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This thesis explores wavelet based multiresolution representation schemes. We
survey existing research in this area, describe implementation issues that arise, and,
in general, attempt to provide a unified discussion of past work. Since the computer
graphics community uses images, curves, and surfaces as its three primary primi-
tives, we have used that as the ordering for our investigations into wavelet based
representation schemes.

We begin by constructing a general purpose wavelet transformer and building
the related mathematical background. Some common properties and basis functions
are then examined. The framework is then extended to two dimensional image data,

following which we extend the results to three dimensions. We then develop and
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instantiate a framework for an implementation of multi-resolution B-splines.
Lastly we present a preprocessing step to convert arbitrary unstructured mesh-
ing into a structured scheme. A wavelet basis for the structured spaces is introduced

followed by an implementation of a multiresolution surface.
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CHAPTER 1

INTRODUCTION

The term wavelet was coined by Ricker in 1940 and was used to describe
the disturbance that moves outwards after seismic activity.

The requirements for modeling the complexity of real world objects are dictated
by the context of the model, and vary from computational efficiency to mathematical
accuracy. This leads to an inherent trade-off, as design decisions needed to maximize
one of these goals lead to a poor showing in the other.

One approach to this trade-off is to have a multi-resolution modeling framework
that can be used to select between maximum accuracy and maximum computational
efficiency (i.e., simplest approximation) without having to maintain multiple copies

of the object being modeled. That is where wavelets enter the scene.

The Wonderful World of Wavelets

Active wavelet research can be traced back to the 1930’s. During that period
of time the prevalent analysis tools were based on the Fourier technique invented
by Joseph Fourier in 1807. Having dealt with orthogonal systems and Fourier series

convergence, mathematicians gradually moved along the path of frequency analysis



(or decomposition) to scale analysis. The first mention of what later came to be
known as wavelet functions was made in the appendix to the thesis by Alfred Haar
in 1909. Haar constructed a compactly supported orthonormal basis that was used
to lay the foundations of modern wavelet theory.

Around the same period Paul Levy used the Haar basis functions to study
Brownian motion. Between 1960 and 1980 mathematicians Guido Weiss and Ronald
Coifman searched for the simplest components of function spaces and the assembly
rules for reconstruction of all components of these spaces using these simple compo-
nents. The field of wavelets got a new lease when Grossman and Morlet in 1982 used
previous results in scale analysis to construct a mathematical model of Ricker’s seis-
mic disturbances and went on to broadly define wavelets in the context of quantum
physics.

The latest thrust came with Stephane Mallat [24] in 1985 and his proposition of
the pyramid algorithm. His work in digital signal processing resulted in the discov-
ery of many relationships between quadrature mirror filters, orthonormal bases and
pyramid algorithms. Following up on his work, Y. Meyer [25] constructed the first
non-trivial wavelet (i.e. non Haar wavelet) which, unlike the Haar, was continuously
differentiable. The main shortcoming of the Meyer wavelet was the lack of a com-
pact support. The last piece of the puzzle was filled by Ingrid Daubechies with the
construction of a wavelet that had both compact support and an orthonormal basis,

making it the most preferred wavelet for the signal/image processing community.



The early nineties was the period that the computer graphics community jumped
on the wavelets bandwagon. Investigations were conducted into the usage of wavelets
for multiresolution representation and editing of curves and surfaces for a variety of
applications. In 1991 Hanrahan et al [17] [28] [32] demonstrated the usage of wavelets
to solve the global illumination problem. Adam Finkelstein and David Salesin [11]
applied B-spline wavelets to create a multiresolution curve representation system for
PostScript documentation. Around the same time Matthais Eck, Tony Derose, Tom
Duchamp and Michael Lounsbery [7] [4] combined efforts to create a muiti resolution
surface representation for an arbitrary triangulated meshing.

Simultaneously, in early 1995, Wim Sweldens [37] formulated the lifting scheme
for an efficient implementation of the wavelet transform based on bi-orthogonal wavelets.
Later Zorin, Schroeder and Sweldens [39] investigated yet another technique that em-

ployed spherical wavelets for editing multiresolution surface representations.

Why Wavelets

The classical orthonormal bases that are used in applied mathematics as analysis
tools use Fourier or Fourier like bases. The pervasiveness of Fourier techniques often
let us ignore the big shortcoming that results from using non-local bases. For a
complete representation of a signal, all the elements of the basis are active all the time.
Scientists have long sought a basis that is localized in time and frequency (unlike the

Fourier which is localized in frequency alone). Gabor and Slepian [14] proposed some



adaptations that could be made to Fourier techniques to provide localization by using
a windowed Fourier transform. Wavelets instead allowed a basis function that was
orthonormal and localized in both time and frequency. Two of the main advantages

of using wavelet based techniques over Fourier based techniques are

o Spatial/Temporal Coherence: The main win of the Wavelet Transform over the
Fourier Transform is that for non-stationary signals it provides a correspondence
between a feature in the transformed signal and the spatial/temporal location

of the feature in the original signal.

o Finite domain definitions: Since the Wavelet Transform is based on functions
defined in a finite domain, the error due to an approximation is predictable and
measurable (at least in the least squares sense) which is not the case of the

Fourier, as it has an infinite series as the basis function.

In the next five chapters we will study the mathematical basis of the wavelet
transform and look at the modifications that are needed to apply the theory to the
areas that interest the computer graphics community the most: images, curves and
surfaces. The structuring of the topics is based loosely on the sequence followed by

Stollnitz et. al. [35] in their book “Wavelets for Computer Graphics”.



CHAPTER 11

THE MATHEMATICAL BASIS

Here we shall take a first look at the components that go into the building of
a wavelet transformer. We examine the mathematical basis on which the wavelet
transform has been built, the qualities that make this desirable, and a framework to
design and construct a wavelet transformer. In the end we shall see how the steps
of the wavelet transform can be implemented for the simple case of the Haar basis
wavelet transform. We finish by introducing some popular wavelets and discuss some

standard construction techniques.

Mathematical Preliminaries

Before we delve into wavelet theory, let us review some mathematical results
that will prove to be useful. At this point we assume a good working knowledge of
elementary geometry, Fourier transforms, and time-frequency transformations. We
begin by defining the basic terms and then draw analogies to the Fourier representa-

tion and Cartesian geometry.



Some Definitions
Bases

Let u;, us,...,un be a collection of vectors in some space V.

The vectors are said to be linearly independent if cyuy + couo + -+« + chu, =0
is satisfied ifand only if ¢; = ¢cp =+ = ¢, = 0.

Such a collection of u;,uq, -+, u, which are linearly independent is said to be a
basis for the space V, as all vectors v, v € V, can be constructed as a weighted linear

combination of the vectors uy, us,- -+, Uy

V= Zc,-u,-. (IL.1)

In the Fourier case, think of V as the infinite line of possible frequencies and
each u; as the amplitude of frequency ¢ present in the signal being studied. Then the

complete signal, f(x), can be expressed as the linear combination [21]

f(z) =3 aicos(iz) + bisin(iz). (I1.2)
Thus the sinusoid is the basis function in the Fourier function space.

Inner product

The inner product is basically a generalization of a more familiar case of the

dot product, which is used to measure the projection of one vector on another, in the



I R3 space.

If the space was the I R> then the three co-ordinate axes would be the bases,
and the dot product of any pair of axes would be zero, as they have no projection on
each other. In other words, the vectors representing the co-ordinate axes are linearly
independent and therefore have the mutual dot products equal to zero.

In the general case, the dot product < .|. > on the space V' is a map from V x V

to IR, such that the mapping is
1. symmetrical < v|u > = < ulv >

2. bilinear < au+bvjlw > = a < u|w > +b < v|w >

and
3. positive definite < uju > > 0, for all u, u50.

In multiresolution analysis, the standard inner product is commonly used, which

is defined to be

<flg>= [ f(e)gla)iz (1L.3)

The solution to the right hand side of this expression has to satisfy the stated
conditions to be an inner product and covers the space of all square integrable func-

tions.



Orthogonality

The above discussion about the inner product is to formalize the idea of orthog-
onality. Vectors v and u are said to be orthogonal if the inner product on the space

where u and v are defined is equal to zero:

<ujv >=0. (11.4)

Thus if the vectors uy, ug, - - - , u, are mutually orthogonal, then they are linearly
independent. For example the three axes in the cartesian space, that are the basis for
all vectors in the space, are orthogonal as they all have mutual dot-products equal to
zZero.

A point to be noted is that orthogonal vectors in a space implies that the two
vectors have no overlapping regions of support. If a function is represented using such

vectors as a basis, then there is no redundant overlapping data in the representation.
Normalization

A norm is a function that measures the length of vectors in a given vector space.
Since norms can be constructed to an arbitrary order, the notation used is to write
the norm as L,, where p = order of the norm.

Thus in the familiar Cartesian space, the method to measure the length of a

vector u is



u| = < uu>? (11.5)

This is the L2 norm under the space.
Normalization, therefore, is the process of measuring the value of || u || within
the range 0---1. In other words, the process of measuring the weight of a vector,

relative to the space in which it resides.

Orthonormal

A basis composed of vectors that are normalized in the L; norm, and are or-

thogonal to each other, are said to form an orthonormal basis. Mathematically it is

defined as

< [ulllu;] > = &; (1L6)

where [u;] and [u;] are the matrices composed of vectors u;, uz, -+, u, and &;; is the

Kronecker delta.!

Discrete Wavelet Transformation

The wavelet transformation aims to find a nested set of vector spaces that

approximate the original function with increasing coarseness.”? The detail that is

1The Kronecker delta is defined as a function, that is one for i=j, and zero everywhere else.

2Basically an optimal low pass filter.
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excluded in the coarser space is captured by a complement space to the coarser® one.
Put another way, the wavelet transform splits a sequence into two channels. One
of the channels contains the low frequency band of the signal and the other channel
contains the high frequency band that was left out in the first channel. Further
decompositions repeat this step on the low frequency band till the desired level of
decomposition is achieved.

Since the basic idea behind the wavelet transform is to be able to build a 2-
channel sub-band encoding, it necessitates the construction of a smoothing or scaling
filter (denoted by ¢) and a detail or wavelet filter (denoted by ). The transfor-
mation itself is lossless and reversible. There is no gain in entropy inherent in the
transformation.

Let us see how this compares to the well known Fourier transform. The Discrete
Fourier transform takes a sequence that is represented in the spatial {or temporal)
domain using amplitudes of discrete distance (or time) as the basis function. The
transformation represents it as a sequence of amplitudes on the infinite line of discrete
sinusoids. Recall that the sinusoid is the basis vector for the Fourier space [27].

Mathematically the sequence a,, as, - - -, @, in the temporal/spatial domain could

be written as

(=]

zln] = Y aft])f[n— 1]

t==—o00

3This is basically a high pass filter.
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with ¢ as the basis vector. The discrete Fourier space representation of this sequence
is

N=1
z[n)=1/N Z X[k]ej(z"m)k“
k=0

and the components X[k] are defined by the Inverse Fourier Transform

N=-1
X[k = 3 alnjei/min

k=0

where 27/N is the principle frequency and uses the sinusoids cos(27/N)kn and
sin(2x /N)kn as the basis vectors.

Instead the Discrete Wavelet transform represents the transformed signal using
two sequences. The first sequence is the list of amplitudes for a basis that has exactly
half the number of basis vectors as the original sequence, and approximates the orig-
inal function closely. The second sequence also is a list of amplitudes for exactly half
the number of basis vectors and captures the detail information that has escaped the
first sequence. Therefore the sequence a{, a:g, ---,al gets transformed to the two sub-
band sequences a{'l, aé'l, r ,a;';zl and b{"l,b%_l, TN b;',;; which are the co-efficients
for the basis vectors for the scaling and wavelet function spaces respectively.

Here then is where the wavelet transform differs from the Fourier transform,

because unlike the Fourier, which has as its basis the sinusoid, the wavelet bases are



defined recursively [8] [1] as a set of scaling functions spanning the space 1

M-=1

F(z)= 3 cxd(2z— k) (IL7)

k=0

and a set of wavelet or detail functions that are orthogonal to the dilations or scales

spanning the space W’

M-1

P (z)= Y —1ad(¥z — k) (11.8)

k=0

where V7 and W/ together make up the function space of the original data (i.e. V),
The function ¢ is the basic function that is used to design all the basis functions and is
sometimes referred to as the mother wavelet. Thus this combination of the sequences
¢’(z) and ¥#(z) and the corresponding co-efficients c, at level j represent the signal
completely.!

Note that the definition of the basis functions as shifted (or translated versions)
of the basic function ¢ provides the localization in space, and the definition of the basis

functions at various levels, called dilations, provide, the localization in frequency.

1The c; terms in the wavelet function definitions have negative subscripts. The negative terms
are to be taken in a mod sense.
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Multiresolution Analvsis

There are many ways to approach the study and construction of a wavelet
transformation. Since multiresolution analysis is the main focus of this work, let us

take a look at the world of wavelets from that perspective [24].

Nested Spaces

For the multiresolution approach the starting point is to define the vector spaces
in which we are interested. This is the space that will be spanned by all the functions
that are defined for this space (in other words this is the domain for the functions),
and all values in this space will be defined in terms of the basis vectors for the space.

By definition, multiresolution analysis dictates that for any given space V7 there

has to exist nested spaces® such that

VicVvicvi...cVic...cvn (11.9)

These spaces are function spaces for the above mentioned scaling funciions of
Equation I1.7. In other words, the scaling functions are the basis functions for these

spaces.®

SEven though the scaling and wavelet functions can be defined on the infinite real number line,
most definitions of the wavelet and scaling functions are presumed to be on the bounded domain;
i.e. they have a finite set of basis functions for V7 and thus also for the spaces W4,

Sthe superscript j used in the definition of the scaling functions, corresponds to the space for
which they are the basis functions
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The next step is to define the wavelet space, which is the space over which the
wavelet functions form the basis functions as per Equation IL.8. The space W7 is

defined as the space contained in space V/*! and orthogonal to the space V7

Vit = Vi Wi (11.10)

The point to note here is that the definitions of both the scaling functions and
the wavelet functions are recursive and this will mean higher and higher resolution

at each discrete step from V; to Vj4,. This property is also referred to as refinability.

Orthogonality & Inner Products Constraints

The most efficient usage of this transform would be to make the spaces V7 and
W7 orthogonal to each other. That would imply linear independence, which in turn
would imply that the spaces V7 and W/ are not overlapping each other in the portion
of Vi1 that each of them captures.

The tightest constraint dictates that

<ildl > = i (IL11)
<Pl > = &y (11.12)
<hlti>= 0 (IL13)

where & is the Kronecker Delta. Intuitively, we can see that the idea is to make



the most of each and every co-efficient that is used to represent the function. iqua-
tions II.11 and Equation I1.12 simply ensure that the scaling functions spanning the
space V7 and the wavelet functions spanning the space W7 do not overlap in their
respective regions of support. The last Equation II.13, however is more than just
a direct consequence of defining the wavelet spaces to be orthogonal to the scaling
function spaces. The tightest constraints require that all the scaling functions for all
levels are orthogonal to all the wavelet functions for all levels, and not just for the
same level.

As we shall see later this condition is relaxed for most implementations of
wavelet functions. The typical approach is to redefine the equation to imply that
the scaling functions are orthogonal to only the wavelet functions defined on the

same level j.

Normalization

The need for normalization of the wavelet co-efficients arises because the trans-
formation induces a scaling on the scaling and wavelet function co-efficients.

Certain applications, as we shall see later, need to be able to select wavelet
functions that would be excluded from a wavelet transformed representation of the
function. Since the only way to make this comparison is to compare the normalized

versions of the co-efficients, easy computation of the L, norm is a big advantage.
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Coveted Properties

We have thus far outlined the guidelines under which the scaling functions ¢

and ¥ can be created. Before taking the next step of locking at a real implementation

of those rules, let us list the main features we want for the functions [24].

1.

™o

Refinability

This is a basic requirement of the wavelet transform. The scaling functions are
defined so that they can be refined. This forms the premise of the multiresolu-
tion representation because going to a lower or higher level of detail is merely an
exercise in choosing the right level of refinability in the scaling functions to use

as the basis for the interpolation. This is also known as having nested spaces.

Compact localized support

The scaling functions should have compact support. Compact support implies
that the filter functions for the decomposition and reconstruction are sparse and
easy to compute. The role of a filter in the wavelet transform is explained in

Section (IL.5).

Symmetry
Usage of filters that are symmetric around the centers is essential for certain

operations so as to not bias the next level in a particular direction.

. Smoothness

Since the final function will be represented using the scaling and wavelet func-



tions as the basis, a smooth basis will yield smoother final interpolations.

5. Vanishing moments

A wavelet ¥(z) is said to have n vanishing moments, if the value of

0 for0<k<n-1
fzb(z)zkdx:

non — zero for k = n.

This guarantees that polynomials up to degree n are locally supported within
the multiresolution spaces, and also that the wavelet function v satisfies C

continuity.

The Filter Bank Algorithm

The filter bank algorithm was proposed by Stephane Mallat in 1985 for his work

on image pyramids and forms an excellent platform for multiresolution analysis.

Single Stage Filter

Let si*! be the co-efficients of all the scaling functions ¢!*' defined at the level

j + 1. Then the analysis filters A’ and B?, which decompose the space V7*!, are

defined as
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i
—A (11.14)
st Sija
- — where s! are the
di
%
2

co-efficients for the i scaling functions and d’ are the co-efficients for the ¢ wavelet
functions’ defined at level ;.

Recall that the recursive (i.e nested) definition of the scaling and wavelet func-
tions makes it possible to transform between the functions at different levels, and
filter functions A7 and B’ are the formulation of the decompositions.

Since the above mentioned decomposition step allows us to break the original
signal down to two different parts, the inverse transform would have to be able to
take the scaling function co-eflicients and the wavelet co-efficients, and add them back
together to reconstruct the original sequence. The filters P? and Q7 that implement

this step are called the synthesis filters and are defined as

"Henceforth the representation of a signal will be given in terms of the co-efficients sf and d{ , 38

the underlying scaling and wavelet functions are always of a standard form, and do not need to be
explicitly specified.
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s Sjli-i»l
—P (I1.15)
57 s;’,';;

s
A2

The filter functions A’, B’ and P?, @’ are typically defined as matrices that

operate on arrays of s! and d’.
For a transition from a known level 7 + 1 to another level 7 or vice versa, the

analysis and synthesis filters have a definite relationship [1] which can be expressed

as

Al -1
= ( Pi ) (I1.16)
Bl

where A,B,P and Q are all denoted as matrices.

Matrix Construction

Since matrices constitute a compact and easy way to compute transformations,

it forms the most painless solution. However an immediate problem that crops up is
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that the matrices can be infinite in the limit because the size of the matrix will grow
proportional to the level of refinement.
For finite sequences and a given level j, we can construct the scaling filter (P?)

and wavelet filter (Q7). Elements of P and @ can be expressed as

P,_-y = 1/2C2§_J'; Q:y = 1/2(-1)j+10j+]_2,‘ (II].?)

where ¢;, for : = 0,1,---, L — 1 are the co-efficients of the scaling and wavelet matrix

equations, Equation I1.7 and Equation I1.8.

Multistage Filter

The above formulation would allow the transition from the signal represented
in space V?*! to V7 and vice versa. The entire process to step from any arbitrary
resolution level j to an arbitrary level 7 — a would require a cascade of filters each
way.

Thus the analysis and synthesis filters would appear as in Figure 1. This com-

bination of Analysis and Synthesis filters is called a multiresolution analysis.

Haar Wavelets: A Case Study

Now that we have seen the formulation of a wavelet transformation and dis-
cussed a possible framework for its implementation, let us take the simple example

of the 1-dimensional Haar function and trace through the theory and construction of
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FIGURE 1. A Multiresolution Analysis using Multistage Filters
the Haar basis wavelet transformer.

The main steps that go into designing a multiresolution analysis are :

1. Selection of the scaling functions. Consider the function space {0,1} for a 1-
dimensional function, and the basis vectors for the space at level j to be defined

as 27 piece-wise linear functions, as shown in Figure 2.

The equation representing the scaling functions can be written as

$i(z) = d(2z —i),i=0,1,-,2 — 1
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FIGURE 2. The Haar Scaling Functions for V%, V!andV?

where

1 for0<x<1
P(z) :=

0 otherwise

which makes it obvious that the space spanned by these scaling functions are

refinable. Thus V7 is refinable.

Selection of the inner product on the spaces V°, V!, ... V* The choice of the
inner product is important as this will decide the condition of orthogonality,
and thus provide the definition of the wavelet spaces W’. QOne important and

often overlooked consequence of the inner product is that the inner product also
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determines the L; norm. The L, norm is used to scale the wavelet co-efficients
and also to measure error induced by eliminating a particular co-efficient. In
this case, we shall select the standard inner product which is defined as per

Equation II.3.

. Solution of the inner product, and selection of the set of wavelets that span W7
for each j. Solving for the inner product gets us the solution for ¢ which are

the sequences as shown in Figure 3.
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1

FIGURE 3. The Haar Wavelet Functions for W%ndW!

¥i(z) =¥z —i),i =0,1,---,2 -1



where

1 for0 <x<1/2

P(z)=9 -1 for1/2<x<1

L 0 Otherwise

We now see that the members of this sequence are the Haar basis functions,
and thus the name Haar Wavelets. This suggests that another way to proceed
would be to select the wavelet functions first, and then use the inner product

to select the scaling functions.
. Design of the filters that would actually implement the transform for the given
set of scaling and wavelet functions.

Recall that

Vit = i Wi
yitl pitt _ i

i+l Q.i+1 = Wi

which implies that

P = ¢+
<;’[)j-l-lp;j+l = ¢J

¢j+l Q.H-l - ,J,J'_
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Now we can trivially see that the matrices P? and Q? needed to convert the

scaling functions at level 2 to the scaling functions at level 1 are

(10 1 ol
g |10 ¢ @ -1 0
0 1 0 1
0 1] | 0 -1

From Equation II.16, the rule that relates the analysis filters to the synthesis

filters for a given level j, we can derive the A7 and BY filters.

A result of great importance that we have observed, is that the size of the
matrix grows proportional to the data size, which is a great factor in real im-
plementations. A possible solution to that problem has been proposed. This
scheme, known as the lifting scheme, has excellent time characteristics for cer-

tain wavelets [37].

Other Famous Wavelets

The Haar wavelet is unusual because it is probably the only commonly used
wavelet that obeys all the wavelet conditions. As we have seen, for more complex
systems the size of the matrices increase as j increases. This is a major hurdle,
and non-sparse matrices are not appreciated. Some expediencies are used in certain

applications like computer graphics to make close approximations to orthogonality,



just to maintain the matrices as sparse.

Consequently many other families of wavelets have been constructed. However
almost none of them obey all the laws that were described for construction of wavelets.
Instead they make agreeable digressions to gain in area such as interactive speed of

implementation, or ease of computation.

The three commonly used methods {36] for generation of wavelet basis functions

are :

Daubachiea-4 wavelet

FIGURE 4. The Daubechiesy Wavelet Function for W°

_@QJ ..... \ P@E\
! \/ \g/mc bigrthogonal

FIGURE 5. The Spline;_s Wavelet and its Bi-orthogonal Pair Functions for W°



1. Iteration
Iteration of the recursive Equations II.7 and II.8 starting with ¢ as a box
function and some values of c¢x. The splines family can be generated this way.

Some common wavelets generated in this manner are :

No. | Wavelet initial values for ¢;
1 box 1,1
2 | hat 1/2,1,1/2
3 | quadratic 1/4, 3/4, 3/4, 1/4
4 cubic 1/8, 4/8, 6/8, 4/8, 1/8
5 daubechies-4 %, 3—;’%5, %, 1—4’%

2. Frequency definition
Synthesis can be done by starting from the Fourier definition of ¢, imposing

constraints on it, and then using orthogonality to get to .

3. Direct
This method will show up again in the usage of wavelets for surface compression
and will be discussed in detail there. Stated simply this method says, that if
the recursion is easily predictable, you can take the values at the known integer

locations and apply the recursion rule to get the values at i/27.

The plots in Figures 4 and Figure 5 are for some wavelets that have been
used in this thesis. The Daubechies wavelet [6] has seen considerable usage in the

signal/image processing community because it is easy to synthesize and also has the
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much coveted properties of compact local support and orthogonality. On the other
hand, the B-spline wavelets have had a lot of exposure within the computer graphics

community as it yields a smooth multiresolution analysis.
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CHAPTER III

2-D WAVELETS : IMAGES

Now that we have a handle on the mathematical foundation of the wavelet
transform, the stage is set to look at the first and obvious application for the graphics
community, namely, images. In this chapter we will examine the extension of the
transform to two dimensions and the various features and implications that make

this transform appealing.

Wavelets in 2-Dimensions

The extension of the wavelet transform to n-dimensions in the general case,
and to 2-dimensions in the specific case, is similar to the extensions for the Fourier
transform. Since the basis functions for the wavelet transform are orthogonal, the
rules of separability [20] enable the 2-dimensional data to be computed as a pair of
unitary! transforms.

For the remainder of the discussion, keep in mind that the basic idea is to take

the image and break it down by decomposing it n times to get a base image that is

1This means that data can be considered in each dimension as 1-dimensional data, and the results
can be simply added together.
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2" times smaller than the original, and use the remaining memory space for the level

of detail co-efficients at the n intermediate levels.

Standard Versus Non-Standard Decomposition

There are two popular methods used to separate the unitary transformations.
The first is to do the transformation for all the rows, then take the result and transform
all the columns. This is called the standard decomposition. The alternative method
used is to take the transform of the image along all the rows once, then to take the
image and transform along the columns once. This alternating pattern is continued

until the number of decompositions required is met.

Standard

To obtain the standard decomposition® of an image, the functions used as basis
functions are the tensor product of all the one-dimensional basis functions at that
level. Therefore the basis functions now become ¢(u) x ¢(v) (the scaling function),
#(u) x ¥(v) (a wavelet function), ¥(u) x ¢(v) (a wavelet function) and (u) x P(v)
(a wavelet function)

The advantage of this approach is that a single one-dimensional transform in
each direction is all that is needed. The biggest disadvantage that this suffers from

is that the resulting basis functions for this method tend to have non-local support.

>This discussion is included for closure on this topic, for a better discussion refer to [24] and {1]
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This makes them inefficient for use in applications needing real time performance as

inverting a non-sparse matrix in real time is highly compute intensive.

Non-standard

This is a preferred method for most applications of wavelet image transforma-

tion. The basic steps are :

1. Perform one step of horizontal pairwise smoothing, and differencing of the pixels

in each row.
2. Take the result and apply the same filters to a transpose of the image.?

3. Repeat steps 1 and 2 recursively on the quadrant containing the smoothing basis

in both directions, until the desired level of decomposition has been achieved.

The 2-dimensional basis functions can be constructed by first defining the 2-

dimensional functions :

¢¢(z,y) = d()¢(y) (scaling function),
oY(z,y) = ¢(z)P(y) (wavelet function),
Yé{(z,y) = ¥(z)é(y) (wavelet function) and

Pi(z,y) = Y(x)¥(y) (wavelet function).

The main advantages of this approach are:

3That is equivalent to performing the operations on the pixels in the vertical direction
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FIGURE 6. The Non-Standard Image Decomposition

. The basis functions all have square support, whereas in the standard method

only some have square support.

. The intermediate images are ready for presentation after normalization. This

makes this method ideal for progressive display.

. The transformation converges faster, as each recursive step works on a quarter

of the data, instead of half as in the case of the standard transform.

. Another interesting consequence is that all the quadrants (other than the one

that will be recursively decomposed) will for certain wavelets (e.g Daubechies,)
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act as directional edge detectors as shown* in Figure 9.

The main disadvantage of this approach is that the input image needs to be

transposed once for each level adding to cost overhead.

FIGURE 7. Two Levels of Decomposition of the Image on the Left, Using the Daub,
Wavelet.

Applications

The most useful applications are in the fields of compression, multiresolution

editing, and restoration.

4All the transformed images are shown with un-normalized co-efficients, and values clamped
between 0 and 255.
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FIGURE 8. Two Levels of Decomposition of the Image on the Left, Using the Daub,
Wavelet.

Wavelet Based Image Compression

One consequence of using fully orthogonal basis functions is that the contribu-
tion of a co-efficient to the overall image is easily computed as the normalized value
of the co-efficient under the L, norm for that wavelet space. This implies that the
error under the L, norm induced by leaving out a particular wavelet co-efficient is
easy to compute, and can be computed for minimal overhead, as it is simply the sum
of the normalized co-efficients.

The normalized wavelet co-efficients can be sorted and used in the reconstruction
based on the tolerance that is prescribed for the image.

The commonly used criterion for selecting wavelet co-efficients to add to the

base signal are:



FIGURE 9. Two Levels of Decomposition of the Image on the Left, using the Daub,
Wavelet.

1. L error: Sufficient co-efficients are added to keep the error within a certain

bound.

2. Thresholding: Only co-efficients that cross a certain threshold, indicating that

they have a certain minimum contribution to the picture, are added back in.

3. Bandwidth: Only sufficient co-efficients are added to fill up the space in bytes
that are available to represent a frame.
Wavelet Based Image Editing

Another consequence of orthonormal basis functions is that error introduced at

a coarser level, say dx, is carried up by the inverse transform for a fully orthogonal
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FIGURE 10. Oune Level of Decomposition of the Chess Board and Spheres Image,
Using the Daub; Wavelet and half the Number of Co-efficients.

transform. This results in a predictable spread in the error in the final image.

In a mathematical sense, editing is the same as introducing error into the original
signal thereby making this feature very appealing as changes can be made on coarse
or fine areas depending on the level of transformation of the edited image.

Combined with the spatial coherence property of the wavelet transform, wavelet
transformations thus make an invaluable image editing tool. The image can be taken
to a coarser level, and big blocks of image space can be colored to produce a subtle

shade or hue that would be impossible to draw directly on to the image.
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FIGURE 11. Two Levels of Decomposition of the Chess Board and Spheres Image,
Using the Daub; Wavelet and 1/4 the Number of Co-efficients.

The Power of Wavelets

To recap, the reasons for which wavelets have seen a great deal of interest and

usage in imaging applications are:

1. Time and frequency localization: Compression for any signal is achieved by
removing redundant data. This is accomplished by using correlation to compute

parts of the signal that are not needed to represent the signal completely.

For images these correlations are spatial correlation, spectral correlation and
temporal correlation. While frequency based techniques exploit the spectral

correlation, wavelets score over them because each co-efficient of the transform
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represents both the spatial and frequency contribution to the overall signal.

This makes it possible to exploit the spatial and temporal correlations also.

. O(n): There are algorithms for certain wavelet transforms that can be per-
formed in O(n) time, thus gaining in efliciency over the O(n log n) Fourier

algorithms. {30] [2]

. Flexibility: The wavelet co-efficients can be compared to each other under some
L, norm (which can be computed easily, due to the construction). They can

therefore be re-arranged, and added in an arbitrary order.
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CHAPTER IV

3-D WAVELETS : CURVES

Now that we have seen the design and application of wavelet based multireso-
lution analysis in 2-dimensions we shall take the next logical step of extending the
results to 3-dimensions. In this chapter we look at the implementation of a class of
smooth wavelets (namely the b-spline wavelets) that will be used for the multires-
olution analysis of curve data. We will then look at the actual application of the
analysis to b-spline curve data, and the use of multiresolution analysis for separa-
tion of character and sweep of a curve. Finally we will examine some results of our

implementation.

Choosing The Wavelet

The wavelet decomposition of curves and surfaces are computed just like images,
by applying the decomposition filters to each of the co-ordinate values separately. This
is permitted as the co-ordinates axes are by definition, orthogonal to each other.

Primary importance, however, has to be placed on the construction of the scaling
and wavelet functions, as they should be well adapted to the intervals that are being

decomposed. The b-spline stands out as an obvious construction for curves and tensor
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product surfaces as it inherently has the properties of local support and refinement
making it the function of choice for the wavelet functions as it is a good match for
the intervals, of the control points or control polygons.

For the remainder of this discussion, keep in mind that the construction of
wavelets typically begins with laying out the guidelines for the synthesis filter P and
(7, as those are the matrices relating the scaling or wavelet functions at the current
level 7, to the functions at level j + 1. The analysis filters are then computed from

the synthesis filters using the inverse relationship.

Candidate Wavelets

Let us first understand the properties that a wavelet analysis would have to

exhibit to make it a good candidate for approximations to b-spline curves.

Properties

The most important factors that need to be considered for the choice of a wavelet

function! are:

1. Vanishing moments: Recall from Chapter II, that the vanishing moments of the
wavelet function is a measure of the order of the function that it can represent

accurately. In the case of multiresolution analysis, we can say that if the analyz-

!Note that though all the statements are made for the wavelet functions, in reality they imply
constraints on the scaling functions. This notation is used as the scaling functions are related to the
wavelet functions under the orthogonality rules.
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ing wavelet has NV vanishing moments, then the polynomial curves (e.g. bezier,
the spline family, etc.) of degree up to N — 1 will be accurately represented by

the scaling functions.

o

Symmetry & Smoothness: As already noted, the symmetry and smoothness
of the wavelet function is of primary concern because geometric curves and
surfaces are inherently smooth. Another related factor is oscillations in the

scaling functions. Functions with small oscillations are preferred for obvious

reasorns.

3. Compact support: Since the region of support of the wavelet function decides
the size of the analysis filter matrices, the smaller the region of support the

sparser the resultant matrix and the easier the computations.

There is another implication of the last condition for real applications. A non-
sparse matrix is also harder to invert making it computationally hard to find the
corresponding analysis filters for globally supported wavelet functions (i.e. the non-
sparse matrices). The reason that most analysis/synthesis filters, constructed for
wavelets satisfying the conditions in Equation (II.11) to Equation (II.13) are non-
sparse, is because of Equation (I1.13), which states that the orthogonality condition is
global. Therefore there has to be an entry corresponding to each possible combination

of scaling and wavelet functions, for all possible levels resulting in a non-sparse matrix.
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The b-spline basis functions have vanishing moments equal to the order of the
b-spline functions used. The basis functions are, for the most part, symmetric? and
smooth. The local control [12] property of the b-spline basis means that the func-
tions have compact support, thus satisfying all the criterion listed above for a good
candidate function.

Geometric multiresolution analysis relies very heavily on being able to complete
computations in real time and thus cannot afford to implement a b-spline based
wavelet using all the constraints for a wavelet decomposition. Applications typically
use wavelets that relax part or all of these conditions. Two types of wavelet functions
that are very popular are the Semi-orthogonal and Bi-orthogonal wavelets based on

the b-spline basis functions.

Construction of Semi-orthogonal and Bi-orthogonal Wavelets

Semi-orthogonal Wavelets

Mathematically speaking, the case of semi-orthogonal wavelets, also known as

pre-wavelets, is one where the condition in Equation (I1.13) has been relaxed to

< [®9],{¥] >=0 (IV.18)

>The end interpolating b-spline basis has asymmetric basis functions at the end points as shown
in Figure 12
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namely the scaling and wavelet functions are orthogonal only at the level 7 and none
other. To be noted here is that the orthogonal wavelet is just a special case of the

semi-orthogonal one.

Using the filter bank concept and results for Equation (IV.18) we can write

G- = @I pI

P! = (I)J'QJ'

and we can rewrite Equation (IV.18) such that®

Pl [< W >]Q¢ = 0. (IV.19)

Now let

M = P < &0 >

then Equation IV.18 reduces to the homogeneous solution of

MIQi=0. (IV.20)

Since this does not yield a unique solution, additional constraints are imposed upon

the possible solutions to narrow the possible candidates. The most common criterion

Swhere [®] and [¥] represent the matrices that are comprised of the individual functions ¢ and
4] for all values of 1 and j.
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used are symmetry and local support.

The B-spline Wavelets

A specific example of the family of semi-orthogonal wavelets, namely the b-
spline wavelets, has been favored by the graphics community as it defines smooth basis
functions.? The wavelets used for multiresolution curve representation are defined on

the basis functions for the end-interpolating b-spline curves as shown in Figure 12

(11].
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FIGURE 12. The End Interpolating B-spline Basis Functions for V° to V2

The first step in the construction of the wavelets is to understand Equation (IV.20).
Let M7 represent the parameters that are chosen and @ represent the unknown pa-
rameters. M7 consists of the scaling functions and the part of the synthesis filter

that relates the scaling functions of one level to the scaling functions of the higher

4Chui et. al. [5] constructed a whole class of wavelets based on the b-spline basis functions.
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resolution level (i.e P?). For the b-spline case, we pick the scaling functions to be
the basis functions for uniform end interpolating b-splines®, and P to be the Cox-de

Boor knot insertion algorithm [9].

256 Control points 16 Control points
V%
% 1
“Z‘?
FIGURE 13. Sweep Extraction: The Curve on the Left is a 256 Point Analytic

Circle, with Random Perturbations Imposed on it. The Curve on the Right is the
Approximation Using 16 Points. The Basic Circular Sweep is Clearly Visible.

The choice of the b-spline basis conforms to the scaling function constraints in

that they span nested spaces. In this case the spaces
Vicvicvi..cVic...cve

are the representations of the curve between the end points. The only difference
between the spaces is the number of knots present.

For a given level V7 the knot sequence zg, Zy,-**,T9s 40, is defined as

(Zo, 21,y Tosgam) = 1/2(0,---,0,1,2,-++,29 —2,27 — 1,27 ... 21} (IV.2])

Sthe Bernstein polynomials



46

As the resolution increases, the number of knots present in the representation
is increased using the Cox-de Boor knot insertion algorithm.

The matrix @’ is then selected from the solutions to Equation (IV.20) by placing
additional constraints like local support.

For the multiresolution analysis to be complete, the corresponding analysis fil-
ters have to be computed. The matrices A’ and B? are inferred from Equation (IL.16).

An interesting feature of this construction is that the structure of the matrices
P7 and @7 are banded, and sparse, since the b-spline basis has local support. This
makes it possible to have very fast implementations for the synthesis phase of a
multiresolution analysis based on this basis. However the inverses are non-local and

have global support, making the analysis phase an undesirable O(m?) operation®.
Bi-orthogonal Wavelets

An important motivation for multiresolution analysis is the ability to step
through resolutions in interactive time. This necessitates the need for all the filter
matrices to be sparse. The obvious solution is to construct all four matrices (namely

Pi, @7, A’, B%) as sparse matrices, and not have to compute one pair as the inverse

of the other.

The bi-orthogonal property comes by relaxing

8 A workaround to this has been suggested by Quak and Weyrich [30] which performs the operation
in linear time, using the banded and symmetric nature of the synthesis matrices
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<[®,[¥]> = 0

as the orthogonality condition, and choosing duals that satisfy the orthogonality

condition. The constraints now become:

< [®],[¥]> = 0
<{®,[¥]> = 0

where ® and ¥’ are the respective duals and are defined as some functions that are

complementary under the space. Mathematically speaking that is

<[®],[®]> = [
<[O),[¥]> = I

As a consequence of the relaxation, the premise that the scaling functions for
the space V7 is the basis for the best approximation of the functions in space V/*! is
violated, but the computation of the filters is made much easier. Thus the co-efficients
of [®] and [¥'] are used as the synthesis filters P¥ and @’ and the co-efficients of [®’]

and [¥] are used as the analysis pair A’ and B’.
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Implementation Issues

The algorithm to implement the multiresolution b-spline curves is simple. In the
analysis or decomposition phase, the individual co-ordinates of the control points of
the original b-spline curve are decomposed by passing them through a b-spline basis
wavelet transformer’. The intermediate scaling function co-efficients then represent

the curve at the intermediate resolutions. Some points that must be considered are:

1. The minimum number of points that the curve can be decomposed to, must be

greater than the order of the underlying basis functions.

2

. Resolution steps of 27 can be both visually disturbing, and too gross an ap-
proximation for good multiresolution representation. Some methods have been
suggested to get a continuous level of detail [11) representation. The method
adopted was to ascertain the co-efficients for the curve at the two bounding step

points (say j and j+1) and then use linear interpolation based on an externally

controlled variable .

Thus the curve is fractionally defined and is continuously represented as

Ot = (1 — )i (t)e + p@i*1 (1)

TAll the illustrations shown here are constructed using order 3, bi-orthogonal b-spline wavelets.
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Curve Sweep Versus Character

Curves are often characterized in terms of sweep and character. Sweep is defined
as the underlying shape of the curve and character is the local variations in it.

This is well adapted to the wavelet paradigm. In a multiresolution decompo-
sition, the scaling functions would represent coarser and coarser approximations to
the curve and in the limit produce the gross shape of the curve. The co-efficients of
the wavelet functions, on the other hand, capture the local higher frequency detail
for each level j.

The fall out of this representation is tremendous for curve editing applications.
Any b-spline curve can be broken down to a level s=* with level of detail co-efficients
di=kH gi=k+2 | di, The low resolution coefficients s”=* can then be modified and the
detail co-efficients added back on to change the sweep, but retain the character of the

curve.

Examples

The picture in Figure 13 is the decomposition of the 256 control point cubic
b-spline curve, after 4 decompositions. The other picture, Figure 14 is the same curve
shown with the intermediate transformation levels and approximated with 128, 64,
32 and 16 b-spline control points respectively.

The original curve is a uniform circle that had its radius values perturbed with

a positive random value. The decomposition clearly extracts the basic circular shape,
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and the level of detail co-efficients would have stored the information about the per-

turbations.
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FIGURE 14. Sweep Extraction: The Innermost Curve is the same 256 Point Analytic
Circle, with Random Perturbations Imposed on it. The Surrounding Curves are the
Unnormalized Approximations, using 128, 64, 32 and 16 Points
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CHAPTER V

SUBDIVISION CONNECTIVITY AND REMESHING

Now that we have dispensed with images and curves we arrive at the final aspect
of multiresolution representation that we are going to consider in this thesis: appli-
cation of a wavelet based decomposition to arbitrary surfaces. Recall that wavelets
are constructed to have optimal approximations at lower levels of resolution. This
prescribes that the construction be adaptive to the spaces that are being represented
or the spaces be adapted to enable a wavelet decomposition.! An understanding of
Voronoi Diagram and Delauney Triangulation is implicitly assumed for the remainder
of the text.

The common unstructured polygonal surface representation is not well suited
to the wavelet representation. In this chapter we shall look at a pre-process designed
by Eck et. al. [7] that takes an unstructured polygonal representation, and converts
it to an intermediate form that is more conducive to wavelet decomposition.

The need for the pre-process step may not be immediately apparent but is

necessary for the algorithm that will be presented in Chapter VI to work. At this point

! As we shall see later, in the case of surface wavelets, both the spaces and wavelets have to be
modified.
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let us just say that this step takes spaces that may not be nested and reconstructs the

spaces over which the functions are defined so that they are guaranteed to be nested.

Surface Representations

Surfaces are generally represented as a distribution of vertices that are connected
as piece-wise linear polygonal sections. The global connectivity of these polygons
defines the topology of the surface. The local connectivity of these polygonal sections
are broadly categorized as either structured or unstructured.

A surface polygonization (hereto referred as meshing) is structured if each and
every polygon on the surface can be given an index that uniquely identifies the neigh-
boring polygons. An example of such a surface definition would be a piece-wise
bilinear surface patch constructed using vertices generated by a de Casteljau type

subdivision [33] of a bezier control polygon as shown in Figure 15.
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FIGURE 15. An Example of a Structured Surface Mesh

On the other hand, construction of an unstructured surface meshing would

begin by picking a subset of vertices and connecting them to form a polygon. This
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step would be repeated on all the remaining vertices on the surface, until all the
vertices have been exhausted. An example of this construction would be the Delauney

triangulation of vertices that are distributed along a surface? as shown in Figure 16.
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FIGURE 16. An Example of an Unstructured Surface Mesh. (Picture Courtesy
Aerospace Engg Dept, Indian Institute of Technology, Bombay, India)

Need for Order

Structured surface meshing lends itself well to a wavelet based representa-
tion. The vertices can all be considered to be the control polygon for a b-spline
interpolation® and the resultant surface classified as a tensor product surface. Then
the b-spline based wavelets discussed in Chapter IV can be used in each paramet-
ric direction to perform the wavelet decomposition much like the treatment used for
decomposition of images.

In the case of unstructured surfaces, however, the spaces are not nested (or

*Note here that the vertices are not generated with any ordering. In case they are generated in
an ordered way, the information is discarded.

3For a piece-wise bi-linear surface, this would be an order one b-spline curve.
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refinable) by definition. Even if they happen to be nested, there is the practical issue
that creating a wavelet decomposition* for an unordered mesh in real time is very

difficult because the locality or neighborhood is not clearly defined.

Meshing Basics

Let us review some meshing basics and notations that we need to understand
before we lock at the actual remeshing algorithm. For the remainder of this discussion
the notation M, will be used to denote a meshing. The meshing M is defined by a
2-tuple (K,V), where K is called a simplical complez or a base complex [34] [19]
and V is the set of all vertices on the surface. The simplical complex K in turn is
represented by the 3-tuple (vertices, edges, faces) of the polygon based representation
of the surface. Thus for a triangulation the O-simplices are the vertices in the meshing,
1-simplices are the edges and 2-simplices are the polygons.

At this point it is also important to realize the basic difference between topology
and geometry. The simplical complex K basically represents the topology (i.e the
connectivity information). Topology can be defined in arbitrary dimensions and has
no spatial information. Geometry on the other hand is defined in /R? and has fixed
positions in that space. For a simplical complex & made up of m vertices, let the
mapping p be a linear mapping that translates the vertices specified in & to geometric

vertices in [ R3. Thus p(|K|), where p : R™ -+ IR® is the geometric representation

4Recall that wavelet decomposition is an exercise in local approximation.
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of the topology and is called the image of i". If every vertex in A" has an unique pre-
image then p is called an embedding. Conversely, if p is an embedding, then all points
p € p(K), have an unique pre-image b. We can then say that b is the barycentric
co-ordinate of p. Thus the geometric realization of a surface in /R? space from the

meshing M is obtained as the image p(K).

Subdivision Connectivity

A meshing is considered to be subdivision connected when the meshing has been
generated by some uniform splitting rule from some base mesh. For a meshing M,
the subdivision connected version of M is denoted as M7, where j is the number of

recursive splits that have been applied to the edges in the original meshing.

M W'
FIGURE 17. One Level of Subdivision, the Splitting Used is a 4:1 Split on Each
Edge.
From Figure 17 which shows a subdivision connected version of the original
polygon (triangle) for j = 1, we can see that if K? was the simplical complex associ-

ated with M? then the simplical complex /¢! associated with M! is a nested version of
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K°. Thus we see that subdivision connectivity in a meshing satisfies the requirement
of nested spaces for a wavelet decomposition.

The contribution of the pre-process is to take a generic unstructured meshing
and create a subdivision connected meshing that approximates the original meshing

within an acceptable and specifiable error bound.

The Remeshing Algorithm

The underlying idea here is to take a mesh and generate internal points on that
meshing, such that the re-triangulation of the surface will have subdivision connectiv-
ity (i.e. perform recursive splits along the edges of the original meshing). Here then
is the main challenge that this algorithm overcomes [7]. Generating internal vertices
on a plane is easy but generating the internal.vertices on a surface in /R3, such that
the new vertices lie on the surface, is extremely hard.

This algorithm achieves that result with following distinct steps:

1. Partitioning: First it partitions the entire meshing into small regions. These
regions are selected to have the characteristic of small local variations within
them. The regions also help in construction of a base mesh that retains the

topology of the original meshing,.

[

Parameterization: The edges within the regions are then projected down to a

plane using a harmonic mapping. The inverse of the mapping defines a param-

eterization.
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3. Re-sampling and Reconstruction: This step does the actual j recursive splits on
all the edges in the planar projection of the regions of the original meshing. The
new edges and vertices are then re-projected back onto the surface, by using

the inverse from Step(II).

Basic Tools

Harmonic Mappin

Before we look at the actual method let us analyze an important tool that is
used several times: harmonic mapping. Let D be a section of the original meshing
M, let P be the convex planar projection of D and the mapping g : Boundary(D) —
Boundary(P) be the mapping for the boundaries. The mapping & : D — P is called
a harmonic mapping if i agrees with g on the boundary, and minimizes the stretching
of internal regions of D [7].

Intuitively, consider the region D of the meshing to be made of rubber sheets
corresponding to polygons, sewn together along the edges. The region is going to be
laid flat and the boundary stretched so that it agrees with the boundary of the planar
region P to form the mapping g. A harmonic mapping would then have mapped
the internal polygons and vertices within D to planar locations within the polygon
P. Since this sheet would be at rest, the mapping can be thought of as one that
minimized the total energy Eharmoniclh] of the configuration of rubber sheets.

The harmonic mapping also exhibits the properties of being (i) an embedding
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[31] (ii) independent of the meshing of D and (iii) differentiable everywhere. The fact
that it is an embedding shall prove useful later, as it implies that the inverse A~ is
the parameterization of D over P.

For the actual application, g is approximated by a piece-wise linear mapping
that maps the boundary vertices of D) onto an n-gon such that the planar vertices
lie on a circle, and the sides subtend angles proportional to the arc lengths of the
corresponding boundary edges in D. The next part is to compute the mapping k.
The solution for k, as noted above, is the solution to the minimization problem for

the energy of a system of springs. Therefore

Ehnrmonic[h] = 1/2 Z: kI,J“h(t) - h’(.?)”2 (V22)

i,jEedges(D)

where the spring constant is defined as

kij = (Lig + L3y — LY ;) Areaijp + (Ligg + L4y — LF;)/Area; jiz

Using the notation that ¢, j denotes an edge, L;; denotes the length of the edge
between ¢ and j in D, and Area; ;i denotes an approximation of area. k1 and k2

arise as each interior edge corresponds to two polygons.
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Partitioning

The reasons for the partitioning is two fold. It locates the regions of small local
variation and also defines the base complex K°. This base meshing serves as the
domain for the parameterization in Step(II).

The way the algorithm goes around computing the r regions that constitute
the partitions is as follows. The first step is to construct a discrete version of a
Voronoi diagram on the surface of the mesh M [38] [18] [26]. The diagrams are
constructed using a simultaneous version of the advancing front technique [13] where
a random, unselected polygon from the original meshing is selected to be the seed for
the “advancing fronts”. The partition 7; created with the polygon p; as the seed point
is grown by appending polygons that share two and only two adjacent vertices with a
polygon that is currently on the boundary of 7;. Stated mathematically, the partition
is grown by adding polygons as long as the result after the addition is homeomorphic
to a disk. If the homeomorphism condition is violated, then the partition growth is
terminated and a new partition is grown using an unselected polygon as the seed.

The order in which the polygons are considered for selection is obviously a factor
on the outcome. To aid quick computation, the straight line distance between the
centers of the polygon is considered to be a measure of the geodesic distance, and is
used to order the polygons as they are selected for consideration. The partitions 7;
created this way are the Voronoi tiles for the Voronoi diagram.

Recall that one aim for the partitioning step was to create the base mesh.
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Having computed the Voronoi diagram the logical next step is to use the polyhedral
dual to the Voronoi diagram (i.e Delauney triangulation), to create the base meshing.
The Delauney triangulation will be a dual to the Voronoi diagram, if the diagram by

construction:

¢ is made of partitions that are homeomorphic to disks.
¢ has no pairs of partitions that share more than one contiguous set of edges.

e has no more than three partitions meeting at a vertex.

If the partitions 7; are created using these constraints, the Delauney triangula-

tion on the surface of M is the polyhedral dual to the Voronoi tiling.

Triangulation

Before creating the triangulation, each tile 7; is projected on a planar polygon
P; using the harmonic mapping discussed earlier. Given the harmonic maps a naive
approach to creating the Delauney triangulation is simply connecting the centroids®
of all the P;’s after re-projection into /R using a shortest path algorithm. This can
run into severe problems with arbitrary manifold surfaces, as it does not guarantee a
triangulation that does not intersect itself. Also finding the shortest path in JR® is

extremely hard.

®If the surface has boundaries, then the entire outer domain is to be considered as a one big
partition.
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The solution is to use the harmonic mapping that was discussed earlier. I'or
each partition 7; construct the harmonic map h; that maps it to the planar region F;.
Since the harmonic map is an embedding, the inverse A~! can be used to parameterize
7 over P (i.e. be used to generate points on P; and find the inverse projection into
7;}. Now consider two adjacent partitions 7; and 7; with planar projections F; and
P; that share an edge. Let the shared edge be denoted as ¢;; when mapped using
the mapping h; and as e;; when mapped using the mapping h;. The line joining
the centroids of P; and P; is then drawn as two lines. The first joins the A]! of the
centroid of P; and the midpoint of ¢;; and the second joins the k' of the center of
e;i and the centroid of P;.

A special case that has to be considered are the partitions that lie on the
boundary. These partitions have only one line drawn through them, and that is the
one joining the center of the shared edge® to the centroid for the planar projection of
the boundary partition.

The straight lines joining the vertices generated using the above method is the
base mesh for the given meshing. The projections of these lines onto the surface of

the original meshing form the surface Delauney triangulation.

SThere is an implicit assumption that there exists a fictitious Voronoi partition outside of M,
such that it touches each of the boundaries of M
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Parameterization

The Delauney triangulation returns r contiguous regions Ty, Ty,....., T, where
each region is triangular [7]. The goal of this step is to construct a continuous pa-
rameterization p : K® = M (K is the simplical complex for the base mesh} of the
initial meshing over the base complex. Harmonic mapping is used again to generate
the mapping function h which maps each of those regions T, to a planar triangular
polygon. We can then take the polygon and use an affine mapping’ to map into the
corresponding face F; of the base triangulation K°. The final resultant mapping p
that is produced as a result of the combination of two mappings is an embedding,
and therefore the inverse p™! defines the parameterization of T; over F;. Also by con-

struction p agrees on the common boundaries for all 7. thus making p~! a globally

continuous parameterization.

Re-sampling and Reconstruction

Now that we have a parameterization of each region T; into planar regions F;
all we need to do is introduce additional vertices on each face F; in the base mesh and
use p~! to re-project them back onto M. If these points are generated by recursively
splitting each edge in the planar projection polygon P;, j times, then the resultant

meshing M’ after re-projection is called the j subdivision connected version of M.

?A mapping that is invariant under transformations.
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Parametrically uniform sampling: The simplest strategy is to perform
the splitting such that the new vertices (hereto referred to as knots) are introduced
at the midpoints of the existing edges. This is called paremetrically uniform sam-
pling or isoparametric sampling. Though this is easy to implement and has a fast
algorithmic implementation, geometric features may be distorted due to geometric

under-sampling.

Geometrically uniform sampling: To reduce the sampling artifacts, a for-
mulation for a geometrically uniform sampling was proposed by Eck et. al. at the
University of Washington. The idea is to be able to generate the triangles on the
planar surface, such that when they project back to triangles in I R® they are roughly
uniform in size. This is an optimization problem that is approximated by the following
recursive greedy algorithm.

In the parametrically uniform re-sampling process the knot :z:;T at level j is
computed as the midpoint of the two neighboring knots z;’:(ll.) and mf‘;;,-) at the level
j — 1. Note that €xinl izt defines an edge at level 7 — 1. For geometrically uniform
sampling instead of doing a uniform subdivision the edges are divided using the

parameter A! such that

! =(1- A{).m;’;I(li) + A;’mi;'(ﬂ) where A € (0,1). (V.23)

The problem then reduces to that of defining the splitting parameter X]. The
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ideal, though impractical, solution is to solve a local optimization problem for each
triangular region T; for all the A} contained in that region. Eck et. al. [7] However,

claim to have had reasonable results using a discrete approximation method that they

devised.

Conclusion

The resultant mesh after the three steps has j subdivision connectivity (i.e j
nested spaces). The stage is then set to design a wavelet that will be able to decompose

the final triangulation K7
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M with the Voronoi
partitions shown.
Note the centroids.

The corresponding And the Base Mesh
Delauney Surface
Triangulation.

FIGURE 18. The Voronoi Partitioning, and Delauney Triangulation Scheme to Ex-
tract the Base Meshing from an Arbitrary Meshing M. (Pictures Shown are Modified
from the thesis by Lounsbery).
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CHAPTER VI

SURFACE WAVELETS : ARBITRARY MESHES

Now that we have seen the remeshing scheme that creates a subdivision connec-
tivity let us understand why the remeshing was needed. In this chapter we look at
a unique vertex encoding scheme that efficiently stores the subdivision connectivity
information, and also comes in handy for wavelet decomposition. We then exam-
ine the design of a very simple surface wavelet that can be used on a subdivision
connected meshing. Lastly, we examine some enhancements that can be made for a

better multiresolution decomposition®.

Vertex Encoding. Traversing and Triangulating

As we have seen in the previous chapter, an arbitrary meshing has to be con-
verted into a subdivision connected meshing to introduce an ordering within the
vertices of the triangulation. This ordering is very important to wavelet decomposi-
tion as it guarantees the presence of nested spaces. Since the remeshing is done on an

unstructured arbitrary mesh, the ordering information has to be stored on each node

!The notations used for this chapter have been borrowed extensively from Michael Lounsbery’s
PhD thesis [23)].
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in such a way that the ordered triangulation can be reconstructed from just the vertex
information. In short, we need a vertex encoding scheme that enables recreation of

the triangulation and also efficient traversal of the resultant meshing.

Vertex Encoding

All the vertices need to be encoded using the following rules.

The Vertex Encoding Rules

1. All vertices are named using a 6-tuple. The elements of the 6-tuple for a tri-
angulated surface are V;, Vi, V., 1, 7, k where the values of V;, V} and V, are the
vertex indices for the vertices of the triangle on the base mesh that contains the
vertex being considered. The values of i, j, k are the the barycentric co-ordinates

of the vertex within the triangles that has 14, V, and V; as vertices.

o

The values of i + j + k = 2 where j = level of subdivision.

3. The 4,3,k fields are sorted in increasing order. If any of the indices ¢, 7,k are

zero then the corresponding vertex weight, V;, V4, and V,, is ignored.?

Figure 19 shows an example face, with the vertex encoding for one the vertices.

The example face also shows the vertices generated by two levels of subdivision.

n . . . .
“In practice, a zero is stored in its place.
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Va

{(Va,vb,¥c02.2)

Vb Ve

FIGURE 19. The 6-tuple Vertex Encoding for a Point in a M? Meshing (the Thick
Lines Denote the Base Mesh).

Traversal

Since this encoding scheme is used to construct the ordered triangulation of

these vertices, the following primitive functions are defined on it.
Traversal Functions

IsCorner(V ) := checks whether V is a corner vertex, i.e. a vertex from the
original base mesh. The check is to see if the first two entries of the sorted list of
1,7,k are zero .

IsEdge(V') := checks whether V is an edge vertex, i.e. a vertex on an edge in
the original base mesh. The check is to see if the first entry of the sorted list of 7, 7, &
1s zero .

IsNewVertez(V ) := checks whether V is a new vertex, i.e. a vertex that was

introduced at this level of subdivision® and did not exist at the coarser level. The

3The usage of the level of subdivision will be clear after the surface wavelet has been designed



check is to see if any of the ¢, j, k indices are odd.

IsOldVertez(V ) := Conversely, the check whether V is a vertex that existed in
the coarser version of the triangulation is to see if all the indices are even.

NV = Coarser(V) := returns NV which is the coarser version of V, i.e. if
V is a vertex in the triangulation at subdivision level j then NV is the vertex that
corresponds to V in the subdivision level j — 1. The rule to get to NV is to keep the
Ve, Vi, V; as it is, and shift the ¢, 7,k index values to the right by 1. Do note that
the vertex encoding at a coarser level exists only for vertices that existed in the finer
level. Thus only vertices that return TRUE for I50{dVertez(V) are considered.

NV = Finer(V) := returns NV which is the finer version of V, i.e. if V
is a vertex in the triangulation at subdivision level j, then NV is the vertex that
corresponds to V in the subdivision level 7 4+ 1. The Rule to get to NV is keep the
V., Vi, V. as it is, and shift the i, j, k index values to the left by 1.

NV1,NV2 = Parent(V) := returns the two vertices NV1 and NV2 which are
the parents of the vertex V, i.e. the vertex V that was formed by splitting the edge
NV1, NV2 that existed in the coarser level. Note that a vertex that has been created
due to a subdivision will contain exactly one index out of 1, j, k as even and the rest
will be odd. The vertex encoding of the parents are constructed by finding the even

index and then creating the encodings as

TempV1 =V,,Va,Vo,m,n+1,0—1 and

TempV2=V,, Vs, Vo,mn—1,0+1



where
m = the even index within i, 7, k
n = the next index after m
o = the index after n, where “after” is taken in a mod 3 sense.
Vin = the vertex index corresponding to m
V., = the vertex index corresponding to n
V, = the vertex index corresponding to o
and then finding
NV1 = Coarser(TempV'1) and

NV2 = Coarser(TempV'2)

The Child The Parent
Level j#) Level j
¥b Vb
VavbVelg N eVbVe02d) 1OVVeO)
2 Ve (7] Ve
{0VaVeb22) (0NaVehLE

FIGURE 20. An Example of an Edge at Level 7 and j + 1. Note the Parent-Child
Relationship and the Correlation with the Level of Subdivision

NV = Child(V1,V2) := where NV is the child vertex of V1 and V2, or NV
is the vertex introduced into the edge ey v, that existed in the coarser version of the
triangulation. The method to get to NV is to generate v1 and v2 as two finer level

versions of V1 and V2. Then the 6-tuple of v is rearranged so as to match the base
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mesh vertices of vl and v2. The i, j, k values are computed as the sum and average

of vl and v2.

vl = Finer(V1) and
v2 = Finer(V2)

thus we get
NV = (vl +v2)/2

after matching the (V,, V,, V.) values for vl and v2.

Figure 20 shows an example of the transition from parent vertices to child

vertices and vice versa for a section of a face on the base triangulation.

Triangulation

The first challenge is to recreate the subdivision connected triangulation given
the vertices encoded in the manner described and the above mentioned primitive
operations. As noted in Appendix B, a typical representation of the subdivision
connected meshing has a base mesh representation and then the vertices that lie on
the actual surface expressed as the z,y, and z co-ordinates along with the 6-tuple.
The triangulation algorithm simply takes each triangle face from the base mesh and

recursively fills in the subdivision triangles according to the following algorithm.?

function Triangulate {

4For efficiency reasons the actual co-ordinate information for the vertices should be stored in-
dependent of the 6-tuple name. This is especially useful when generating a vertex tuple using the
primitive functions, as the 6-tuple can then be used to lookup the spatial location information.



input Vertices V1,V2,V3 ; Depth d;

if (d == Level of Subdivision)

makeTriangle(V1,V2,V3);
else {
V4 = Child(V1,V3);
V5 = Child(V1,V2);
V6 = Child(v2,V3);

/* we are implicitly assuming that the subdivision
connected mesh has been generated using 4:1 recursive

splits */

Triangulate(V1,V5,V4,d+1);
Triangulate(V5,V2,V6,d+1);
Triangulate(V5,V6,V4,d+1);

Triangulate(V4,V6,V3,d+1);



Lazy Wavelets: A First Look at Surface Wavelets

For the development of the surface wavelets we shall adopt a slightly different
policy than before. We shall consider a specific case of surface decomposition and then
show that the decomposition is indeed a wavelet decomposition. The results will then

be expanded to a framework for a general purpose multiresolution representation.

The Polyhedral Example

FIGURE 21. The Polyhedral Base Mesh for the Example Surface. The Face with the
Vertices Numbered will Constitute OQur Example

Let us start by making the assumption that the example that we are considering
has a base mesh that is in the shape of a simple polyhedra as shown in Figure 21

and that the surface at level of decomposition j has been created by the subdivision



connectivity algorithm of Chapter V. Recall that a multiresolution analysis is com-
pletely defined if all the filters that take the decomposition from level j to 7 — 1 and

back from 7 — 1 to j are defined.

FIGURE 22. The Top Section of the Example Surface with Shading Turned On

Figure 22 and Figure 23 show the top section of the example surface that we are
interested in. Figure 24 shows the same section flattened out and with the vertices
numbered for a dereferenced lookup of the vertex location in Table 1, which has actual
vertex locations corresponding to vertex numbers. In a real application, the vertex
number would be replaced by the 6-tuple vertex encoding scheme that was described
earlier and a lookup function defined on the 6-tuple would be used to retrieve the

vertex locations.



FIGURE 23. The Wire Mesh Version of the Top Section of the Example Surface with
the Vertices Marked

The_Analvsis Ste

In Chapter V we saw that triangulation is defined as a simplical complex which
uses the vertex locations as the canonical basis vector in R™, where m is the number of
vertices in the simplical complex. Also the pre-process step of creating the subdivision
connected meshing from the arbitrary meshing also created the nested spaces for the
basis vectors. These nested spaces were generated as the R™ spaces were created by
subdivision of the base meshing. From Chapter II we know that the analysis step is

basically the construction of two filters, namely A’ and B/ for each level j. Here then

consider



A’ = O such that V7 = Vi+iQJ
where
V7 : is a matrix of vertices and represents the connectivity at level j
07 : is called the older vertex matrix, and contains the same the element
“1” where the corresponding vertex existed in V7, in the level j — 1 and

is zero everywhere else.

/* A simple implementation of the Analysis filter A (smoothing filter) */

For (all vertices in level j) {
if (IsDldVertex(theCurrentVertex)) {
encode theCurrentVertex appropriately

include theCurrentVertex in Vj

Therefore we see that the subdivision connectivity has defined the A’ filter
by comstruction. The filter B’ also can be derived from the construction of the

subdivision connectivity . Consider the filter to be defined as

Bi=[-N’ ]

where
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N7 : is the new vertex matrix and is the formulation used for the
subdivision

I : is the Identity matrix.

We can see that the two components of the B’ filter are responsible for com-
puting the difference between the actual location of the vertex (the reason for the /
component in the matrix) and the location of the vertex as would be computed by
the subdivision computation (the function of the N7 part of the matrix). A simple

implementation of the B filter would be

/* A simple implementation of the Analysis filter B (detail filter) */

/* note this part is common with the A filter */
For (all vertices in level j) {
if (Is0ldVertex(theCurrentVertex)) {
encode theCurrentVertex appropriately

include theCurrentVertex in VLISTj

T
For (all vertices in VLISTj) {

select(vl,v2) from VLIST]j



v3 = Child(vi,v2)

temp = Lookup(v3) /# the lookup function uses the
encoding to find the actual co-ordinates of the vertex */
Lookup(v3) = temp -( Lookup{vi) + Lookup(v2))/2

encode v3 appropriately

The Reconstruction Step

To complete the wavelet decomposition, we need to have the reconstruction
filters that correspond to the analysis filters that we have just constructed. We shall
now switch back to familiar matrix notation for the smoothing and detail filters
and compute the reconstruction filters as per Equation (I1.16). For simplicity let
us assume that the vertices are presented as a table with increasing index number,
ordered according to the level of subdivision they were introduced in (as shown in

the Table 1 }. Then the analysis filters that operate on the points can be broken into

two sections each.

Al = [ old vertices at level j | new vertices at level j ]
B? = old vertices at level j | new vertices at level j |

Re-writing the filter we get
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A=[I O] and B =[-N’T]
where
N7 : is the new vertex matrix and is the formulation used for the
subdivision
I : is the Identity matrix

O : is the Zero or Null matrix.

Using the inverse matrix rule, we get the values of P/ and Q’ to be defined as

: 1 :
P = and @ =
NI I
For the example surface, we see that one level of decomposition using the anal-
ysis filters result in the surface shown in Figure 26 and Figure 27. The part of the

simplical complex corresponding to the face that contained the bump is shown in

Figure 25 and the actual vertex information after one pass is shown in Table 2.

Disc Wavelets : The Sophisticated Surface Wavelet

Now that we have seen the surface decomposition and reconstruction algorithms
the next step is to verify that it satisfies all the constraints of the wavelet transform as
discussed in Chapter II. The lazy wavelet satisfies the requirement of nested spaces,
but violates the orthogonality property. The scaling functions (namely the simplical

complexes) are not orthogonal to the detail functions and results in a less than good
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FIGURE 24. The Top of the Polyhedra at Level j Flattened Out. The Bold Lines
are the Edges of the Base Mesh.

approximation for local surface characteristics at coarser levels. This is obvious from
the example surface, as the small localized mound at level j completely vanishes in
the representation at level 7 — 1.

The ideal solution to this problem is to construct wavelet functions that are
fully orthogonal to the scaling functions. In real time graphics applications this be-
comes an immediate problem, as the filters will have global support and the resultant
matrices will become dense. To enable the usage of sparse matrix inversion routines
[15] for generating the reconstruction filters, the orthogonality condition is relaxed to
bi-orthogonal filters. Recall from Chapter IV that the bi-orthogonal filters are con-

structed so that the scaling functions and the wavelet functions are mutually orthog-
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The Scaling function co-efficients C?

Vertex # | x y A

1 10.0 | 0.0 -10.0
2 0.0 | 10.0 0.0
3 10.0 | 0.0 10.0
4 5.0 | 5.0 5.0
5 5.0 | 5.0 5.0
6 10.0 ¢} 0.0 0.0
7 7.5 | 2.5 -7.5
8 7.0 | 3.0 -1.25
9 10.0 | 0.0 -5.0
10 7.0 | 3.0 1.25

it 11 7.5 | 2.5 7.5
12 0.0 { 0.0 5.0
13 70 | 7.0 0.0 |
14 25 |75 -2.5
15 25 175 2.5
16 5.0 | 5.0 -5.0
17 -3.3 | 3.3 6.6
18 5.0 | 5.0 5.0
19 3.3 | 3.3 6.6
20 7.5 | -2.5 7.5
21 6.6 | -3.3 3.3
22 6.6 | -3.3 -3.3
23 7.5 | -2.5 -7.5
24 10.0} 0.0 -10.0 !

TABLE 1. The Vertices of the Example Meshing

onal to the duals and not the functions themselves. Thus using the bi-orthogonality

constraint

< ¢, >=0

we can get a local mask that can be used as the matrix component N7 instead of a

simple averaging function.

One solution suggested by Lounsbery et. al. is to rewrite the wavelet functions
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FIGURE 25. The Central Face of the Base Meshing at Level 7 — 1

i = ¢ (2) = 3 Surfi 7 (=) (VI.24)
k

where the notation ¢, is used to denote the i-th scaling function co-efficient at that
level and ¢, denotes a subset & C m, of all the scaling function co-efficients defined at
that level, in the neighborhood of i. The values of Sur f,‘:',- forms a mask centered at

i {16] and the elements of the mask are obtained by solving the system of equations

<P >=0 (V1.25)

for all { such that the support of ¥ ™" overlaps with ¢/ ~*.
PP H l
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| Vertex# | x | y | z |
The Scaling function co-efficients C{ ™"
1 10.0 | 0.0 -10.0
2 0.0 | 10.0 0.0
3 10.0 | 0.0 10.0
4 50 | 5.0 -5.0
5 50 | 5.0 5.0
6 10.0 | 0.0 0.0
The Wavelet function co-efficients DI~
7 0.0 { 0.0 0.0
8 -0.5 | 0.5 1.25
9 00 | 0.0 0.0
10 -0.5 | 0.5 1.25 i
11 0.0 | 0.0 0.0
12 0.0 | 0.0 0.0
13 2.0 { 2.0 0.0
14 0.0 | 0.0 0.0
15 0.0 | 0.0 0.0
16 0.0 | 0.0 0.0 i

TABLE 2. The Vertices for the Face Under Consideration at Level j — 1

The disc like shape of the mask is used to characterize the filter that is being
used. Derose et. al. define the term k-disc to mean the mask that consists of all
the vertices that can be reached at a distance of &k edges from the vertex under
consideration. As the size of the disc grows, the region of support of the wavelet
functions grow and they become more orthogonal to the scaling functions, and the
approximation by the coarser scaling functions becomes better. The flip side is that
in implementation it means having to deal with denser matrix inversions which can
be extremely hard for large matrices.

In terms of an implementation, the change that would have to be made to the

lazy wavelet implementation would be to take the scaling function co-efficients at
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FIGURE 26. The Example Surface at Level j — 1

each stage and modify it to be

Sl =Sl +%, Surf;:.,-.Di',- in the Analysis Step

and

Si =8/ -5, Sur f,f.-’,o.D{.',- in the Reconstruction Step
where

Surfi; : is the k-disc centered at i

57 : are the co-efficients of ¢! and

Df;,l- : are the co-efficients of ¥} in the k-neighborhood of i.

The case of the lazy wavelets can be thought of as a special case of the k-disc

wavelets with £ =1 and Surf, = 1.



FIGURE 27. The Wire Mesh Version of the Surface at Level 7 — 1 with the Vertex
Locations Clearly Pointed Out

The framework for multiresolution surface representation thus provides a solu-
tion to the issue of being able to represent an arbitrary triangulated surface using
an application defined resolution for surface features. The shape of the surface can
be evolved from some basic, easy to render shape, to the required complexity. In
our example we have explicitly assumed that the base meshing was a polyhedra, and
that is the simplest representation for our surface. This result can be extended to
other basic shapes with similar results, as long as the triangulated, highest definition
surface is a subdivision connected version of the base mesh.

We also see now the purpose of the pre-processor described in Chapter V was

to create a subdivision connected meshing and at the same extract a base mesh that
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was topologically the same as the original surface.

Surface Compression and Applications

Geometric compression, as can be achieved by this technique, has many instant
applications. One of the most important applications has been in modeling for ra-
diosity based rendering engines. The ability to use the gross shape or the fine shape
from a singular representation is an enormous win for the form factor calculations.
Another conceivable application is a vision model based raytracer that uses surface
models at the required resolution to improve upon efficiency. A last and as yet emerg-
ing application, is the use of multiresolution modeling for internet based applications.
The modeling system can be hooked to the network performance, and performance
bottlenecks can be avoided by using a progressive display, where the resolution im-
proves as data arrives. Conversely for interactive applications, the resolution for the
entire scene can be hooked to the bandwidth available.

A problem that crops up with these applications, is the determination of a metric
that can used to decide the resolution level that is required. One solution suggested by
the authors of this thesis, is to use the simplest level first. Then we pick a triangle that
is roughly parallel to the screen and project it. Following that compute the centroid
of the projection, and measure the average length of the vectors from the centroid to
the three vertices. The desired resolution is the one that makes the average length to

be approximately one pixel long. Due to the subdivision connectivity property this



can be easily computed.
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

The greatest lure to the scientific and engineering community of using a mul-
tiresolution paradigm stems from the ability to step, from microscopic to macroscopic
resolutions, within the data being examined. There are two distinct aspects of graph-
ics that benefit most from multiresolution representation.

The first successful scenario, is for display of objects of large complexity which
do not need to be drawn in frame time. The object can be displayed in the coarsest
form possible, and can then be progressively refined. The main advantages of such
an approach is that the user gets constant visual feedback and also the refinement
can be allowed to proceed for just the length of time available for that frame. This
ensures optimal utilization of the data bandwidth available for the application.

The second way to gain from a multiresolution representation is to use some
metric to decide, before rendering complex scene definitions, the required complexity
for the objects comprising the scene. The objects comprising the scene can then be
constructed to the needed degree of resolution. The decision process used for selecting
the desired resolution is the key factor, and can be based on a variety of weighting

factors ranging from the sensitivity of the Human Visual System to a simple distance
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metric. This methodology would ensure an optimal utilization of the computing
resources that are available.

Another emerging area for the use of multiresolution representation is in the
areas of data visualization and simulation studies. The ability to have multiple reso-
lution representations that are local in the temporal domain and in the spatial domain,
allows for simulations that generate copious data to be trimmed, thus allowing a finer
grained study along the areas needing higher resolution, and a coarser representation
along the regions of lesser interest. Finkelstein et. al. [10] created an application
based on this idea, where they allowed real time motion of large vector flows, and
varied the complexity of the data being visualized depending upon the importance of
the region in the overall scheme.

Yet another application of separable wavelet transformation was suggested by
[22] who designed a novel technique to significantly speed up volume visualization
applications. The basic idea was to decompose the entire volume using a separable
3-dimensional wavelet transform, and then use the reconstruction as the model for
the intensity integral along a ray. Thus the problem of drawing the properly oriented
voxels was reduced to one of reconstruction of the wavelet decomposition.

As we have seen wavelets provide a fast and elegant way to solve most of the
computer graphics complexity problems, and can be easily implemented in hardware
too. However, there are some problems that need to be ironed out. The main fo-

cus of most wavelet based modeling research is directed towards creation of a more
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robust framework than the one we saw for creating multiresolution representations
for surfaces. If a general purpose framework existed, then the graphics community
should be seeing a tremendous increase in rendering performance, as scenes can then
be optimally rendered. In fact more complex modeling applications can then go one
step ahead and model the lighting scenario using a multiresolution paradigm akin to
the one suggested by Bolin and Meyer [3].

In conclusion, the multiresolution representation made possible with a wavelet
based decomposition is poised to make as big an impression on the scientific commu-

nity as the Fourier transform has done.



APPENDIX A

A SIMPLE WAVELET TRANSFORMER

A Simple wavelet transformer: This routine will take as input

1. The wavelet function co-efficients for fully orthogonal wavelet (e.g. Haar, Daubechies

etc) and

2. The input sequence

The generated output will contain a sequence of equal length composed of
the half length scaling function co-efficients and the half length wavelet function

co-efficients. The matrix is constructed as per Numerical Recipes in C [29].

#include <stdio.h>
#include <math.h>

#include <stdlib.h>
#include <malloc.h>

// this program is to implement the general format of the wavelet
// transform for the single dimension, using the general purpose
// wavelet transform matrix .

// the aim is to write a function that will read in a data file, and
// load up the values into the transform matrix, it will then read the
// input sequence and generate the transformed seguence.



// program written 1/22/1997
// Author Shrijeet Mukherjee
// MS thesis, university of oregon.

// Matrix multiplier, this is a generic routine now, but may need to
// be sped up for future use, as this is the most compute intensive

// job here ..

void MatMultiplier(double **KernelMatrix,
double DataBlock{], double ResultMatrix[], int size ) {

int row,col,var;

row = 1;

for( col = 1 ; col <= gize ; col++ ) {
ResultMatrix[cel] = 0.0;
for( var = 1 ; var <= size ; var++ )

ResultMatrix[col]l = DataBlock[var] * KernelMatrix[var] [col]

+ ResultMatrix[cel];
}
}

// The Main Program ..
main() {

int NumCoeffs, MatSize;

double **DWTMatrix, *IDWTMatrix, *Coeffs,
*DataBlock, *0utBlock, *ResultMatrix;

int k,l,StartCol,TmpInt;

float TmpFloat;

// get number of Co-efficients ..
scanf ("}d",&NumCoeffs);
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if ((Coeffs = (double *) calloc(NumCoeffs, (sizeof(double)))) == NULL) {

printf("\n\a Memory allocation for the Coefficients failed
exit(0);
}

// load them into the array ..

..\n");



for(k=0;k<NumCoeffs;k++) {
if ((scanf("%f",&TmpFloat)) == EOF) {
printf("\n\a Mismatch in number of Coefficients, Operation failed
exit(0);
}
Coeffs[k] = (double) TmpFloat;
}
// get number of elements in the block ..
scanf ("/d" ,&MatSize) ;

// fail if block size is not a power of 2 (for the time being I have
// it set as a multiple of 2 .. will have to change it later .

if ((MatSize ¥ 2) !'=0) {
printf("\n\a Error in input, the input data block size has to
be a power of 2 ..\n");
exit(0);
}
else {
// allocate pointers for each row ..
if ((DWTMatrix = (double *#*) malloc
((size_t)({MatSize) * sizeof(double *))))== NULL) {
printf("\n\a Memory allocation for the Coefficients failed ..\n");
exit(0);
}
// £ill up pointer to row O ..(and also the whole space, as memory
// is actually linearly allocated ..
if ((DWTMatrix[0] = (double *) malloc
((size_t)(MatSize*MatSize*sizeof (double))))==NULL) {
printf("\n\a Memory allocation for the Coefficients failed ..\n");
exit(0);
}
// £ill up pointers to the rest as offset .
for (k=1;k<=MatSize:k++)
DWTMatrix[k] = DWTMatrix[k-1] + MatSize;

// and now set the matrix to zero ..
for (k=0;k<MatSiza;lk++)
for (1=0;1<MatSize;l++)
DWTMatrix(k][1] = 0.0;
}

// now we have the co~efficients, let’'s make the DHWT matrix ..
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printi("\n ... please wait building the DWT matrix ..\n");

// note that every even row starts at even offset from the left edge..
// this is used to calculate the offset column for each row..
StartCol = -2;

for(k=0;k<MatSize;k++) {

// the matrix needs to have the alements setup so that odd rows
// have the co-effs just laid out ..
if ((h2) t= 1) {

// set the offset for the next two rows ..
StartCol = StartCol + 2;

for(1=0;1<NumCosffs;l++) {
DWTMatrix[k] [(StartCol + 1) % MatSize ] = Coeffs[l1]:
}
}
// and the even rows have it laid out in reverse, with alternate
// elements negated.
aelse {
TmpInt = -1 ;
for(1=0;1<NumCoeifs;l++) {
DWTMatrix[k] [(StartCol + 1) % MatSize ] =
Coeffs[NumCoeffs ~ 1 - 1] * -1 * TmpInt;
TmpInt = TmpInt * -1;
}
}
}

// allocate space for the input block of data .

if ((DataBlock = (double *) calloc(MatSize, (sizeof(double)))) == NULL) {
printf("\n\a Memory allocation for the Coefficients failed ..\n");
exit(0);

}

// load them into the array ..
for(k=0;k<MatSize;k++) {
it ((scanf("/%f",&TmpFloat)) == EOF) {
printf("\n\a Mismatch in number of Data Elements, Operation failed ..\n");
exit(0);
}
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DataBlock[k] = (double) TmpFloat;
}

// allocate space for the temp output block of data ..
if ((ResultMatrix = (double #*) calloc
(MatSize, (sizeof(double)))) == NULL) {
printf("\n\a Memory allocation for the Temp Space failed ..\n");
exit(0);
}

// allocate space for the output block of data ..

if ((OutBlock = (double *) calloc(MatSize, (sizeof(double)))) == NULL) {
printf("\n\a Memory allocation for the output Block failed ..\n"):
exit(0);

}

MatMultiplier (DWTMatrix, DataBlock, ResultMatrix, MatSize);

// svap the LPF, and HPF parts , as the output has them alternating ..
// note: I am reusing StartCol, but it is not a Column here ..

StartCol = MatSize/2; // this is the index into the OutBlock, where
// the HPF sequence will begin

for (k=0;k<StartCol;k++) {
OutBlock[k] = ResultMatrix[2*k];
OutBlock[k+StartCol] = ResultMatrix[2%k + 1];
}

for (k=0;k<MatSize;k++) {
printf("\n %7.2f",0utBlock[k]);
}



APPENDIX B

A SAMPLE SUBDIVISION CONNECTED MESHING

The data file will have the following components:- (the lines with the

‘‘#’? the actual data, the other lines are explanation)

* The base mash
* The subdivision depth (integer)
* The dimension of the mesh data (integer) [ex: height over sphere = 1]
* The relative weight of each field in the mesh data, used when
creating a weight of a wavelet coefficient. Weights of 0
may be used, but only at the end if the weight sequence. The
effect is that the corresponding data are copied to the
output exactly as they were read in, and their value

contributes nothing to the weight of the corresponding wavelet.

For example: the following is header input for a base octahedron
mesh subdivided 9 times, and carrying 3 pieces of data (e.g, height,

latitude, longitude on a sphere). Only the first datum has a
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non-zero waight, of 1.0.

Vertex 1 000
Vertex 2 000
Vertex 3 000
Vertex 4 000
Vertex 5 000
Vertex 6 000
Face 1 12 3
Face 2 13 4
Face 3 145
Face 4 1 5 2
Face 5 3 2 6
Face 6 43 6
Face 7 54 6
Face 8 25 6
endbase

9

100

* The subdivision input: a series of lines in the format:
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vivivkijkx{yz...}

where
vi,vj,vk are integers giving the vertex index of the face
i,j,k give the multi-index of the point within a subdivided face

x{yz...} are floats giving the data at the point

NB: if any of i,j.k are 0, the corresponding vertex index

vi,vj,vk is ignored and can be any integer

For example:
258116 0.40.67

sets point 1,1,6 of face 2,5,8 to have info 0.4, 0.67

258026 0.30.7

sets point 0,2,6 of face x,5,8 (on an edge) to have info 0.3, 0.7

If a point is repeated (such as an edge point shared by 2 faces),
the last value is the one that will be stored. It is not necessary
to repeat these points, even though they may appear to have

different indices.
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