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A new visualization design process for the development of parallel program and
performance visualizations using existing scientific data visualization software can drasti-
cally reduce the graphics and data manipulation programming overheads currently experi-
enced by visualization developers. Data visualization tools are designed to handle large
quantities of multi-dimensional data and create complex, three-dimensional, customizable
displays which incorporate advanced rendering techniques, animation, and display inter-
action. These capabilities can be used to improve performance visualization, but to be
effective, they must be applied as part of a formal methodology relating performance data
to visual representations. Under such a formalism, it is possible to describe performance
visualizations as mappings from performance data objects to view objects, independent of
any graphical programming. Through three case studies, this work examines how an exist-
ing scientific visualization tool, IBM’s Data Explorer, provides a robust environment for

prototyping next-generation parailel performance visualizations.
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CHAPTERI

INTRODUCTION

Even though we navigate daily through a perceptual world of three spatial

dimensions and reason occasionally about higher dimensional arenas with

mathematical ease, the world portrayed on our information displays is

caught up in the two-dimensionality of the endless flatlands of paper and

video screen. All communication between the readers of an image and the

makers of an image must now take place on a two-dimensional surface.

Escaping this flatland is the essential task of envisioning information - for

all the interesting worlds (physical, biological, imaginary, human) that we

seek to understand are inevitably and happily multivariate in nature. Not

Sflatlands.

- Edward Tufte, Envisioning Information (p. 12).

The dramatic increases in the complexity and sophistication of parallel computing
systems seen in recent years has outpaced the corresponding growth in the analysis envi-
ronments that accompany these systems. Consequently, users of parallel computers are
left with ineffective resources for analyzing and evaluating the performance of their appli-
cations. The many advances that have been made in the areas of performance monitoring
and tracing now enable the collection of vast amounts of detailed performance data about
applications executing on parallel computers. For the user, however, such massive
amounts of data are rarely useful. The analysis problem subsequently becomes extracting
the key performance characteristics that will help the user to understand or improve their
program.

Visualization has long been recognized as an effective means of portraying large

quantities of complex data by replacing a cognitive task (i.e., analyzing a large table of



numbers) with a perceptual task (i.e., noticing relationships among graphical objects and
characteristics) [48]. While the traditional sciences have benefitted by many advances in
visualization techniques and the development of sophisticated data visualization tools and
environments, visualizations targeting parallel computer systems have remained ad hoc
and have failed to take advantage of more powerful visualization techniques.

Performance visualization is the use of graphical display techniques for the visual
analysis of performance data to improve the understanding of complex computer perfor-
mance phenomena. From the opening chapter of his book Envisioning Information [48],
Edward Tufte foretells the future of performance visualizations. Tufte recognizes and
demonstrates the necessity and effectiveness of multi-dimensional information displays.
While the graphics used in current performance visualization tools are predominantly con-
fined to the two-dimensional fiatland described by Tufte, the work reported here has devel-
oped new methods for rapidly prototyping a new generation of advanced, multi-
dimensional performance visualizations.

As parallel programming environments continue to evolve, the need for more
sophisticated, more flexible visualizations will increase. To harness the potential of more
sophisticated visualization techniques requires a visualization methodology that is more
robust than the techniques currently used in many performance visualization tools. Perfor-
mance visualization has the distinction of lacking a physical model on which displays can
be based. Rather, performance data represents abstract relationships between virtual
objects (e.g., data elements, processors, or different components of a computing system).
This distinction from traditional scientific visualization both hinders and benefits visual-
ization in the context of parallel computing. It is a hindrance in that what a display is
attempting to portray may not be immediately obvious to an unfamiliar user. However, the
absence of a concrete physical model allows for more flexibility in the design of visualiza-

tions. For this reason, performance visualizations are more a product of how performance



parameters have been mapped into graphical representations than they are a product of the
physical “reality” from which the parameters have been collected.

The tendency for performance visualizations to be more abstract complicates the
issues of usability and evaluation. This is best illustrated with a comparison to traditional
scientific visualization. Consider, for example, modeling the interactions between thou-
sands of molecules in a three-dimensional cube. Probably the most “useful” (and intuitive)
display, in the majority of applications, would be a direct representation of the three-
dimensional space and the molecules within it. The molecules might be represented as
spheres that “float” around the cube, bouncing off the walls and colliding with one
another. Such a visualization is a direct manifestation of the physical system (i.e., the
physical system defines the visualization), and few scientists would find some other repre-
sentation more generally useful than that suggested by the physical system.

Now, suppose someone wished to model the interactions between thousands of
processors in a massively parallel computer. Should they use the interconnection topology
of the machine (e.g., mesh, hypercube) as the basis for the visualization? Or perhaps they
should consider the logical model imposed by a data-parallel programming language (e.g.,
vector, 2-D or 3-D array)? Or maybe it’s more appropriate to base the visualization on
how the compiler decides to distribute the data among processors? Each of these repre-
sents a possible foundation (i.e., context) upon which visualizations for a parallel system
could be constructed, but no one of these is ubiquitous enough to capture all - or even
many - of the possible performance visualization scenarios for the seemingly simple task
of modeling the processors of a parallel computer. Thus, it is very difficult to determine
which display might be the most useful. In fact, the concept of “usefulness” becomes
extremely user- and application-dependent in the context of parallel performance visual-
izations. Furthermore, because performance visualizations can be more abstract, user pref-

erence plays a critical role in evaluating the effectiveness of a particular display.



Nonetheless, researchers have identified many important principles relating to the
design and use of visualization in the context of parallel program evaluation
[4,10,27,29,31,40]. Some of these principles include the use of multiple views, semantic
context, and user interaction. Multiple views facilitate understanding of a parallel pro-
gram’s operation by capturing and analyzing data from the execution across different lev-
els of observation and from different perspectives. In addition, it is generally believed that
visualization interpretation is improved if the user is provided with a semantic context for
understanding the parallel program data represented. Semantic context can play a role
similar to that of the physical models that support traditional scientific visualizations.
Finally, user interaction allows the viewer to select alternative views, change the level of
detail or the type of data, and control display parameters in order to find the best possible
visualization scenario for data interpretation.

Although these principles provide constructive guidelines for visualization design,
it is still a challenging undertaking to develop generally useful parallel program visualiza-
tion tools. Several projects have tried to deliver general visualization solutions, leading to
widely debated concerns over usability. The focus in the parallel programming too! com-
munity on the quality of visualizations offered by end-user tools has been, in part, at the
expense of research into developing improved visualization techniques that better target
specific end-user requirements. With the importance of semantic context in enhancing
visualization interpretation, it is good practice not to restrict visualization design creativity
by requiring visualizations to have broad user appeal, particularly since a meaningful visu-
alization for one user may not be especially meaningful for another. Rather, efforts are bet-
ter directed at developing visualization techniques that can be applied in building
visualization tools to address specific problems that users encounter in parallel program
evaluation, while following general principles and guidelines for good visualization

design [16,29,48].



To summarize, the preceding arguments lead to several characteristics that should
be supported by a visualization environment for parallel systems. First, the absence of a
physical model on which to base visualizations suggests the need for a more formal visu-
alization methodology in which displays result from mapping performance data to graphi-
cal characteristics. Second, because usefulness is so dependent on the user and their
application, the ability to modify and interact with a visualization is critical. Finally, a
visualization environment should be adaptable to user needs and specific application con-
texts by focusing more on robust visualization techniques and specification rather than
specific visualizations.

This thesis presents a methodology and implementation for performance visualiza-
tion development that addresses these issues while greatly reducing programming over-
head, facilitating rapid prototyping of displays, and allowing for effective iterative design
and evaluation. By applying the tools of scientific visualization to performance visualiza-
tion, this work demonstrates that next-generation displays for performance visualization
can be prototyped, if not implemented, with existing data visualization software products
using sophisticated graphical techniques that physical scientists have used for several
years now.

The remaining chapters of this thesis fall into two main parts. Chapters I-V1 pro-
vide a detailed description of the visualization process, while Chapters VII-IX each con-
tain case studies of the use of this visualization process in specific parallel program and
performance visualization contexts. Thus, this research is further motivated in Chapter II.
Related research work is summarized in Chapter III, and a brief description of the IBM
Data Explorer visualization package, the primary visualization development platform, is
given in Chapter IV. This is followed by a detailed examination of the methodology in
Chapter V, and a description of the visualization development process that was developed

by applying the methodology to a particular implementation environment is found in



Chapter VI. A case study focusing on the development of new visualization concepts is
explored in Chapter VII. The second study, in Chapter VIII, focuses on the use of visual-
ization for the evaluation of parallel data distributions. Chapter IX documents the develop-
ment of scalable visualizations for data-parallel programs. An informal evaluation of this
visualization development technique in Chapter X is followed by a summary of the work

and some possible directions for future research in Chapter XI.



CHAPTER I

MOTIVATION

The introductory chapter suggested a few characteristics of a sophisticated visual-
ization environment for parallel programs and performance. This chapter will develop
those concepts and others more thoroughly.

By now, the importance of graphical visualization in parallel performance evalua-
tion has been established by the presence of tools such as ParaGraph [9,10], Sieve [42],
Pablo [33], Voyeur [44], Seeplex [4], and Traceview [25]. These environments offer the
parallel programmer access to information and insights that might otherwise go unob-
served. Whether a parallel program is executing on 4 or 4,000 processors, the ability to
view performance data in a useful way often enables the programmer to identify anoma-
lous behavior within a program. Subtle changes in the way a program performs its compu-
tation, for example, could offer substantial improvements in performance. Without
visualization techniques to aid in the discovery of such problems, performance improve-
ments might never be found [9].

Clearly, performance visualization is not a panacea to the performance issues fac-
ing parallel programmers, though. As suggested earlier, visualizations have to be “useful”
- in a way that elucidates performance behavior. However, “useful” is a subjective term.
For instance, in the domain of scientific visualization, a display that is “useful” to the sci-
entist in a jet propulsion laboratory may be inappropriate to the researcher analyzing

ocean currents. The notion of “useful” as it applies to scientific visualization applies to



performance visualization as well. The important point is that if a visualization helps a
single person do their work better, then the visualization should be considered useful.

Currently, though, visualization techniques force performance tool developers to
predetermine (i.e., before implementation) what set of visualizations may be useful to the
most people. Determining the effectiveness of visualizations is difficult without usability
case studies (such as [9]) and a more formal evaluation framework (which might incorpo-
rate the ideas in [29]). While application-specific displays have their place in performance
visualization, displays can be meaningful to large numbers of people. The success of the
tools mentioned above is testimony to this fact. However, the degree to which a visualiza-
tion can be considered general-purpose or application-specific is a difficult quantity to
determine. Nonetheless, both theory and practice strongly suggest the need for a wide
range of application-specific visualizations to augment a general-purpose set. To date, this
need has been difficult to fulfill because of the considerable overhead in creating, evaluat-
ing, and formalizing performance visualizations, but its importance has been documented
by Stasko and Kraemer [46]. Heath and Etheridge [10], creators of the general-purpose
ParaGraph displays, even acknowledge the importance of application-specific displays:

In general, this wide applicability is a virtue, but knowledge of the applica-

tion often lets you design a special-purpose display that reveals greater

detail or insight than generic displays would permit. (p. 38)

Unfortunately, such displays are not easily created in a tool like ParaGraph since
they require special programming skills [10]. Clearly, a development process that requires
little overhead and programming would enable developers to generate application-specific
displays quickly in response to user needs, as well as create and evaluate general-purpose
visualizations.

Computer animations of the ozone hole, a thunderstorm, or ocean currents - all
appropriately described as application-specific displays - have become commonplace in

scientific visualization. How have other scientists been able to overcome the overheads



involved in visualization development? Scientists use generalized data visualization soft-
ware products that have most, or all, of the tedious graphics and data manipulation pro-
gramming already done, although there is still a creative process involved in constructing
scenarios for visualizing scientific data. Performance visualization developers, on the
other hand, have heretofore chosen to develop dedicated graphics and data manipulation
support from the ground up, inadvertently limiting the type and variety of displays avail-
able to the user. In other words, tools developers have focused on providing the visualiza-
tions rather than robust environments and techniques to create them.

As parallel computing architectures, environments, languages, and applications
continue to advance, performance visualization needs will become more demanding. Most
existing tools are limited to two-dimensional displays, offer little customization and dis-
play interaction, and have strict data formats. Three-dimensional visualization in conjunc-
tion with advanced graphical techniques has opened up entirely new possibilities for
researchers in scientific fields, and it stands to do the same for performance visualization.

To determine whether the field of performance evaluation can benefit by such
next-generation visualizations requires a means for rapidly prototyping and evaluating
new displays and display techniques. To apply the development process of existing perfor-
mance visualization products to these new ideas would be to start coding hundreds of
three-dimensional graphics routines and interaction techniques, not to mention advanced
data representation and manipulation capabilities. Many months later, a researcher might
be in a position to begin prototyping and evaluating new visualizations.

The methodology proposed herein is based on a formal foundation in which per-
formance abstractions are mapped to visual abstractions [28]. In general, the methodology
defines a framework for interfacing to existing visualization systems (e.g., IBM Data
Explorer, AVS), graphical programming libraries (e.g., OpenGL), and other graphics

resources. In this manner, an existing visualization package is but a single means of imple-
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menting the formal, high-level abstractions. While this work has focused on the use of
IBM’s Data Explorer, any number of similar products could also be applied. At the very
least, this methodology allows visualizations to be prototyped quickly with minimal over-
head, making displays available for evaluation without committing months of program-
ming to a visualization project. The process avoids graphics programming completely, yet
maintains access to numerous display styles and interaction techniques. In essence, devel-
opers are able to focus on the visualization design rather than the underlying implementa-
tion of data models and low-level graphical operations. This research offers a new
technique for the development of parallel program and performance visualizations. Even
if the scientific visualization package isn’t suitable for the final implementation, research-
ers will at least be able to perform much needed usability tests and determine if their dis-
plays are effective before final implementation begins.

As a final note, while greatly facilitating the evaluation of new and existing visual-
izations, this research does not have evaluation as its goal at this point. Many visualiza-
tions will be presented in the pages that follow. Any “evaluation” that may take place is
ultimately aimed at the development techniques being explored, not the visualizations

themselves.
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CHAPTER HII

RELATED WORK

Many research results and discussions of visualization tools have appeared in the
literature in recent years. This chapter summarizes many of the key results that have con-
tributed to this research effort.

A recent summary of current visualization tools for parallel systems can be found
in [21] where Kraemer and Stasko summarize the current state-of-the-art in visualization
development for parallel systems in general (i.e., parallel debugging, program visualiza-
tion, and performance evaluation).

Tools such as ParaGraph [9,10], Pablo [33], and Seeplex [4] have become popular
because of their portability, scalable displays, and complete performance visualization
environments. The displays offered by these products can be very effective for general
parallel performance evaluation. Typically, however, the creation of application-specific
displays either requires considerable programming (e.g., X Window programming) or is
simply unavailable. With regard to ParaGraph, Heath and Etheridge [10] admit:

Unfortunately, writing the necessary routines to support an application-spe-

cific display is a decidedly nontrivial task that requires a general knowl-

edge of X Windows programming. (p. 38)

Stasko [46] explains the dire need for application-specific displays in the context
of parallel program debugging, which he differentiates from performance evaluation by

claiming that performance visualizations do not focus on the semantics of a particular pro-

gram. As explained in the introduction, however, performance evaluation can be enhanced
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by creating visualizations which are linked to the semantics of an application. In this way,
the visualization concerns of parallel program debugging and performance evaluation do
intersect, and Stasko’s reasons for application-specific displays become relevant to this
work as well.

Many of the philosophies underlying this research are echoed in the work by
Sarukkai and Gannon. In [42], they contend:

The lack of a generalized approach for the treatment of the performance

data has lead to the use of ad-hoc means of developing performance visual-

ization systems.

A truly programmable system should provide a means of easily obtaining

the desired visualization and still not be tied to specific architectures or

programs. To achieve this, the visualization mechanism should not be tied

with the semantics of any event in the trace file. Instead it should provide a

means of mapping subsets of all events in a trace file and different fields in

these events to different axes of a figure and to different graphical objects

such as circles, points, lines or 3-D objects.

Finally, a powerful visualization tool should provide some sophisticated

graphical editing capabilities such as zooming into specific locations of

windows, multiple color maps, overlaying of figures, etc. (pp. 158-159)

Data visualization software, coupled with the design process proposed in Chapter
V, provides some of the capabilities identified by Sarukkai and Gannon. In general, the
separation of data transformation and graphics makes visualizations independent of the
trace data’s semantics. Flexible data models offered by most scientific visualization pack-
ages simplify mappings between data and graphical characteristics and rendering tech-
niques, and sophisticated display interaction techniques are also supported.

Sarukkai and Gannon also make a case for the importance of application-specific
displays and rapid prototyping to enable more effective evaluation:

While it is convenient to have predefined visualizations of programs, the

problem with such tools is that it is not easy to rapidly test new visualiza-

tions.... (p. 158)

The use of prototyping tools has been established by systems such as Pablo [33]

and Polka [46]. Pablo promotes itself as a performance tool prototyping environment that
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allows and supports end-user applications. That is, the prototyping environment is the
same as the one used by the end-user, but Pablo provides little support for new visualiza-
tion prototyping. Polka can be used more effectively for the rapid development of algo-
rithmic animations but is primarily suited for sequential programs.

An essential feature of next-generation visualizations is customizability of the dis-
plays. Pancake covers this topic as it pertains to parallel debugging in [31]. As with
Stasko’s work, many of the concepts discussed are also relevant to parallel performance
visualization. Pancake’s point is that visualizations based on the user’s conceptual model
can be more meaningful than those which are not. Therefore, giving the user the ability to
customize and control visualizations should result in more meaningful and useful displays.
Clearly, this notion is applicable to both debugging and performance visualizations. In
[37], Roschelle argues that meaningful visualizations are not necessarily those that are
consistent with an expert’s mental model. Rather, users should be able to experiment with
visualizations and develop their own understanding of the data. Thus, both researchers
support the importance of customizable displays.

In [38], Rover proposes a paradigm that treats performance data similar to any dis-
tributed data (i.e., program and system data) in the context of the data parallel program-
ming model. Rover states:

Visualization displays this performance data for perusal, employing the

same presentation techniques in place for data visualization, such as anima-

tion, image transformations, color manipulations, statistical analyses.

(p. 149)

In her conclusion, Rover states that existing scientific data visualization resources
can be effectively applied to performance visualization. In a similar manner, this work
treats performance data like scientific data and develops a methodology for applying sci-
entific visualization tools which contain the presentation techniques identified by Rover to

the problem of parallel performance visualization.
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The literature shows at least one documented use of existing visualization software
products for performance evaluation. In [39], Rover utilizes AVS and Matlab to generate
performance displays. Her approach is similar to the design process proposed in this thesis
in that performance data is collected, transformed into a format readable by the software,
and then displayed using that software. The tools were used to generate simple, two-
dimensional displays. This research both formalizes the approach and extends the use of
such products into the development of new, more complex visualizations.

Reiss and Sarkar [34] present a sequential program analysis environment in which
visualizations are defined as abstractions using queries over an object-oriented database of
information about the program. Roman and Cox [36] define a program visualization as a
mapping from programs to graphical representations. The methodology described in this
paper combines these ideas and applies them to the context of parallel programs and per-

formance by mapping abstract performance data to visual and graphical characteristics.
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CHAPTER IV

DATA VISUALIZATION SOFTWARE

Before describing the visualization methodology and the implementation that
forms the framework for this reséarch, a brief overview of the general data visualization
software will be useful. This chapter summarizes that software, IBM’s Data Explorer.

It is important to emphasize that Data Explorer is not unique in its capability to
create sophisticated visualizations and to be integrated into the formal methodology
described in Chapter V. The high-level abstractions can manifest themselves practically in
many ways, including other data visualization software. Data Explorer was available and
seemed an appropriate test-bed for this research, though it is only one of many products
that could fulfill the role defined by the methodology. The end of this section offers a list
of several other similar products.

Data Explorer (DX) is an advanced data visualization software package produced
by International Business Machines (IBM) which accommodates both developers and
end-users of visualizations. Visualizations can be built by creating a visual program in the
graphical user interface or by using a scripting language. The end-user can control many
aspects of a visualization through the interface, while more advanced users can create new
visualizations by adding, removing, or changing modules within the current visual pro-
gram. DX also allows the creation of new, high-level data-processing or graphical mod-

ules.
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The DX data model is extremely flexible, though it requires some time to under-
stand and use. It can handle everything from rendering very regular, mesh-connected
structures to completely arbitrary sets of polygons. At its heart, the DX data model utilizes
sets of positions, connections, and data values associated with one or both of these sets.
This simple foundation offers tremendous flexibility in what the model can represent.

In addition, Data Explorer supports a high degree of data and software reusability.
Because DX data is self-describing, visual programs retain significant generality and can
create a wide class of visualizations. Furthermore, a single DX data file can easily be pro-
cessed by multiple visual programs. (As will be discussed later, different visualizations are
created by altering the trace transformation, the visual program, or both.)

The numerous graphical techniques available in DX can be combined in hundreds
of ways, provided that the data satisfies the requirements of the given techniques. DX
modules generally do the “right thing” for the data they receive because the data is self-
describing. For example, a module which annotates a set of locations with rendered
objects whose size and color are dependent on some data value will choose the appropriate
graphical technique depending on the dimension of the data (e.g., spheres for scalar values
or vector arrows for three-dimensional data).

The Data Explorer software runs on several architectures, including IBM RS/6000,
Hewlett-Packard, Silicon Graphics, and Sun workstations. Additional information on Data
Explorer can be found in [14] and [24]. Obviously, Data Explorer is not the only general
data visualization software available. Some other similar products include AVS by
Advanced Visual Systems, Data Visualizer by Wavefront Technologies, IRIS Explorer by
Silicon Graphics, and PV-Wave by Visual Numerics. In the public domain, there exists the
Geometry Center’s Geomview/OOGL and NCSA's Polyview products. Any of these pack-

ages could be integrated into the methodology equally as well.
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CHAPTER V

METHODOLOGY

The work described in this thesis exists in the context of a high-level abstract
model that has guided the performance visualization research at the University of Oregon
[28]. This chapter describes that model, and explains the aspects of it with which this
research effort is concerned.

At the heart of the abstract model is the claim that if performance visualization is
to play a key role in the evaluation of parallel computers and programs, then it must be
established on a formal foundation that relates abstract performance behavior to visual
representations (i.e., a “visual performance abstraction™). The binding of a performance
abstraction to a view abstraction, mapping performance object outputs to view object
inputs, represents a performance visualization [28].

The notion of viewing a performance visualization as a mapping from perfor-
mance data to a graphical representation was introduced in Chapter I. The absence of con-
crete, physical models to contextualize performance visualizations implies that such
displays may take on a more abstract, impressionistic nature, potentially complicating
interpretation and usability. By imposing an abstract model (i.e., structure) onto the devel-
opment of performance visualizations, some of these inherent difficulties may be over-
come. By providing a set of graphical techniques and a robust environment for mapping
performance data onto them, visualization flexibility is maintained, but structure is pre-

served. In other words, the user is provided with a fixed set of visual techniques rather
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than a fixed set of visualizations. Some preliminary research suggests, for example, that a
vast array of visualizations can be modelled as hierarchical graphs of nodes and links.

A performance abstraction is the representation of how performance complexity is
managed (i.e., desired performance data analysis) and the performance characteristics to
be observed. A view abstraction is a representation of the desired visual form of the
abstracted performance data, unconstrained by the limitations of the graphics environ-
ment. Together, these two descriptions can be used to produce performance visualization
software by generating interfaces to available graphical programming libraries or existing
data visualization systems. Using this methodology, new parallel performance visualiza-
tion environments can be developed and studied.

As seen in Figure 1, through a process of abstraction, performance data generates
specifications for the performance analysis and the visual representation of the data. In
practice, these abstractions would best be facilitated through a specification language
(which is currently under development at the University of Oregon); the particular imple-
mentation environment, Data Explorer, does not currently offer support for this aspect of
the methodology. Specifications are subsequently instantiated to implementable objects.
(The term objects is intentionally general to accommodate the many realizations possible
in different implementation environments.) Figure 1 indicates an overlap between perfor-
mance and view objects, suggesting an interdependence between their implementations.
In the ideal implementation environment, performance and view objects would be totally
independent, but this research has found that the degree to which these entities can be
implemented independent of one another is determined by the environment in which the
implementation is taking place. In Data Explorer, this overlap is present in varying
degrees. Next, the instantiated objects are combined to create the visual representation of
the performance data. Finally, the actual rendering of the visualization takes place through

a toolkit which interfaces with the various graphics resources being utilized. The explicit
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existence of the toolkit is also dependent on the implementation environment (e.g., in Data
Explorer, the “toolkit” interface is imbedded within the visualization system itself). For

more information about this methodology, see [28].

Performance Data
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Figure 1. A high-level, abstract view of performance visualization treats a
visualization as a mapping from performance data objects to graphical
view objects and promotes the development of interfaces to existing graph-
ical resources.

The research documented in this thesis is concerned with the application of this
methodology in a specific implementation environment - a scientific visualization soft-
ware system; in this case, that system is Data Explorer. As mentioned earlier, realizing this
methodology in a specific environment is not always straightforward, and the correlation

between abstraction and implementation is not always cleanly defined. It was mentioned
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above that Data Explorer does not offer support for the specification of abstractions, and
consequently, this was not the focus of this research effort. On the other hand, it was pos-
sible to implement the concepts of performance and view objects in the context of an
existing data visualization system. The process that has evolved implements performance
objects by structuring raw trace data so that the visualization system can process it. View
objects manifest themselves in the way a developer creates a visualization within Data

Explorer. These correlations will be explained further in the next chapter.
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CHAPTER VI

IMPLEMENTATION

It was mentioned previously that the methodology described in Chapter V is open
to a variety of implementations. The methodology offers a framework for creating inter-
faces to existing graphical resources, an efficient means of simultaneously gaining access
to a wide variety of graphical capabilities and minimizing graphical programming. In this
way, an instantiation of Chapter V’s methodology yields an environment in which visual-
izations are actually developed. This chapter discusses one such implementation that uses
the Data Explorer software.

The visualization development process that has evolved from working with Data
Explorer is illustrated in Figure 2. Performance visualization starts with raw trace data or
statistics. The fundamental steps of this process transform the trace data into a data object
file and a visual program. While trace transformations manifest themselves physically
(i.e., as some real program or function operating upon the trace data), graphical transfor-
mations in this implementation environment are a mental process by which analysts merge
the capabilities of the visualization environment, their knowledge of the performance data,
and a visualization concept - or, more formally, a view abstraction - to construct a visual
program in DX that drives the creation of the desired display. It is important to note that
the specification of a visualization in Data Explorer (by a visual program) does not fulfill
the role of the view abstraction specification of Figure 1; that aspect of the methodology is

not explicitly defined in this environment, but is, instead, embodied in the mental transfor-
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mation process. In an alternative implementation environment, or as an extension to this
work, abstraction specification could play an important role in developing the mapping

from performance data to graphical representation.

Graphical Redesign
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Data |=20 — m

Evaluation
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Figure 2. A development process based on the abstract performance visual-
ization methodology can be realized using existing data visualization soft-
ware.

The trace transformation may perform several operations and reductions on the
data, but it ultimately creates a data object file that can be interpreted by the data visualiza-
tion software. The content of these DX data object files maps nicely to the concept of per-
formance objects. In fact, that is exactly what DX data files contain - data objects that have
been constructed by the transformation of performance data. From this specially formatted
data file, a visualization prototype is created by executing the visual program. The result-
ing display can be manipulated in many ways, including rotating, zooming, and travelling
through or around the objects in the image by capitalizing on the capabilities available in
the software.

Figure 2 also shows how the performance visualization prototyping environment

can be integrated into an iterative design and evaluation process. Though not explicitly
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shown in the figure, the redesign of a visualization is accomplished by modifying the trace
transformation, the graphical transformation, or both. Eventually, the visualization will be
ready for production. If the software package is an insufficient environment for the final
implementation (e.g., because of cost or performance), then a graphics-level implementa-
tion of the visualization is appropriate at that point. Note that this occurs after the iterative
design and evaluation process is complete. Ideally, though, the prototyping environment
and implementation environment are the same, in which case the visualization prototype
would be in its production version immediately after evaluation of the prototype is com-
plete.

Figure 2 indicates the interdependence between the visual program and the data
object file by a dashed arrow between them. In an ideal development environment, perfor-
mance objects and view objects are implemented independently of one another. However,
dependencies between data objects and visual programs exist in some cases. For example,
much of the trace processing required to create a visualization like Figure 12 (p. 42) is in
representing the polygonal facets of the cylinder. Essentially, the data object file is a pre-
cise specification for the graphical structure. Ideally, though, the developer should be able
to rely on the visualization environment to provide that transformation. In other words,
this sort of processing should really be part of the graphical transformation (i.e., the cre-
ation of the visual program in DX). In an end-user visualization tool, such processing
would be inherent in the visualization development environment, not programmed exter-
nally by the user. However, in a prototyping environment where new visualizations are
created for evaluation and then modified, this sort of processing is more easily managed as
part of the external trace processing. The switch from prototyping to production sees this
additional trace processing ported into the implementation environment.

In fact, DX can accommodate the creation of user-defined modules that accept

more general, abstracted trace data and perform the necessary structural transformations.
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A developer could write a DX module that performs a specific transformation on trace
data and easily integrate it into the visualization environment. This transition would make
the implementation environment more consistent with the methodology from which it
came, but since prototyping visualizations enables development and evaluation, this
aspect of the implementation environment has not yet been explored.

In this process, graphics programming is avoided prior to production, the devel-
oper is able to focus on the visualization rather than the code that generates it, and visual-
izations are quickly created for evaluation, modification, and redesigh. This is possible
because changes to visualizations are made more easily and have fewer implications in the
prototyping environment than in current performance visualization tools. Compared to
existing performance visualization techniques, this method is different in that it separates
the development phase from the production phase. As the area of visualization evaluation
advances, a decoupled development process will be important so that modifications may
be made quickly and easily. The application of this methodology creates a process that is a
step toward that goal. The following sections will explore trace and graphical transforma-

tions more deeply.

Trace Transformation: Creating the Data Object File

Raw performance data is most effectively processed by Data Explorer when it is
transformed into the DX data model. This section discusses some of the issues involved in

creating such trace transformations.
Trace Analysis

By using an existing software product, part of the visualization problem becomes
one of trace transformation. To take advantage of Data Explorer’s rich data model the

trace files or performance data must be transformed into a format that Data Explorer can
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process. A single trace file may take on several different representations within Data
Explorer depending on the visualization desired. On one hand, a transformation may sim-
ply augment the existing trace data with the appropriate keywords and structure. Alterna-
tively, it may perform extensive computations and/or reductions on the data set before it
generates the Data Explorer file. It is important to note that the problem of trace analysis
still exists. That is, in most cases the trace transformation is responsible for any analysis or
reduction of the trace data. However, one of the advantages of the method being proposed
here is that the transformation of trace data is done independently of any graphical repre-
sentation of that data, a concept promoted in [33] and [42], and a key characteristic of the
high-level methodology. Thus, transformations are easily modified and can be used with
several different graphical techniques. In an environment of creation, testing, and evalua-
tion, the ability to make changes with minimal intrusion on the rest of the system allows

for more rapid prototyping of the displays.
Trace Transformation Programming

Trace transformations can be easily implemented in traditional programming lan-
guages, and do not require any special programming skills. It is even possible that existing
performance tools can be used for more involved trace analysis problems, and then to gen-
erate data files suitable for input to Data Explorer. The underlying requirement, though, is
an understanding of the data model for the product being used. In the case of DX, experi-
ence suggests that it should take no more than a couple weeks of studying examples and
experimenting for an individual to become very comfortable with DX’s data model. Once
an understanding of the data model is achieved, trace transformation programming fol-
lows quickly and easily. Data Explorer’s data model is rich enough for general scientific

visualization and as a result, offers many alternatives for performance visualization.
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Self-Describing Data

Data Explorer’s data model offers significant advantages over traditional data rep-
resentation schemes. Because Data Explorer data is “self-describing” and modules are
designed with this in mind, a single DX visual program can generate many different dis-
plays depending on the data it processes. (The notion of self-describing data can also be
found in Pablo’s Self-Describing Data Format (SDDF) [33] and NCSA’s Hierarchical
Data Format (HDF) [30].) The data files imported by DX contain structural object infor-
mation which determines a set of possible visualizations. It is up to the visnal program to
extract and process the desired information from the data file. Many visual programs are

reusable, requiring only minimal changes, if any at all.

Graphical Transformation: Creating the Visual Program

In this section, several features of Data Explorer (and many other scientific visual-
ization packages) pertaining to graphical transformations will be discussed in the context

of parallel performance visualization.
Visual Programs

Once a trace has been transformed into the DX data model, it can be imported
using either DX’s visual programming language or its scripting counterpart. The visual
programs translate directly into the more general scripting language, both of which are
best described as functional and data-driven. Since the DX programs created for this work
were usually quite simple, the visual programming environment was adequate. A switch
between the two programming styles could have been made at any time if it had become
necessary, however. Programs generally consist of three phases: importing and selecting,

processing, and then rendering the data. One of the main advantages to using a product
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such as Data Explorer is that all of the programming that is necessary to implement these
three phases is already done for the developer.

Figure 3 contains a visual program created in Data Explorer. The graphical repre-
sentation of a DX function is a module with sets of “tabs” on its top and bottom, corre-
sponding to inputs and outputs, respectively. By connecting one module’s output tab to
another module’s input tab, the user assembles a network of modules - a visual program -
that specifies and controls the visualization. Connections between modules indicate the

flow of data through the network.
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Figure 3. A simple visual program in Data Explorer is capable of creating
many different types of visualizations, as seen in Figure 8.
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Customization

Forming the basis of the customization opportunities within DX, modules of a
visual program usually have default values that do the “right thing” to the data. However,
in certain cases, it is desirable (or required) to set certain parameters. For example, to
import data, the user selects the Import module from the DX menus and places it on the
programming canvas. (The visual program in Figure 3, like most DX programs, uses the
Import module.) The Import module requires the user to tell it which data object file is to
be read. To set the parameters of a module, the user begins by double-clicking on the mod-
ule, which opens into a window like the one in Figure 4. Next, the user types the appropri-

ate information into the desired fields (e.g., the “name” field in the Import module).

Figure 4. The Import module reads a data file into the visualization envi-
ronment.

Data Explorer offers other techniques for controlling module parameters which
allow the user to more easily interact with and “tweak” the characteristics of a display. By

connecting objects called “interactors” to input tabs, the user can create a “control panel”
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that allows for easy modification of any number of different parameters. An interactor
appears in the visual program as a simple module (no inputs, one or more outputs) and in a
control panel as a selector, a dial or slider, a text field, or some other interaction object.
(Note that the visual program in Figure 3 does not contain any interactors.) Interactors are
highly configurable yet easy to use, adding significant flexibility to the visualization
development process. An example control panel appears in Figure 5. As can be seen, the
control panel allows the user to select import data files, alter the graphical characteristics
of the display, and even change the quantities being visualized. Such a flexible environ-
ment fosters the development of customizable displays and a high-degree of user-interac-

tion, important properties for next-generation parallel program and performance displays.
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Figure 5. Control panels are used to create simple interfaces that can
manipulate many characteristics of a visualization.
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Display Interaction

Next-generation performance visualizations are bound to take advantage of three-
dimensional displays. The additional information made available by this technique will be
invaluable to programmers using next-generation parallel languages. However, moving to
three-dimensional visualizations necessitates additional functionality with regard to visu-
alization control and interaction.

Adding a third dimension to a visualization increases the representation potential
for the data associated with a given display. Three-dimensional rendering techniques
allow the viewer to see more of that data, and display interactions increase the access to
and control of visual details and display attributes. However, extending existing perfor-
mance visualization tools to three-dimensional displays requires more than just adding a
projection routine. Because three-dimensional displays are so dependent on the angle from
which they are viewed and the rendering techniques being used, tools offering three-
dimensional displays need ways for the user to interact with the objects in the display. At a
minimum, this would seem to require the ability to zoom in/out on any part of an object, to
rotate the object arbitrarily, and to control graphical attributes such as color and transpar-
ency. More advanced tools include control over lighting models and the surface properties
of display objects (e.g., specularity and reflectance).

As an example of the additional features provided by scientific visualization tools,
Data Explorer’s color map editor, shown in Figure 6, allows the visualization developer to
customize a visualization’s color map. In fact, multiple color maps can be used for differ-
ent objects in the display. The importance of flexible color mapping has been documented
[3,35]. Visualizations can be given completely new meaning simply by changing the color
map(s) associated with the display. Such features are not trivially incorporated into exist-

ing performance visualization tools but are standard in many visualization packages.
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Figure 6. A colormap editor can create arbitrary colormaps for a visualiza-
tion, enabling the analyst to explore and highlight different features of the
represented data.

Animation

Another feature that is extremely important to performance visualization is anima-
tion, again a capability offered by most data visualization packages. Data Explorer’s ani-
mation technique is similar to that of a cartoon. The DX data file often contains time series
data. When visualizations for each member of the time series are displayed rapidly in suc-
cession, an animation results. This is not as flexible as the animation techniques found in
some performance visualization tools (e.g., ParaGraph {10] and Polka {46]) where, for
example, a connection between two nodes may appear and disappear without ever having
to change the surrounding image. However, once displays become three-dimensional, this

type of animation becomes difficult since connections may pass through, in front of, or
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behind other objects in the scene, requiring complex hidden line and surface analysis algo-
rithms for a correct visualization.

For instance, Figure 7(a) shows a display from the popular ParaGraph visualiza-
tion tool, while Figure 7(b) is a prototype of the ParaGraph display generated by Data
Explorer. Both displays show communication between processors. ParaGraph’s display is
two-dimensional while Data Explorer’s is (inherently) three-dimensional, though not yet
to any representational advantage. In rendering the two-dimensional display, it is known
that a connection between two nodes will not interfere with any other objects in the scene
(except other connections which are safely ignored since they are just pixel-wide lines)
since the nodes are arranged in a circle. However, in the three-dimensional visualization,
the visibility of a given connection is dependent on the orientation of the structure as well
as the components making it up, which includes the other connections. The situation is
worse when a truly three-dimensional display is generated. The benefit of using a tool like
Data Explorer is that this display can be extended beyond the “flat” prototype into a real
three-dimensional display, resulting in a much richer, information-dense display. But this
added graphical complexity has its consequences as it necessitates a stricter method for
animation in the generalized data visualization software products. An example of extend-
ing an existing, two-dimensional visualization is presented in Chapter VIIL.

In general, visualizing in three dimensions overcomes certain limitations inherent
in two dimensions. For example, in 3-D there is more flexibility in layout than in 2-D,
making the creation of scalable displays potentially less intractable (see the case study in
Chapter IX). Advanced graphics rendering also offers more options for combining global
and detailed performance visualization in a single display (as in Chapter VII). While the
display in Figure 7(b) may be perfectly acceptable, three-dimensional representations
offer greater possibilities to the developer and must play an integral part in the next gener-

ation of parallel performance visualization tools.
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Figure 7. Displays from existing performance visualization tools can be
prototyped, and subsequently extended, using three-dimensional data visu-
alization packages.

Performance Visualization Examples

In this section, examples of how the development techniques described thus far
can be applied to parallel performance visualization are presented. These examples should
pave the way for the specific case studies in the following chapters.

The DX data model centers around sets of positions and connections. A simple DX
program might create a visualization that annotates positions with spheres and connec-
tions between positions with cylinders. Additional coloring might take place depending on
the data being processed. Figure 3 contains a visual program that accomplishes these tasks
for appropriately structured input data.

Performance visualizations that intend to illustrate interprocessor communication
often manifest themselves in a visualization fitting the description given above. That is,

processors can be represented by a set of spheres in space, while the communication
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between processors can be realized by links between the spheres (e.g., Figure 7). Such a
display can be extended in many ways and is certainly not limited to interprocessor com-
munication.

To emphasize the use of reusable visual programs, the images in Figures 8 were all
generated by the visual program in Figure 3. The only program parameter that was
changed was the name of the data file in the Import module. All the other modules have
default parameters that do the right thing for the data being visualized. The Data Explorer
modules are able to figure out what to do with the data without the user explicitly describ-
ing it; the trace transformation process is responsible for augmenting the trace data with
enough structural information so that Data Explorer modules can construct the visualiza-
tion from the data. Thus, the structure and content of the data file - which is the result of a
trace transformation - plays a key role in determining a visualization’s appearance. In this
way, a single visual program enables a set of displays to be generated. Practically, this is
convenient, but theoretically, it violates the desired independence between performance
and view objects, as described by the high-level methodology. Again, this is a result of the
specific implementation environment and represents a design decision made so that proto-
typing could be better supported.

Each of the displays Figure 8 could be used in a parallel performance setting. For
instance, Figure 8(a) could represent interprocessor communication in a ring topology.
Similarly, Figure 8(b) could be applied to a mesh architecture where glyph size represents
communication overhead, link color represents the communication load on a particular
interconnection between processors, and the mesh background shows a continuous inter-
polation of the discrete node data, potentially useful to observe scalability characteristics.
Figure 8(c) extends the previous example into three dimensions. The interior of the solid
is volume-rendered to create a “cloud” of colors which can offer insight into the possible

results of a scaled-up version of the application. Finally, Figure 8(d) offers a novel visual-
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Figure 8. The visual program in Figure 3 can create a wide range of perfor-
mance visualizations depending on the structure of the underlying data.

ization where processors exist in a two-dimensional grid with “sails” emanating from the
glyphs. For each processor, the orientation of the sail and the height of the sail’s two upper
points could be controlled by a three-dimensional metric (e.g., busy, idle, and overhead
percentages). While these displays are significantly different graphically, they were all
created by a single, simple visual program processing different data files. In terms of the

methodology, the same view objects are being combined with different performance

objects.
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Alternatively, the same dataset can be processed by different visual programs to
generate different displays, an approach common to scientific visualization. For example,
a developer can apply different realization techniques to the same data by using different
DX programs. One visual program may volume-render a three-dimensional structure
while another creates contour surfaces within the volume. The data is the same, but the
different visual programs enable different types of displays to be created.

Thus, in this methodology the developer is presented with two levels at which
visualization development and modification can take place: the data object file (perfor-
mance objects) and the visual program (view objects). Both can be used to control certain
aspects of the visualization process, but typically one may be more appropriate than the
other depending on the user’s goals. If the goal is to investigate performance characteris-
tics within a single set of performance data, then fixing the data set and changing the
visual program tends to work best. On the other hand, if the goal is to compare and con-
trast several sets of performance data, then using a single visual program and changing the
structure of the imported data can be effective. Of course, in many situations, changing
both the data and the visval program generates the best results.

The strength and flexibility of a product like Data Explorer comes from both the
programming behind the modules and the powerful data model it uses. The result, in terms
of prototyping performance visualizations, is that displays can be created very easily and
quickly. For the visualizations in this thesis, less than 100 lines of standard C code was
necessary to implement the trace transformations. Also, the Data Explorer visual programs
required to import and process the data files vary minimally across a wide range of visual-
izations - a testimony to the self-describing capabilities of the data model and the high
degree of software reusability supported by DX. In all, a new visualization - trace transfor-
mation, graphical transformation, debugging, experimentation, etc. - can be developed in

less than a day. Modifications to existing displays require a few minutes or less. Given that
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a single DX visual program may serve to create many visualizations, and of course, a sin-
gle DX data file can be used in many different visual programs, the overall result is a very
versatile environment for creating and redesigning performance visualizations.

To illustrate how this may benefit performance visualization developers, consider
the following scenario. Suppose a certain performance visualization tool was limited to
two-dimensional displays in the spirit of Figure 7(a). (Note that this supposition applies to
almost all of the existing performance visualization tools mentioned throughout this the-
sis.) To extend such displays into three dimensions would require substantial work on the
part of the tool designers and implementers. New graphic routines would have to be writ-
ten, additional methods of interacting with the display would probably be necessary, and
perhaps the data model would need to be extended. Using a tool such as Data Explorer,
which supports three-dimensional visualizations by default, the jump from 2-D to 3-D is

simply a matter of changing the data!
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CHAPTER VII

CASE STUDY: ADVANCED PERFORMANCE VISUALIZATIONS

This chapter contains the first of three case studies on visualization development
using the environment that has been described in the preceding chapters. As has been
stated before, a primary focus of this research is to provide new visualization techniques
that may be effectively applied in specific application contexts to develop visualizations
useful to users within that domain. This development technology makes a wealth of new
graphical capabilities available to the visualization developer. This chapter examines how

such capabilities can be put to use in developing new performance visualizations [6].
Introduction

Most performance visualization tools are limited to simple, two-dimensional
graphical displays. While many of these displays are very effective, the use of more
sophisticated graphical techniques has gone unexplored in the context of parallel program
and performance visualization. The availability of general, three-dimensional visualiza-
tion packages makes a vast array of these new graphical capabilities easily available to the
visualization developer. In this study, two categories of new displays are explored. First,
an example of how existing displays can be extended into multi-dimensional visualiza-
tions will be given. This will be followed by some new ideas for performance visualiza-

tions.
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Extending Existing Visualizations

A popular visualization from the ParaGraph visualization tool [10] is the Kiviat
diagram [19]). The traditional form of this two-dimensional display has several spokes
extending from a center point whose lengths change as time passes. A spoke corresponds
to a single member of an object set over which a scalar parameter (or a set of parameters)
is being measured. As it has been applied in ParaGraph, a spoke represents a processor in
a parallel computer, and the measured quantity is the percentage of computation (i.e., utili-
zation) for that processor. Then, when the ends of adjacent spokes are connected, triangu-
lar regions result. If the quantity being represented by the length of the spokes is, say,
computation, then processor utilization would be “good” when the spokes are longest.
(Spoke-length is typically mapped onto the interval [0,1]. Thus, with a large number of
spokes at maximum length, the Kiviat diagram approximates a unit circle, which is some-
times used as a backdrop.) Figure 9 contains an example of a Kiviat diagram from Para-

Graph.
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Figure 9. ParaGraph uses a Kiviat diagram visualization to show processor
utilization.
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Given the concept of a Kiviat diagram, one can easily represent such a structure
within the positions and connections of the Data Explorer data model. The minimal
amount of information necessary to create the visualization is a time series of data. Each
time step contains a scalar value for each processor in the system. It was mentioned above
that triangular regions result when the end-points of adjacent spokes are connected with
one another. Thus, a Kiviat diagram can be decomposed into a set of triangles. In Data
Explorer, a triangle is represented as three points and three connections. All triangles in a
Kiviat diagram have the center point in common, and adjacent triangles share the end-
point of a common spoke. If there are n processors in the system, then for each time step in
the animation, n+/ positions must be specified, followed by a list of connections, which is
given by referencing the positions list. In essence, the representation is similar to a “con-
nect-the-dots” puzzle.

Conceptually, a Kiviat diagram is easily represented within the Data Explorer data
model, and the DX program necessary to render the data is only slightly more complicated
than the examples discussed earlier (Figure 3). Thus, in roughly half a day, a fully ani-
mated Kiviat diagram prototype was developed from a raw trace file. Figure 10 shows a
single frame of the animated visualization.

The ability to go from visualization concept to visualization prototype in just a few
hours opens up entirely new possibilities for visualization developers and evaluators.
However, implementing a two-dimensional visualization within an advanced visualization
environment doesn’t offer any additional insight to the performance data. Thus, as was
suggested in Chapter VI, the next step is to see how the standard Kiviat diagram can be
extended to take advantage of some of the graphical capabilities present in the data visual-
ization software.

One of the potential problems with a standard Kiviat animation is that the viewer

sees only one step at a time and can easily lose track of how the performance at a given
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Figure 10. The traditional two-dimensional Kiviat diagram is easily imple-
mented using data visualization software.

step compares to the performance during the rest of the animation. Thus, by removing the
animation of the display and letting time run along the newly available third axis, a Kiviat

“tube” results. Figure 11 illustrates how this visualization is constructed.

time = 1

time = 3

time = 2

time = 2

time = 3

Figure 11. The two-dimensional Kiviat diagram can be extended to three
dimensions by allowing time to travel along a third axis.
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It is interesting to note that now the representation within the DX data model
changes considerably. To render a tube with a solid exterior shell, the quadrilateral surface
patches between time steps are rendered instead of the triangular sections emanating from
the center of each slice. Still, the transformation is only slightly more complicated than the

standard Kiviat transformation. Figure 12 shows a Kiviat tube generated by Data Explorer.

Figure 12. A three-dimensional Kiviat tube reveals global trends in the per-
formance data.

This representation of the original Kiviat diagram is important because it gives the
viewer a global view of the performance data, as opposed to the standard two-dimensional
version which limits the viewer’s ability to compare the performance of the application at
different times during the trace. However, the three-dimensional representation tends to
obscure more detailed information about individual processors at specific times, whereas
the standard Kiviat display shows that information more clearly.

Some of Data Explorer’s true power is revealed in the following example. It is pos-

sible that individually, neither of the Kiviat displays generated thus far (Figures 10 and 12)
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totally fulfills the viewer’s needs. The two-dimensional display allows the viewer to assess
how processors relate to each other during a given time slice, but makes it difficult to see
how performance in one time step relates to other parts of the animation. The three-dimen-
sional display tends to do just the reverse; that is, seeing trends over the life of the trace is
'easier, but it is difficult to see how processors relate to each other during a given time step.
It may be that by combining the two displays, both needs could be met. Thus, the idea for
a still more enhanced display is to let the two-dimensional Kiviat slice “pass through” a
partially transparent Kiviat tube. The slice highlights the interprocessor relationships for a
given time step while the rest of the tube still reveals how a particular step relates to the
rest of the data. The display is animated by letting the slice slide through the tube. Alterna-
tively, the viewer can directly specify the time step at which to place the slice.

This is a complex, advanced visualization that combines several graphical tech-
niques. However, having previously specified the two pieces of the display individually,
Data Explorer allows the developer to combine the two trivially. In what literally took just
minutes, the composite visualization in Figure 13 was created. (Please note that this dis-

play utilizes transparency and is very difficult to represent in a greyscale manner.)
New Visualizations

New visualizations represent a second category of displays that can utilize some of
the graphical capabilities of data visualization software systems. The reader is reminded
that the presentation of these new displays is meant to illustrate the usefulness of this par-
ticular design method as opposed to that of the visualizations themselves. This category
can be further broken down into two methods for developing visualizations. The first
approach is analogous to the method presented in the examples above - that is, start with a
concept for a visualization, and then translate it into the graphical capabilities of the avail-

able software. By definition, this is the only method applicable to prototyping extensions



Figure 13. By combining the two-dimensional and three-dimensional Kiv-
iat displays, a potentially more useful visualization results.

to existing displays. However, in prototyping new visualizations, many scientific visual-
ization packages offer another, potentially more powerful, method.

Essentially, the second method works in the opposite direction as the first - start
with some feature or graphical technique available in the software, and then develop a
concept for a performance visualization that uses that technique. Traditionally, visualiza-
tions have been developed out of a dire need to see data presented in a certain way, but the
earlier motivation of providing visualization techniques that can better accommodate the
rapid generation of new displays clearly supports this alternative approach. At first, the
thought of letting something other than need motivate a visualization may seem blasphe-
mous or, at least, odd. However, this technique can stimulate creative ideas that might not
otherwise be conceived. For the developer looking to create new and novel displays, this
technique may be helpful. Of course, the value of any new visualization is unknown until

it is thoroughly evaluated, and this is true regardless of how the visualization was created.
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Visualization Concept to Graphical Technique

In most cases, visualizations are created by starting with an idea for a display and
then figuring out how it could be accomplished using the available graphical resources.
This section provides an example of this process.

In the introduction to this thesis, a visualization scenario was posed in which the
visualization of molecules interacting within a three-dimensional space was compared to
visualization scenarios for the processors in a parallel computer. It was claimed that there
was an inherent physical model on which the molecular visualization could be based, but
such a concrete model was less obvious for the parallel computer. In particular, it was sug-
gested that molecules could be represented as spheres that moved around a well-defined
three-dimensional space. This section explores the use of that same visualization concept,
but in the context of the parallel architecture.

Three commonly traced metrics of parallel processor performance are the percent-
ages of computation, overhead, and idle times. As percentages, these three metrics create a
well-defined space in which the processors of a parallel computer exist. The concept
behind the visualization, then, is to represent each processor as a sphere within that space.

-The location of each sphere is determined by the values of the three metrics corresponding
to each processor. Thus, the axes represent computation, overhead, and idle. As time
passes, the spheres, like molecules, move around the “performance space” [46].

The raw data represents a time series, and each time step contains values for the
three metrics for every processor in the system. In Data Explorer, the visualization can be
modelled trivially. As discussed before, Data Explorer works with sets of positions and
connections. Consequently, this visualization just degenerates to a set of positions that
change over time. From a set of positions, the corresponding spheres are created with the

AutoGlyph module, as in the example earlier in this paper (Figure 3). So that processors
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may be distinguished from one another, the spheres are colored, also easily handled by

Data Explorer. Figure 14 contains an example of this visualization.

B

Figure 14. A three-dimensional processor performance metric determines
the location of processors within the “performance space.”

As with the other examples, it took less than a day to develop the basic prototype
for this display. After that, Data Explorer’s flexibility allows the user to customize and
“tweak” the display to no end. The user has simple control over the size of the glyphs, ani-
mation speed and granularity, colors, and other features that are fixed in many perfor-
mance visualization tools. These types of interactions are available directly from the

visualization environment and do not require new transformations of the data.
Graphical Technique to Visualization Concept

Up to this point, Data Explorer’s flexibility was impressive, yet it was evident that
only the surface of its graphical capabilities had been exposed. Gradually, the visualiza-

tion development process began to reverse itself as Data Explorer was used not only as a
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tool to implement a preconceived visualization concept, but as an aid in generating that
concept in the first place. This section will offer an example of such a visualization.

Data Explorer has the capability to realize data using a technique called a “rubber
sheet.” The concept is simple: a grid of positions and connections is interpolated to form a
continuous “sheet”; the data values associated with each position are then used to displace
(and color) that position on the sheet a distance proportional to the value in a direction per-
pendicular to the sheet. The result is a grid that is distorted (and colored) to reflect the data
values of the grid positions.

Thus, in examining this graphical realization technique, the idea for a visualization
evolved. The visualization’s goal was to provide program and performance visualization
information for distributed data structures. In distributed memory multiprocessor comput-
ers, processors can read data from either their local memory or from the memory of other
processors. Remote data accesses typically involve some form of relatively expensive
communication, and can lead to poor performance. For a given algorithm, the distribution
of a data structure affects the number of remote accesses that a processor has to make.
Using a rubber sheet, it would be possible to graphically represent the difference between
local and remote accesses made by processors to the elements of a distributed data struc-
ture. Such information is valuable in determining the effectiveness of a particular data dis-
tribution. (Chapter VIII contains additional information on the topic of evaluating data
distributions with visualization.) Having constructed the visualization’s concept from a
graphical technique available in the visualization software, all that remained was to create
the trace transformation necessary to realize the visualization. Figure 15 contains several

frames of the animation of this visualization.
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Figure 15. Vertical displacement and coloring reveal remote and local data
access patterns to a distributed data structure.

Summary

In this chapter, several visualizations that take advantage of more sophisticated
graphical techniques were presented. Data visualization software is capable of implement-
ing current two-dimensional performance visualizations. More significantly, though, it
allows such visualizations to be extended into potentially more useful displays. Data visu-
alization software can also inspire the creation of new types of displays. Clearly, perfor-
mance visualization developers gain access to significant power and flexibility when using

general data visualization software.



49

CHAPTER VIII

CASE STUDY: DATA DISTRIBUTION VISUALIZATIONS

In the preceding case study, the last example demonstrated a visualization that can
be used for evaluating the distribution of a parallel data structure across processors. Such
displays are important since many new parallel programming languages leave the task of
data distribution primarily up to the programmer. This chapter develops a specialized visu-
alization environment, based on the visualization methodology described earlier, that can

assist in evaluating data distributions [5].
Introduction

New languages such as High Performance Fortran (HPF) [11] and the parallel
C++, pC++ [1] offer cohesive data parallel programming abstractions, strive for effi-
ciency, and have portability as an underlying motivation in their design. While these lan-
guages offer levels of abstraction far removed from the physical architecture, they still
give the programmer explicit control over such issues as data distributions, data align-
ments, abstract processor arrangements, and specification of parallel loop constructs. The
results are languages whose compilers capitalize on certain recent advances in compiler
technology ([12], for example), but presently leave the critical task of distributing data
across processors up to the programmer. There are those people who will undoubtedly
applaud this step and consider user-specified data distributions a “feature.” Equally likely,

though, are those who will dread being forced to figure out the best way to partition manu-
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ally their data structures. Giving this ability (or burden) to the programmer, places the per-
formance of thousands of parallel applications in potential jeopardy. Clearly, the
distribution of data across processors is a deciding factor in the performance of the pro-
gram operating on that data. Thus, programmers using new languages such as HPF and
pC++ could benefit from evaluating different data distributions.

The goal of this case study is to demonstrate how this new performance visualiza-
tion paradigm can assist programmers requiring evaluations of data distributions. The
work by Kondapaneni, Pancake, and Ward [20] demonstrates how data distributions and
alignments in Fortran D (a language which contributed significantly to the design of HPF)
may be specified using graphical representations of program data structures. They claim
that the accuracy of data distributions specified by programmers using their visual pro-
gramming tool were more accurate than those made by programmers who did not use the
tool. Furthermore, the graphical environment encouraged experimentation with different
mappings. These results strongly suggest that the evaluation of data distributions could
benefit from graphical representations as well. To this end, the development of an experi-
mental data distribution visualization (DDV) environment - a framework from which
visualization techniques and evaluation criteria can arise - will be explored.

The rest of this case study will proceed as follows. First, a brief overview of the
DDV project will be followed by a summary of the relevant aspects of High Performance
Fortran. A particular application will be explored, and then some observations on the
value of the visualizations which were generated will be discussed. Finally, some possible

areas for future work and a summary will be given.
Goals for a DDV Environment

HPF and pC++ offer data paralle] extensions to Fortran and C++, respectively,

allowing programmers to specify data distributions for the data structures of each lan-
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guage. In HPF the programmer distributes arrays only. In pC++, traditional C++ objects
are the targets of distribution specifications. As a starting point, this research focuses on
developing visualizations for HPF. High Performance Fortran offers a simple platform
from which to begin this work since only arrays need to be considered. With that in mind,
two primary goals can be established.

First, metrics that will help the programmer determine the effectiveness of a given
data distribution must be identified. Once this occurs, visualizations showing some or all
of those metrics for a given distribution can be developed. Second, these visualizations
should demonstrate some consistency with the programmer’s mental model of the data
structure, the distribution, or other aspects of the problem. This is a critical goal which
deserves further explanation.

One of the primary features of HPF is that it offers an abstraction far removed
from any particular architecture. Thus, the specific architectural knowledge required by
the HPF programmer is far less than that required for other parallel environments. The
consequence of this is that traditional performance visualizations based on physical pro-
cessors and low-level message passing, for example, may not be as meaningful to the HPF
programmer. Thus, visualizations for HPF must demonstrate levels of abstraction that are
consistent with the language’s - and hopefully the programmer’s - underlying conceptual

model.

High Performance Fortran

High Performance Fortran is a parallel Fortran language that offers support for
high performance on a wide variety of parallel processing architectures, including mas-
sively parallel SIMD machines (e.g., Maspar’s MP-1 or Thinking Machine’s CM-2), dis-
tributed- and shared-memory MIMD architectures (e.g., the Intel Paragon and the Cray Y-

MP CS80), vector processors, and other architectures. Version 1.0 of the language specifica-
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tion [11] was released in May, 1993, by the HPF Forum, a coalition of industrial and aca-
demic groups representing most commercial vendors, several government labs, and many
university research groups.

HPF is a set of extensions and modifications to Fortran 90 [15] to offer data paral-
lelism in the form of explicit parallel loop constructs, code tuning for various parallel
architectures through a set of extrinsic procedures, and high performance on MIMD and
SIMD machines through data distribution and alignment capabilities which the user speci-

fies with compiler directives.
The Programming Model

While there are many features of HPF which make it an interesting topic of discus-
sion, this study is concerned only with its data distribution features. It is well known that
modern parallel architectures achieve their best performance when data accesses exhibit
high locality of reference. A programmer should, therefore, try to limit the frequency with
which a processor must obtain data from other processors. Data distributions hold the key
to achieving this goal. HPF allows the programmer to specify aspects of the distribution

process. The primary directives and their functions are given in Figure 16.

HPF Directive Function

PROCESSORS Declare an n-dimensional mesh of
virtual processors

ALIGN Specify relationships between multiple
arrays

DISTRIBUTE Specify how arrays (or groups of arrays)
are distributed across virtual processors

Figure 16. The primary compiler directives in HPF allow users to create
virtual processors, align data structures, and distribute data across virtual
processors.



53

The PROCESSORS directive allows the user to declare an abstract set of proces-
sors onto which distributed arrays are mapped. The abstract processor set takes the form
of an n-dimensional mesh with no inherent interconnection network. Next, relationships
between different data structures are specified with the ALIGN directive. An ALIGNment
offers a common structure to which several arrays are oriented. Finally, using the DIS-
TRIBUTE directive, ALIGNments (i.e., groups of related arrays) are mapped onto the
abstract set of processors. Thus, the HPF programming model can be illustrated as in Fig-

ure 17 [11].

. Virtual Physical
Arrays Alignments processors processors
ALIGN DISTRIBUTE  compiler-specific
directives (optional)
~ ~ h ~ g
Programmer Compiler

Figure 17. In HPF, programmers specify how data structures are distributed
across a set of virtual processors, but the compiler is responsible for map-
ping virtual processors to the physical processing units of the computer.

From the programmer’s perspective, this is a two-level mapping: first, data struc-
tures are aligned with one another, and then these groups of data structures are distributed
onto a set of abstract processors. The compiler takes responsibility for mapping the
abstract processor set onto the physical processors. (The HPF Forum suggests that com-
mercial HPF compilers may wish to offer compiler-specific directives so that the user has
some say in how abstract processors are mapped to physical processors.) From this, the
underlying programming model becomes evident. Programs are written as if running on

an arbitrarily sized, n-dimensional mesh of processors. This is consistent with the ideal
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data-parallel programming paradigm where the amount and type of data determines the
processing resources needed.

The HPF model is dependent on two assumptions that are reasonable for current
architectures. First, an operation involving multiple data elements will be faster if the ele-
ments are all on the same processor. Second, many such operations can be done simulta-

neously if they can be performed on different processors.

Computations in HPF

The final aspect of HPF which must be addressed is the manner in which computa-
tions are carried out. Bozkus et al. [2] propose four possible models of computation based
on the locations of left-hand and right-hand data operands. Given the generalized form of

an assignment statement, A: lhs = rhs, Figure 18 illustrates four possible cases.

P P,

X ”

owner comnputes
P;
P; Pj
after'/ \\before
@ after @ @ @
P; Pg,...

Figure 18. On a distributed-memory paralle]l computer, an assignment
statement can be carried out using four techniques.
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P; denotes processor i. The processor containing “lhs” owns the data element on
the left-hand side of the assignment; the processor(s) with “rhs” owns data elements which
are required by the computation; the processor containing the “=" is the processor which
performs the computation. Annotated arrows indicate the interprocessor communication
required with respect to when the computation is performed (i.e., before or after).

Given a data distribution, the processor responsible for performing a computation
is not specified by HPF; that is, it is up to the compiler to determine which processor will
perform a given computation. As noted in Figure 18, one of the more popular parallel
computation models is known as owner computes. Under this scheme, the processor
which “owns” the left-hand side data element (i.e., the data element to which the assign-
ment is being made) is the one that performs the computation. Thus, before the computa-
tion can occur, all data elements which occur on the right-hand side of the assignment and
reside on remote processors must be copied into the owner processor. A degenerate case
of owner computes occurs when all data elements are locally owned. Thus, the top half of
Figure 18 illustrates cases of the owner computes rule.

Since the manner in which assignments and computations are carried out is com-
piler-dependent, this work will generally assume that the owner computes rule is used.

This assumption is evident only in the sample application described later.

Establishing the DDV Problem Domain

As shown in Figure 19, establishing a problem domain for data distribution visual-
ization consists of deciding which HPF features will be addressed by the visualizations,
how data distributions are to be evaluated, and what properties the visualizations should

have. The following sections will identify and justify the decisions which were made.
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Evaluation
of Data
Distributions

High
Performance
Fortran

Visualization
Characteristics

DDV Problem
Domain

Figure 19. The DDV problem consists of three main issues.

High Performance Fortran

For this case study, it is important that the problem be accessible. For this reason,
visualizations are limited to two-dimensional data arrays and two-dimensional sets of pro-
cessors. This results in simple, obvious mappings from data structures and processor sets
to graphical objects. (Similarly, an upper-bound of three dimensions was set in [20].)

In addition, data structure alignments are not considered. The current visualization
system considers only individual arrays. Thus, relationships to other arrays, specified with
the ALIGN directive, are currently irrelevant, though such relationships could undoubtedly
play a role in future performance visualizations.

In HPF, programmers can dynamically redistribute arrays in the middle of their
program. To maintain simplicity, DDV considers static distributions only.

Finally, as mentioned earlier, the owner computes rule will be assumed as the com-

putational model for the sample application.
Evaluation of Data Distributions

The evaluation of data distributions is essentially a load balancing problem. The

programmer wants to make sure that data structures are distributed in such a way that no
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single processor is excessively burdened with data requests. In accordance with the
assumptions underlying HPF, the programmer also wants to maximize local data accesses
and minimize the number of remote data operations that a given processor must perform.
To evaluate a data distribution for a given application, the programmer needs to formulate
answers to two questions:

*  What memory reference patterns are exhibited by the application?
* Given the data distribution, how do these reference patterns manifest them-
selves on the set of processors?

Thus, it stands to reason that the type of accesses being made to data structures
(i.e., reads or writes) and the type of communication associated with that operation (i.e.,
local or remote) will play an important role in determining whether a given distribution is
good or bad. If visualizations can be devised that show reference patterns for both the data
structure and the processors across which the data is distributed, then the HPF program-
mer can answer the questions above. To this end, DDV focuses on collecting information
about data reference patterns, and then determines which processor has a given data ele-
ment under the specified data distribution. Note that “processor,” unless otherwise stated,
refers to “virtual” processor during the rest of this chapter. Since HPF will potentially run
on many different architectures, visualizations based on virtual processors are not archi-

tecture-specific.
Visualization Characteristics

One of the primary goals set out earlier in this thesis was that visualizations should
incorporate the programmer’s mental model. This applies to both data structures and pro-
cessors. The limitations applied to HPF described above make this task much easier. By
placing an upper-bound of two dimensions on arrays and processors, visualizations should

be able to include easily the traditional representation of arrays. The creators of the visual
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programming tool for Fortran D [20] point out the importance that should be placed on
maintaining consistency between graphical portrayals of arrays and the programmer’s
mental model of arrays. They indicate that a grid of cells arranged in rows and columns is
the most obvious and intuitive representation of such structures.

In order to answer fully the questions posed above, visualizations should incorpo-
rate the passage of time. In general, this means that there should be some component of
animation in the visualizations. (Although, time can be incorporated into visualizations in
other ways, as was done in Chapter VII.)

Finally, the ability to show multiple dimensions of the problem in a single visual-
ization may be useful in some circumstances. At the very least, this should be an option
for the programmer.

Given the establishment of the DDV problem domain, the problem at hand is well-
defined and approachable. We now turn to a discussion of the experimental environment
which was developed within the parallel program and performance visualization method-

ology that is the topic of this thesis.

An Experimental DDV Environment

In the following sections, a detailed examination of the DDV environment will be

presented. Figure 20 offers an overview of the steps from application to visualization.
Creating Memory Reference Profiles

As with the visual programming tool for Fortran D [20], DDV encourages the pro-
grammer to experiment with different distributions for a given application. As shown in
Figure 20, the first step in this process is to create a memory reference profile for an appli-
cation. The current environment does not actually handle parallel programs since no HPF

compiler was readily available at the time of this work; rather, a sequential application is



59

Application

Memory Reference
Profile

Distributions
and Processors

Trace Files

Trace Processor

Visualization Files

Trace Processor

Visualization Development
i Environment

(Figure 2)

Graphic
Displays

User Actions

Figure 20. The DDV environment incorporates the implementation envi-

ronment of Figure 2 by adding capabilities for collecting and processing

trace and performance data.
used to mimic a parallel one, and the owner computes rule is imitated by calls to a TRACE
function (see below). At desired points in the code, function calls are inserted to generate
profiling information about the particular memory operation(s) being performed and the
data elements being referenced. To mimic owner computes, the profiling information is
made relative to some other data element - in particular, the element appearing on the right
hand side of the assignment. This process can be accomplished automatically with current
program transformation technology.

While the profile may not actually represent the parallel execution, it identifies the

reference patterns that an application exhibits. Better yet, the reference profile is indepen-
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dent of any particular data distribution. Thus, a single profile can lead to the creation of
any number of trace files which are distribution-specific. If a real parallel application was
to be used, then the TRACE function could be easily modified to generate distribution-spe-
cific information, and the memory reference profile would be unnecessary.

The TRACE function accepts a time stamp, the location of the “owner” element, a
range of referenced data elements, and the operation (read or write) performed. (Note that
whether the operation required local or remote communication is unknown until a distri-

bution is specified in later steps.)
Building Trace Files

Once a memory reference profile has been established, any number of trace files
can be generated. Each trace file is specific to a single data distribution and processor
arrangement. Thus, the process of building a trace file requires a filter program that under-
stands HPF’s data distribution functions. The HPF language specification [11] offers for-
mulaic definitions of the distribution options discussed earlier in this paper. These
formulas provide the mapping from data elements to processors in a single dimension.

First, define c(j,k), the ceiling division function, by c (j, k) = [Lt’;c_“l.J .Letd
represent the size of the data array in a certain dimension, r, and let p be the size of the
corresponding dimension in the processor array. (Assume all dimensions have a lower
bound of 1.) Then, the specification BLOCK(m) means that data element j of dimension r
will be mapped to the abstract processor at location c(j,m), provided that mp>d. Similarly,
CYCLIC(m) means that the data element in location j of dimension r will be owned by
processor 1+((c(j,m)-1) mod p). These relationships are used to transform a memory refer-
ence profile into a trace file once a data distribution has been specified. The trace file
allows for multiple operations in a given time step. In this fashion, the annotation of a

sequential application can be used to mimic the operation of the parallel application.
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Creating Visualization Files

The next step to data distribution visualizations is to transform the trace file into a
visualization file. From the information in the trace files discussed above, this step keeps
track of running totals and averages of local reads, remote reads, local writes, and remote
writes for each element in the data array and the processor set. This information is present
for each time step in the trace file. Thus, the totals and averages are computed over the
time that has expired up to that point in the trace. In this way, an animation of the applica-

tion’s memory references may be constructed in the visualization environment.
Building a Visualization Framework

The final step in the visualization process is to use the data visualization software
to create an environment for exploring the data distribution visualization. As mentioned in
Chapter VI, Data Explorer allows the user to create control panels. The one in Figure 5
came from the DDV environment.

The visualizations display two views (cumulative and average) of a given trace
quantity. One statistic is mapped to a colored background on the grid, and the other is
mapped to “glyphs” which float in front of the grid. (The graphic displays will be dis-
cussed in more detail later.) The user can control several aspects of the display:

¢ The trace type to view (data or processor)

» The dataset to view (the user can easily add additional traces to the control
panel)

* The quantity to be displayed display (e.g., local reads, all remote accesses, all
reads and writes, etc.)

* The statistics to be displayed (cumulative and/or average)

The user can also control the animation with the “Sequence Control” box. The
controls are simple and intuitive, similar to those used in audio cassette and compact disc

players.
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In the actual visualizations, quantities are represented by the size and color of the
glyphs, and by the color of the background grid coloring. (Note that glyphs contain redun-

dant information. That is, the size and color of the glyph represent the same quantity.)

Application: Gaussian Elimination

To demonstrate the effectiveness of these visualizations, a sample application will
be presented here. As was mentioned earlier, the current DDV environment is set up to
operate with sequential programs. By carefully annotating this code, a pseudo-parallel

trace file can be generated.
The Data Distribution

In the following, visualizations built from a Gaussian elimination algorithm will
be presented. The algorithm operates on a 10x10 data array which is distributed on a 2x8
grid of processors in a cyclic fashion (for both rows and columns). The quantity being dis-
played in the images consists of all memory accesses (that is, local and remote, reads and
writes).

Let us consider the distribution of data which results from the distribution and pro-
cessor arrangement given above. Figure 21 specifies the processor which owns each ele-
ment of the 10x10 array by assigning each processor a unique number. It is important to
note that processors 0, 1, 8, and 9 own many more elements than the other processors

because columns are distributed in a cyclic manner.
Source Code Instrumentation

A fragment of code from the Gaussian elimination algorithm used to generate the

visualization presented in the following sections appears in Figure 22,
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Figure 21. The cyclic distribution of a 10x10 array onto a 2x8 grid of pro-
cessors leaves some processors more heavily loaded with data elements.

c =1.0/B[j1[31;
for (col=0; col<MAX; col++)} {
/* scalar mult. the elements of row */
B[j]l[col] = c*B{jl[col];

/* each owner read a copy of B[j,j] */
TRACE (Time, j,col, 3j.3Jj., J.Jj. 0);

/* read own copy of B[j,col] */
TRACE(Time, j,col, 3,3, col,col, 0);
/* write B[j,col}] */

TRACE(Time, j,col, j,3j, col,col, 1);

/* do the same to the augmentation */
M[jlicol] = c*M[j][col];
}

Time++;

Figure 22. An instrumented code fragment shows how the sequential algo-
rithm is used to imitate a possible parallel implementation.

The piece of code illustrates the transformation that takes place during the instru-
mentation process. The loop is one part of the Gaussian elimination algorithm. In this

example, each row is being scaled by the reciprocal of the element on the main diagonal.
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While the sequential algorithm makes an assignment to the variable c, the calls to TRACE
mimic what might actually happen in a parallel version of the algorithm by having each of
the “owners” - referenced by the data element at (j,col) - request copies of that value. Note
also that the Time variable is not incremented until after the loop, suggesting that the oper-

ations in the for-loop could be done simultaneously in a parallel implementation.
Display Generation

The instrumentation is compiled along with the source code, and a file containing a
stream of memory references augmented with some additional information results after
the application is run. This memory reference profile is independent of any data distribu-
tion, and it represents the pattern of memory accesses that this implementation of Gauss-
ian elimination displays under a loose interpretation of the owner computes rule. The
profile is used to create several different traces - one for each distribution and processor
set that the user wants to evaluate. The trace files are then transformed into visualization
files and imported into Data Explorer where the user can control many aspects of the

resulting animation, as explained in the earlier parts of this thesis.
Visualizations

At this point, we are finally prepared to present a sequence of actual visualizations
which resulted from the Gaussian elimination program.

Figure 23 illustrates the data array early in the execution of the Gaussian elimina-
tion algorithm (time 20). The background represents the average number of memory refer-
ences, while the glyphs (size and color) keep track of the cumulative number of
references. With element (0,0) in the upper left corner, the access patterns of this phase of

the algorithm are already evident. As the algorithm proceeds, the glyphs in each column
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below the main diagonal grow larger (and change color) as the column elements below the

diagonal are zeroed-out, and the row elements are adjusted accordingly.

Figure 23. (Time 20) Data access patterns are already evident early in the
algorithm.

Figure 24 displays the state of the processors at the same time as Figure 23. It can
be seen that the size of the glyphs on the left side of the grid are slightly larger than the
others, however, it is too early to tell if this is due to a poor distribution or the particular

phase of the algorithm.

Figure 24. (Time 20) The processors do not yet appear too unbalanced.

Figure 25 shows the data array at time 60 of the algorithm. The first phase of the
Gaussian elimination has been completed, and the second phase is just beginning. Thus,

all of the elements on the main diagonal are now 1, and all elements below the diagonal
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are 0. The algorithm is proceeding to zero-out all matrix elements above the main diago-
nal by working its way back through the columns in reverse order, toward the origin of the
array. Figure 26 shows a different quantity being displayed on the data array. Rather than
showing all memory references, Figure 26 shows only remote writes, the pattern of which
is considerably different than the overall memory reference pattern illustrated by Figure

25.

Figure 25. (Time 60) The visualization reflects the beginning of the second
phase of the Gaussian Elimination algorithm.

Figure 27 again shows the status of the processor grid. The imbalance generated
by the cyclic distribution is becoming more and more evident at this point in the anima-
tion. The other processors appear to be fairly well-balanced, though.

By time 89, as seen in Figure 28, the algorithm is nearing completion with only
two columns remaining to be processed. It is evident from this display that overall, the
Gaussian elimination algorithm accesses the array in a fairly uniform manner. That is,
there are no elements that receive excessive attention in the long run. However, the earlier

frames of the animation clearly show that the algorithm progressed in certain phases.
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Figure 26. (Time 60) The distribution of remote writes is considerably dif-
ferent than the overall distribution of all memory accesses.

Finally, Figure 29 illustrates the sorry state of the processor grid by the end of the
algorithm. The load imbalance introduced by the cyclic distribution has clearly overtaxed

the processors in the two left columns of the grid.

Figure 27. (Time 60) A growing imbalance in processor load becomes evi-
dent.

Some conclusions regarding the effectiveness of a cyclic distribution in this case
have already been made. Using what has been learned and the DDV tools discussed ear-
lier, the programmer could now go back and create a new trace file using a different distri-
bution or a different processor arrangement. In this way, experimenting with different
distributions is simplified and the programmer undoubtedly gains insight not only to the

algorithm, but to which distributions are most effective for it.
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Figure 28. (Time 89) The algorithm nears completion, and the display
seems to suggest a fairly uniform access pattern over the life of the algo-
rithm.

Figure 29. (Time 89) Processors in the left two columns of the grid have
experienced significantly more memory accesses than the others.

Observations

In this section, some informal observations on the effectiveness and utility of the
DDV environment, as implemented within the more general parallel program and perfor-
mance visualization methods discussed earlier, will be made. This will take place in three

categories: usefulness, understandability, and scalability.
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Usefulness

As was shown in the previous section, the visualizations generated from the DDV
environment provided a good overview of memory reference patterns exhibited by the
application. Depending on the quantity that the programmer is viewing, a sense of the
interprocessor communication required is easily achieved. By offering the programmer
visualizations of both the data structure and the processor set holding the data, one can
effectively assess many characteristics of a given data distribution.

While reference patterns can be extracted directly from the animated displays, the
size of messages being passed between processors remains obscured. Similarly, conten-
tion for data elements can not be seen. While this study has not focused on these metrics,

they are still of potential interest to programmers.
Understandability

Since the problem domain limited the data structures and processor arrangements
to two dimensions, these displays were able to take advantage of the obvious way to visu-
alize such structures (i.e., by using a grid). For this reason, the displays are fairly simple to
understand. The images shown here clearly lack labelling that would be present in a more
complete environment, though. For example, the actual DDV displays contain captions
and color bars for each quantity being measured.

It was mentioned earlier that the glyphs contain redundant information by having
the size and color controlled by the same quantity. This could have both positive and neg-
ative effects. To novice users, it may reinforce the magnitude of the particular quantity.
This technique is called “double cueing.” More advanced users might find double cueing
redundant and would prefer having color and size each represent a unique metric. The

visualization environment is flexible enough to handle both cases.
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Scalability

Finally, a very important topic in performance visualization is the scalability of the
displays, especially in the context of data-parallel programming. Certain aspects of these
visualizations are scalable while others are not. The glyphs, for example, do not offer a
high degree of scalability. While very effective for small grids, the information is lost
when grid size goes much above twenty in one dimension. In particular, the variance in the
size of the glyph becomes so minute that little or no information is conveyed and visual
complexity becomes excessive. Thus, glyphs may be more appropriate for processor sets
since they tend to be smaller than data arrays.

The background grid coloring represents a more scalable visualization technique,
however. By letting the color of the grid at each data element correspond to the quantity
being measured, a global picture of memory references can be achieved for both small and
large grids. In fact, the display actually seems to improve as the grid grows larger, up to a
certain point. By letting the appropriate quantities color the grid background, the “hot”
and “cool” spots of the data structure emerge. Also, data visualization software offers
zooming capabilities which allow the user to focus on particular regions of the data or pro-
cessor structure. The issue of scalable visualizations will be explored in detail in the final

case study in Chapter IX.

Summary

The work presented here can be extended in several ways, especially since a very
limited problem domain was pursued for this case study. The visualizations presented in
this case study have as a primary goal the maintenance of consistency with the program-
mer’s conceptual model. While these visualizations do not make full use of the data visu-

alization software’s graphical capabilities, the DDV environment, as a whole, does take
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advantage of the customization and interactive features of the software. Other visualiza-
tion techniques that preserve consistency and make use of more sophisticated visualiza-
tion techniques are also possible. Figure 15 presented in Chapter VII, for example, uses a
rubber sheet in which grid points are displaced a distance proportional to some perfor-
mance metric.

Still other visualizations may choose to deviate from the consistency goal to reveal
relationships that are not evident in a simple two-dimensional grid. It is still important that
the programmer have access to displays like the ones presented here, but there could be
much to gain from advanced displays which are not necessarily formulated from a pro-
grammer’s conceptual view. Such extensions to data distribution displays are pursued in
Chapter IX which deals with scalable performance visualizations for data-parallel pro-
grams in general.

The important role played by data distributions in determining the efficiency of
parallel applications demands that tools which assist in evaluating data distributions be
developed. This case study has developed an experimental environment that explores the
use of visualization for the evaluation of data distributions. It has been demonstrated that
visualization techniques can be developed that will benefit the programmer responsible for

writing efficient HPF programs.
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CHAPTER IX

CASE STUDY: SCALABLE PERFORMANCE VISUALIZATIONS

The case study in Chapter VII explored the use of sophisticated graphical tech-
niques in the general context of paralle]l programs and performance visualization. Chapter
VIII explored the development of visualizations for the sole purpose of evaluating data
distributions within the context of the data-parallel High Performance Fortran language,
but the displays were not particularly “advanced” in their graphical representation. Rather,
the environment took advantage of the customization and interaction features of the data
visualization software environment.

In many ways, the case study in this chapter is an integration of the two previous
studies. At the end of Chapter VIII, the notion of visualization scalability was briefly dis-
cussed in the context of the DDV displays. For this study, scalability is a primary concern
in that it explores how advanced graphical techniques can be used to create scalable per-
formance visualizations for data-parallel programs. In many cases, the same type of per-

formance data and visualization concepts used in Chapter VII will be used here.
Introduction

In this study, attention is directed toward the problem of designing visualizations
of parallel performance information for scalable, data-paralle] programs. To this end, this
study builds upon Couch’s work in scalable execution visualization [4], and Rover’s work
in performance visualization of SPMD and data-parallel programs [40], to propose tech-

niques that may be effectively applied in future parallel program analysis tools. These
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techniques are demonstrated through visualizations that have been produced for the Data-
parallel C [8] and pC++ [26] language systems using the visualization environment pre-
sented in the earlier chapters of this thesis. In this study, a categorization of four scalable
visualization techniques for data-parallel programs is presented. These techniques are then

demonstrate with several examples.
Scalable Visualization Methods

Data-parallel programming is a well-accepted approach to develop programs that
can scale in their performance. However, as was seen in the DDV environment of Chapter
VIII, to achieve scalable performance, users must be concerned about how the data distri-
bution across the processors of a system affects the load balance of the computation and
the overhead of processor interactions. The data-parallel programming model and its exe-
cution model instantiation on parallel machines provides a rich semantic context for pro-
gram analysis tools. Visualizations can be an effective complement to program analysis if
the problems of display scalability can be overcome.

Through this study, four general methods that can be used to achieve visual scal-
ability have been observed. Some have been introduced by other researchers, while others
are new visualization techniques. In either case, the integration of these methods with
sophisticated graphics represents a significant advance in parallel performance visualiza-
tion, in particular as it applies to data-paralle] program analysis. The following four cate-
gories represent a diverse set of visualization techniques that have been used to create
scalable visualizations:

» adaptive graphical representation,
* reduction and filtering,

* spatial organization, and

e generalized scrolling.
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This classification is certainly not exhaustive. Rather, this list represents a set of
generalizations that have been deduced from several displays developed during the course
of this research effort. These methods are best illustrated by the examples in the following

sections, however, general descriptions of each will be given here.
Adaptive Graphical Representation

A series of visualizations that achieves scalability by adaptive graphical represen-
tation accomplishes this by changing the graphical characteristics of the display in
response to the size of the dataset. This transformation of the graphical mechanism is per-
formed within the bounds of the following premise:

Given a fixed level of detail that is to be portrayed in a visualization, a view

of a visualization should (1) reveal as large a quantity of the detail to be

represented in the display as possible, and (2) prevent visual complexity

from interfering with the perception of that detail.

Thus, a visualization is developed around a concept that can be represented by sev-
eral different graphical representations. An appropriate technique is chosen that is consis-
tent with the visualization concept and the two properties above. It is important to note
that these criteria oppose one another since level of detail and visual complexity are
directly related in many displays. That is to say that the revelation of more detail generally
leads to a higher degree of visual complexity, and less visual complexity usually implies

that less detail can be shown. The balance between the two is subjective and dependent on

many factors such as the visualization concept being used and the viewer’s preference.
Reduction and Filtering

Reduction and filtering are established techniques for achieving scalability. Tradi-
tional reduction methods perform statistical operations at the raw data level, such as com-

puting the sum, mean, standard deviation, and frequency distribution. Using these
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methods, a smaller dataset containing some essential, summarized, or less detailed infor-
mation is presented in place of the original data. This work extends this notion to include
graphical reduction, which includes operations that help to reduce the complexity of the
visualization at the level of graphical representation, rather than at the level of the raw

data.
Spatial Arrangement

Spatial arrangement can be used to produce scalable visualizations by arranging
graphical elements so that as a dataset scales, the display size and/or complexity increase
at a much slower rate. In many instances, the spatial arrangement of data in a visualization
simply provides a framework in which other graphical techniques (e.g., coloring, annota-
tion) attempt to portray the characteristics of the performance data. A special type of spa-
tial arrangement, shape construction, is a technique in which one defines the properties of
a three-dimensional structure by the characteristics of the performance data to be visual-
ized. The shape of the resulting object captures the combined characteristics of the perfor-
mance data. In general, the spatial arrangement of a dataset is not the component of the
display that conveys the characteristics of that dataset. Rather, as mentioned above, some
additional graphical technique is employed within that organization to accomplish that
task. In a visualization using shape construction, the spatial arrangement of the data does
play a key role in conveying the characteristics of the performance data. Other features of

the “shape” may assist in this function as well (e.g., color, surface properties).
Generalized Scrolling

Finally, generalized scrolling refers to the use of a variety of methods to present a
continuous, localized view of a much larger mass of information. Localization allows a

greater level of detail to be presented, while continuity allows relationships between
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nearby representations to be observed. As an extension to the traditional notion of scroll-
ing which depends on spatial continuity, this work considers how temporal continuity can
be used to perform scrolling. In this way, display animation is classified as a scrolling

technique that utilizes temporal continuity.

Applications

This section offers several examples of data-parallel program performance analy-
sis that demonstrate the types of visualization scalability mentioned in the previous sec-
tion. Some visualizations illustrate more than one technique. All displays were created
using the visualization framework described earlier in this thesis and use data distribution

performance data similar to that discussed in the previous case study.
Adaptive Graphical Representation

To illustrate how visual scalability is achieved by adapting the graphical tech-
niques used, consider the visualizations in Figures 30, 31, and 32. The data for this
sequence was generated by a Dataparallel C implementation of a Gaussian elimination
algorithm running on a Sequent Symmetry multiprocessor. As in the DDV environment,
these displays are concerned with providing information for evaluating the interleaved
data distribution as problem size scaled. To do this, the visualization concept that was ini-
tially presented in the rubber sheet example of Figure 15 was adopted. The concept uses
vertical displacement from a reference plane, double-cued with color, to portray the differ-
ences in local and remote accesses to elements of the data structure. A processor performs
a local access if it reads or writes data that resides in the memory of another processor, and
it performs a remote memory access if it reads or writes data that resides in the memory of
another processor. (As was done earlier, we view data accesses at the level of the virtual

machine maintained by Dataparallel C.) In all visualizations, the structures above the ref-
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erence plane represent the difference between local and remote read accesses, while the

objects below the plane represent the difference between local and remote write accesses.

Figure 30. A small data structure (8x9) is effectively portrayed by using
discrete spherical glyphs.

Figure 31. A medium-sized data structure (16x17) requires the vertically-
displaced tops of the cylinders be connected to the plane to provide refer-
ence information.

Figure 32. A continuous displacement grid minimizes visual complexity
for a large data structure (64x65).
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For the small 8x9 dataset in Figure 30, discrete, colored spheres floating above the
reference plane minimize the obstruction of other objects in the view, while effectively
representing the performance information because of the small size of the dataset. For
example, elements in row 2 have encountered more remote read accesses than those in
other rows. Figure 31 shows a 16x17 dataset. Spherical glyphs lack “connection” to the
reference plane, and when the number of elements increases sufficiently it becomes diffi-
cult to determine which glyph corresponds to which element. The towers used in Figure
31 provide such reference information by linking the vertically displaced top of the tower
with the reference plane. Finally, for the larger 64x65 dataset (Figure 32), a continuous
displacement grid minimizes the visual complexity that would be caused by 4,096 discrete
glyphs or towers, but it does so at the expense of the quantity of detail that is visible from
a given view. (That is, with the small dataset you could simultaneously see both sets of
glyphs, whereas with the large dataset this isn’t possible.)

From these visualizations, the user can interpret the access frequency among local
and remote reads and writes. However, detailed views are obscured as the dataset
increases in size. The sequence illustrates one method of achieving scalability by adapting
the graphical technique in relation to the size of the dataset. Such adaptation often mani-
fests itself as a transition from a discrete, detail-revealing method to a continuous, com-
plexity-reducing technique, echoing the two criteria set out in the premise for this
technique. With respect to the data-parallel program, the discrete-to-continuous transition

approximates the increasing detail of the parallel data structure.
Reduction and Filtering

In many instances, one need not visualize all the detail present in a dataset to gain
insight into what the dataset contains. To this end, filtration and reduction can be used to

develop scalable visualizations.
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The visualizations in Figures 33 and 34 illustrate this technique by using isosur-
faces within a three-dimensional structure. Isosurfaces, the three-dimensional analog of
(two-dimensional) contour lines, represent surfaces of constant value (called the “isov-
alue”) within the structure. In these visualizations, local and remote access information
from a pC++ implementation of the random sparse conjugate gradient computation in the
NAS benchmark suite is portrayed. The elements of a BLOCK-distributed data structure
have been arranged in a three-dimensional cube. Each element has an associated number
of local and remote data accesses made to it during the last time interval. The isosurfaces
within the structure reveal areas of the data structure experiencing similar levels of remote
(or local) accesses. By animating the visualization, the evolution of data access patterns
during the program’s execution is effectively revealed, allowing regions of more intense
access to be identified. Figure 33 shows two time slices from a 4x4x4 cube showing

remote accesses. Figure 34 is a scaled version of this display, using a 16x16x16 structure

1000
500
0

showing local accesses.

Figure 33. Isosurfaces are used to portray remote data accesses to 64 data
elements arranged in a 4x4x4 grid at two different times during the applica-
tion.
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Figure 34. A scaled visualization shows local data accesses to 4,096 ele-
ments arranged in a 16x16x16 grid.

Scalability is achieved in these displays by filtering and reducing the displayed
data. Isosurfaces perform an effective graphical reduction because several isovalues can
be used (each figure contains five) to create multiple surfaces that span the range of the
performance metric of interest and represent all elements of the structure, yet do not cause

uninformative visual complexity.
Spatial Arrangement

This study has found that certain spatial arrangements of data elements can pro-
duce highly scalable visualizations. To illustrate this, three sets of figures are presented,
beginning with the isosurface displays in Figures 33 and 34. It was discussed previously
that the isosurfaces provide scalability by reducing and filtering the amount of data to be
represented in the visualization. However, the spatial arrangement of the data structure
provides another aspect of scalability. The structures in Figure 33 each represent 64 data
elements organized in a 4x4x4 cube; Figure 34 represents 4,096 elements organized as a

16x16x16 cube. Whereas the problem size has scaled by a factor of 64, the axes of the
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cube have only scaled by a factor of 4. Clearly, the scalability of spatial dimensions is crit-
ical to the scalability of visualizations in general.

The next set of displays that demonstrates the use of spatial arrangement as a
method of achieving scalability are in Figures 35 and 36. These displays implement a type
of three-dimensional scatter plot that relies on the perceptive abilities of the human visual
system to detect clustering and distribution patterns [4,16,48]. For this reason, this visual-
ization gains effectiveness for larger datasets. Thus, the spatial arrangement (i.e., distribu-
tion) of the data yields a technique that scales well. Figure 35 portrays the quantity and
location of accesses by each processor. Processors are identified by a glyph’s color, with
the vertical displacement from the reference grid indicating the number of accesses made
to each of the 64 data elements (arranged in an 8x8 grid) during the last time interval of
the pC++ application. Figure 36 offers a prototype of a scaled version of this display on a

32x32-element structure.

Figure 35. A three-dimensional scatter plot shows which and how often
processors are accessing the elements of the data structure.
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Figure 36. A prototype of a scaled scatter plot exposes global data access
patterns.

From these displays, the analyst can derive several observations that are helpful in
evaluating the memory access patterns of an application as well as the data distribution
currently being used. For example, by using the vertical displacement visualizations (Fig-
ures 30-32) for this pC++ application, an analyst could easily learn about the distribution
of local and remote data accesses. This is also seen in Figures 35 and 36 by noticing that
the glyphs generally appear in two vertically separated clusters (particularly when viewed
from the appropriate orientation). The display reveals how the data was distributed among
the 16 processors by the color distribution. However, a differentiation between local and
remote references is not made. The analyst might notice such a division first, though, and
then be motivated to determine local and remote distributions from the other displays.
Alternatively, within the Data Explorer environment, the user could change the color map-
ping so that local and remote accesses are distinguished. This example shows how user

interactions can play a significant role in scalable visualizations.
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That such references are actually remote is confirmed not only by the small degree
of vertical displacement (indicating the lower frequency associated with remote accesses
in this application), but by the presence of glyphs having colors different than the corre-
sponding glyphs above representing local accesses.

The last set of visualizations that illustrate scalability by spatial arrangement are in
Figures 37, 38, and 39. These displays are reincarnations of the popular Kiviat displays, as
used in ParaGraph [10] and introduced in Chapter VII to show processor utilization. They
use the same pC++ application described earlier. The construction of a single time slice of
these displays is achieved by arranging the 64 data elements (as opposed to processors
which was done before) in a circle. The distance a given element is from the center of the
circle is directly proportional to the accumulated number of local (Figures 37 and 38) or
remote (Figure 39) data accesses made to that element during the previous time interval.
To construct the solid shown in Figure 37, adjacent elements in the same time slice and
corresponding elements in successive time steps are connected to form quadrilateral sur-

face patches. A Kiviat tube showing data distribution and access patterns results.

time 54 to 254

Figure 37. A Kiviat tube can be used to portray data element accesses
instead of processor utilization.
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The arrangement of data elements in a circle provides a moderately scalable (two-
dimensional) spatial arrangement. Some additional scalability issues for this series of dis-
plays will be presented in the next section, but first, the construction of the Kiviat tube, an
example of shape construction, will be discussed in more detail. The unique feature of
shape constructive spatial arrangement over the spatial arrangement seen in the isosurface
visualizations (Figures 33 and 34) is that the former uses the shape itself to capture the
characteristics of the performance data, while the latter simply provides a framework
within which some other graphical technique (e.g., a set of isosurfaces) is employed to
relate the performance data. Figure 37 depicts a single graphical object that captures the
characteristics of an entire trace file, with time traveling along the length of the cylinder.
(The initial 53 time slices have been removed because no memory accesses to the chosen
data structure occurred during that time.) Such three-dimensional representations can play
an important role in providing global performance information. For example, in Figure 37
one may notice a very regular access pattern for the first part of the trace, as indicated by
the symmetry and constant diameter of the tube. However, approximately two-thirds of
the way through the displayed trace data, a significant decrease in the number of local
memory accesses occurs. Such global observations guide the program analyst to potential
trouble spots in the execution of the algorithm and tend to be more perceptual rather than
cognitive tasks [47]. As will be seen in the next section, the analyst can then examine that

portion of the trace in more detail.
Generalized Scrolling

Scrolling is an established technique used to create scalable visualizations by rep-
resenting smaller localized views of the visualization as the quantity of data to be dis-
played increases. Traditional scrolling provides a spatially continuous view of the display

by allowing the user to “move” around the structure. This work has generalized this notion
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time 111 to 126

time 112 to 127

Figure 38. A blown-up region of the Kiviat tube reveals three significant
decreases in local data accesses.

time 111 to 126

Figure 39. The corresponding Kiviat tube section showing remote accesses
indicates similar decreases.
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to include temporal continuity and demonstrates animation as a generalized scrolling tech-
nique.

The Kiviat tubes of Figures 37-39 illustrate both scrolling techniques. It has
already been discussed how Figure 37 could guide the analyst to a particular region of the
trace file. Such a region is expanded in Figures 38 and 39. The Kiviat tube visualizations
allow the user to specify an animation width to display a smaller portion of the structure.
Figures 38 and 39 each have animation widths of 15 time steps. The ability to zoom in on
local regions of the larger structure is an example of spatial scrolling. The display’s use of
scrolling is, in fact, somewhat more general than most uses of scrolling since it allows the
user to view just the desired section of the tube. In addition, the displayed portion may be
stretched or compressed to the viewer’s preference. Again, these are examples of the sig-
nificant customizability attained by using the data visualization software.

To extend the notion of scrolling further, animating the structures in Figures 38
and 39 provides additional insight into the performance data’s characteristics. This imple-
mentation of the visualization allows the viewer to “slide” down the length of the Kiviat
cylinder at a given animation width. Figure 38 shows two successive time slices of the
Kiviat tube section. This section of the Kiviat tube reveals three intervals during which the
number of local memory accesses decreased significantly. Upon noticing this, the analyst
may subsequently wish to examine the corresponding structure for remote memory
accesses. Figure 39 shows such an alternate view that corresponds to the upper display in
Figure 38. One immediately notices the significant difference in the distribution of remote
memory accesses made to the elements of the data structure. In particular, the elements
located on the top and bottom sides of the tube experience larger numbers of remote data
accesses than the other elements. One also notices that remote accesses experience a

decline similar to the local accesses during the same three intervals. All of this is poten-



87

tially meaningful information for the analyst seeking to understand data distribution and
performance characteristics of an application.

As has been demonstrated, generalized scrolling provides scalability by presenting
a local view of the represented data, but allows global relationships to be observed by pro-
viding spatially or temporally continuous transitions from one representation of the data to

another.

Summary

This case study has utilized an advanced visualization development methodology
to explore the issue of display scalability, particularly as it applies to data-parallel pro-
grams. Easy access to sophisticated graphics has allowed the recognition of four catego-
ries of scalable visualization techniques that can be successfully applied to the
Dataparallel C and pC++ languages. This study demonstrates how new visualization tech-

niques can be applied to specific application contexts.
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CHAPTER X

EVALUATION

In previous chapters, three in-depth case studies have demonstrated how this new
visualization design process can be applied in practice. Having documented several exam-
ples, a discussion of some possible benefits and detriments of the proposed design process
will be presented.

The most obvious benefits come from the minimal overhead that developers incur
by using existing software products. The primary overheads involved in the process are
limited to the initial cost of the software and learning the visualization environment and
underlying data model. Traditional development processes have a single, overwhelming
overhead: programming. But evaluating this new process must go beyond just the over-
heads that are encountered. In fact, if this environment is used for prototyping, but the
final implementation is to be built from scratch, then both overheads are incurred. Even in
this worst case scenario, there are advantages to be gained by using the proposed methods.

It was mentioned earlier that this design technology fosters iterative design and
evaluation by minimizing the impact that modifications to either the data or graphical
aspects of the visualization have on other parts of the visualization process. This is per-
haps the most important and relevant aspect of this research to the field of performance
visualization in general. Studies of performance visualizations have been few because of
the effort required just to create the displays. Developers are forced to devote a majority of
their time to building the visualization tool rather than testing visualization usability

[28,42]. Formal evaluation is apparently sacrificed for two primary reasons. First, once a
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tool is completed, so much time has already gone into the project that developers can not
afford to extend their work to include evaluation. Second, even if evaluations were done,
modifications could impose additional significant programming costs on the project. Even
those tools which market themselves with buzzwords like “modular” and “extensible”
usually require considerable programming expertise [10]. Using existing data visualiza-
tion software stands to refine the field of performance visualization by enabling research-
ers to more easily conduct usability studies and perform formal evaluations of
visualizations - to determine what displays are indeed useful.

Scientific visualization packages by nature offer a high degree of user control.
Thus, the ability to custornize displays is built into the package. Other features like display
interaction, animation, and modularity are also present. In particular, the ability to interact
with what is shown on the screen will become an absolutely necessary component of next-
generation visualization tools as displays become more complex and take advantage of
multiple dimensions. These packages have many of the more difficult-to-program features
already established and again allow visualization developers to focus on the quality of
their displays rather than the code needed to generate them.

On the other hand, it is conceivable that generalized data visualization packages
contain too much functionality, resuiting in “environment overkill.” In other words, the
software may be too general, resulting in slower performance and unnecessary complex-
ity. Experience supports this to a limited degree. The work with Data Explorer was done
on an IBM RS/6000 Model 730 which required additional graphics hardware assistance
and greater than 64 megabytes of memory to be acceptable. Tools built specifically for
performance visualization generally do not have such stressing requirements on the com-
puting system.

Of particular concern to performance visualization developers is the capability of a

tool to handle animation (real-time or post-mortem) and dynamic display interaction.
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Experience suggests that without costly hardware, such usability requirements are not ade-
quately met by simply applying scientific visualization software. It is likely that certain
limitations of this approach will be overcome by technology, but for the time being, these
limitations make practical use of this technique more difficult. The hardware requirements
made by scientific visualization packages are not without reason, though. These systems
offer extremely flexible and powerful graphical techniques. For example, performance
visualization developers would undoubtedly find the ability to compose a new display
from two or more simpler displays advantageous, as was done in the Kiviat diagram
examples discussed in Chapter VII. Furthermore, these products offer flexible and general
data models that can be used to generate a wide range of visualizations, are designed to
handle large multi-dimensional data sets, and are usually portable across many architec-

tures.
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CHAPTER XI

CONCLUSION

This thesis has presented a design process by which performance visualization
developers can drastically reduce the costly and time-consuming overhead of program-
ming, yet gain significant power and flexibility in the displays they can generate. The
application of a high-level visualization methodology to general data visualization soft-
ware, like IBM’s Data Explorer, leads to a design technology that improves the visualiza-
tion development process by increasing both the quality of the displays and the speed with
which they are created. As a whole, the process lends itself to iterative design and evalua-
tion which is required to validate a display’s usability - techniques that have not been
widely applied to the arena of performance visualization. Furthermore, the work being
done at the University of Oregon and other research sites strongly suggests that users will
demand interaction with and customization of next-generation performance displays.
Existing data visualization software products are designed with these very capabilities in
mind.

The work presented in this thesis can be extended in several ways. In terms of the
high-level methodology developed in Chapter V, techniques that enable the specification
of performance and view abstractions and their subsequent instantiations to performance
and view objects are needed. This would entail automating the creation of trace and graph-
ical transformations (i.e., the creation of data object files and visual programs) from more
abstract specifications. The development of performance visualization-specific modules

within Data Explorer, dedicated to certain performance visualization techniques (e.g.,
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Kiviat diagrams and tubes, interprocessor communication displays, etc.), would make the
trace and graphical transformations more independent, and consequently improve the
implementation’s consistency with the high-level methodology. Another area of interest is
to exploit more of the graphical capabilities of the data visualization software and to see
what other types of visualizations are possible. Finally, additional work is required to
refine a methodology for evaluating visualizations in this environment.

The increasing sophistication and complexity of parallel computing environments
will continue to present new challenges to understanding the operation and performance
behavior of parallel programs. Visualization has the inherent capacity to facilitate parallel
program evaluation only if its graphical data presentation capabilities, routinely used for
scientific data analysis, can be effectively applied to reveal important properties of parallel
program execution data. The most productive approach to developing useful visualiza-
tions for inclusion in parallel programming tools is to experiment with different visualiza-
tion techniques in specific application contexts, such as those described in the three case
studies documented earlier. The visualization methodology, model, and techniques pro-
posed in this thesis are a significant step toward the integration of sophisticated graphical

resources into the maturing field of parallel program and performance visualization.



(1]

[2]

(3]

(4]

(5]

(6]

[7]

(8]

[9]

[10]

93

BIBLIOGRAPHY

F. Bodin, P. Beckman, D. Gannon, S. Narayana, S. Yang. Distributed pC++: Basic
Ideas for an Object Parallel Language. University of Rennes.

Z. Bozkus, A. Choudhary, G. Fox, T. Haupt, S. Ranka, and M. Wu. Compiling For-
tran 90D/HPF for Distributed Memory MIMD Computers. Northeast Parallel
Architecture Center, Syracuse University, Technical Report SCCS-444, March,
1993.

M. Brown. ICARE: Interactive Computer-Aided RGB Editor, (A report on the
work of Donna Cox, NCSA). Access newsletter, University of Illinois at Urbana-

Champaign, National Center for Supercomputing Applications, 1.3.10, September-
October, 1987, p. 10-12.

A. Couch. Categories and Context in Scalable Execution Visualization. Journal of
Paralle] and Distributed Computing, 18, 1, June, 1993, pages 195-204.

S. Hackstadt and A. Malony. Data Distribution Visualization for Performance
Evaluation. Dept. of Computer and Information Science, Univ. of Oregon, Techni-
cal Report CIS-TR-93-21, October, 1993.

S. Hackstadt and A. Malony. Next-Generation Parallel Performance Visualiza-
tion: A Prototyping Environment for Visualization Development. To appear Proc.
Parallel Architectures and Languages Europe (PARLE), Athens, Greece, July,
1994; Also, Dept. of Computer and Information Science, Univ. of Oregon, Techni-
cal Report CIS-TR-93-23, October, 1993.

S. Hackstadt, A. Malony, and B. Mohr. Scalable Performance Visualization for
Data-Parallel Programs. Proc. Scalable High Performance Computing Confer-
ence (SHPCC), Knoxville, TN, May, 1994; Also, Dept. of Computer and Informa-
tion Science, Univ. of Oregon, Technical Report CIS-TR-94-09, October, 1993.

P. Hatcher and M. Quinn. Data-Parallel Programming on MIMD Computers. The
MIT Press, Cambridge, MA, 1991.

M. Heath and J. Etheridge. Recent Developments and Case Studies in Performance
Visualization using ParaGraph. Proceedings from the Workshop on Performance
Measurement and Visualization of Parallel Systems, Moravany, Czechoslovakia,
October, 1992.

M. Heath and J. Etheridge. Visualizing the Performance of Parallel Programs.
IEEE Software, September, 1991, pp. 29-39.



[11]

[12]

[13]

(14]

[15]

[16]

[17)

(18]

[19]

[20]

[21]

(22]

[23]

[24]

[25]

94

High Performance Fortran Forum. High Performance Fortran Language Specifi-
cation, Version 1.0. Rice University, May, 1993.

S. Hiranandani, K. Kennedy, and C. Tseng. Compiling Fortran D for MIMD Dis-
tributed-Memory Machine. Communications of the ACM, Vol. 35, No. 8, August,
1992, pp. 66-80.

A. Hough and J. Cuny. Perspective Views: A Technique for Enhancing Parallel
Program Visualization. Proc. of 1991 Int’l. Conf. on Parallel Processing, August,
1991, pp. 124-132.

International Business Machines Corporation. IBM Visualization Data Explorer,
User’s Guide, 2nd ed. August, 1992,

ISO. Fortran 90. May, 1991. [ISO/IEC 1539: 1991 (E) and now ANSI X3.198-
1992].

P. Keller and M. Keller. Visual Cues: Practical Data Visualization. IEEE Press,
Piscataway, NJ, 1993.

D. Kimelman and G. Sang’udi. Program Visualization by Integration of Advanced
Compiler Technology with Configurable Views. Technical report, IBM T. J. Watson
Research Center, September, 1992.

J. Kohn and T. Casavant. Use of PARADISE: A Meta-Tool for Visualizing Parallel
Systems. Proc. 5th Int’]. Parallel Processing Symposium, May, 1991, pp. 561-567.

K. Kolence and P. Kiviat. Software Unit Profiles and Kiviat Figures. ACM SIG-
METRICS, Performance Evaluation Review, September, 1973, pp. 2-12.

P. Kondapaneni, C. Pancake, and C. Ward. A Visual Programming Tool for Fortran
D. December, 1992.

E. Kraemer and J. Stasko. The Visualization of Parallel Systems: An Overview.
Journal of Parallel and Distributed Computing, 18, 1, June, 1993, pp. 105-117.

M. LaPolla, J. Shammowski, and B. Cheng. Data Parallel Program Visualizations
from Formal Specifications. Jour. of Paralle] and Distributed Computing, 18, 2,
June, 1993, pp. 252-257

T. LeBlanc, J. Mellor-Crummey, and R. Fowler. Analyzing Parallel Program Exe-
cutions Using Multiple Views. Jour. of Parallel and Distributed Computing, 9, 2,
June, 1990, pp. 203-217.

B. Lucas, G. Abram, N. Collins, D. Epstein, D. Gresh, and K. McAuliffe. An
Architecture for a Scientific Visualization System. Proceedings from Visualization
‘92, Boston, MA, October, 1992, pp. 107-114.

A. Malony, D. Hammerslag, and D. Jablonowski. Traceview: A Trace Visualiza-
tion Tool. IEEE Software, September, 1991, pp. 29-38



[26]

[27]

(28}

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

95

A. Malony, B. Mohr, P. Beckman, D. Gannon, S. Yang, and F. Bodin. Performance
Analysis of pC++: A Portable Data-Parallel Programming System for Scalable
Parallel Computers. Proc. Int’l. Parallel Processing Symposium, April, 1994, pp.
75-85.

A. Malony and D. Reed. Visualizing Parallel Computer System Performance. In
Instrumentation for Future Parallel Computer Systems, M. Simmons, R. Koskela,
and 1. Bucher (Eds.), ACM Press, New York, NY, 1989, pp. 59-90.

A. Malony and E. Tick, Parallel Performance Visualization. Proposal to the
National Science Foundation, CISE/ASC, Grant No. ASC 9213500, February,
1992.

B. Miller. What to Draw? When to Draw? An Essay on Parallel Program Visual-
ization. Journal of Parallel and Distributed Computing, 18, 1, June, 1993, pp. 265-
269.

NCSA. NCSA HDEF, Version 2.0. University of Illinois at Urbana-Champaign,
National Center for Supercomputing Applications, February, 1989.

C. Pancake. Customizable Portrayals of Program Structure. Proceedings from the
ACM/ONR Workshop on Parallel and Distributed Debugging, San Diego, CA,
May, 1993, pp. 64-74.

D. Reed, R. Olson, R. Aydt, T. Madhyastha, T. Birkett, D. Jensen, B. Nazief, and
B. Totty. Scalable Performance Environments for Parallel Systems. Proc. 6th Dis-
tributed Memory Computing Conf., April, 1991, pp. 562-5609.

D. Reed, R. Aydt, T Madhyastha, R. Noe, K. Shields, and B. Schwartz. An Over-
view of the Pablo Performance Analysis Environment. University of Illinois Board
of Trustees, November, 1992.

S. Reiss and M. Sarkar. Generating Abstractions for Visualization. Brown Univer-
sity, Department of Computer Science, Technical Report CS-92-35, August, 1992.

P. Rheingans. Color, Change, and Control for Quantitative Data Display. Proc.
Visualization, IEEE, September, 1992, pp. 252-259.

G.-C. Roman and K. Cox. Program Visualization: The Art of Mapping Programs
to Pictures. Proc. 14th International Conf. on Software Engineering, May, 1992,
pp. 412-420. Also, Washington University, Department of Computer Science,
Technical Report WUCS-92-06, February, 1992.

J. Roschelle. Designing for Conversations. Paper presented at the AAAI Sympo-
sium on Knowledge-Based Environments for Learning and Teaching, Stanford,
CA, 1990.

D. Rover. A Performance Visualization Paradigm for Data Parallel Computing.
Proc. 25th Hawaii International Conference on System Sciences, mini-conference
on Parallel Programming Technology, Software Technology Track, 1992.



[39]

[40]

[41]

[42]

[43]

[44]

(45]

(46]

(47]

(48]

96

D. Rover and A. Waheed. Multiple-Domain Analysis Methods. Proceedings from
the ACM/ONR Workshop on Parallel and Distributed Debugging, San Diego, CA,
May, 1993, pages 53-63. '

D. Rover and C. Wright. Visualizing the Performance of SPMD and Data-Parallel
Programs. Jour. of Parallel and Distributed Computing, 18, 2, June, 1993, pp. 129-
146.

S. Sarukkai and D. Gannon. SIEVE: A Performance Debugging Environment for
Parallel Programs. Jour. of Parallel and Distributed Computing, 18, 2, June, 1993,
pp. 147-168.

S. Sarukkai and D. Gannon. Performance Visualization of Parallel Programs
Using SIEVE.I. Proceedings of the 1992 ACM International Conference on Super-
computing, Washington, D.C., July, 1992, pp. 157-166.

S. Sarukkai, D. Kimelman, and L. Rudolph. A Performance Visualization Method-
ology for Loosely Synchronous Programs. Jour. of Parallel and Distributed Com-
puting, 18, 2, June, 1993, pp. 242-251.

D. Socha, M. Bailey, and D. Notkin. Voyeur: Graphical Views of Parallel Pro-
grams. SIGPLAN Notices 24, 1, January, 1989. Also, Proc. Workshop on Parallel
and Distributed Debugging, Madison, W1, May, 1988, pp. 206-215.

S. Srinivas and D. Gannon. Interactive Visualization and Animation of Parallel
Programs. Technical report (abstract), Indiana University.

J. Stasko and E. Kraemer. A Methodology for Building Application-specific Visual-
izations of Parallel Programs. Jour. of Parallel and Distributed Computing, 18, 1,
June, 1993, pp. 258-264

J. Stasko. Three-Dimensional Computation Visualization. Technical Report GIT-
GVU-92-20, College of Computing, Georgia Inst. of Technology, 1992.

E. Tufte. Envisioning Information. Graphics Press, Chesire, CT, April, 1991.



