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Local Search routines typically depend on parameters that control the search,
such as how long to search before restarting. Optimizing these parameters improves
performance and is important for a fair comparison of differing approaches. However,
careful optimization is computationally expensive and has been undoable for larger
problem sizes.

Here, a probabilistic method, retrospective parameter optimization, is pre-
sented. Retrospective analysis allows certain parameters to be tuned using pre-
viously collected runtime-data. The method is applied to optimizing mean perfor-
mance of WSAT on Random 35AT and scheduling problems by tuning the Max-Flips

parameter. Evidence is provided that the optimal value of Max-Flips scales quadrat-



\'
ically for Random 3SAT. Further, we show that parallelizing WSAT leads to almost
linear speedup on Random 3SAT for a moderate number of processors.

Finally, retrospective analysis is used to test refinements of WSAT, including an
implicit propagation mechanism which improves performance on Sadeh’s scheduling

problems by exploiting their structure.
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CHAPTER 1

INTRODUCTION

CONSTRAINT SATISFACTION has come to be viewed as a core problem in
many applications of artificial intelligence; for example planning, vision, and natural
language processing. Given a set of variables, the goal is to assign values to all of
them, subject to a set of constraints that restrict certain combinations of values
the variables can take. Constraint satisfaction is essentially a search problem in a
combinatorial search space.

Many problems can naturally be viewed as a constraint satisfaction problem
(CSP) by formalizing the constraints inherent in the problem. For example, consider
the map coloring problem, in which a number of countries on a map are to be colored,
subject to the restriction that no adjacent countries have the same color. Here, the
countries are the variables that can take colors as values; the constraints state that
no adjacent countries may be colored equal. In this particular example, all variables
can assume values from a common domain - the domain of colors.

An earlier, but closely related problem is the propositional satisfiability prob-
lem, SAT (Cook, 1971; Garey and Johnson, 1979). SAT can be viewed as a CSP in
which each variable can assume the values true or felse. SAT plays a central role
in the study of computational complexity and is an important repres:entat.ion for a
variety of applied problems.

Unless P equals NP, in general solving constraint satisfaction problems re-

quires combinatorial search; the search space consists of the combinations of all
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possible assignments to variables. In a CSP, a domain is associated with each vari-
able, therefore the search space has the size of the product of all the domain-sizes.
This is what makes the CSP hard.

Many systematic search strategies have been proposed that exploit specific
features of CSPs (Tsang, 1993; Baker, 1995, for overviews). Most of the work has
assumed a backtracking approach in which a partial assignment of the variables is
incrementally extended.

Recently, procedures have been presented for both CSP and SAT that take a
different approach, and that form the family of Local Search. In the CSP domain, a
heuristic repair method, min-conflicts, was introduced by (Minton et al., 1990). For
SAT, various procedures were presented by (Selman et al., 1992; Gu, 1992; Gent
and Walsh, 1993a), the best known being GSAT (Selman et al., 1992).

Local Search routines have proven to be the most successful approaches to
date on a variety of realistic and randomly generated satisfiability and constraint-
satisfaction problems. For example, they can solve hard randomly generated satisfi-
ability problems that are almost an order of magnitude larger than those solved by
conventional systematic algorithms based on the Davis Putnam procedure (Davis
and Putnam, 1960; Davis et al., 1962).

Local Search routines are called “local” since they perform hill climbing on
a local gradient rather than exploring the search space systematically. Following
a local gradient of a heuristic is advantageous if the heuristic is correct with a
certain chance. Most Local Search routines have no knowledge about which parts
of the search space have been examined; Local Search is therefore referred to as

non-systematic.
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Most systematic search methods start with a partial variable assignment that is
consistent with the posted constraints and try to extend it to a total assignment. In
contrast, Local Search starts from an inconsistent total assignment and successively
repairs constraint violations. This process of local repair follows a heuristic which
determines the order of the constraints to be repaired and variables to be changed.
It proceeds by identifying a variable that is in conflict with some constraints and
changing its value to make it consistent (Minton et al., 1992).

It has been argued (Minton et al., 1992) that one reason the repair-based
approach leads to more efficient procedures is because the total assignment provides
more information to the heuristic, and higher informedness of a heuristic improves
the quality of its decisions (informedness hypothesis, (Minton et al., 1992)). In
addition to that, it has been argued (Ginsberg and McAllester, 1994) that non-
systematic routines can be more effective because they can follow a local gradient
while systematic procedures explore the search space in a fixed order that is not
related to the local gradient.

The price for the efficiency of Local Search is incompleteness. Because of their
non-systematicity, all Local Search procedures are semi-decision procedures. In the
SAT domain this means that Local Search procedures cannot prove a formula to be
unsatisfiable.

By their nature, systematicity and heuristics that follow local gradients ap-
pear to be in conflict with each other, but both are clearly desirable (Ginsberg and
McAllester, 1994). Efforts to combine the advantages of both strategies have been
made very recently in algorithms like partial-order dynamic backtracking (Ginsberg

and McAllester, 1994), or limited discrepancy search (Harvey and Ginsberg, 1995).
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This thesis focuses on Local Search for satisfiability testing, however, parts
of the work carry directly over into the CSP domain. Unless P equals NP, any
SAT testing procedure takes exponential runtime in worst case. However, from a
practical point of view, it is quite possible that most instances that occur in real
applications are easy and can be solved quickly. Since different procedures can
have quite different performance profiles, one needs a more refined analysis than
just worst case analysis. At the time being, empirical evaluation is often the only
possible runtime analysis to obtain average results.

A recently proposed efficient Local Search procedure, WSAT, will be examined
throughout this thesis (Selman et al., 1994). WSAT performs greedy hill climbing
on the number of satisfied clauses in the input formula. Additionally, it uses noise
to escape local maxima, i. e. it randomly perturbs certain variables.

To evaluate runtime of satisfiability procedures, randomized classes of prob-
lems have been examined, including the class Random 3SAT(Mitchell et al., 1992).
The study of Random 3SAT shows that a set of moderately sized problems exist
that are very hard to solve in practice. Random 3SAT is therefore an effective tool
to evaluate SAT-testing procedures and will be the main source of SAT-problems
here.

Unfortunately, average runtime evaluation of a Local Search procedure is com-
putationally very expensive for two reasons. First, most Local Search routines are
Las Vegas Algorithms. A Las Vegas algorithm is a randomized algorithm that al-
ways produces the correct answer when it stops but whose running time is a random
variable (Brassard and Bratley, 1988). Local Search typically has large runtime vari-
ation, so a large number of runs have to be performed on many problem instances

to obtain accurate estimates of the mean runtime.
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Second, Local Search typically depends on parameters which control the search
strategy, such as how long to examine a region of the search space until restarting
with a different initial assignment. This cutoff parameter is called Maxflips in pro-
cedures related to GSAT. Tuning Maxflips is important since it can lead to a strong
performance improvement. Also, a fair empirical comparison between different pro-
cedures can only be done provided all procedures operate in their optimal parameter
region.

The main focus of this thesis is on a new practical method for parameter opti-
mization by performing only one set of experiments at fixed parameter settings and
from these figures estimating the mean runtime at other parameter settings proba-
bilistically. The approach, which will be called reirospective parameter optimization,
allows simultaneously for (i) an optimization of certain Local Search parameters and
(ii) accurately estimating peak-performance (with respect to those parameters). Its
practical application is is simple and it can be applied to optimize various statistical
measures.

Recent systematic experiments on small problem sizes have suggested (Gent
and Walsh, 1993a) that the optimal value of Maxflips on Random 3SAT scales
quadratically with the problem size. Having introduced retrospective parameter
optimization, it will be applied to provide further evidence that Maxflips indeed
scales quadratically, even for much larger problems. Additionally, results on the
scaling behavior of WSAT on Random 3SAT will be given.

An interesting property of Local Search is that it can be parallelized very
easily. Therefore, the question arises what speedup can be expected from paral-
lelization. For the class of Las Vegas algorithms, it was shown (Luby et al., 1993)

that superlinear speedup cannot be expected. This thesis investigates the
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quantitative speedup of Local Search from parallelization, again using a retrospective
analysis. It will be shown that parallelization is efficient for WSAT on Random
3SAT, in the sense that it leads to almost linear speedup provided that the number
of processors is moderate.

A further refinement is reported within this thesis that tackles a weakness of
Local Searchthat has recently been addressed by (Crawford, 1995b): Local Search
suffers from a lack of forward propagation. Most modern depth-first search based
methods such as TABLEAU (Crawford and Auton, 1993) use mechanisms that prop-
agate variable values through the input formula to determine values of other vari-
ables. One feature of realistic problems is that they often contain structures for
which propagation is useful. In (Crawford, 1995b), Local Search was upgraded by
unit-propagation (USAT); the mechanism achieves a significant speedup with re-
spect to the average number of variable flips on certain problem classes. However,
for implementational reasons, flips become much more expensive. Here, inspired
by USAT, an implicit propagation strategy is investigated that propagates values
through binary clauses only and that conforms with the spirit of Local Search. It
arose from an examination of Sadeh’s scheduling problems and exploits a certain
structural feature. A performance improvement on Sadeh’s problems is reported
empirically.

Finally, it will be shown that the details of Local Search algorithms are critical
for optimal performance. In the publication of WSAT (Selman et al., 1994), parts
of the variable selection strategy were left open. A straightforward implementation
of the published version of WSAT will be compared with the implementation that
is now publicly available from Bart Selman. It will be shown that although the

difference between the strategies is subtle, it leads to a significant difference in



performance and in the behavior of the algorithm as Maxflips is varied.

The remaining chapters are organized as follows. Chapter II introduces the
framework for an empirical evaluation of Local Search; Random 3SAT and WSAT
are defined formally. Chapter III presents the retrospective analysis technique for
optimizing the cutoff parameter Maxflips and reports results on Random 3SAT and
Sadeh’s scheduling problems. Chapter IV introduces and applies a retrospective ap-
proach for investigating parallelization of Local Search. Finally, chapter V presents
an implicit propagation mechanism for WSAT, and reports on refinements of WSAT’s
heuristic. The appendix provides a collection of the various flavors of Local Search

routines related to GSAT that were proposed in the literature.



CHAPTER II

EVALUATING LOCAL SEARCH

The main focus of this thesis is on practical methods that reduce the computa-
tional cost of empirical evaluation of Local Search procedures. This chapter formally
presents the domain of satisfiability testing, introduces the relevant Local Search
procedures and the problem class Random 35SAT on which most subsequent exper-
imentation is based. Additionally, relevant statistical issues are discussed including
the dual source of runtime variation. The role of the experimentation environment

is briefly discussed.

Propositional Satisfiability Testing

The propositional satisfiability problem (SAT) has been the backbone of the
theory of NP-completeness since (Cook, 1971). It is of great importance in artificial
intelligence because many practical problems can be represented in terms of SAT

after a conversion to boolean form (booleanization).

Propositional Satisfiability

The propositional satisfiability problem is the following (Garey and Johnson,
1979). Let U = {u;,us,...,u,} be a set of boolean variables (also propositions),
that can assume the values true or false. A truth assignment A for U is a function
A: U — {true, false}. If A assigns values to all the variables, it is a total assign-

ment. A literal is either a variable u or its negation @#. We say i is a negation of
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u, and vice versa. A clause is a set of variables that is interpreted as a disjunction.
A formula or problem instance is a set of clauses that is interpreted as conjunctive
normal form (CNF). Let F be a formula over U (i.e. F contains only variables from
U), and C be a clause in F. A truth assignment A for U satisfies C if and only if at
least one literal u € C is true under A. An assignment A for U satisfies F if and only

if it satisfies every clause in F. A satisfying assignment A is also called a mode! for F.

The satisfiability problem (SAT) is:

Instance: A set U of variables and a formula F (in CNF) over U.

Question: Is there a truth assignment for U that satisfies F7?

Satisfiability Testing

Clearly, it can be determined whether a satisfying assignment exists by trying
all possible assignments. However, if the set U/ contains n variables then there are
2™ assignments.

Therefore, other strategies have to be considered, which as mentioned in the
introduction, typically either (i) start by assigning values to some variables and
forward propagate these to find forced values of other variables; or (ii) follow the
local gradient of a heuristic distance measure to a solution, hoping that the gradient
guides the search to a solution.

Strategies in the first class include depth first search strategies such as the
Davis-Putnam procedure (Davis and Putnam, 1960; Davis et al., 1962) and its
recent derivatives such as TABLEAU (Crawford and Auton, 1993), or non-systematic

versions of it such as ISAMP (Langley, 1992).
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Strategies in the second class are mainly Local Search procedures related to
GsAT (Selman et al., 1992) or combinations of local and systematic strategies such
as partial-order dynamic backtracking (Ginsberg and McAllester, 1994), or limited
discrepancy search (Harvey and Ginsberg, 1995).

Independent of the particular strategy, unless P equals NP, its worst case
behavior will be exponential. However, in practical applications it is quite possible
that most problems are solved quite easily and there are only a few hard outliers.
Average runtime behavior of many SAT testing procedures is beyond the scope of

today’s theoretical analysis, therefore empirical evaluation is important.

The Random £-SAT model

To evaluate runtime of satisfiability procedures, a class of randomized bench-
mark problems, Random 3SAT, has been examined (Mitchell et al., 1992; Mitchell,
1993). Finding a suitably hard set of problems is a difficult problem in itself (Cheese-
man et al., 1991; Mitchell et al., 1992; Crawford and Auton, 1993) because both real
and handcrafted problems tend to contain particular kinds of structure, and there
is a potential danger of overfitting the strategies to these structures.

The study of Random 3SAT shows that a set of moderately sized problems
exists that are very hard to solve in practice. Random 3SAT is therefore an effective
tool to evaluate SAT-testing procedures and will be the main source of SAT-problems
here. Additionally, Sadeh’s scheduling problems (Sadeh, 1992) will be examined.

Random k-SAT uses the fixed clause length model in which all clauses have
the same length. Problems in random k-SAT with n variables and ! clauses are
generated as follows: a random subset of size k of the n variables is selected for each

clause, and each variable is made positive or negative with probability 1/2.
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Crossover

For Random 3SAT there is a sharp phase transition from satisfiable to unsat-
isfiable when the value of ! is approximately 4.3n (Mitchell et al., 1992; Crawford
and Auton, 1993). At lower {, most problems generated are under-constrained and
are thus satisfiable, at higher /, most problems are over-constrained and are thus
unsatisfiable. The phase transition where 50% of the instances are satisfiable is re-
ferred to as the crossover point. These problems are typically more difficult to solve
and are thus generally considered to be a good source of hard SAT problems.

Recent experiments indicate that the most computationally difficult problems
for the Davis-Putnam Procedure tend to be found near the crossover point (Mitchell
et al., 1992; Cheeseman et al., 1991; Crawford and Auton, 1993). It is subject of
current research where the hardest 3SAT problems are for Local Search. Experi-
mental results on page 34 vaguely suggest that WSAT encounters a hardness peak
in the crossover region.

Unless otherwise noted, all experiments have been conducted at the crossover
point, and for all streams of input formulae, it has been verified that approximately

50% are unsatisfiable.

Local Search

Several Local Search based procedures for finding solutions to SAT instances

have been presented recently by (Selman et al., 1992; Gu, 1992; Gent and Walsh,
1993a; Selman et al., 1994).

To introduce the general strategy of Local Search, figure 1 explains the con-
ceptual model of Local Search for SAT-testing. In the next section, WSAT will

be explained and in the appendix, a summary of various flavors of Local Search
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algorithms will be given (GSAT, GsaT+walk, GenSAT, etc.).

1 proc Local-Search-SAT
Input a SAT formula F
Output a satisfying total assignment of F, if found

initialize: drop a particle A randomly in the state space
(set A to a random truth assignment)
while A does not satisfy F do
if a stopping criterion has been reached, return No
if a restart criterion has been reached, goto initialize
1) move A to the “best” local neighbor position, or
ii) move A to a random local neighbor position

B W = S ot e s e

[
s = o
©

n
18 return A
14 end

Figure 1: Conceptual model of Local Search for SAT.

Certain randomized optimization algorithms can be viewed as mechanisms for
moving a particle around in a stafe space (Aldous and Vazirani, 1994). In the case
of SAT-testing, the state space consists of the set of truth assignments, and the
particle holds a truth assignment.

In figure 1, typically the local “neighbors” of A are those truth assignments
that differ from A in only one variable. “Best” is measured according to a heuristic
estimation of the distance to a solution (the local gradient). Typically, “best” means
the largest number of satisfied clauses or some closely related measure.! Stopping
and restart criterion are typically some number of moves in the state space. The
decision whether to do a greedy move (according to the local gradient) or a random

move is typically made according to some probability distribution.

'If F is a formula that is not in conjunctive normal form (CNF), a linear technique exists to
compute the “score” without constructing the CNF conversion itself (Sebastiani, 1994).
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The above general procedure is sound, i. e. it will only find a model when given
a satisfiable formula. But as stated, it is incomplete, i.e. it can never be certain
that an input formula is unsatisfiable, and is therefore a semi-decision procedure.
No matter when it is cut off, 2 certain chance remains that the input formula is
satisfiable. For this reason, Local Search is only interesting if there is a benefit
(generally efficiency) at the cost of the incompleteness.

Local Search is efficient. While current implementations of conventional pro-
cedures for SAT testing, such as TABLEAU (Crawford and Auton, 1993), are able
to solve hard Random 3SAT formulas up to 400 variables, recent Local Search pro-
cedures can solve up to 2000 variable problems. It has been shown that flavors of
GSAT also perform well on encodings on graph-coloring problems, N-queens, and

boolean induction (Selman and Kautz, 1993a}.

WSAT

In the experiments for this thesis, a recent local search procedure, WSAT, has
been examined. WSAT (“walk” satisfiability) was introduced by (Selman et al.,
1994), and is a successor of “greedy” GSAT that did not perform random moves in
the state space. This section describes WSAT.

The basic WSAT procedure, which is shown in figure 2, performs hill-climbing
on the number of satisfied clauses in a truth assignment, starting from a total random
assignment, and then repeatedly changing (flipping) the assignment of a variable
that leads to the largest increase in the number of satisfied clauses. The number of
satisfied clauses will also be referred to as the score.

WSAT is a combination of two strategies. The greedy strategy chooses the

“best” variable in a clause according to which variable leads to the highest increase
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proc WSAT

Input a set of clauses o, Maxtries, and Maxflips
Output a satisfying total assignment of a, if found
for : := 1 to Maxtries do
A := random truth assignment
for j :=1 to Maxflips do
if A satisfies a return A
C := random unsatisfied clause
with probability p: P := random variable in C
probability 1 — p: P := “best” variable in C
A := A with P flipped
end
n
return No

it}

Figure 2: The WSAT Procedure.

of the score, if it is flipped.? The walk strategy aims at escaping local maxima in the

search space by occasionally flipping random variables in unsatisfied clauses. These

random flips allow for downhill moves and help the algorithm to reduce the number

of restarts. If the greedy part offers a choice between several “best” variables, a

random decision is made. To appropriately describe the experiments, we will use

the following terms.

Instance An instence of a problem class is any well formed SAT formula that is

tested for satisfiability. Because WSAT is incomplete and a central goal within

this framework is to give performance estimates, all experiments have been per-

formed exclusively on satisfiable instances. Therefore, unless otherwise noted,

“instance” will refer to a satisfiable SAT formula.

2However, a slightly different implementation of WSsAT exists (by Bart Selman) which uses the
number of clauses that get broken if a variable is flipped as the the gradient. See section V.2 for

a discussion.
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Instance collection An instance collection is any collection of instances from a spe-
cific problem class. Throughout this thesis, instance collections of Random
3SAT formulas consist of the satisfiable instances of a stream of randomly gen-
erated problems. All instances in this stream were tested for satisfiability using
TABLEAU, a complete method, and only the satisfiable ones were considered
for experimentation. No experiments larger than 400 variables were conducted
for Random 35AT, the reason being that at present, this appears to be the
limit of the problem size for which unsatisfiability can be checked in reasonable

time.

Try In WSAT, a number of flips are made before the procedure is restarted with
a new initial assignment in some other region of the search space. One such
sequence of at most Maxflips flips will be referred to as a try. A try can either

be successful or fail.

Run A run is a sequence of tries in which the last and only the last try is successful.
Here, most experiments were performed fixing the number of runs rather than

tries, see section III.1 for a discussion.

WSATs Parameters

WSAT has three parameters, Maxflips, Maxtries, and p which influence the
search. The influence of Maxtries is simple as increasing it simply increases the
chance of finding a satisfying assignment.

The role of p is to control how much noise should pervade the search. (Sel-
man et al., 1994) report that p has been found to be optimal between 0.5 and 0.6
(including strategies that vary p, such as simulated annealing, see appendix, p. 74).

The role of Maxflips is more complicated than that of Maxtries. Varying the
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cutoff parameter Maxflips usually influences the runtime of Local Search, and al-
though increasing Maxflips increases the probability of success in a single try, it may
decrease the probability of success in a given time-bound.

(Gent and Walsh, 1993a) shed light on his effect by investigating different
phases of local search. They identify two different phases: First, hill-climbing in
which the score is increased by each flip, followed by plateau-search in which the

vast majority of the flips are ‘sideways’, i. e. they do not increase the score.

Success-distribution and Maxflips

Figure 3 plots the percentage of successful tries against the total number of
flips made by WSAT. The graph is based on a collection of 5000 tries on a specific
problem instance (with 200 variables and 854 clauses); each try was solved after a
certain number of flips. The curve plots the percentage of finished tries after a given
number of flips.

To repeat an observation by (Gent and Walsh, 1993b), the following behavior
is repeated in each try: during the initial hill climbing phase, almost no problems
are solved. After this phase, the gradient changes, there is now a significant chance
of finding a satisfying assignment. Finally, the gradient declines again noticeably.
Throughout the text, we will refer to this cumulative distribution as the success-
distribution and make use of it to illustrate the behavior of Local Search procedures.

Figure 4 illustrates the effect of Maxflips. The graph shows the behavior for
the same instance (as in figure 3) with a setting of Maxflips = 10K.2 The cutoff due
to Maxflips can have the effect of a faster increase in the percentage of satisfiable

instances. If Maxflips is chosen too large, much time is spent in the late plateau phase

3The same characteristic behavior can be observed if the average over a collection of instances
is plotted, see (Gent and Walsh, 1993b).
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Figure 3: Success-distribution for WSAT. Single instance with 200
variables and 854 clauses.

in which not much progress is to be expected. Choosing it too small, on the other
hand, is non-optimal since it cuts off right in the phase in which the most progress
is being made {or worse, in a phase were almost no progress is being made).

Since the optimal setting of Maxflips varies largely between different instances,
the value that results in optimal mean performance for a variety of problems has to

be determined experimentally on a large collection of instances.

Measurements and Statistics

The attempt to optimize the runtime of a randomized procedure such as WSAT
on a given problem class (such as Random 3SAT) raises the question of which mea-

sure to optimize. Mean, median, mazimum, percentiles, tail probability, or standard

“Note that the optimal value for Maxflips for this instance would be be 4000. Thus, Maxflips
= 10000 cuts off too late and is non-optimal.
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Figure 4: Success-distribution for WSAT, cutoff at Maxflips = 10K.
Single instance with 200 variables and 854 clauses.

deviation are all reasonable candidates. All these measures map the distribution
of the runtimes to a single number and might therefore not be sufficient to answer
specific questions.

Nevertheless, the hope is to be able to draw conclusions from a simple measure,
which can function to optimize and compare procedures. This measure should reflect
certain aspects of the distribution, such as the runtime on the bulk of instances as
well as on hard outliers. If the measures are in a conflict with each other, the
question of which quantity to optimize depends to large extend on the application
in which the procedure is embedded.

The remaining chapters will focus on optimizing the mean runtime of local
search since the mean is an overall measure that reflects both the bulk of the problem
instances as well as hard outliers—provided that there be no instances that take

infinitely long to solve. Although the mean will be optimized here, the proposed
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approach can easily be applied to other statistical measures as well.

An alternative question to ask besides for optimal average runtime is to ask
for maximum sefety—in the sense of ‘How likely will a solution be found within a
certain time bound?’ This amounts to minimizing tail probabilities which will not
be addressed in this thesis.?

Interestingly, as it turns out, minimizing the mean runtime (by optimizing
WsAT’s Maxflips parameter on Random 3SAT) minimizes the standard deviation at
the same time, an effect that will also be discussed discussed on page 35. Because
outliers influence the standard deviation, minimizing the standard deviation is likely

to improve the behavior on outliers.

Dual Source of Variation

A difficult problem for runtime evaluation of Local Search is the large runtime
variation of these procedures. This problem is difficult to handle since any accurate
mean estimate has to consider many runs on a large number problem instances.

Essentially, the runtime variation comes from two different sources.

1. Variation of the runtime between different instances of a given problem class,

which will be referred to as intra-class variation.

2. Variation of the runtime within the set of tries on a single instance, which will

be referred to as inira-instance variation.

It is important to bear this distinction in mind since these two types of variation also
impose two different measures for it, namely intra-instance variance and intra-class

variance.

%The question of reducing tail probabilities is discussed by (Alt et al., 1991).
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Table 1: Summary of applied statistical formulae.

Variance: =Y (z*- P(z)) - L (- P(z))
Standard deviation: o =Vo?
Population mean: f=Yzf/n (frequency f)

Standard error of mean: oz =o/\/n

Confidence intervals: I +t(df,a/2)-s/\/n
with Student’s ¢-statistic
sample standard deviation s
95% confidence: a = 0.05

degrees of freedom df=n — 1

Standard deviation, standard error, and confidence intervals are defined in
terms of the variance. Because there are two different kinds of variance, all these
measures can be computed on the basis of intra-instance or intra-class variance, and
it will be reported which source of variation a measure is based on. Table 1 gives

the statistic formulae that will be used in the analysis.

Towards an Experimentation Environment

Since experimentation is crucial in the domain of Local Search, a lot of the work
to evaluate the routines needs to be dedicated to systematically running experiments
and to statistically evaluate and compare the results.

To alleviate the burden of experimentation, a substantial effort for this research
has been devoted to setting up an experimentation environment. This environment
comprises of two parts; controlling and evaluating experiments.

Comprehensive tables containing average runtime figures suggest that mea-
suring the procedures’ performance involves mainly starting out jobs and collecting

the results. However, substantial effort was necessary to come closer to a state
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where experimentation could be conducted in this fashion. The main purpose of
the experimentation environment is to perform large numbers of runs on instance
collections and evaluate the results as automatically as possible. The environment
involves a wide variety of scripts to setting off long term jobs, controlling processes,
collecting results, automatically suspending jobs for overload protection, combining
results, retrospectively analyzing results and plotting graphs, plotting distributions,
an so on. All scrips of the experimentation environment have been implemented
in PERL, a C-like language that offers expressive power and support of system

commands, and allows for easy prototyping.

Related Work on Las Vepas Algorithms

The class of Las Vegas Algorithms has been analyzed in a theoretical frame-
work in (Luby et al., 1993; Luby and Ertel, 1993). A Las Vegas alorithm is a
randomized algorithm that always produces the correct answer when it stops but
whose running time is a random variable. Luby et al. considered various sequential
and parallel strategies for Las Vegas Algorithms that optimze the mean runtime
over the case in which the algorithm is run without a cutoff. Clearly, WSAT is a
Las Vegas algorithm provided a specific problem instance is given. However, given
a collection of problem instances, the results do not directly apply anymore. This
is due to the fact that in this case there exists no single random variable but a

collection of random variables for the individual instances.
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CHAPTER III

RETROSPECTIVE OPTIMIZATION OF MAXFLIPS

The runtime of Local Search varies largely—as described earlier. First, be-
tween different SAT problem instances (intra-class variation) and second between
different runs on the same instance (intra-instance variation).! Therefore, determin-
ing the mean runtime behavior can be an extremely time consuming enterprise, since
many experiments have to be performed on a large number of problem instances.?
Therefore, optimizing parameters in a given range seems to be almost undoable for
interesting problem sizes.

This chapter will present a practical method for accurately estimating the
runtime of Local Search routines such as WSAT as the cutoff parameter Maxflips
is varied. Prior to the estimation, WSAT is run with fixed parameter settings on
a number of instances to produce a set of sample iries. Based on the runtimes (in
flips) of these samples, varying Maxflips can be simulated quickly and accurately
without additional experiments. Because the analysis proceeds in retrospect, it will
be referred to it as retrospective analysis.

This chapter is organized as follows. The first section introduces a probabilistic

approach for estimating the runtime of WSAT as Maxflips is varied, based on a

ntra-instance variation occurs since most Local Search routines are randomized. Note that
randomization does not appear to be important for Random 3SAT, (Gent and Walsh, 1993a).

?For example, an experiment to obtain stable results for WSAT’s mean runtime on Random
3SAT at 200 vars, 854 clauses takes 16 hours of runtime on a Silicon Graphics Power Challenge.
We measured 1000 instances, each 50 runs at optimal Maxflips = 8000, at a performance rate of
T0Kflips/s.
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sample of actual tries. Thereafter, an experimental trick will be described that
helps improve the accuracy of the estimation, and accuracy results will be given
empirically. Thereafter, we will present runtime figures of WSAT on Random 3SAT,
providing further evidence that the optimal value for Maxflips scales quadratically
for Random 3SAT, even at large problem sizes. Additionally, scaling of WSAT will
be reported, and the hardness profile of Random 3SAT will be examined as the
constrainedness of the problems is varied; experiments suggest that WSAT peaks in
the crossover region. The behavior of the standard deviation will be discussed briefly,
and we will report results of the retrospective analysis of scheduling problems. This

chapter concludes by discussing strategies with non-constant Maxflips.

Analysis

The idea behind the retrospective approach is the following. By running WSAT
at a fixed value of Maxflips on one problem instance, we obtain a set of sample tries,

each either successful or unsuccessful. Table 2 shows an example. Given these

Table 2: Successful and unsuccessful sample tries at Maxflips = 8000.

1. sat 1042
2. sat 3367
3. sat 483
4. unsat 8000

samples, we essentially have data that approximates the distribution of “percentage
of tries successfully finished after z flips” against the number of flips z, for all
values of Maxflips < 8000. That is, we have a discrete approximation of the success-
distribution.

Given this approximation, we can make predictions about what would happen
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if the value of Maxflips were set to say, 3000. In the example given in table 2, one
successful try (2) would be converted into an unsuccessful one, thereby reducing the
chance for finding a solution within Maxflips. On the other hand, we would save
5000 flips on try 4 which was ‘unsat’ anyway. This is the tradeoff to be optimzed.
In the following this idea will be formalized, the goal being to compute the
expected runtime of a Local Search procedure as Maxflips is varied. The time is
measured according to the total number of flips to find a solution, given a specific
value for Maxflips, m. The estimation is based on a set of sample tries, Sy, for a

single problem instance. First, some definitions:

Definitions:

¢ Consider a collection of sample tries So = {z1,...,z,} on which the analysis is
based. Each z; reflects the number of flips in try ¢ until a solution was found.
For reasons of clarity, we assume that all z; be distinct, thus S; is a proper
set (it will be obvious how to handle the case in which Sp is a multi-set, i. e.

duplicates will be allowed).

Let S be a discrete random variable which can assume any of the x; € Sy as

values. S is assumed to be uniformly distributed:®

P(S = :B,') = 1/71

o Let m denote the given value for the parameter Maxflips.

3In the multi-set case, P(S = z;) can be estimated according to the relative frequency of z; in
the sample tries.
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o Let ST denote the set of all successful tries in Sy which took at most m flips:
Sg = {z; € So | z: <m}

and let S™ be the respective random variable.

¢ The probability that a random try with Maxflips= m is successful (i. e. that it
takes at most m flips) can be estimated by
Se|

P(S<m)= ITO =: Ppm.

It will turn out to be useful to also define g, := P(S > m)=1— p,,.

o We can directly estimate the expected number of flips in the case where a
solution was found within at most m flips. This is simply the arithmetic mean
of 5§:

E[S™ =55

The expected number of flips for any m can now be computed using a simple prob-

abilistic argument: With probability p,., the solution will be found on the first try.

In this case, ST flips are expected. With probability pmgm, the first try will fail,

but the second will succeed. Then, it takes S3* + m flips, and so on.

The expected number of flips for a single problem instance, given m as the

parameter for Maxflips, can then be expressed as

En = PmS_BH-+Pm‘Im(m+§)+Pm‘13n(2m+§)+-"

= Y ¢ pm-(im+5F)

i=0
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Estimating p,, and S5 is now straightforward using a given set of sample tries, and

allowing duplicates within Sp just involves proper counting,.

Instance Collections

To compute the expected number of flips for a collection of instances, we can
simply compute the arithmetic mean of all the instances: If E;,, is the above expec-
tation for instance j at Maxflips = m, the expectation for a collection of instances
C ={1,...,z} is simply

Ecm= Y Ejm/z.

15552
This is naturally correct provided that the results for the individual instances are
correct.* The value of Maxflips which yields the lowest average expected number of

flips for a collection C' of instances will be referred to as Maxflips® = minmso Ecm.

1The alternative strategy of directly estimating Ey, for the entire instance collection (by esti-
mating pr, ) is difficult since at any given m, it would be necessary that all instances have the same
number of successful runs.
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Practical Application

To improve the accuracy of the retrospective analysis without wasting cycles,

this section describes how to conduct the experiments in practice.

Finite Maxflips

First, for an implementation of the experiments it is obviously not a good
choice to collect the samples at infinite Maxflips, since the average runtime is gen-
erally much higher at large Maxflips. Additionally, since we are primarily interested
in WSAT’s behavior around the optimal value (around n?), collecting data at large
Maxflips will not be of use. Estimating the p,, for equation IIL.1 remains straightfor-
ward in the case where the sample tries are collected at finite Maxflips (the reader
might reconsider table 2). However, the Maxflips value in the retrospective analysis

can of course not be larger than the value chosen in collecting the sample runs.

Fixing Runs rather than Tries

For collecting the sample tries, fixing the number of runs per instance rather
than the number of tries can improve accuracy. The reason is that p,, is estimated

as
successful tries with at most m flips

Pm = total tries

Thus fixing the number of successful tries (i.e. runs) can reduce the error on hard
instances (for which only a small percentage of tries succeed) and saves runtime on
the easy instances (since here, the number of runs is approximately equal to the
number of tries).

For example, suppose that we were to fix the number of iries to 100, and p,,

would really be 0.01 for a given m. In this case it would be pretty likely that 100
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arbitrary samples would include (i) none or (ii) exactly two successful tries. The

results would be

(i) No prediction is possible, since the instance appears to be unsolvable, or,

(ii) En = 49m + 57 instead of 99m + SF, thus a large underestimation. At the
same time, S5 would be based on only two results—thus a potentially large

error on a hard and thus important instance.

Accuracy of Retrospective Analysis

Of course, the accuracy of the estimation depends crucially on how many in-
stances and runs the analysis is based on. The error will not be estimated theoreti-
cally, since this would involve statistical reasoning involving the success-distribution,
instead we will investigate the accuracy empirically.

Experimentally, it turned out that for a single instance (collected at Maxflips =
2n?) the estimation has to be based on over 1000 sample runs to yield accurate results
even for small values of Maxflips (where not many runs might succeed). This is due
to the fact that for hard instances, relatively few tries succeed at a small number of
flips.

For collections of 1000 instances, however, 2 much smaller number of runs
(100-200 runs per instance) turned out to lead to accurate results, presumably
because the noise for the individual instances cancels out. Figure 5 shows the

accuracy of the retrospective analysis for a collection of 1000 instances.

Interpretation

The curve in figure 5 shows that 200 runs were a reasonable approximation

to find Maxflips* for the instance collection of 1000 instances (of 200 variables, 854
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Figure 5: Retrospective analysis for Maxflips, accuracy results.
Plotting prediction and actual results for 200 variables, 854 clauses.
The prediction is based on 1000 instances, 200 runs per instance.
The diamonds are experimental results for the same 1000 instances,
100 runs each (except 80K with 200 separate runs).

clauses). The optimal value of Maxfiips is Maxflips*= 8000 flips; the minimum is
not very sharp. In all subsequent tables 5% intervals will be included that give the
range in which E¢, differs from the optimal value by less than 5%.

An important lesson from the figure is that Maxflips better not be chosen too
small since the curve to left of optimal increases very steeply. Thus, it is generally
much safer to choose Maxflips too large rather than too small. We observed similarly
shaped curves for other problem sizes (between 100 and 400 variables) of Random
3SAT, and for scheduling problems (see page 37).

The solid curve is cut off at the left (4500) for the following reason. Since
the sample runs were done at a large value of Maxflips, it happens that although

200 successful tries exist at this value, there are problem instances for which no try
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has been successful with less than 4500 flips. Conservatively, the adopted strategy
was not to include estimates in this case. The problem can be overcome by either
reducing the Maxflips value when collecting the sample runs (thereby forcing more
successful tries to occur at smaller m's), or to simply collect more runs. The dashed
line left of 4500 is a result of collecting more runs (a total of 400 runs per instance).

It could be argued that a collection of 1000 instances is not large enough to
estimate Maxflips® accurately for a given problem size.® However, we observed that
different instance collections (for the same problem size) yielded values of Maxflips*
that were close together—even when the collections were smaller and E¢,, varied
by a factor of 2. Additional evidence for the accuracy of Maxflips* is that its scaling

behavior seems to include a low amount of noise (see figure 7).

Results on Random 3SAT

In the following, results for a variety of problem sizes for the class Random
3SAT at the crossover point will be summarized. The scaling of WSAT’s runtime
at the crossover point will be reported in the range between 50 and 400 variables
(in steps of 50), on the basis of 1000 instances each. Additionally, the scaling of
Maxflips® with the problem size will be reported, and evidence is provided that it
scales quadratically, even for large problem sizes. Also, we will report on series
of experiments that varies the clause/variable ratio to study the effect of the con-

strainedness on WSAT’s performance.

An argument for this would be that the confidence intervals based on the intra-class variance
are indeed very large here.
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Varying the Problem Size

Table 3 gives a summary of the behavior of WSAT as the problem size is varied
(for all problem sizes, the experiments were performed at the crossover point). All
instance collections used in these experiments were taken from a stream of randomly
generated problems. All instances in this stream were tested for satisfiability using
a complete method, TABLEAU, and only the satisfiable ones were chosen.
Table 3: WSAT’s performance as the problem size is varied. All results at crossover
(50% instances unsatisfiable). Given are, in order, the size of the problem class (in
variables and clauses), the interval around Maxflips* in which the runtime varied by
less than 5%, Maxflips™, the optimal expected number of flips, and the confidence

interval of the estimation (based on the intra-class variance). The last column
contains a coefficient e that is discussed in section IIL.2.

Variables | Clauses || 5% int. (K) | Maxflips* | Opt.exp.flips | 95%-conf. e
25 113 ([ [ .05, .1] 70 161 710.11

50 218 | [ 2, .6] 300 868 66 | 0.12

100 4301 1, 3] 1,500 6,689 684 | 0.15

150 641 ([ 3, 8] 4,600 22,676 2,400 | 0.20

200 854 [[ &, 11] 8,000 83,771 22,312 | 0.20

250 1066 |[ 8, 17] 11,000 202,599 80,055 | 0.18

300 1279 | [ 138, 42] 20,000 315,724 62,443 | 0.22
1350 1491 || [ 20, 46] 27,000 681,830 193,498 | 0.22
1400 1704 [ [ 25, 60] 38,000 1,114,301 193,462 | 0.24

For all problem sizes, experiments were conducted on 1000 instances but with
varying precision, mainly for the reason that experimentation at n > 300 is com-
putationally expensive. The reason why the experiments stop at 400 variables is
that at the time being, no complete method can check much larger problems for
unsatisfiability in reasonable time.

Results in the table marked with { are to a small degree less precise than the
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other figures since either less runs were performed or a large Maxflips was chosen.®

However, these variations only affect the per-instance accuracy, and do not appear to
have a strong effect on the overall accuracy. The more important limit for accuracy
appears to be the number of 1000 instances. Therefore, the confidence intervals are
based on the intra-class variance and actually reflect the main source of variation.

The results of WSAT’s scaling are plotted in figure 6.
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Figure 6: Scaling of WSAT on Random 3SAT.

Scaling of Maxflips*

Recent systematic experiments have suggested (Gent and Walsh, 1993a) that

the optimal value of Maxflps scales quadratically with the problem size. However,

SExperimentation was started at Maxflips =2n? to get estimates about the performance variation
in an interesting Maxflips range. The intermediate points at n = 150, 250, 350 were performed later
at Maxflips =0.5n2, and since a smaller Maxflips leads to improved accuracy, the number of runs
could be reduced in these experiments. As a result, at n = 100,200 results are based on 400
runs, at n = 300,400, results are based on 200 runs, all at Maxflips = 2n®. The next sequence of
experiments for n = 25, 50, 1560, 250, 350 was performed at Maxflips =0.5n2 with a reduced number
of 200 runs; except at n = 350 with 100 runs.
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Table 4: Parameters of least squares fit to Maxflips* scaling.

value | 68.3% conf. interval
c { 0.029 +0.013
cz | 0.351 +0.077

these experiments had only been done systematically for n < 70.
From table 3, we can read the scaling of Maxflips*. Since Maxflips* scales

almost quadratically, a coefficient e is computed according to

Maxflips® = e- n?,
where e appears to increase slightly with the problem size. Only at n = 250, e is not
monotonically increasing; please note that the confidence interval is unusually large
at this point also. To obtain the values for Maxflips®, the minimum of the estimation
curve (in steps of 500 flips) was used, as reported in table 3. In figure 7, the scaling

of Maxflips® is plotted, including a least squares fit according to the function

om(z) = ¢ - % - g,

The parameter values (c; and c;) are reported in in table 4 as optimized by a

nonlinear least squares fit according to the Marquardt-Levenberg algorithm.”

"The fit was done using the Marquardt-Levenberg algorithm as employed by GNUFIT, an
enhancement of GNUPLOT. It has been implemented by Carsten Grammes at the University of
Saarbriicken, Germany, 1993.
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Figure 7: Scaling of optimal Maxflips.

Varying the Constrainedness

Table 5 gives results how the performance of WSAT varies with the ratio of
clauses/variable. The columns are organized as before in table 3. Again, the results
are estimated using retrospective analysis based on each 1000 instances and 200
runs. Figure 8 plots these results in terms of hardness against constrainedness.

Although the confidence intervals are large, it seems likely that the peak of
the hardness curve occurs somewhere in the the crossover region. The behavior of
Maxflips* as the clause/variable ratio is varied is not yet clear from these figures.
Roughly, Maxflips* appears to be small in the strongly under-constrained and prob-
ably also in the over-constrained region. More careful experimentation is needed,

though.
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Table 5: WSAT’s performance as the constrainedness is varied.

% Unsat | Clauses || 5% (K) | Maxflips” | Opt.exp.flips | 95%-conf. e
4% 810 (3, 9] 4,500 5,517 29 { 0.11
9% 820 [4,18] 7,000 7,550 40 | 0.17

20% 830 (5,11} 6,500 62,563 13565 | 0.16
30% 840 [7,15] 10,500 60,803 10804 | 0.26
38% 845 [7,12] 9,000 63,657 8432 | 0.22
50% 854 [5,11] 8,000 83,771 22312 | 0.20
60% 860 [5,12] 8,000 74,165 19718 | 0.20
0% 870 [6,14] 9,000 72,311 10427 | 0.22
80% 880 [5,11] 7,000 70,658 12360 | 0.17
110000 T T T T T T T T
100000 “"constrained.dat” +— _|
90000 |- -
. 80000 [ A -
= a b S
Efetainst
£ o000 |- e 1 -
g ‘l -
= 50000 A -~
3 /
B 40000 / -
Y 30000 |- ’:' -
20000 |- ," .
10000 - 4:" ..
0 L [ 1 L 1 1 1 i

0 10 20 30 40 50 60 70 80 90
Fosatisfiable instances

Figure 8: WSAT’s performance as the constrainedness is varied.

Behavior of the Standard Deviation

In the introductory section on statistics (page 17), it was briefly pointed out
that optimal mean does not necessarily mean optimal ‘safety’ in the sense that
at Maxflips®, outliers might have a stronger influence than at some other Maxflips

value. An interesting observation throughout the experiments is that the standard
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deviation is minimized closely to the optimal mean. Figure 9 plots the retrospective
analysis of both the mean and the standard deviation (intra-class) for 200 variables
and 854 clauses. Since the standard deviation is influenced by outliers, this effect is

very welcome.
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Figure 9: Behavior of the standard deviation as Maxflips is varied.
200 variables, 854 clauses, based 1000 instances each 400 runs. Both
mean and standard deviation are shown.

The remaining sections of this chapter report on the results of retrospective
analysis as applied to experimentation with WSAT on Random 3SAT and Sadeh’s

scheduling problems.
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Results on Sadeh’s Scheduling Problems

Crawford and Baker report a series of experiments with the goal to determine
to which extend Local Search is applicable to scheduling problems (Crawford and
Baker, 1994). Runtimes of WSAT and a another search procedure, ISAMP, a variant
of TABLEAU were compared.

As pointed out earlier, for a fair comparison of WSAT with another algorithm,
one might want to compare peak performance. At least in cases where it turns out
that Maxflips® can be fixed for a given problem class, the optimized performance is
of interest since it can subsequently be used in solving instances in the future. This
section reports results for optimized performance of WSAT (with respect to Maxflips)
on Sadeh’s scheduling problems, again using retrospective parameter optimization,
and compares these with results reported in (Crawford and Baker, 1994).

Sadeh’s scheduling problems are a test suite of machine shop scheduling prob-
lems that are intended to represent a range of the types of problems encountered
in the field. To be solved with Local Search as satisfiability problems, (Crawford
and Baker, 1994) used a SAT encoding that is due to (Smith and Cheng, 1993).
They used the sixty scheduling problems produced by Sadeh (Sadeh, 1992). These
problems contain ready times and deadline that were generated randomly using
several distributions. The distributions were predefined by two parameters: First,
degree of constraint: (w) wide, (n) narrow, and (t) tight, and second the number of
bottlenecks: (1) one or (2) two.

Table 6 compares optimized results in K-flips for WSAT with the results that

have been reported in (Crawford and Baker, 1994) (column CB94).

8An additional linear time simplification was performed on the propositionally encoded schedul-
ing problems that consisted of running unit-propagation to completion on the initial theory, and



38

Table 6: Non-optimized and optimized runtimes of WSAT on Sadeh’s scheduling
problems. All resuits are reported in K-flips. The differences for the classes marked
with ' are explained in a section below.

Class | CB94 (K) | 5% range (K) | Maxflips*(K) | Opt.Flips (K) [ Stddev
w/l T390 | [ 30, 65] 10 33 12
w/2 200 ¢ 250, 1000 500 204 79
n/1 310 80, 125 105 119 179
n/2 550 700, 1000 950 540 633
t/1 1,100 100, 140 125 634 1,357
t/2 12,900 || [ 3125, 4000 ] 3200 12,718 | 36,291

Interpretation

Obviously, problem classes with two bottlenecks are more difficult and result
in higher runtimes of WSAT. It is also noticeable that Maxflips* is consistently small
for the problem classes that have one bottleneck and larger for the classes with two
bottlenecks. For all one-bottleneck classes, a speedup of about a factor of two could
be achieved using the optimization. For the two-bottleneck classes, it made less
than a 5% difference to fix Maxflips to the upper interval limit (1000 K-flips for ‘w’
and ‘n’, 4000 K-flips for ‘t’). |

In the propositional encoding, all problems contain between 5000 and 6000
variables. Clearly, although all problems have about the same number of variables,
Maxflips® varies largely. This shows that Maxflips® depends to a large degree on the
particular problem rather than just its number of variables. Noticeable is that the
value of Maxflips* for a 5000 variable Random 3SAT problem would be 5,500 K-flips,
and that all classes of Sadeh’s problems require a smaller Maxflips.

Figures 10 and 11 each summarize the effect of varying Maxflipson expected

performance (for problem classes having 1 or 2 bottlenecks repsectively).

deleting clauses that were subsumed by a unit literal.
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Notes on Differences for w/1 and t/2

w/1: In a direct comparison between the results on the class w/1, using the same
implementation of WSAT and the same problem instances, a mean of 89K-flips
was obtained as opposed to 390K-flips as reported. So far, we could not find

an explanation for this improvement.

t/2: The result in column CB94 is smaller because (Crawford and Baker, 1994)
introduced a maximum time bound beyond which runtime results did not in-

fluence the mean.?

Conclusion

Comparing the optimized behavior with the reported results for WSAT and
IsaMP, we obtain the runtimes in table 7. We conclude that Maxflips optimization
improved on the problems with one bottleneck but to a lesser extent for the two bot-
tleneck problems, since the reported results were already almost optimal. Although

WSAT looks somewhat better now, ISAMP is still better on ‘n’ and ‘t’ problems.

®The set divides up in one hard instance and 9 easy instances. The mean of the 9 easy instances
was approximately 1.3mio. The results in (Crawford and Baker, 1994) were computed with Maxfiips
= 4mio and a maximum of 10 tries. What exceeded this limit did not infiuence the mean. Around
75% of the runs on the hard instance exceed this limit. Therefore, the expected percentage would
be 93% compared to 97%, as reported in their paper. With some luck (on only ten performed
experiments per instance quite possible}, 97% might have happened. The mean of the successful
runs with at most 40mio flips (the time out) is 18mio. Therefore, in the 97% case, the expected
mean would be: (1.3M - 90 4+ 18M - 7)/97 = 2.5M which is indeed close to the reported value.
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Table 7: Comparison of various procedures on Sadeh’s scheduling problems. Maxflips
optimized and non-optimized. All times in seconds, at a fliprate of approximately
14 K-flips/s.

Class | WSAT, CB94 | WSAT Maxflips” | ISAMP
wil (27) 2 7
w/2 23 15 10
n/1 23 8 8
n/2 43 8| 15
t/1 77 516
£/2 (211) 908 | 43

Strategies with Non-Constant Maxflips

The previous section showed how to optimize the parameter Maxflips empir-
ically. The obvious next question is how a strategy would do that does not fix

Maxflips, but instead uses a non-constant Maxflips-sequence. Let

M = (mg,my,m,...)

be a Maxflips-sequence for which WSAT is run with Maxflips = mq in the first try,
then independently with Maxflips = m; in the second try, and so on. Having knowl-
edge about the success-distributions for all problem instances of a specific collection,
what is the optimal strategy of choosing the cutoffs my, mq, m,...7

For the class of Las Vegas algorithms, this question has been examined by
(Luby et al., 1993). For a single problem instance with full knowledge about the
distribution of the algorithm, they show that fixing the cutoff at mg=m; = ... =
m” is always optimal. However, if a collection of instances is considered, these results
do not directly apply anymore.

Using a generalized retrospective analysis for a Maxflips-sequence, we evaluated



42

various sequences empirically: The expected number of flips for a given Maxflips-

sequence M can be estimated as

o0 -1 i—1
Em = ;((@‘i';mj)‘l’mi']_:l‘;(l_?m‘,))

In all our experiments (on different instance collections of Random 3SAT), we

could not find a sequence that improved over a constant optimal Maxflips.

Summary and Future Work

This chapter has introduced retrospective analysis as a tool for the optimiza-
tion of statistical measures of the performance of Local Search algorithms. The
technique has been applied to optimizing mean performance of WSAT on Random
35SAT, and scaling figures have been reported. Further evidence has been provided
that optimal Maxflips scales quadratically with the problem size. Additionally, we
have investigated the possible speedup due to Maxflips optimization for the various
classes of Sadeh’s scheduling problems.

Future work related to this chapter could be the following. Reasonable curve
fits should be investigated that approximate WSAT’s scaling on Random 3SAT. Ad-
ditionally, a possible criticism with respect to the accuracy of the scaling results has
been (Crawford, 1995a; Parkes, 1995) that 1000 problem instances might be too few
as a basis for scaling results since outliers might appear that are extremely hard. A
larger number of problem instances could also be considered to improve the confi-
dence intervals of WSAT’s performance profile as the constrainedness is varied. An
open question is whether there is a general relation between the constrainedness of
a problem and the optimal cutoff time. An interesting theoretical question imposed

by figure 9 is for the relation between the optimal mean and the standard deviation.
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CHAPTER IV

PARALLELIZATION OF LOCAL SEARCH

The previous chapter examined the question of finding the optimal cutoff point
(Maxflips®) for a sequential Local Search procedure. In this chapter, parallelization
of Local Search is considered. As in the previous chapter, a retrospective analysis
is employed here to examine the speedup from parallelization.

This chapter is concerned with examining how efficient parallelization of Local
Search is, i.e. what the expected speedup is from employing & processors. We
investigate a parallel strategy that was analyzed for the class of Las Vegas algorithms
by (Luby et al., 1993).!

This parallel strategy, uniform repeating strategy, will be investigated empir-
ically regarding WSAT on the problem space Random 3SAT. It will be shown that
parallelization of WSAT according to this strategy leads to an almost linear speedup
for a moderate number of processors. Furthermore, it will be shown that as the
problem size gets larger, the almost linear speedup from adding processors persists

longer.

'For Las Vegas algorithms, (Luby and Ertel, 1993) have shown that even with full knowledge
about the distribution, superlinear speedup cannot be expected from parallelization, i.e. using k&
processors, the speedup can at most be k. For any Las Vegas algorithm, (Luby and Ertel, 1993)
have shown that the uniform repeating strategy is within a constant factor of optimal, provided
that the distribution is known.
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Uniform Repeating Strategies

In the uniform repeating strategy, all processors use the same fixed cutoff

Maxflips = m, as shown in figure 12.

Proc# Time —
1 [ m]m]m
2 [ m]lm|m
3 | mim|[m

Figure 12: Uniform repeating strategy.

In the following, a version of WSAT is presented that encodes the uniform
repeating strategy. A retrospective analysis will be developed that simulates a
repeating uniform strategy of k& processors, all using Maxflips = m. As before, the
retrospective approach uses a collection of runtime samples (that approximate the
success-distribution) as the basis for estimating the effect of varying the parameters.

In the next section, the analysis will be applied to analyze the speedup of
WSAT due to parallelization and at various values of Maxflips. In figure 13, a

parallelized version of WSAT, PWSAT, is given.

Retrospective Analysis for Parallelization

PWSAT has three explicit parameters: Maxtries, Maxflips and Numthreads.
The following analysis calculates the expected runtime (in number of flips) as these
explicit parameters are varied. Since PWSAT is a semi-decision procedure, the per-
formance analysis will be limited to the case of satisfiable input formulas. Therefore,

Maxtries is set to co. Additionally, what has been a try in WSAT now becomes a
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t proc PWSAT

£ Input a set of clauses a, Maxtries, Maxflips, and Numthreads
s Output a satisfying total assignment of e, if found

i =

5 for : :=1 to Maxtries do

6 par k€ {1,...,Numthreads} do

7 Ay := random truth assignment

8 end

9 for 7 :=1 to Maxflips do

1o par k€ {1,...,Numthreads} do

11 if A, satisfies o return A,

13 C := random clause, unsatisfied by Ay

7, with probability p : P, := random variable in C}
15 probability 1 — p: P, := best variable in C;
17 Ag := Ag with Py flipped

18 end

19 end

20 return No

21 end

22 en

Figure 13: The parallel WSAT procedure{PWSAT).

parallel try of the k processors in PWSAT. Since the analysis is primarily interested
in the expected clock time of PWSAT, & parallel flips will be counted as one flip.
The formalization of the analysis divides up into two parts. The first part
assumes that PWSAT does not perform restarts, i.e. Maxflips = co. The second part
will additionally take Maxflips into consideration and give estimates of PWSAT’s

performance as both parameters, Maxflips and Numthreads, are varied.



46

Infinite Maxflips

An expected runtime estimate for PWSAT can be given using a set Sp of
sample tries as before. In the following, the expected runtime (number of flips) will

be estimated for PWSAT with Numthreads = &.
Definitions:

e As before, let Sp be a set of n sample tries. This time, however, we require So

be sorted: let s; be the i-th smallest sample in Sp.
So={51,52,.--15n | 51 < 82 <... < 8a}

This section will first give results provided that no two samples have the same
value; i.e. we require Sy be strictly ordered. In the next section, it will be
shown that this result remains correct in the case where Sy contains multiple

instances of the same element, i.e. Sp will become a multi-set.

¢ Let S be a random variable that can assume any value in Sy with equal prob-
abilities. We can estimate the probability for an arbitrary choice of Sp being

greater than a specific s; (for any ¢) by

o Let Ti(So) denote a (fixed) random choice of k elements from So (allowing
repetitions):

Tk(So)E‘SoXSo...XSQ
k




47

Thus we can treat k processors like k random choices from the sample set Sp,

or like one random choice of Ty(Sp) from the permutations of Sp.!

Provided that a parallel try is successful and k processors run in parallel, the
number of flips it takes is the smallest number of flips for any of the k processors,

since the first successful processor will terminate the search.

‘The expected number of flips it takes for a successful parallel try can be denoted

by a new random variable

7 = min T(.5p).

To derive the probabilities for the random variable 7;, we need to estimate the

probability for any s; € Sy being the minimal element in a random choice Ti(So):

P(si =minTi(5)) = P(Vz € Ti(So) iz 2 s; A=Yz € Ti(So) : z > s;)
n—i+1\* n —i\*
- (=) -5

With the above estimate of the probabilities, we can give the expected number of

total flips if £ processors are running in parallel. The expected minimal number of

flips when running & processors is

E[T) = Zn:sc"P(Ss'—‘—minTk(Su))

i=1

o)) wa

i=1

! Although Ti(So) is a tuple, we will use the €-relation on it with the obvious semantics.
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This equation gives the expectation as the weighted sum of all the sorted sample

tries. Please note that we have ignored the Maxflips parameter up to this point.

Correctness for multisets

As mentioned above, it is not obvious that above equation also holds in the
case where S is a multi-set. Hence, we have to prove that the calculation of E[T;]
remains correct in this case. The order is loosened and the set is allowed to contain

elements more than once,

So = {51,52, ¢ySn | 8 5 < 32 < Sn}

As above, the random variable S can assume any value from S;. However, the
probabilities P(S > s;) and P(S > s;) can no longer be computed as above, since
the duplicates have to be accounted for by appropriate counting.

Nevertheless, it will next be shown that equation (IV.2) remains correct in

this case.

Fact 1 For every selection of samples

SIS-'-SSP—I<sp=sp+l='°'=3i=-“=sp+q

(and either p+q =1 0r Spyq < Spiq+1), equation (IV.2) gives the correct expectation,

since independent of the s1,..., 5,1, the following equivalence holds:

n

P(s; = minT4(So)) ’ff (""”1) (”‘j)k] (IV.3)
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Proof: The above probabilities P(S > s;) and P(S > s;) change to the following:

P(S>s) = "_f.':_'i'l_
P(S>s) = %‘l

Using these probabilities, we can recompute

P(s; = minTi(S)) = P(Vz € Ti(So): T 2 s: AVz € Ti(S0) : = > 55)

n n

Now, the equivalence (IV.3) follows directly, since its right hand sum is equivalent
to (IV.4) because of a telescopic sum that collapses. Hence, we have proven that we

can still use (IV.2) to estimate the multiset case. O

Varying Maxflips and Numthreads Simultaneously

We will continue the estimation by setting Maxflips to m < oo. Thus, in
PWSAT all processors will be restarted after each has made m flips. In each parallel

try, we encounter the following two possible cases:

(i) None of the k processors finishes (using less than m flips). We call this the

loose condition and formalize it as L := Vz € Ti(So) : z > m.

Py = (280

n
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(i1) At least one processor finishes, using at most m flips. We call this the win

condition W := =¥z € Tx(So) : > m.

P(W) =1- Ploose =" Puwin

We can now derive the respective two conditional expectations as follows.

(i) If none of the k processors finishes with less than m flips, it simply takes m

flips for one parallel try, and then a restart takes place.

E[T|L] =m

(ii) If at least one processor finishes with at most m flips, we have to modify E[7}]
from the previous section such that it reflects the win condition W.
The conditional probability P(A]B) is defined as P(A|B) = P(An B)/P(B).

We are interested in

P(s; = minTk(So) | 3z € Ti(So) : z < m). (IV.5)

In our case we know that for all s; € S, A implies B, since if s; < m is
minimal in T%(Sp), it is certain that at least one z < m exists in Ti(Ss). For
this reason, (IV.5) is equivalent to:

P(s; = min Tk(S0)) _ P(s; = minT}(S50))
PAz € Ti(So) : 2 <m) Puin

Additionally, we must correct the upper bound of the sum: if at least one

processor finishes with at most m flips, it is not possible that any s; > m
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is the smallest element in T(Sp). Only the first |ST'| elements influence the

expectation:
158" : k -\ k
1 2 - -
EfTW] = — 3 s [(-n—J—Jr—l) —(n J)] (IV.6)
win 3= n n

We can now combine the two conditional expectations, which finally leads to the
expected number of flips for any given combination of m Maxflips and % processors,

for a single problem instance.

Eny = P(W)E[T|W] + P(L)P(W)(E[T:|L] + E[T:|W]) + ...

= pwmzp:ooac'(im'i'E[ﬂIW]) = e
=0
= m.1Pun . pITW] (IV.7)

unnR

with E[7|W] as in (IV.6) and using the same argument to reduce the sum as for

equation (III.1). O

As before, we estimate the mean for a collection of instances by computing
the mean of the all instances in the collection.

For a practical estimation of PWSAT, the same counting scheme as in the
previous chapter (page 27) has been applied. Please note that, as in the previous
chapter, no estimates can be given for any Maxflips-value that is larger than the one

that has been used to collect the sample tries.



Results

We are now in a position to give results using retrospective analysis based on
collected runtime samples. First, figure 13 empirically demonstrates the accuracy
of the retrospective analysis for an interval between 1 and 100 processors. The
estimation curve for n = 200 variables is based on a collection of 1000 instances
at crossover and 400 runs on each instance. The diamonds in the figure reflect the
mean of each 100 actual runs of PWSAT {on the same 1000 instances).?

Figures 13 and 14 plot the expected speedup factor due to parallelization in
PWSAT on Random 3SAT. The interpretation of the curves is as the follows: A
factor of 20 at a particular ¥ means that running PWSAT with the (sequentially
optimal) m = Maxflips® and k processors is expected to run in 1/20th of the time
of sequential WSAT. Thus, the straight line given by the function f(z) = z would

mark a speedup that is exactly linear in the number of processors.

Interpretation

The first observation of the results is that PWSAT is indeed efficient: An almost
linear relative speedup arises from parallelization on Random 3SAT, provided that
the number of processors is moderate. Further, both figures 13 and 14 suggest
that the larger the problem size, the longer the speedup from parallelization can be
expected (as more processors are added).

In addition, figure 13 suggests that the speedup converges as the number of
processors is getting fairly large. This result is consistent with the results in (Luby

and Ertel, 1993).°

2pWsAT was implemented sequentially in lock-step mode.

3However, no attempt has yet been made to carefully examine the distribution of WsaT on
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Figure 13: Expected speedup due to parallelization for n =
100, 200, 300,400 variables in the range of 1-100 processors.

Parallelization with Suboptimal Maxflips

Figure 15 plots the speedup from parallelization, considering several values
for Maxflips, 8K, 30K and 80K. All speedups are relative to the sequential case
with optimal Maxflips (Maxflips® = 8K). From this figure (and similar ones for other
problem sizes), it appears that on Random 3SAT, the optimal sequential value
Maxflips® is optimal also for the parallel strategy, independent of the number of
processors.! This suggests a two step optimization: First, Maxflips can be optimized

in the sequential case, and second parallelization can be considered.

Random 3SAT, whether it meets the criterion given in (Luby and Ertel, 1993) under which an
almost linear speedup is to be expected.

4The graph does not contain a result for m < Maxflips® because it would become less clear.
However, at smaller Maxflips there is also less speedup from parallelization.
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Figure 15: Expected speedup due to parallelization for n =
100, 200, 300, 400 variables in the range of 1-1000 processors.
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Figure 16: Expected speedup due to parallelization for various val-
ues of Maxflips. 200 variables, 854 clauses. All speedups are relative
to the sequential performance at Maxflips*.
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Summary and Future Work

This chapter has examined the speedup from parallelization of Local Search.
A retrospective analysis has been introduced for simulating parallel behavior from
collected runtime data, reducing the computational cost for experimentation. It has
been shown that parallelization of Local Search is efficient, and accurate estimates
of the quantitative speedup of WSAT for Random 3SAT have been given. Paral-
lelization of Local Search is of practical interest since the routines can be parallelized
easily. If parallelization turns out to be as efficient for realistic problem classes, it
might be an attractive alternative to refinements of the sequential procedures in
practical applications.

Future work could include an investigation of the speedup from paralieliza-
tion of Local Search procedures on other problem classes, and the behavior of tail
probabilities could be examined. Additionally, intelligent parallel strategies along
the lines of (Aldous and Vazirani, 1994) could be considered in which the set of

processes is viewed as a population and is globally controlled.
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CHAPTER V

REFINEMENTS OF WSAT

This chapter reports on refinements of WSAT’s strategy. The first refinement
tackles a weaknesses of Local Search that has recently been addressed by (Crawford,
1995b): Local Search suffers from a lack of forward propagation. The first section
incorporates a simple implicit mechanism for forward propagation into WSAT that
propagates values through binary clauses.

Additionally, a subtle difference between two implementations of WSAT will
be discussed, and it will be shown that subtle details of WSAT’s strategy matter for

optimal performance.

Exploiting Structure in Sadeh’s Problems

In chapter on page 37, experimental results of WSAT on Sadeh’s scheduling
problems have been reported. Taking a closer look at the booleanization of these
problems due to (Smith and Cheng, 1993), one can frequently see long chains of
binary implications. By a chain of binary implications, or chain, we mean a sequence

of implications with the semantics

ll—ilg/\ lg—l'la Ao A I“_1—iln

In this chain of literals, setting one literal /; to true forces all subsequent literals to

the right of I; to be true. Setting a literal to false forces all literals to the left to be
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false. This implies that there must be a frontier in each chain, to the left of which
all literals are false and to the right of which all literals are true. Syntactically, these

chains appear in the Sadeh problems as a collection of binary clauses:

(ﬁ? .'Bg) (:B_-z, 323) (:L'_a, 34) ot (m?mn)

Each chain typically occurs with 100-130 different variables in binary clauses. In

total, there are typically about 50 chains in each instance of Sadeh’s problems.

Origin of Binary Implication Chains

It is important to note that most variables within chains appear in other
clauses of the theory as well, thus they cannot be reduced in a simple preprocessing
step. The chains appear to be a result of the encoding of coherence conditions.
For instance, in the booleanization there exist variables sa;; that express that an
operation ¢ starts at time ¢ or later, and eb;; meaning operation i ends by time ¢.
If operation ¢ requires processing time p; (given as part o-f the problem), one type
of coherence condition has to ensure that if : starts at or after time ¢, it cannot
end before time ¢ 4+ p;. Therefore, the following condition is stated over all relevant

operations 7 and all relevant times ¢:
@i = 2ebiypi—1

Coherence conditions like this one seem to be the origin of the binary implication
chains. Because they express coherence conditions, the chains should be kept con-
sistent with the variables that express the decisions being made, e. g. variables that

tell in which order to schedule two particular operations.
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With some understanding of the nature of randomized Local Search, it is clear
that these structures are not easily dealt with by WSAT, since the local gradient (the
number of unsatisfied clauses) treats all variables equally. Figure 16 shows WSAT’s
behavior on a specific chain; one might describe it as ron-resolute for the nature of

the implication chains is mostly ignored.

Motivation—USAT

The need for a general propagation mechanism in Local Search was recently
addressed by (Crawford, 1995b) and lead to the procedure USAT. USAT does ran-
domized Local Search with incorporated unit propagation.

USAT has the notion of control variables; a set of variables that trigger changes
in other variables. Each control variable, if modified, propagates changes to a num-
ber of dependent variables in other clauses. Intuitively, control variables should be
those variables that reflect actual decisions being made (e.g. the order in which
to schedule two operations), whereas dependent variables merely account for con-
sistency (e.g. coherence conditions). Unfortunately, on the level of the boolean
encoding of a problem, it is not clear which variables are control variables. Practi-
cally, any variable can be treated as control variable, however, some variables are
better candidates than others because they have more dependent variables and thus
allow for more unit propagations.

USAT has been shown (Crawford, 1995b) to exploit a similar structure of a
specific problem class, loopy 3SAT. On this class, the speedup in the number of flips
reaches more than four orders of magnitude (compared to WSAT). However, the
associated improvement in time is only about one order of magnitude on this class.

An open research question at present is how USAT can be implemented effi-
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ciently. An important concern in the implementation of Local Search procedures is
the efficiency of a single flip—and WSAT’s flip rate is with 14K-flips/s on a Sparcl0!
strikingly high. With complex enhancements it happens that, although the number
of flips can be reduced, the overall time may increase due to the cost that is added

to each individual flip.

Implicit Propagation

The strategy that USAT takes is an explicit combination of hillclimbing and
unit propagation. In contrast, the approach taken here is an implicit propagation
by changing the heuristic strategy. Note that the implicit propagation that will be
proposed here is not as powerful as USAT since propagation is only done through

binary clauses.

Implicit Unit Propagation through Binary Clauses

The main objective of the propagation is to keep binary implication chains
consistent with a set of control variables—the set of variables that occur in non-
binary clauses. One way to achieve this goal is by controlling WSAT’s variable flips
explicitly with a mechanism that keeps track of the state of each chain. However,
an implementation can get complicated since variables can occur in multiple chains
and the order in which propagations are to be done has to be decided. Additionally,
for an explicit mechanism the chains have to be isolated in a preprocessing step.

The following implicit strategy, which was suggested by Andrew Parkes in a
discussion about explicit control, is a combination of two existing techniques: A

history mechanism and a binary preference strategy. Both strategies are known

183K-flips/s on a Silicon Graphics Power Challenge.
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for SAT testing, however, only the combination achieves the goal of keeping binary
chains consistent.

The overall goal is to (i) define a frontier in each chain and (ii) be resolute
when moving the frontier, in the sense that once a chain becomes inconsistent (be-
cause a control variable has been flipped), reestablishing its consistency should occur

without changing the propagation direction.

1. Binary preference strategy: Achieving (i) is straightforward. Preferably sat-
isfying binary clauses (before trying to satisfy larger clauses) will achieve the
goal of keeping the chains consistent with the rest of the theory. Of course,
in the process of repairing binary clauses, it may happen that other clauses

(binaries and non-binaries) break.

2. History mechanism: To achieve (ii), a history mechanism that was introduced
as HSAT by (Gent and Walsh, 1993a) is applied. Given the choice of two
“best” variables, the one is flipped that hasn’t been flipped the longest time
ago. This encourages that the propagation direction within a chain not be
changed.? HSAT is an enhancement of GSAT. Given the choice of two variables
to flip, HSAT chooses to flip the variable that has been flipped least recently.

This same principle was incorporated into WSAT here.

HWSATB

This combination leads to HWSATB, which will be described in the following

in two separate parts.

?Using a tabu list in WSAT has anecdotally been reported by Bart Selman to strongly improve
WsAT's performance on loopy 38AT, a problem class that has a similar structure. How the behavior
of a tabu list differs from a history mechanism is an open question.
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(i) Binary preference. In the implementation chosen for HWSATB, separate lists
are kept for unsatisfied binary clauses and unsatisfied non-binary clauses. With
a probability ¢, an unsatisfied binary clause is picked, and with probability 1—g,
an unsatisfied non-binary clause is picked. A variable from the picked clause is

then flipped.

(i} History mechanism. The history mechanism is the adaptation of HSAT’s strat-

egy to WSAT (with the exception that it is not deterministic like HSAT).

1 proc HWSAT-variable-selection

2 Input a set of clauses «

3 Output a variable to flip

5 C := random unsatisfied clause

& with probability p:

7 P :=least recently flipped variable in C
8 probability 1 —p:

g P := the variable in C that

10 (i) increases the score the most, and
i (ii) among these has been flipped least recently
12 end
18 return P
14 end

Behavior on _chains

Figures 16 and 17 show how WSAT and HWSATB flip variables in binary chains.
We plot variable assignments for all variables in a particular chain as variables are
flipped. The vertical axis reflects time, the At column shows how many flips occurred
since the last change of any variable in the chain. This particular chain occurred in
the hardest class t/2 of the Sadeh problems. One can observe that WSAT is indeed
non-resolute and more often produces holes within the chain, which are eliminated
again in the next step. Thus, although it seems to achieve consistency in the chain

before it performs many flips in other clauses, it is non-resolute.
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As we hoped, HWSATB performs propagations without changing the direction

and thus achieves both (i) keeping the chain consistent and (ii) being resolute in the

propagations.
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Figure 16: WSAT’s behavior on binary chains in scheduling problems. The vertical
axis is time.

Summary of Results

Table 9 gives results for HWSAT without binary preference, including the 5%
Maxflips range and Maxflips®. Table 10 surnmarizes and compares results for WSAT,

HWSsAT, and HWSATB. Comparing Maxflips* in table 9 with WSAT's results on
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Sadeh’s problems (table 6), we notice that the exact value of Maxflips is much less
important using HWSATB, since the 5% intervals get significantly larger. Addition-
ally, we observe a speedup of HWSAT over WSAT which is best on class n/2 with
about a factor of 7. The performance (in seconds) is reported in table 10.°The
maximal speedup of HWSATB over WSAT is about a factor of 18 on class t/1. Un-
fortunately, on the hard class t/2, the speedup is only about a factor of 2. An open
question at present is why HWSATB does not improve as well on class t/2 as it does
on the other classes.

To conclude, we note that implicit propagation was indeed effective to exploit
a structural feature of scheduling problems. We have shown that exploitation of

subtle structures in the problem encoding can be beneficial.

Table 9: Results for HWSAT on scheduling problems

Class || 5% range (K) | Maxflips*(K) | Opt.exp.flips (K) | Stddev. (K)
w/l ||[ 100, ool >100 19 5
w/2 [ 100, oo >100 27 8
n/l [|[ 200, oo >200 52 68
n/2 [j[ 150, oo] >150 71 74
t/1 || [ 250, 850 400 215 381
t/2 || [ 450, 600] 450 3,088 7,584

HWSAT on Random 3SAT

To investigate HWSAT further, table 11 contains results for HWSAT on Ran-

dom 3SAT, based on the same collection of problem instances. HWSAT is almost an

3The results were obtained at optimal Maxflips with the following flip rates on a Silicon Graphics
Power Challenge: WsaT: 83K-flips/s, HWSAT: 7T0K-flips/s, HWsATB: 64K-flips/s. The HWsATB
rate is a lower limit, measured on a theory without binary clauses. Times do not include loading
time which for these problems were often longer than the runtimes.
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Table 10: Summary of results on scheduling problems.

| WsaTVersion  [[w/1 [w/2 o/l [n/2]t/1]  t/2]

K-flips

WSAT 33 204 | 119 | 540 | 634 | 12,718

HWSAT 19 27| 521 71 (215 3,088

HWSATB, g =1 11 15| 17| 52| 34| 5,685
Seconds

WSAT 04| 251 14| 65| 7.6 | 153.2

HWSAT 03| 04 0.7] 1.0 3.1 44.1

HWsATB,¢g=1| 02] 02| 03| 0.8{ 0.5 34.4

Table 11: Results of HWSAT on Random 3SAT. Results from retrospective analysis,

200 variables, 854 clauses

Version §| 5% int. (K) | Maxflips® | Opt.exp.flips | 95%-conf.
WsAT |[[ 5, 11] 8,000 83,771 22,312
HWSAT = 80,000 551,106 161,621

order of magnitude slower than WSAT. This was not expected since (i) HWSAT per-

formed well on Sadeh’s problem, and (ii) it has been shown {Gent and Walsh, 1993a)

that on Random 3SAT, the history mechanism of HSAT improves over GSAT’s per-

formance. This shows, once again, that combining techniques which individually

improve performance does not necessarily lead to better algorithms.
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Selman’s WALKSAT

In this section, we show that the details of Local Search algorithms are critical
for optimal performance. In the publication of WSAT (Selman et al., 1994), parts
of the variable selection strategy were left open. In the following, we compare the
variable selection strategy of a straightforward implementation of the published
version of WSAT (by Andrew Baker) with the implementation that is now publicly
available from Bart Selman. We will show that although the difference between
the strategies is subtle, it leads to a significant difference in performance and in
the behavior of the algorithm as the cutoff parameter Maxflips is varied. To avoid
the naming conflict, Selman’s version will be referred to as WALKSAT and Baker’s
version as WSAT.

WALKSAT is different from WSAT in two respects. (i) hillclimbing is done on
the number of clauses that break if a variable is flipped, rather than on the heuristic
score of the total number of satisfied clauses. And (ii) no random move is done if
an uphill move is possible, i.e. if a clause can be fixed without breaking any other

clause, it is fixed. The WALKSAT variable selection is shown figure 18.

Results

WSAT and WALKSAT were compared on a set of 1000 Random 3SAT instances
at 200 variables, 854 clauses, as before using retrospective analysis. The results in
table 12 indicate better performance of WALKSAT than WSAT at optimal Maxflips.*

Additionally, WALKSAT shows a wider 3% range in table 12, which suggests

4The results are based on our implementation of Selman’s WALKSAT strategy, which has a
reduced fliprate of 74K-flips/s, compared to 83K-flips/s of Baker’s WsAT. This is due to the fact
that the number of breaking clauses have to be computed even if a random move will be made.
Avoiding unnecessary counters could probably smooth out this effect to a certain degree.
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+ proc WALKSAT-variable-selection

W @ s ™ W A te fa

P e
L |

12
13 end

Input a set of clauses a
Output a variable to flip

C := a random unsatisfied clause
P := a variables in C, such that its flip “breaks”
the least number of clauses
u := number of clauses that “break” if P is flipped
if u > 0 then
with probability p : return random variable in C
end
return variable P

Figure 18: Selman’s implementation of WALKSAT

Table 12: Results of various refinements of WSAT. Results from retrospective anal-
ysis, 200 variables, 854 clauses

Version 5% int. (K) | Maxflips* | Opt.exp.flips | 95%-coni.
Baker’s WSAT [ 5 11] 8,000 83,771 22,312
Selman’s WALKSAT |[ 5 25] 10,000 41,844 9,682
HWSAT | > 80,000 551,106 161,621

that the influence of Maxflips is not as strong on WALKSAT as it is on WSAT. This

phenomenon becomes even more apparent from figure 19 which shows the expected

number of flips as Maxflips is varied.

While WSAT’s performance degrades noticeably as Maxflips is increased, WALK-

SAT’s performance remains almost constant. This is an interesting property, because

the difficulty of choosing the right Maxflips value is avoided—especially for problem

classes for which the value of Maxflips* is unknown this would be advantageous.

More experimentation revealed that the effect continues so that WALKSAT’s mean

performance is still close to optimal on Random 3SAT without any restarts. How-
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ever, reducing the number of restarts has a drawback, since as further investigation

reveals, the standard deviation increases as Maxflips goes to infinity. Table 13 shows

those results.

Table 13: Behavior of Selman’s WALKSAT for finite and infinite Maxflips.

Maxflips Mean | Standard deviation
Maxflips™ == 10,000 | 41,844 156,214
40,000 44,958 199,941
0o 48,333 248,453
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Summarv and Future Work

This chapter has introduced an implicit propagation mechanism for WSAT.
We have shown that this propagation mechanism exploits certain features of the
structure present in Sadeh’s scheduling problems. Additionally, a comparison be-
tween two different versions of WSAT has shown that small differences in the strategy
of a Local Search procedure may cause effects on performance that matter.

Future work related to this chapter could include experiments on various com-
binations of the strategies described in this chapter. For example, applying HSAT to
Sadeh’s scheduling problems, modifying WALKSAT to HWALKSAT, and experiments
with various values of ¢ in HWSAT to determine its optimal value. An interesting
open question is how much further the notion of implicit propagation can be pushed
in Local Search for satisfiability testing—to exploit structure present in other real-

istic problems.
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APPENDIX

THE GSAT FAMILY

This appendix summarizes various flavors of GSAT that have been proposed
in the literature. The summary focuses on variable selection strategies in Local
Search for satisfiability testing; it is not meant to be a complete enumeration of
Local Search algorithms.

Several related strategies that will not be discussed here include refinements of
GSAT that are orthogonal to variable selection (Selman and Kautz, 1993a; Selman
et al., 1994), and recent search strategies that combine locality with systematicity
such as partial-order dynamic backtracking (Ginsberg and McAllester, 1994), and
limited discrepancy search (Harvey and Ginsberg, 1995)

This appendix takes a generalizing approach similar to GenSAT (Gent and
Walsh, 1993a). However, some of the described procedures are not instances of
GenSAT. Therefore, a somewhat different generic version of Local Search for sat-
isfiability testing is presented in figure 20 which uses two subroutine calls for the
variable selection.

Variable selection is presented as a two step process in which one function
(propose) proposes a set of variables as candidates for a flip, and a second function
(select) narrows this set down. If select still ties multiple variables, a random se-
lection takes place automatically (unless otherwise noted). In all discussed GSAT

variants, initial(a) produces a random initial assignment.
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1 proc Generic-SAT

2 Input a set of clauses a, Maxtries, and Maxflips
] Qutput a satisfying total assignment of a, if found
4 =

5 for : :=1 to Maxtries do

6 A := initial(a)

7 for j :=1 to Maxflips do

8 if A satisfies a return A

10 P := propose(a, A)

1 P := select(P,a, A)

12 A := A with P flipped

18 end
14 end
15 return No
15 end

Figure 20: A generic procedure for the GSAT family.

Different Variable Selection Strategies

All following procedures for variable selection have as input a set of clauses
a and a total assignment A and return a variable which is to be flipped next. A
heuristic ‘score’ is used to measure the distance to a solution, according to which
the variable selection takes place.

Let o be a set of clauses and let A be the current assignment. Let P be a
propositional variable. In the following, fp will denote the number clauses in o that
get fized (become satisfiable) if P is flipped in A, and bp will denote the number of
clauses that break (become unsatisfiable) if P is flipped in A. Thus, fp — bp is the

difference in the total number of satisfied clauses in case that P is flipped next.

GSAT (Selman et al., 1992)

Basic greedy Local Search for satisfiability testing, GSAT.



1 proc GSAT-propose(a, A)

2 return all variables in unsatisfied clauses of
s end
5 proc GSAT-select(a, A, P)
6 return variable P € P with maximal fp — bp
7 end
GsaT+walk (Selman and Kautz, 1993a)

GsAT with mized random walk adds noise to a greedy algorithm.

1 proc GSAT+walk-propose = GSAT-propose
2 proc GSAT+walk-select(a, A, P)
random variable in P

P
s with probability p: P .=
i probability 1 — p: P := variable in P with maximal fp — bp

7 return P
s end

HsAT (Gent and Walsh, 1993a)

HSsAT uses historical information to choose a variable. Additionally, HSAT is
deterministic, since if two variables have never been flipped in the current try, an
arbitrary (but fixed) ordering is used to choose between them. That is, ties from
select are never broken at random.

+ proc HsAT-propose = GSAT-propose
s proc HSAT-select(a, A, P)

4 P’ := all variables P € P with maximal fp — bp
5 return P € P’ which has been flipped
6 least recently in the current try
7 end
WsAT (Selman et al., 1994)

WSAT employs a two step random mechanism that flavors variables that ap-
pear in many unsatisfied clauses. For WSsAT, two different implementations exist,

one by Bart Selman at Bell Labs, and the other by Andrew Baker at CIRL. To avoid
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the naming conflict, Selman’s version will be referred to as WALKSAT and Baker’s

version as WSAT. Both use the following procedure for proposing variables.

1 proc WSAT-propose(a, A)

2 C :=random clause in « that is unsatisfied by A
) return all variables that occur in C
4 end

The different implementations of select proceed as follows.

o Baker’s WSAT

1 proc WSAT-select = GSAT-+walk-select

o Selman’s WALKSAT

1 proc WALKSAT-select(a, A, P)

e u := minpep bp
3 if u > 0 then
4 with probability p : return random variable in P
5 end
6 return variable P € P with minimal bp
7 end
HWSAT This thesis, page 61

HWSAT uses historic information in WsAT. However, it is not deterministic

like HSAT, i.e. ties from select are broken at random.

t proc HWSAT-propose = WSAT-propose

2 proc GSAT+walk-select(a, A, P)

s with probability p:  P':=P

i probability 1 — p : P’ := variables in P with max fp — bp
6 return P € P’ which has been flipped

7 least recently in the current try

8

(D
=]
ja B



HWSATB This thesis, page 61

HWSATB is like HWSAT, except that binary clauses are enforced to be satisfied

first.

PWSAT This thesis, page 45

A parallelized version of WSAT according to a “uniform repeating strategy”

that has been described by (Luby and Ertel, 1993).

Simulated Annealing (Kirkpatrick et al., 1983; Johnson et al., 1991)

Simulated annealing is a procedure closely related to the GSAT family. It uses

a noise model based on statistical mechanics.

1 proc simulated-annealing

2 Input a set of clauses a
s Output a satisfying truth assignment of e, if found
4 =
5 A := a randomly generated truth assignment;
6 while true do
7 if A satisfies o then return A fi
8 P := one randomly selected propositional variable
s 6 := change in the number of satisfied clauses when P is flipped
1 if 6 <0 (a downhill or sideways move)
12 then flip Pin A
13 else flip P in A with probability e=*/T
17 fi
15 T := Cooling-Schedule(T)
16 end
17 end
GenSAT (Gent and Walsh, 1993a)

Additional versions of GSAT are reported in (Gent and Walsh, 1993a) as in-
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stances of a class which is called GenSAT. GenSAT additionally comprises of a
deterministic version (DSAT), timid (anti-greedy) selection (TSAT), cautious selec-
tion (CsAT), indifferent selection (ISAT), plus historic (IHSAT), maximizing the
variability of the initial assignment (VSAT), plus deterministic selection (VDSAT),
sideway moves preferred (SSAT), opportunistic initial assignment (OSAT), initial

truth assignments in “numerical” order (NSAT), and fixed initial truth assignment

(FsAT).
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