box systems generate the correct input-
output behavior, but the internal computations that produce the behavior are not available
for inspection. A second approach refers to "glass box systems", which are able to

articulate knowledge about the domain. Glass box systems are built using methodologies

12

from the knowledge engineering field; that is, 2 knowledge engineer and a domain expert
formalize key concepts, and design a system (usually a rule-based system) 1o represent and
communicate the knowledge. Finally, a third approach is to make the expert module a
simulation of the way a human uses the knowledge. This is the most demanding approach,

but is also the one that more closely represents an ideal expert module.

Domain || Expert | qgg———ypp{Student Model
A

User Interface | gg——-| Tutor

7
v

Student

Figure 2. Components of an Intelligent Tutoring System.

The student model represents a student's current state of knowledge about the
domain (Wenger, 1987). Its main purpose is to allow the system to adapt to the individual
needs of the student. It may be consulted with several purposes. One of them is to decide
when a student can move to a next type of exercise or a new topic. Another is to offer
unsolicited advice when the system determines that the student needs it. A third purpose is
to generate adequate problems for the student. Finally, the student model is used to adapt

the explanations and provide appropriate guidelines. The student model is constructed

13

through a process of diagnosis, in which observable behavior is used to infer the student's
current state of knowledge. Both the student model and the diagnostic module are tightly
related, since the student model is the data structure and the diagnosis s a process that
manipulates it (VanLehn, 1988). One of the major problems for the construction of the
student model is that is needs to be updated dynamically, since hypothesis about the
student's current state of knowledge might not hold anymore after the student has learned.
The construction of the student model is a difficult task, and even human tutors sometimes
are not able to do an accurate analysis of the student’s deficiencies.

The pedagogical model, or tutor, is composed of pedagogical decisions (Wenger,
1987). It comprises the tutorial methodology that will determine the tutorial interactions;
that is, it determines the manner in which topics are treated and presented. In this regard,
didactic decisions are based on references to both the student model and the domain
knowledge. The literature shows that didactic decisions are also based on the type of
instructional environment that is being used. ITSs usually take the pedagogical approach of
problem-solving monitors, mixed-initiative dialogues, or coaches (Sleeman & Brown,
1982; Wenger, 1987). Monitors maintain a high degree of control over the instructional
interaction. They monitor the student's activities and adapt to the student's responses, but
do not yield control to the student. An example of this type of environment is ACE, a
problem solving monitor that analyzes complex explanations in the domain of nuclear
magnetic resonance spectra (Sleeman & Hendley, 1982).

Mixed-initiative dialogues share the control with the student, and they both
exchange questions and answers. The best example might be SCHOLAR (Wenger, 1987),
which is a tutoring system developed by Carbonell in 1970. SCHOLAR can conduct a
mixed-initiative dialogue about the geography of South America. The language used
consists of simple English sentences, and both the tutor and the student can ask and answer

questions.

14

Coaches offer guided discovery. The student controls the activities and the system
intervenes when it seems necessary. The most significant systems developed under this
framework are WEST (Burton & Brown, 1979) and WUSOR (Goldstein, 1979). WEST's
domain is based on the educational game "How the West was won". The purpose of the
game is the exercise of arithmetic skills and the development of a strategy to win the game.
The computer generates three random numbers which the student uses to compose an
arithmetic expression, and the result indicates the number of spaces that the student can
move. Both the student and the expert module will solve the given problem. The system
recognizes the behaviors of both the student and the expert, and compares them in order to
obtain a differential model. This allows to recognize the weaknesses of the student and
provide appropriate assistance.

WUSOR is a coach for the computer game WUMPUS. The game consists of a
journey through caves, where there are dangers such as deadly pits and bats, and the
terrible Wumpus is hiding. The system warns the player about the dangers in nearby
caves; the player has to decide and plan where to go next in order to avoid the dangers.

The student wins the game by shooting one of her five arrows into the Wumpus' lair, The
system intervenes when the student has not chosen the optimal move. Coaching systems
provide a form of guided discovery learning, and assume a constructivist position (Burton
& Brown, 1979). That is, the student has the chance of learning from his mistakes and
discovering the means to recover from them.

The user interface allows communication between the student and the tutoring
system (Wenger, 1987). Since the user interface is responsible for the final communication
of knowledge, it is also responsible for the effectiveness of the whole tutoring system. That
is, the interface can make the topics more or less understandable, and it can also make the
system more or less attractive to the student. User interfaces for tutoring systems can take

various forms such as natural language, graphical interfaces, or direct manipulation. For

15

instance, SOPHIE, a simulation system in the domain of troubleshooting electronic
circuits, provides a robust user interface at the level of natural language. STEAMER, on
the other hand, which is also a simulation-based system, provides a direct manipulation
user interface of a steam plant. Good user interfaces for tutoring systems are built keeping
in mind the goals and concepts that are important to users and to the domain being tutored
(Miller, 1988).

The four components described above represent a framework for the development
of ITSs. The more complete and powerful each of these components is, the more
intelligence the tutoring system could exhibit. A great deal of research needs to be done in
this area. There is hope that ITS will provide flexible and adaptable computer-based
tutoring systems. The research presented in the rest of this document is based on this

framework.

16

CHAPTER Il

A PERCENTAGE TUTOR

In chapter 1, we presented basic concepts about the domain of percentages. In
chapter I}, we presented a basic framework to develop Intelligent Tutoring Systems. In
this chapter we present the proposal of an Intelligent Tutoring System in the domain of
percentages, PerTutor. The system will be divided in modules according to the framework
discussed in chapter II. Here we present elements of the system without reference to
implementation issues. In the Appendix we present details of our implementation,

including a description of the data structures used.

The Expert Modul

An expert module for an ITS in the domain of percentages should be able to
propose and solve percentage problems. That is, it would be able to recognize the type of a
problem and devise possible solutions for it. In PerTutor, the expert will be able to
generate problems of several levels of difficulty. On the other hand, an ideal expert in the
domain of percentages would require certain amount of mathematical knowledge that would
enable it to solve the problems. For practical purposes, the proposed expert module will
not require a great amount of knowledge about solving equations. This is because we will
take advantage of the information that the expert already knows from the generation

module.

17

The expert module of PerTutor lies between a black box and a glass box expert
system. It will be capable of showing its solution to the problem, step by step, whenever it
is required, so that the student can see how it solves the problem. From that perspective,
the expert would be a glass box expert system. However, since the amount of general
arithmetic knowledge the system will have is limited, the expert will not be able to elaborate
about the algebraic foundations that led to the results. From that perspective, the expertis a
black box system. This should not be considered a disadvantage, because the student will
still have access to the solution, that is in fact the important element. Our system is meant
to be a percentage tutor, not an algebra tutor.

The expert module would contain three parts: generation of problems, solution of
problems, and diagnosis of the student performance, which will be discussed in the

following sections.
Generation of Problems

A problem in the domain of percentages is usually presented as a problem statement
that describes a hypothetical situation, which contains some data and involves a question.
Hypothetical situations would have to be given to the system; otherwise, the amount of
knowledge the expert would need to know in order to generate them by itself would be
immense. Thus, the system will have to have access to a set of frames that describe
suitable situations for percentage problems. Such frames contain text and placeholders for
data such as the percent, the percentage and the total. There are four types of frames (i.e,
one for each type of problem). During the generation of problt;ms, particular frames are
chosen randomly within each type of frame.

A key issue for the generation of problems is the level of difficulty of the problem

to be presented next. Problems can have different levels of difficulty that depend on the

18

question asked and the data given. As discussed in chapter 1, problems of Types Il and IV
are considered more complex than, for instance, problems of Type L

Table 1 presents examples of each type of problems. As we can observe, although
the first three situations in the example involve the same data, the level of difficulty of the
problems increases from the problem of Type I to the problem of Type I, and the problem
of type IV involves a situation that is even more complex. Moreover, problems of the same
type can also have different levels of difficulty. In this case the level of difficulty depends
on the data that each problem involves, particularly on the values for the percent and the

total. For example, a percentage problem of Type 1 that asks for 50% of 100 seems less

TABLE 1: Examples of different types of problems

Problem Type Problem Statement

I Joe plays with the basketball team of his school. In
the last game, Joe scored 25% of the points, and the
team won with a total score of 80. So, how many
points did Joe score ?

i1 Certain Electronics Store has a nice tape recorder on
sale. The price tag says that it is 25% off, and that is
$20 off. What was the original price of the stereo ?

11 Jane is going to visit her brother that lives 80 miles
away from her home. In the way she notices that
she has already travelled 20 miles. What is the
percent of miles that she has already travelled ?

IV Peter is participating in a 90 mile bicycle race. He
was running at a steady speed of 20 miles per hour,
and has already run 40 miles. Peter is anxious to
get to the end, and so he just increased his running
speed on 30%. How fast is Peter running now ?

19

complex than a problem of the same type that asks for 50% of 280, 60% of 72, or 34% of
15; in the same way, a percentage problem of Type III that asks what percent is 20 of 80
seems less complex than a problem that asks what percent is 28 of 80.

The observation that the level of difficulty also depends on the data involved in the
problem, suggests that we generate values that correspond to different levels of difficulty
for the percent and the total. We propose a set of generation Tules that will produce values
for problems of a given type. These rules are described in Table 2. They generate data for
problems with a low level of difficulty to problems with a higher level of difficulty. Since
it seems important to work with simple numbers when learning the methodology to solve
percentages, the set of rules was designed to assure that only integer values would be
generated for all the percent, the percentage, and the total. The set presented in Table 2
includes neither rules to generate percents greater than 100 nor rules to generate mixed
numbers. Such rules, however, can be derived by using the same pattern and can be easily
added in future versions of the system,

The use of a rule depends on the tutor's criteria. The tutor will decide which rule
should be applied to generate the next problem. If the tutor decides to keep showing
problems of the same level of difficulty as the current problem, then the same rule will be
used. If the tutor decides to advance to a problem with a higher level of difficulty than the
current problem, then the next rule in the list should be used. If the tutor decides to show a
problem with a lower level of difficulty than the current problem, then the previous rule in
the list should be used. When all rules have been applied, the tutor could assume that the
student has mastered the current type of problem. The expert can apply again the
generation rules for the next type of problem. Notice that the level of difficulty of the next
problem to be presented depends highly on the information provided by the student model
and the decisions taken by the tutor. The criteria to decide whether to keep the same level

of difficulty, advance to the next level, go back to a previous level, or change the type of

problem will be discussed in detail in the section regarding the tutor. By now, let us

concentrate on the generation of the data for the problems.

TABLE 2. Rules for the generation of the percent and the total

Rule Percent Total Description

1 100 y, y=10 or y=100 100% of 10, or 100% of 100

2 100 2%y, 1<=y<=50 i%% of an even number between 2 and

3 100 y, l<=y«<=100 100% of a number between 1 and 100

4 100 y, l<=y<=1000 100% of a number between 1 and 1000

5 50 100 50% of 100

6 50 10*y, 1<=y<=10 50% of a number between 10 and 100

7 50 2%y, l<=y<=50 ?8(‘? of an even number between 2 and

8 50 2*y, 1<=y<=500 50% of an even number between 2 and

1000

9 50 y, l<=y<=100 50% of a number between 1 and 100
10 50 y, l<=y<=1000 50% of a number between 1 and 1000
11 25 4*y, 1<=y<=25 25% of a number between 4 and 100
12 25 4*y, 1<=y<=250 25% of a number between 4 and 1000
13 75 4*y, 1<=y<=25 75% of a number between 4 and 100
14 75 4*y, 1<=y<=250 75% of a number between 4 and 1000

15 10*x, 1<=x<=10

10*y, 1<=y<=10

the percent is a muldple of 10 between 10
and 100, and the total is also a multiple of
10 between 10 and 100

21

TABLE 2. (Continued)

Rule

Percent

Total

Description

16 10*x, 1<=x<=10

17

18

19

20

21

5%x, 1<=x<=20

5%x, l<=x<=20

x, 1<=x<=100

x, l<=x<=100

x, 1<=x<=100

10*y, 1<=y<=100 the percent is a multiple of 10 between 10

20*y, 1<=y<=5

20%y, 1<=y<=50

10*y, 1<=y<=10

and 100, and the total is a multiple of 10
between 10 and 1000

the percent is a multiple of 5 between 5 and
100, and the total is a multiple of 20
between 20 and 100

the percent is a multiple of 5 between 5 and
100, and the total is a multple of 20
between 20 and 1000

the percent is a random number between 1
and 100, and the total is a multiple of 10
between 10 and 100

10*y, 1<=y<=100 the percent is a random number between 1

y, 1<=y<=1000

and 100, and the total is a multiple of 10
between 10 and 1000

the percent is a random number between 1
and 100 and the total is a random number
between 1 and 1000

Since the critical values for the generation of problems are the percent and the total,

a simple strategy would be for the expert to generate problems of Type I, and then apply

the corresponding equation to transform those problems into the actual type of the problem

being presented. In this way, the generation rules can also be applied across problem

types. This strategy would consist of three steps. In the first step the tutor would generate

the values for the percent and the total. In the second step the expert would obtain the

percentage. And, in the last step, the expert would replace the values obtained in the

previous steps into the corresponding placeholders of the frames that describe hypothetical

22

situations. This is a simple strategy and it seems to be adequate to generate a variety of

problems with different levels of difficulty.

Deriving the Solution of a Problem

The expert module should contain the knowledge that would enable it to solve
problems in the domain of percentages. The more knowledge it has, the more ways it
could solve a problem. Percentage problems can be solved by applying the corresponding
equations for each type of problem (see Table 3). These equations and basic algebraic
knowledge constitute the basic knowledge that the expert needs to have. In addition to the
three basic equations, experts in the domain of percentages might use aliernative methods 10
solve percentages problems. This happens when they are able to recognize special
situations that could be solved by using shortcuts. For instance, the problem of obtaining
50% of 80 can also be solved by dividing 80 by 2 since experts know that 50% is
equivalent to one half. Problems involving percentages such as 20%, 25%, and 75% are
commonly solved in similar ways. Although these alternative methods might be helpful in
deriving the solution to a current problem, their use is not necessary because the system
could apply the standard equations to get the same result. However, those alternative
methods are quite important in the process of identifying the student’s solution.

PerTutor will contain both knowledge about the basic equations and knowledge
about the special cases. For practical purposes it will only use the equations in Table 3 as
the basic methods to solve the problems; in this way, the system can demonstrate
consistency each time it needs to present the solution to the student. It will use the
knowledge about alternative methods to be able to recognize a larger number of ways in

which students could solve problems.

23

TABLE 3. Equations to solve percentages problems

Type of Problem Equation
1 (percent / 100) x total
2 percentage x 100 / percent
3 percentage x 100 / total

Diagnosis of the Student's Performance

Diagnosis can occur at two levels. First, it can occur when trying to identify what
the student just did. Second, it can occur when trying to identify a general pattern in the
behavior of the student. At the first level, the diagnosis module would receive not only the
final answer to the problem but also each step used by the student when attempting to solve
the problem. The user interface will provide a mechanism for the student to do
computations and give each intermediate step as part of the solution. The expert would
analyze the given solution to determine if it is completely correct, partially correct or
completely incorrect.

The assessment of the student’s responses can be accomplished by developing a
“buggy" theory similar to the one developed by Brown and Burton (1979). They
developed a theory of the student's misconceptions or bugs in basic arithmetic skills. They
also developed a system to teach students and student teachers how to diagnose bugs as
well as how to provide a better understanding of the underlying structure of the arithmetic
skills.

In the domain of percentages, we can use a similar idea with the purpose of
developing a catalog of common percentage errors. The diagnosis module would access

the catalog when attempting to recognize the student's solution to the problem. The

24

advantage of this strategy is that the expert can look for specific usual problems. The
disadvantage of this method is that the system will not be able to recognize unusual errors.
This situation actually represents a tradeoff between the amount of time required to
construct an ideal expert module and the advantage of obtaining a running version of the
system. The use of a catalog of common errors is an effectve and efficient method for
doing diagnosis in simple domains.

Different solutions can be considered completely correct. One is when the student
gives each correct step of the corresponding equation and the correct result. A second is
when the student has a history of solving the problems correctly by mental computation;
that is, with no need of intermediate steps. In such case, the expert can assume that the
student knows the procedure to solve the problem. And three, when the student uses a
correct shortcut to solve the problem.

Solutions are considered partially correct if they can be fixed by making minor
changes to the intermediate steps. There are also several cases. One is when the data in the
operations is correct but the operators are incorrect, for example, when the student
multiplies instead of dividing. A second case is when the student switches the order of the
operands, for example, dividing 100 by the percent instead of dividing the percent by 100.
A third is when the student uses the correct data, but both the order of the operands and the
operator are wrong. A fourth case is when the student needs to do just one more step to
complete the solution. A fifth is when the final answer is correct, but the student's
operations are incorrect. The sixth case is when the final answer is incorrect but the
student's operations are correct.

Solutions are considered totally incorrect when the final answer is incorrect and the
expert can not identify what the student did. Two cases describe this situation. One is

when the student does not show the steps to solve the problem. The second case is when

25

the error involves more than performing minor changes in the intermediate steps given by
the student.

In addition to the above situations, the diagnosis module would need to check for
answers that are obviously too big or small to be correct, including negative answers. This
additional information would be useful to the tutor at a later stage.

Notice that, since the student will be capable of giving the solution of the problem
step by step, the diagnosis module should be able to recognize several ways in which the
student could introduce the data. The diagnosis module should know about commutative
and associative properties. For example, to give an answer for the question what is 25% of
80, the student could perform the intermediate steps in several ways, by multiplying 0.25
by 80 or viceversa, by first dividing 25 by 100 and then multiplying the result by 80, or by
dividing 80 by 100 and then multiplying the result by 25. Similar situations occur for all
other types of problems.

The second level of diagnosis is when the expert tries to identify a pattern in the
behavior of the student that will be useful to make pedagogical decisions. This level of
diagnosis is related to the student model, and will, therefore, be discussed in the following

section.

The Student Model

In the tutorial system we are proposing, the student model consists of the student’s
history through the tutorial session. It contains the intermediate steps and the answers
given by the student when anempting to solve each problem, as well as the assessment of
each attempt, indicating whether the solution was right or wrong. If the solution was

wrong, it should also indicate what the error was.

26

As was previously pointed out, the student model is a data structure representing
previous interactions between the student and the system. The diagnostic module will
consult the student model with the purpose of determining patterns in the behavior of the
student. It is not our intention to derive a general pattern of the behavior of the student.
This has proven to be a very difficult task even for human tutors. Instead, the diagnostic
module should identify particular features in the performance of the student, and derive
statistics from the history of the student interactions, that could allow the tutor to make
decisions. Examples of information that the diagnostic module could derive are the level of
help that the student has received in the last three problems, the percentage of times the
student has correctly solved problems, the number of times the student has correctly solved
problems in the first trial, and the number of times the student has had the same error (such
as multiplying instead of dividing). Having this information, it will be the tutor's task 1o

decide what course the tutorial interaction will take.

The Tutor

One of the advantages attributed to the computer as an instructional tool is its
potential capacity to conduct individualized learning. However, the computer per se is not
capable of doing so. Instead, is the tutoring software which provides the means to
accomplish individualized learning for it embraces the methodology that will establish the
tutorial interactions.

The tutor will require certain knowledge to respond appropriately in a variety of
situations. As a general criteria, the proposed tutor will give students a maximum of three
trials to solve each problem. After each trial, the tutor will analyze the situation to produce
the appropriate interaction. We propose a set of rules that contain specific criteria that the

wtor will follow after each trial. There will be two classes of tutorial rules. One class

27

corresponds to the kind of problems that will be presented next. For this class of rules
there are three possibilities: advance to the next level, go back to the previous level, or
remain in the same level of problems. The conditions that should be met for each

possibility are described in Table 4.

TABLE 4. Rules for the level of the next problem

Rule Conditions

Advance to next level Student has correctly solved, in the first trial,
two consecutive problems of the current level.

Go back to previous level Student could not solve the last two problems,
and the tutor had to give its solution.

Remain in same level When neither of the two above rules applies.

The other class of rules corresponds to the rules of what to say and show after each
tutorial interaction. In this case, the student's answer to the current problem should also be
taken into account. If the student's answer is correct, the tutor will make a rewarding
statement, which it will choose from a set of rewarding statements, and will apply its
criteria to decide whether the student should remain in the same level of problems or should
advance to the next level. If the student's answer is incorrect, the tutorial interaction will
depend on aspects such as the kind of error, the frequency with which the student has had
the same error, the current trial, and the pedagogical decisions previously taken by the
tutor.

Tables 5 and 6 summarize a set of possible tutorial rules. Table 5 describes

possible actions that the tutor could follow when it is the first time that the student gives a

TABLE 5. Specific tutorial rules by type of error and number of trial
when it is the first time the error occurs in the session

28

Kind of Error Strategy per Trial
Wrong operator 1. Give a hint: Check the Operator.
2. Show basic information about percentages.
3. Solve the problem.
Wrong order of operands 1. Give a hint: what is wrong about the operands.
2. Show basic information about percentages.
3. Solve the problem.
Wrong operator and wrong 1. Give a hint: check how to combine the data.
order of operands 2. Solve one of the errors.
3. Solve the problem.
Student is only missing one 1. Tell the student that one step is missing.
step to complete the solution 2. Indicate the operator that the step involves.
3. Solve the problem.
Student gave correct solution 1. Say that it is OK to do that.
without indicating the 2. Say that it is OK to do that.
intermediate steps 3. Say that itis OK to do that.
Student gave a wrong 1. Ask to show steps.
solution and did not show 2. Say, again, that it is useful to show steps.
intermediate steps 3. Solve the problem.
Result is correct but 1. Ask to show intermediate steps.
intermediate steps incorrect. 2. Ask again for procedure.
3. Show the correct operations.
Result is incorrect but 1. Indicate that there are student’s steps that
intermediate steps correct correspond to the actual solution.
2. Ask to check the steps and find correct operations.
3. Show correct operations.
Answer is negative 1. Say that answer can not be negative.
2. Give a basic explanation about percentages.
3. Solve the problem
Answer is too big 1. Explain why answer should not be so big.
2. Explain why answer should not be so big.
3. Explain why answer should not be so big.
Solution incorrect, and 1. Show basic explanation about percentages.
operations can not be 2. Solve first operation.
identified 3. Solve the problem,

29

TABLE 6. Specific tutorial rules by type of error and number of trial
when the error has already occurred in the session

Kind of Error Strategy per Trial

Wrong operator 1. Give a hint: again you are not using correct optor.
2. Show how same error was previously solved.
3. Solve the problem.
Wrong order of operands 1. Give a hint : something wrong about operands.
2. Show how same error was previously solved.
3. Solve the problem.

Wrong operator and wrong 1. Give a hint: check how to combine the data.
order of operands 2. Solve one of the errors.
3. Solve the problem.

Student is only missing one 1. Tell the student again that one step is missing.
step to complete the solution 2. Indicate the operator that the step involves.
3. Solve the problem.

Student gave correct solution 1. Give only rewarding statement.
without indicating the 2. Give only rewarding statement.
intermediate steps 3. Give only rewarding statement.

Student gave a wrong
solution and did not show
intermediate steps

. Ask again to show intermediate steps.
. Solve first operation.
. Solve problem.

LI B =

Result is correct but
intermediate steps incorrect

. Say that answer is correct but operations incorrect
. Ask to show the intermediate steps.
. Show operations.

I B e

Result is incorrect but 1. Give hint: some steps are correct.
intermediate steps correct 2. Ask to check the procedure and find correct
operations.

3. Show correct operations.

. Say that answer can not be negative.
. Give a basic explanation about percentages.
. Solve the problem

Answer is negative

LI B =

. Explain why answer should not be so big.
. Explain why answer should not be so big.
. Explain why answer should not be so big.

Answer is too big

I bJ —

Solution incorrect, and . Show basic explanation about percentages.
operations can not be . Solve first operation.
identified 3. Solve the problem.

B et

30

particular wrong answer. Notice that, the tutor’s first attempt would be to give only a
general hint, so that the student would have a chance to check her work. In some

other situations, the tutor will give more specific guidance, solve part of the problem, give
explanations about percentages, or show how the problem should be solved. To avoid
monotony, the tutor will have to know different ways in which a hint, an explanation or a
rewarding statement can be said; therefore, it needs to have access to a data base of possible
statements, and it needs to check what has been said previously, before deciding what to
say.

Table 6 describes possible actions that the tutor could follow when it 1s not the first
time that the student gives a particular wrong answer to the problem. For these cases, the
tutor will give hints, solve part of the problem or show how the problem should be solved;
additionally, the tutor will be able to make references to previous problems for which the
student made the same kind of error. The tutor will show how that problem was solved, so
that the student can leam from her mistakes. Notice that the tutor’s final selection depends

on the combination of rules that fired and on previous tutorial interactions.
The User Interface

The user interface should consist of elements that will provide a fluent way of
communication to solve percentages problems. From the point of view of the student, the
user interface should be clear and easy to use, and it should also facilitate the problem
solving process. From the point of view of the expert, it should provide a means to collect
information for the process of diagnosis. The user interface of PerTutor will consist of
functional windows and menus.

The user interface will require a window to display the problem statement, a

window to give the final answer, a window for the tutor, and a transcript window. The

31

functons of the Problem Staiement and the Answer windows are obvious. The Problem
Statement window is the place where the expert will display the statement of the problem.
The Answer window is where the student will type the final. The Tutor window is the
place where the tutor will communicate with the student; all hints, messages, and guidelines
will appear in this window. The Transcript window will keep a record of the operations
performed by the student. It will be useful for the student to see how he is solving the
problem. The tutor and the Transcript windows will contain scroll bars so that the user can
refer to previous interactions in the session. The scroll bar in the Problem Statement
window is used in case that the problem statement is too long to fit in the window.
Additionally, the system will provide a calculator window which will be useful to both the
student and the tutor; the student can use it 1o compute intermediate steps, and the tutor can
use it as a 100! to obtain the procedure performed by the student while solving the problem.

Figure 3 presents a view of the user interface.

(& File Edit Special Windows)
Problem Statement Answer
2 The result is: I:I
5
Operalions
Tutor
s 1 | &3
() (70 (23 (&7 {cieer)
EO=== Transcript ===
)
o o
N R

Figure 3. A view of the user interface.

32

In a typical situation, the system will first display the problem statement in the
Problem Statement window. During each trial, the user could compute intermediate results
through the Operations window. Each intermediate step is computed by entering the data in
the slots of the Operations window, selecting the operator, and then clicking in the equals
button. Each step will be recorded in the Transcript window. The user can enter the final
answer by typing it in the Answer window and then clicking in the button labelled "done".
Once the answer has been entered, the system will record it in the Transcript window, and
the tutor will respond accordingly in the Tutor window.

The menus will supply additional functions. The File menu will allow the student
to initiate, save and retrieve tutorial sessions, and it will also allow to exit the system.
Figure 4 shows the File menu. The purpose of the command New is to start a new
session. The commands Open and Save work together. The command Open will open a
session that had already been saved. Afier this command, the system will retrieve the
status of a previous tutorial interaction, and the student can proceed the session from
where she had left the work. The Save command will store all data and status of the current
session. This command allows the tutor to remember a tutorial session. The command

Close closes a tutorial session. And, the command Quit is used to exit the system.

o e o o ——— -

Figure 4. The File menu.

33

The purpose of the Edit menu (see figure 5) is to provide a fast way to modify and
introduce data. Since it is common that the result of a step will be used in another step, the
student can use the commands Copy and Paste to copy data from a previous operation into
a new operation, In this way, the student can also reduce the possibility of typos when

introducing the data. The Cut command is provided as an alternative way to erase data.

Cut

Copy
Paste

Figure 5. The Edit menu.

The Special menu provides three special functions. The Help command in gives the
student the possibility to ask for help at any time. The Commands Show Performance and
Print Performance will be used to obtain statistics about the performance of the student
through the session. Show Performance will display the information on the screen, and

Print Performance will do it on paper. The Special menu is described in Figure 6.

Special

Show Performance
Print Performance

Figure 6. The Special Menu.

Finally, the Windows menu (see figure 7) lists the names of all windows of the

user interface. It provides an alternative way of selecting the windows.

34

Problem Statement
Answer

Tutor

Operations
Transcript

Figure 7. The Windows Menu.

Although the menus enhance the functionality of the system, we have restricted the
implementation of the user interface of the first running version of the system to, basically,

the five windows shown in figure 3. The implementation of most commands in the menus

will be left for a future version.

To better understand how these facilities work together, we now turn our attention

to an example session of the system in action.

35

CHAPTER IV

EXAMPLES FROM AN INITIAL VERSION
OF THE SYSTEM

This chapter discusses a series of examples that will be helpful to illustrate how
PerTutor works. The first example demonstrates a simple case. This is when the student
gives a correct solution to the problem in the first trial. Figure 8 shows how the screen
looks when a problem is presented. As was previously explained, the problem staiement
.appears in the Problem Statement window. The Tutor window is prepared 10 keep a record

of the tutor's interaction with the student, and the Transcript window is prepared to keep

(& File Edit Special Windows

Problem Statement Answer
1. Joe plays with the basketball team of his > .
acheol. In the 183t game, Joe scored 100K of |]| The resull is: |:I
the points, and the team wan with & total score
of 60. So, how meny points did Joe score ?
0
Operations

Tutor
PROBLEM # 1: Joe. 1: |:| (=)

&

TRIAL = 1
) (O (=) &) (crear)
[EO0==== Trenscript |
TRIAL * 1 S
| 0
2
A w,

Figure 8. User interface after problem statement has been given.

36

the record of the student's interaction with the system. By combining the information in
these two windows, the student could refer to a previous episode in the tutorial session.

The Operations window, or calculator, appears clear when a new problem is
presented, and it is always cleared after the system has recorded the current operation in the
Transcript window; in this way, the calculator will be ready for the next operation that the
student needs to compute.

In solving this problem, the student only indicates the final answer. Figure 9
shows the tutor’s response. Notice that the tutor recognizes that the student did not

compute intermediate steps to solve the problem.

(& File Edit Special Windows

Problem Statement Answer
1. Joe plays with the basketball teamof his >

achool. In the 1ast game, Joe scored 1008 of ||| The resullis:

the points, and the team won with a total score

of 20. Sa, how many points did Joe score 7
O
Operations
Tutor
TRIAL # 1
» Good | Your enswer i3 correct, EERENARER (+]) |Elear|

> | noticed that you didn't type ineny)
operation. You can do that whenever the
operations are essy for you.

Transcript
PROBLEM * 1: Joe, g
TRIAL * 1
||| >» Your answer:- 20 |
> 5
i
. A

Figure 9. Student gave the correct solution to the problem in the first trial.

The second example demonstrates how the expert identifies a partially correct
solution to the problem. Figure 10 shows the student using the calculator to input an

intermediate step. Figure 11 describes the situation after the student has provided the

(& File Edit Speciel Windows h
Problem Statement Em] Answer V==
4. The Moth test hed 100 questions. If Sem o>
answered SOR of the questions correctly, how [~ | The result is: |:|
many questions did he answer correctly 7
-
i Operations
Tutor
PROBLEM * 4; Sem. {50 | - [0 | (=D
TRIAL =1
O @3 (teer)
Transcript
PROBLEM * 4: Sem. G|
TRIAL * |
0| -
\ o
Figure 10. Use of the operations window.
(& File Edit Special Windows h

Answer e———|

[IL10)

Problem Statement =
4, The Math test hed 100 questions. If Sam e

answered 50K of the questions correctly, how {~ || The result is:
many questions did he answer correctly ?

0
Operations
Tutor

PROBLEM # 4: Sem. 3 | | | | | &2
TRIAL =1
» Dops, your answer is not carrect EBRFEEERRER ' Clear I
» Let's see what you did. ..
» Looks Vike you forgot the leal atep to solve
the problem. Tryto finish it. Transcript

» Your snswer is greater then 100. Since we

are dealing with e percent not greater than PROBLEM # 4. Sem. it
100%, your snawer should sctuslly be leas
than or equel to 100 ‘:RISAI':- :1100 5000
» Tri to solve the problem in the next trisl. |- . Your answer- 5000 o
L v

Figure 11. Student is missing one step.

38

answer, and the tutor has derived a diagnosis. The student gave the result after step 1 as
the answer to the problem. The tutor considers that this is as a partially correct solution,
but that it still needs to be divided by 100. Notice how both step 1 and the answer have
been recorded in the Transcript window. To finish this second example, figure 12 shows

how the system responds after the student has corrected the error and given the final result.

(& File Edit Special Windows

Problem Statement Answer
4, The Math test hed 100 queationa. IT Sem >

answered SOK of the questions correctly, how [| The result is:

maeny questiona did he answer correctly 7

-
Operations
Tutor
» Oops, your snswer i3 not correct l l I | [=]

» Let™s see what youdid. ..

» Looks 1ike you forgot the last step to solve
the problem. Try to finiahit.

» Your answer i3 gresler than 100. Since we
are dealing with e percent not greater than
100K, your answer should sctually be less
thenor equal to 100
» Try te solve the problem in the next triel. i

0@ E ® (Ter)

Transcript

&

| | TRIAL = 2
TRIAL ¥ 2 2.5000/7100=50
» Good! Your answer is correct. D »» Your shawer: 50

|

Figure 12. Student computed the missing step and gave the correct answer.

Our third and fourth examples demonstrate how the tutor responds when the
student gives an incorrect solution that can not be easily fixed. Figures 13 through 16
comprise the third example. In Figure 13 we observe that the student performed some data
manipulations that did not lead to the solution of the problem. The system determines that
the steps do not correspond to any partial or complete solution, and therefore decides that
the student needs basic instruction about percentages. The tutor then gives a basic and

somehow detailed explanation (see figures 13, 14, and 15).

(& File Edit Speciel Windows

Problem Statement

Answer

5. The Wonder Bookstore is having a big sale.
Some books are SO% off. How much is SO
off & book that originelly costs $60 7

— The result is:

Operations

[E[1==== Tutor

TRIAL #* 1
» Umm, your answer is not correct
» What did youdo ?
» | don’t ynderatand what you did. | don™t see
any operetion that we could use to solve the
problem. Read the problem ststement
cerefully agein.
> Let's review same concepts.
» Percent means “per hundred™. H is o ratio in
which the denominstor is 100. So, when we
say, for inatance, 20K, we mesn 20/100 =
0.2.
| > A narcantane aives s relstinpahin hetwern s |

I | | =3
5 @O E D (oer)

Transcript
TRIAL * 1 75
1.100/25=4 |
2.4%60=240
3.240/ 100 = 2.40 u
»» Your answer: 24 184

Figure 13.Tutor determines that steps do not correspond to any
partial or complete solution of the problem.

(& File Edit Special Windows
Problem Statement Answer

S. The Wonder Bookstore is having & big sale. .

Some books are SO off. How muchis 50% [|| Jhe resultis:
off n book that originelly costs $60 7

S
Operations
ED Tutor Eff——aml

say, for instence, 20%, we mean 20/100 =
p.a.
» A percentage gives 8 relationship between e
percent and s total.
» A percent equsl to 100% always gives the
totsl. For example:

100% of 40 = 40

tolal, For example:
208 of 100=0.2 * 100 =20
20R of 200 =0.2 * 200 = 40

» A percent less than 100% gives » pert of the fii:

I | | =0
O@OE O (ter)

Transcript
1.100/25=4 K>
2.4%60=240
3.240/100=2.40
1 | »> Your snawer: 24 |
Iy O
&

Figure 14. Tutor determines that steps do not correspond to any partial

or complete solution

of the problem (continued).

39

(& File Edit Special Windows)
Problem Statement Answer
5. The Wonder Bookstore is having a big sele. KO .
Some books are SOK off. How muchfs S0% [|| The resultis: |__—|
off & book thet originafly costs $60 7
.
D
Operatlions
Tutor
total, For example: <> | | [| E
208 of 100=02% 100 =20 |
208 of 200 = 0.2 * 200 = 40
=) (1) (=0) (ctear
» Notice thet s percentage is proportionsl to
the totel
» Use this infor mation to sclve the current IE_D Trenscript I
problem. 3.2407 100 = 2,40 ey
» Try 1o solve the problem in the next trisl. » Your enawer: 24 i
TRIAL = 2] D
] | TRIAL * 2 4
)
\ J
Figure 15. End of the tutor's explanation for example 3.
(& File Edit Special Windows)
Problem Statement EJ==== Answer ==
S. The Wonder Bookstore is having o big sele. [} .
Some books are 50% off. How muchis 50% [|| The resultis: |:|
off 8 book that originally costs $607 °
|
>
Operations
Tutor
> Use this infor metion to solve the current " I:I | | | = |
probliem, |
> Try lo solve the problem in the next trial.
) (4 () &) (clear]
TRIAL * 2
> You gave the correct anawer.
» However, | would like to know how you =
oblained the result. Pieese typein the step(s) — Transcript
that produced the correct answer. TRIAL = 2 Q
> Tri to sclve {he problem in the next trial. » Your answer: 30
TRIAL = 3 —] -
¥ | TRIAL= 3 >

Figure 16. Student gives correct answer after failing first attempt.

40

41

Figure 16 is a continuation of the student interaction with the system when
attempting to solve the same problem. After failing to obtain the solution in the first
attempt, the student gives the correct result in the second trial without apparent use of
intermediate steps. Such situation makes the tutor suspicious about how the student
obtained the result, and therefore considers that it is necessary to request the procedure in
order to make sure that the student knows how to solve the problem.

Figures 17 and 18 illustrate our fourth example. This case is similar to the one
discussed in example 3. Since the solution given by the student does not indicate that the
student knows how to solve the problem, the tutor also decides to give a basic explanation
about percentages. However, the tutor knows that it had already given a basic explanation
1o the student (that is, the explanation for problem 5 in example 3), and decides to give a

different basic explanation. In this case, the explanation is shorter.

& File Edit Special! Windows

Problem Statement finswer
8. Mra. Gerdener wants to plant s flower >

garden. She wants to plant 40 flowers,and [| | The resultis:

wants 25% of them to be roses. So, haw many

roses will she plent 7 -
2
Operations
Tutor
TRIAL # 1 3 | | I | =]

> Oops, your snswer is not correct
> Let's see what you did . . .

> I don"t understand what you did. I don’t see) (1J & & (ctear)
any operation thet we could use to solve the
problem. Read the problem stetement
carefully egain.

» Remember that a percentage gives & [§D= Transcript
reletionahip between a percent and a totsl. TRIAL# 1
» Also remember thet, for the kind of 1.25/40 =063
exercises we ere desling how, the percentege 2.63%100=63
i3 a part of the totel | | Your enswer: 63
| > Truintbink what enuld he a resailt that entdd o
. J

Figure 17. Tutor determines that steps correspond neither to partial nor
1o complete solution of the problem (short explanation).

42

(& File Edit Special Windows N
Problem Statement finswer

8. Mra. Gerdener wants to plant a flower >
garden. She wents fo plent 40 flowers,and []| The resuitis: I:]
wants 25% of them to be roses. So, how many
roses will she plant 7

G

Operations
Tutor

T3 8 part of the totel n | I | I =
> Try to think whet could be & reault that could [|
make sense for this probiem ?
» Try to remember what you know sbout () (7)) L l Clear |
percentages,
» Your snawer {s greeter than 40. Since we
are desling with s percent not greater than =
100%, your answer should sctuelly be less] = Transcript
then or equa) to 40 2..63*100=63
» Try to solve the problem in the next trisl. » Your answer: 63
TRIAL # 2 ||

b { TRIAL = 2

Figure 18. Tutor determines that steps correspond neither to partial nor to
complete solution of the problem (short explanation continued).

The last example demonstrates an important feature of PerTutor, which is that the
tutor can base its explanation on a previously solved problem. Figures 19 and 20 show a
student’s error when attempting to solve problem 11. The student uses a buggy procedure;
that is, instead of multiplying in step 2, he is dividing. The tutor responds with a hint
about the error, which allows the student to solve the problem in the next trial (see figure
20). As we can observe in figure 21, the student does the same thing in problem 15. The
tutor recognizes the error, remembers that it had happened before, and gives an appropriate
hint. However, the student is still not able 1o solve the problem in the second tral, and the
tutor decides to base its explanation on the solution given for problem 11 (see figure 22).
The tutor recalls how the student was able to reach the solution in the previous problem. In

figure 23, we see that the student finally obtains the correct solution

’r

& Fife Edit Special Windows

Problem Statement

11. The Math test hed 20 questicns. If Sam
enswered 35% of the questions correctly, how
many questions did he answer correcily ?

<l

PROBLEM * 11:Sam.

TRIAL = 1

> Dops, your answer is not correct
» Let’s see what you did . . .

» Let"s concentrate on steps 1 and 2

» Hint: check the operator.
» Try to solve the problem in the next triel.

I©

0

Rnswer
The result is:
Operations
) (1 3] {clear)
[E00==—= Tronscript =———=

TRIAL * 1
1.35/100=0.35
2.0,35/20=0.02
» Your snawer: 0.02

Figure 19. Student divides rather than multiplying.

& File Edit Special Windows

Problem Statement

Answer

1t. The Meth leat hed 20 questions. If Sam
shawered I5% of the questions correctly, how
many questions did he snawer correctly ?

]

Tutor

PROBLEM * 11 Sam.

TRIAL * 1

» Oops, your answer is not correct
» Let™s see what you did . ..

» Let's concentrete on ateps 1 and 2

The result is:

Operations

I | D
5O 3 G (Gear)

» Hint: check the operator. Transcript
> Try to solve the problem in the next trisl, Q
TRIAL * 2
TRIAL * 2 3.35%#20=7
» Good! Your enswer i3 correct. »» Your snawer: 7 3
—

Figure 20. Student corrects the buggy procedure, and
multiplies instead of dividing.

43

(& File £dit Special Windows

Problem Statement Answer
15. Mra. Gerdener wants to plant e flower m

gerden. She wants to plant 80 flowers,end [|| The resultis:

wants 65% of them to be roaes. So, how meny

roses will she plant ?

<l

Operations

Tutor

=01 |

PROBLEM # 15: Mr. Gordener. CJ &) (] (ctear)

TRIAL = 1

» Ocpa, your answer is not correct
» Let’s aee whet you did . ..

» Let™s concentrate on ateps 1 end 2

[ED=——== Transcript =———|

TRIAL * 1
» Agein, you are not vaing the correct operator 1.657100=0.65
> Try fo 3olve the problem in the next trisl. 2.0,65/80=0.01

]

»» Your anawer: 0.01

Figure 21. Student does the same error, divides instead of multplying.

(& File Edit View Special indous

Probiem Statlemen! Answer
15. Mra. Gardener weants to plant s NMower L

gorden. She wants to plant 80 flowers,and || The result is:

wenls 65% of them to be roses. So, how many

roses will she plent ?
O
Operations

Tutor
> Let™s concentrate on sleps 1 end 2 1 | | I l [E
» Agsin, you are not u3ing the correct eperator

:) @D DO & (@ear)
» In problem 11, Sem problem, you hed the
seme error that you heve now.Let’s review it,
» [n that problem we wanted to find 35% of
20, and you solved it like this: Transcript ~
100 = 0.35 [LY]

= TRIAL * 2
> 0.35 8 20=1 65 / 100 = 0.65
» So, the enawer wes: 7. ; D.6S / BD= 0[5601

blem in th ttrisl, = | & - =Y. -
» Try to solve the problem in the next trie 5] | 5 Vour enswer: 0.01 53

Figure 22. Tutor bases explanation on previous problem.

45

(& Flle Edit Speciasl Windows)
Problem Statement finswer
15. Mr3. Gardener wants to plant o Nlower L .
gerden. She wents to plant 80 flowers,and [| The result is: [E]
wants 65% of them to be roses. So, how many
roses will she plent 7
O
! gperations
Tutor [I | I
» In problem 11, Sem problem, you hed the
ssme error thet you heave now.let’s review it.
> [thet problam we wanted o find 35% of (] (1 0 @& (cieer)
20, and you solved it like this:

»35/100=035
»035+20=7

» So, the enawer was: 7. = Transcript
> Try to solve the problem in the next trisl. TRIAL* 3 5
3.65/100=0.65
TRIAL* 3 4.0.65%80=52
» Good! Your anawer is correct. » Your enawer; 52 ~
L A

Figure 23. Student solves problem after tutor’s reference to previous problem.

The intention of the above examples has been to provide an overview of the most
important features of PerTutor. There are other situations that the system is capable of
recognizing and responding. For instance, when the student multiplies instead of dividing,
when the student gives a result that is negative, when the steps performed by the student
are correct but the final answer is incorrect, when the tutor solves only the first step for the
student, etc. The system is characterized by a significant leve! of flexibility. In the next

chapter, we will evaluate and discuss particular characteristics of the system in more detail.

46

CHAPTER V

DISCUSSION

We have presented in this study an intelligent ttoring system in the domain of
percentages. One of our purposes has been to construct initial versions of the four
components that comprise an intelligent tutoring system (i.e, the expert module, the student
model, the tutor, and the user interface). In chapter II we discussed the features required
for ideal components. In our first version of the system, we attempted to cover a
significant number of these issues, and, as we demonstrated in chapter IV, the system is
capable of exhibiting some degree of flexibility and intelligence.

The expert module of our system is characterized by its capacity to generate
problems of different levels of difficulty, and by its capacity to recognize alternative ways
in which a student could approach the solution to the problems. There are several
elements, however, that we would like to improve in future versions of the expert module.
The first one is regarding the generation of problems. The system assumes that the pupil’s
state of knowledge about percentages, when the session starts, is at the beginners level. In
other words, the system begins by delivering problems of low level of difficulty, and
moves up through the sequence of levels in accordance with the student’s performance
during the tutorial session. In this sense, the expert provides individualized learning for
students advance to the next level of problems as they are ready to do so. Our concern is
that students might have different levels of knowledge when the session starts, and so, the
system should account for that situation. Therefore, a future version of the system should

have the capacity to evaluate the student at an early stage of the session, and determine the

47

student’s level of expertise. The evaluation could be carried out by a method similar to
binary search. Under this approach, the system would begin presenting a problem of
medium level of difficulty, and, depending on the student's performance, the system would
jump up or down in the sequence until the level of knowledge of the student is identified.
Then, the student can advance through the remaining levels towards the most difficult
problems. With this method, the system would demonstrate a higher level of adaptability.

A second issue regarding the expert is the process of diagnosis. During the
diagnosis, PerTutor has access to a pre-established catalog of errors that can occur when
solving percentages problems. Errors such as multiplying instead of dividing, or inverting
the order of the operands are contained in the catalog. This idea is similar to the one
explored by Brown and Burton in their BUGGY project (1979). In contrast to the
BUGGY project, PerTutor is not capable of cataloging new bugs; therefore, the diagnosis
is solely based on the information that has been initially recorded in the catalog. The
drawback of this implementation is that all possible mistakes have to be anticipated, and
that the system needs a catalog of bugs for each type of problems. An improvement in the
process of diagnosis would be to provide the expert with more general knowledge from
which to derive and recognize possible mistakes. As is common in expert systems, this
knowledge would be contained in a set of production rules intended to determine the
difference between the expert’s solution and the student’s solution to the problem. The
specific set of rules would have to be investigated for a future version of the system.

In PerTutor, we also explored the student model. The system represents the
student model as the history of the student’s interactions through the session. This
implementation gives a significant amount of information that the tutor can examine when
deciding how to direct the student in her leaming. It is our belief that this implementation is
also suitable for future versions of the system. It is the tutor’s task to make a good use of

the information recorded in the student model.

48

The ttor module in PerTutor is capable of responding to a variety of situations.
The strategies that it uses depend on the history of the student, on whether the answer to
the last problem was right or wrong, and, if it was wrong, on the frequency of the error.
In general, the tutor's explanations are clear. Nevertheless, the tutor could be enhanced by
extending its data base of possible answers and statements, so that it can display more
versatility during its interaction. Additionally, to make the system even more clear, the
tutor could use graphical techniques to give the explanations. For example, it could use
instruments such as graphic bars and charts.

Wiebe (1986) proposed several graphical instruments to teach percentages. One of
the instruments contains two rulers, a regular ruler and an elastic ruler. The regular ruler
represents the whole and the part, and the elastic ruler represents the percent. The elastic
ruler is used to calibrate the whole into 100 equal parts. Students can stretch the elastic
ruler and align 0% with 0 and 100% with the whole in order to obtain the relation between
the whole, the percent, and the part. In figure 24 we demonstrate the functionality of these
rulers when the question is how much is 60% of 50. We think that this method is clear,

and that it could be adapted for a future version of PerTutor.

Part Whole
| |1 |] | | | o

10 20 30 40 50 é
— ! T l
S‘IIIIIIIIIII

OR 10 20 30 40 50 60 70 80 90 100

» >
——I Percent

Figure 24. Elastic ruler for percentages.

49

Another aspect that should be considered for the tutor module is the environment in
which the tutorial session will be carried out. The current environment is clear and easy to
use. But, a possible improvement would be to develop an environment that would .
intrinsically motivate the student to solve the problems. A game environment could provide
such motivation. Afier observing that many percentages problems take place in money-
related situations, we consider that a challenge sales game could be appropriate. The basic
framework of the game would be a market in which the student would visit different stores
and be offered different deals. The game would contain levels of complexity just as
percentage problems do. Under this environment, the tutor would yield some of the
control of the session to the student, so that the student can choose which stores to visit.
This kind of environment would make the system more attractive (and fun) to the student.

In the case that a new form of interaction between the student and the system is
added, the system will require some changes in the user interface. It would contain
pictures and graphics to represent the market scenario, and it would require characters to
represent the student and the tutor. The user interface of the current system would be
embedded into the new sales environment.

After proposing all of the above improvements to PerTutor, this project might seem
very ambitious. In fact, itis. All of the above modifications and extensions would require
a great deal of effort, but they would increase significantly the effectiveness of the system.
Nonetheless, some of the most relevant aspects of the project have already been explored
in one way or another. The level of flexibility shown by the first version of PerTutor is
certainly promising. Perhaps, the most important lesson that we have learned from this
experience has been that the development of high quality educational software is an

ambitious enterprise, but it is possible.

50

APPENDIX

SOME DETAILS ABOUT THE IMPLEMENTATION

To better understand how PerTutor works, we will present and discuss several

general aspects of the implementation, as well as the most important data structures. Figure

25 describes the general data flow in PerTutor.

type and level of next problem

Frames (

Ru;:ia ?;nproblem Problem problcm Deriving the
= A solution

problem expert's solution

‘ L Knowledge about
percentages
student’s

Diagnosis

process Catalog of Errors

—» Student solution N
and Solutions

student's solution

‘ h{iSlO"Y diagnosis Tutoring
Strategies

C’Studcnt model)“’ﬁ

\ tutoring

Tutoring

process
T

(Tutor history)

Figure 25. A general data flow in PerTutor.

/

51

As we can observe, the problem generation module has access to a file of rules, and
a file of frames or templates for the problem statement. The file of rules contains the rules
for the generation of problems discussed in chapter ITI. The frames file contains the text
for the problems, the subject and the object involved in the statement, and the range of
values for which the statement can be appropriate. To generate a problem, the problem
generator module also requires the type and level of difficulty of the problem to be
presented next. These are chosen a priori by the tutor module. The system starts by
presenting problems of the lower level of difficulty. The data for each problem is recorded

through the following data structure:

problemData = record

percent, { the percent)
whole, { the whole or total }
part : real { the part }
end;
problemInfo = record
problemType, {type1,2,30r4}
generationRule, { rule applied to generate the values)
problemLevel, { level of difficulty of the problem }
problemFrame: integer; | frame number)
data : problemData { the actual values used in the problem }
end;

" problemsHistory: array[1..maxProblems] of problemInfo;

The data for the problems is kept in an array structure due to the facility that such
structure provides to retrieve the data when making reference to a previous problem is the
session.

The process of diagnosis begins after the student has given the solution to the
problem. This process uses the student’s solution, the expert's solution, a catalog of
possible errors and solutions, and the student’s history. Both the student’s and the

expert’s solutions are composed of the list of operations (steps) and the final answer. The

operations given by the student during each trial are recorded in a linked list that has the

following structure:

stepPointer = AuserStep;
userStep = record

optor: char; { the operator)
opndl, opnd2, | the operands)
result : real; { the result)

clauseld : integer (identification of the operation after diagnosis)
next : stepPointer { pointer to next operation }
end;
operationsList = record
first, { pointer to first operation in the list }
last : stepPointer | pointer to last operation in the list }
end;

Notice that, in addition to the data given by the student, the userStep structure
includes a field for the diagnosis of the operation. This field will be better understood after
discussing the data in the catalog of errors and solutions.

Since most percentages problems can be solved in at most two steps, the catalog of
possible errors and solutions is a list of two step combinations of operations. In the
system, each catalogued operation is known as a clause. Table 7 gives examples of
possible clauses for problems of type I. A combination can be formed by clauses 1 and 2,
and other combination by clauses 7 and 12. The first combination gives a correct solution,
whereas the second gives a partially correct solution to a problem of type I. An actual
combination in the catalog is formed by references to the possible clauses, which are
contained in a separate file (not shown in the diagram of figure 25).

During the process of diagnosis, the system first tries to identify each of the steps
given by the student. Then, it looks for a one step solution, a two step solution, or a
partially correct solution. Occasionally, the diagnosis module needs to obtain information

from the student model. For example, when the student gives a correct answer without

showing intermediate steps, the expert checks the student model with the purpose of

53

determining if the student could actually know the steps; in that case, the diagnosis

indicates either that the answer is correct or that the student still needs to show the steps.

TABLE 7: Examples of possible operations or clauses for problems of type 1

Clause Code Operation Error
1 percent/ 100 No error
2 clausel x whole No error
7 percent x 100 Incorrect operator
12 clause7 x whole Error is in clause 7

The data structure that represents the student model is central to the system. It
contains data from the student’s interactions during the solution of each problem. Similar
to the structure containing the history of the problems, the student model is represented as
an array of records. Each record in the array contains the steps used by the student when
attempting to solve the problem during each trial. The representation of the student model
as an array facilitates traversing the structure in any direction, as well as obtaining the data
of a particular problem when the tutor wants to make a reference to a previous problem.

The data structure that comprises the student model is as follows:

e
problemPerformance = record
studentSolved: boolean; { indicates whether or not the student
solved the problem)
trials: array[1..3] of trialPointer { data of each of the trials }
end;
var

theHistory: array[1..maxProblems] of problemPerformance;

54

Figure 26 gives a graphical description of the problemPerformance record. The
record indicates whether or not the student solved the problem, and it contains the data

obtained from the student during each trial.

Student Solved ?

Trial Interacton
——]
Trials ——]
s]

Figure 26. Student’s interaction in a problem.

For each trial, the system records the solution given by the student; that is, the
intermediate steps and the final result. Since each student interaction is related to a
diagnosis and to a response from the tutor, we have decided to embrace in the same data
structure the information provided by the student, the corresponding diagnosis, and the
reaction of the tutor. Therefore, the student model and the tutor history shown in figure 25
are actually represented within the same data structure. We have chosen to do so in order
to avoid duplication, and to facilitate making references to the data in the program.

Figure 27 gives a graphical description of the information recorded for each trial.
The student’s operations correspond to the description of the operationsList structure given
above. The student's answer field represents the student’s final answer to the problem
during the tial. The diagnosis fields contain the corresponding identification of the

diagnosis rules that fired during the diagnosis process. At most two rules can fire, one that

55

First op.[3
Student Operations :
Last op.[
Student Answer
Diagnosis
: First st. [3—— T +» I
Tutor Strategies 4
Last st. [J

Figure 27. A trial interaction.

indicates the actual error, and a second that indicates a side effect; for example, the
diagnosis could be wrong operator, and a side effect could be negative answer.

The reaction of the tutor is represented as a linked list of strategies. It is composed
of the strategies discussed in chapter III. They include the actions taken by the tutor and
the messages given to the student. The data structure that represents a trial interaction is as
follows:

diagnosisType = array[1..2] of integer; (to hold the identification of the fired
diagnosis rules)

strategyPointer = Astrategy,;
strategy = record

code : char; { identification of the strategy }
message : integer [identification of the displayed message }
next : strategyPointer (pointer to next strategy }
end;
strategiesList = record
first, { pointer to first strategy in the list }
last : strategyPointer { pointer to the last strategy in the list }

end;

trialPointer = Atriallnteraction;
triallnteraction = record
studentOperations : operationsList;
studentAnswer : real;
diagnosis : diagnosisType;
tutorStrategies : strategiesList

end;

36

{ the list of the student’s operations)

{ final answer given by the student }

{ diagnosis codes)

{ list of strategies followed by the
tutor during the trial }

= ¥

REFERENCES

Andcrson J.R. (1988). The expert modulc In M.C. Polson & J.J. Richardson (Eds.),
Foundations of intelligent tutoring systems (pp. 21-53). Hillsdale, NJ: Erlbaum.

Blohm, P.J., & Wiebe, J.H. (1980). Effects of representation and organizational features

as text on success in mathematical problem solving (Report No. CS-005-735).
Sanasota, FL: American Reading Conference. (ERIC Document Reproduction

Service No. ED 195 930)

Bregar, W.S, Farley, A.M., & Bayley G. (1986). Knowledge sources for an intelligent
algebra tutor. Computer Intelligence, 2, 117-129.

Burns, H.L., & Capps, C.G. (1988). Foundations of intelligent tutoring systems: An
1ntroducnon In M.C. Polson & J.J. Richardson (Eds.), Foundations of intelligent
tutoring systems (pp. 1-19). Hillsdale, NJ: Erlbaum.

Burton, R.R., & Brown, J.S. (1979). An Investigation of computer coaching for informal
learning activities. International Journal of Man-Machin ieg, 11, 5-24.

Gagné, R., Wager W., & Rojas, A. (1981). Planning and authoring computer-assisted
instruction lessons. Educational Technology, 21, 17-26.

Glatzer, D.J. (1984). Teaching percentage: Ideas and suggestions. Arithmetic Teacher,
31(6), 24-26.

Goldstein, L.P. (1979). The genetic graph: a representation for the evolution of procedural
knowledge. International Journal of Man- hin ies, 11, 51-77.

Miller, J.R. (1988). The role of human-computer interaction in intelligent tutoring systems.

In M.C. Polson & J.1. Richardson (Eds.), Foundations of intelligent tutoring
systems (pp. 143-189). Hillsdale, NJ: Erlbaum.

Ohlsson, S. (1987) Some pnnc:ples of 1ntclhgent tutoring. In R.W. Lawler & M. Yasdani
(Eds.), Artificial intelli ming environments and tutorin
systems (pp. 203-237). Norwood, NI: Ab]ex

Polson, M.C., & Richardson, J.J. (1988). Foundations of intelligent tutoring systems.
Hillsdale, NJ: Erlbaum.

Sleeman, D., & Brown, J.S. (1982). Introduction: Intelligent tutoring systems. In D.

Sleeman & J.S. Brown (Eds.), Intelligent tutoring systems (pp. 1-11). London:
Academic Press.

58

Sleeman, D., & Hendley, R.J. (1982). ACE: A system which analyses complex

explanations. In D. Sleeman & J.S. Brown (Eds.), Intelligent tutoring systems (pp.
1-11). London: Academic Press.

Yasdani, M. (1987). Intelligent tutormg systems An ovemew In R.W. Lawler & M.

Yasdani (Eds.), lintelli nvironments an
tutoring svstems (pp. 183-201). Norwood NI: Ablex
VanLehn, K. (1988). Student modeling. In M.C. Polson & J.J. Richardson (Eds.),
Foundations of intelligent tutoring systems (pp. 55-78). Hillsdale, NJ: Erlbaum.
Wenger, E. (1987) Ari zglal m;glhgg ce agd [mQ ng systems: Computational and
cognitive approaches to the communication of knowledge. Los Altos, CA: Morgan
Kaufmann.

Wiebe, J.H. (1986). Manipulating percentages. Mathematics Teacher, 79(1), 23-26.

Woods, P., & Hartley, J.R. (1971). Some learning models for arithmetic tasks and their
use in computer based learning. British Journal of E ional Psychology, 41(1),
38-48.

