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Software engineers considering the selection of an object-oriented methodology
for a new software project have available several mature options but no sophisticated
discourse on the process of selecting between them. This work studies the application of
two popular methodologies to a sample project and draws conclusions about the metrics
by which the methods can be judged. The Fusion method is practical and narrowly-
defined, seeking to reduce risk by rationalizing a strict process from start to finish. The
Booch method is more sophisticated and generalized, trading complexity for coverage.
Comparison of the application of each method illustrates that three primary metrics are
the decomposition of software engineering tasks along time and personnel, the efficiency
of the language of method notation, documentation, and other artifacts, and the probable

expense of educating the project’s human resources in proper execution of the methods.
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CHAPTER 1
PROJECT GOALS AND OVERVIEW

The purpose of the present work is to evaluate the issues facing a software
engineering team interested in deploying an object-oriented methodology for a software
development project. Two leading methodologies are evaluated and applied to a small
sample software project, noting the subjective experience of both methodologies.

The project case used to study these methodologies is a real system developed at
the University of Oregon, called the Object Deschutes Mobile Robot System (ODMR).
Like most real-world systems, it does not exist in a vacuum; it has a history that precedes
its existence as software, and this history figures in some of the design choices made
during development of the system. This history then is worth brief coverage here.

The Deschutes Mobile Robot is a 12 inch diameter by three foot tall cylindrical
wireless mobile robot with microcontroller-driven rotation and translation servos, and
with Polaroid sonar transducers and bump panels for limited sensory input. It was
purchased for undergraduate research and handed over to a class of software engineering
students tasked with development of a control program for autonomous operation.

The basic robot hardware is non-programmable, but is equipped with a pair of
wireless modems for communication with a host computer running the control program.
As a result, any general-purpose computer can be used as the computing environment for
the control program, and the host can be changed at will. This means that computational
power is essentially unlimited and infinitely flexible.

The first system produced by the undergraduates over the course of several terms
of study was eventually dubbed the X Deschutes Mobile Robot System (XDMR); it was
so named because it was a graphical client of the X Window System, designed to be run

under the SunOS operating system. Also developed was a software-only robot simulator



which allowed development and testing without the inconvenience of using a physical
robot for each test run.

The XDMR system eventually failed for several reasons. The project had no lead
architect, and while the participants had agreed upon a concept of operation, no design
documentation was ever produced, so different developers’ perspectives diverged.
Eventually, despite its simple goals, the implementation, which due to the lack of design
documentation was the sole reference material for the project, became riddled in
complexity, redundant functionality, and undocumented and misunderstood module
interfaces. The system was too entangled in its failings for an undergraduate to digest
within a 10-week term, and undergraduate development stalled.

As an independent academic project in software maintenance, | documented and
evaluated the XDMR system in its final form. I concluded (uncontroversially) that the
project had lost its focus and that while individual algorithms and concepts were
valuable, the project would be best served by restarting development from scratch. I
subsequently undertook that effort in the ODMR project, the case study for the present
work.

The design goals for ODMR were to utilize powerful but simple abstraction
mechanisms to provide a practical software framework for research and development
using the available Deschutes Mobile Robot hardware, while limiting the size of the
system so that it is approachable by inexperienced programmers.

For the purposes of this thesis, I summarize in the following sections the steps
taken when analyzing and designing the ODMR system under both the Fusion and Booch
methodologies. For clarity and brevity, some details are omitted. In particular, only a
representative subset of the generated artifacts {charts, diagrams, and models) is
presented, as a full set of project documentation would be prohibitively large. Also,
implementation issues are largely ignored, as they are intended to follow in a
straightforward manner from analysis and design; the purpose of the methodologies,
after all, is to capture difficulit decision-making junctions into documented analysis and

design steps. Experience with ODMR in particular found this to be the case.



That said, it is clear that with only one architect, it was fundamentally impossible
to either simultaneously or sequentially perform two unrelated passes through the
software processes studied here. In reality, the project was first seen through a complete
cycle to first release with the Booch method. Following this, a cycle of the Fusion
process was performed, reevaluating the analysis, design, and implementation decisions
made previously but from the perspective of the Fusion method. There are obvious
questions which can be raised as to the effects of such an arrangement on the conclusions
which might be eventually drawn. However, it does allow one to make a more direct
comparison of the mechanisms employed in the respective methods, because the same
questions are asked each time. I decided that this direct comparison would be the most
valuable contribution this project could make, and is the intended product of this thesis.

The following studies assume a basic familiarity with the methods in use, offering
only a discussion of the relative value of the processes. For those not familiar with the
methods, the appendix summarizes Booch and Fusion methods. The next chapter
describes an application of the Fusion method to ODMR, and is followed by a similar
chapter showing application of the Booch method. The intent is to identify the aspects of

the methods which we will later compare.



CHAPTER II

THE FUSION METHOD

The primary strength of the Fusion system is its precisely and unambiguously
defined procedure, briefly illustrated here on the ODMR problem. Its intent is to firmly
guide the developer from concept to product, minimizing confusion which can side-track
a development team. Like most systems, Fusion begins with analysis of the project’s

requirements.

Requirements

ODMR is a software system for control of robot hardware. The robot contains
one non-programmable microcontroller for motion and one for sonar sensors placed
around its circular enclosure. These controllers communicate via a pair of radio modems
to a host computer, which runs the control software.

ODMR is intended to be a flexible control framework into which behaviors can
be programmed. The method for building behaviors is to add them into a module which
is to be called the Behavior module. This module should have assistance from several
other modules in order to carry out the tasks desired of the robot system. Behavior
programmers will see the system much like a library against which their individual
Behavior code is linked. ODMR thus has some of the characteristics of an application
framework, but will be viewed as an extensible application, because most application-
level tasks, such as scheduling and control flow, will be handled inside the portion of the

system which will not be modified by Behavior programmers.



Analysis

Fusion analysis begins with creation of an object model for the problem domain.
This model contains not only those elements expected to be implemented in the delivered
executable, but should include all objects, whether they will eventually be represented in
software or not. The inclusion of external agents in this stage of analysis frames the
problem; a single diagram can describe in the same language both the system and the
agents it will interact with.

Communication between robot and host is carried out via messages encoded and
transmitted over the radios. These messages need to be interpreted and converted into
symbolic system events by an Interpreter module of ODMR. A Knowledge database will
store information about the physical environment and the robot device collected from
these events. A Controller module will manage the scheduling and communication
multiplexing issues. A Behavior module is the locus of planning and reactive logic.

We can represent logical events in the system as a hierarchy of classes, each
concrete class representing a concrete defined event type that can be generated by the
robot or the system. Reactions will trigger when specified events are generated.
Reaction subtypes can be defined for various conditions as needed by the Behavior or
Knowledge modules. The object model diagram below in Figure 1 elaborates on these
objects and their relationships. This diagram is the first graphical product of the Fusion
process. Not a one-time product, it should be a living artifact of the design process which
is updated to reflect changing ideas about the landscape of the problem space. Were it
decided later, for example, that the Controller and Interpreter modules represent
redundant or conflicting centers of control, then the object model diagram would be
modified to reflect the chaI;ge.

The next important artifact created by the Fusion process is the system interface
model, which illustrates how the system interacts with its users and other systems.
Development of this model formalizes the boundaries of the system, and defines the

operations which cross these boundaries, effectively framing the problem.



The system interface model is developed using scenarios of system operation. A

notation is provided by Fusion for scenario diagrams. A simple example is given below.

Here, we propose a hypothetical behavior, “go home”, which maneuvers the robot from

its current location in the test room to its *home’ location. For simplicity at this stage of

analysis, we assume that there is nothing in the way. This might be a quick way to move

the robot back to its battery recharger. The scenaric is very simple, and is illustrated in

Figure 2.
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Figure 1: Fusion Object Model Diagram.
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Figure 2: Fusion “Go Home” Behavior Scenario.



There are a very limited number of agents which will interact with the ODMR
system, as will be the case with many other kinds of system. Consequently, the system
interaction scenarios for the ODMR system are exceedingly simple and all very similar,
and we will not explore them further here. Although it is not always necessary, the
scenarios can be summarized in a system interaction diagram as shown below in Figure
3. This broad overview of the system and its surroundings helps to concisely convey the
place the system holds in its environment; such broad, redundant diagrams are essential

for efficiently bringing new members into an existing project.

T
System Operations
Evenls {stotus_messoge} {stort_behavior, stop_behavior,
monual_coniral}
.
|_ODMR System
Events {b12_messoge} Events {b12_commond}
o .
DMR Robat

Figure 3: Fusion System Interaction Model for ODMR.

After exploring scenarios, analysis moves on to the interface model. At this stage,
architects develop lifecycle graphs for the system. A lifecycle graph is a set of regular
expressions defining the ‘language’ of system operation. All system operations should be
expressed in a lifecycle graph, as they will later be used to develop the next set of
artifacts.

Lifecycle graphs offer an early place to express the behavior of the system. One
complaint which has often been made by newcomers to object-oriented methodologies is
that the analysis stages seem very ‘static’, describing a taxonomy of classes and objects,
but only implicitly describing their behavior by labeling relationships among objects.
Using Fusion’s lifecycle graphs, behaviors can be formalized without interfering with the

object model, because lifecycie graphs intentionally omit assignment of responsibility to



individual objects. In this sense, they bring some of the intuitive benefits of structured
programming to bear on object-oriented projects.

Lifecycle graphs are intended to read as a grammar for the system’s operation, so
many linguistic conventions apply. Terminal symbols are written in lowercase, while
nonterminals are in uppercase. Figure 4 shows a portion of the lifecycle graph for

ODMR, illustrating the event generation and reaction triggering mechanism.

lifecycle ODMR: Initialization . Operation*

Initialization = start_behavior(“initialize™)

Operation= ProcessRobotMessage
| ProcessUserMessage

| ProccessTimer

ProcessRobotMessage =
process_robot_message .

(#invalid_robot_message | GenerateEvent)

GenerateEvent =

create_event . trigger_reaction*

Figure 4: Fusion Lifecycle Graph.

After creating the ir;terface and lifecycle models, we apply the notions of
boundaries and operations across them to refine the object model diagram into a what is
called a system object model diagram. The notational difference between the object
model diagram and the system object model diagram is slight: merely the addition of a

dotted line denoting the boundary between the system and its environment, and more



comprehensive coverage of the cardinalities of the relationships described within.
Anything outside the boundary line is an agent, and all lines crossing the boundary are
either event or operation relationships between an agent and a component of the system.
During generation of the system object model is also a good time to double-check the
semantic soundness of the model, and fill in any important missing details as object and
relationship attributes and cardinality relationships. A system object model for ODMR is

illustrated below in Figure 5.
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Figure 5: Fusion System Object Model.

An operation model is a set of schemata for each system operation. Each schema
is the formal contract for that operation, and defines the semantics for that part of the
system’s interface with its environment. Schemata can be used to determine if the
designer’s views of the system agree with the original system requirements, because
while sufficiently formal to serve as reference documentation, they are also easy enough
to read and digest that they can be compared directly to earlier work.

Figure 6 shows two schemata from the ODMR system. These are for top-level

operations visible to the user, manual_control, which is invoked by an external user



interface to allow manual remote control of the robot by the user (to put it in a specific

starting location, for instance), and start_behavior, which the user specifies to start a

predefined behavior.
Operation:  manual_control
Description: Exert manual control of robot motion by the user
Reads: supplied direction, supplied servo
Changes: nothing
Sends: Robot: {b12_command}
Assumes: No behaviors are active
Result: If servo is rotate then
If direction is left then
Send {bI12_command( “rotate left” )}
Else if direction is right then
Send {b12_command( “rotate right” )}
Else
Send {b12_command( “‘rotate stop” )}
Else
if direction is forward then
Send {b/2_command( “move forward” )}
Else if direction is backward then
Send {b12_command( “‘move backward” )}
Else
Send {b12_command( “move stop” )}
Operation:  start_behavior
Description: Start a specified behavior (push it on the top of the
active behavior stack)
Reads: supplied behavior
Changes: nothing
Sends: nothing
Assumes: nothing
Result: behavior is started, suspending active control by
- the current behavior

Figure 6: Fusion Schemata for manual_control and start_behavior.

The Fusion developers define a procedure for schema creation. The first step is

generally to define the Result clause. This clause specifies the semantics of the
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operation; it is generally the aspect of the operation foremost in the designers’ minds
during this process, so it is natural to specify it first. The Result clause is simply an
English or pseudo-code description of the actions taken by the operation. It is specified
at the level of abstraction most appropriate for communicating the purpose of the
operation to a reader, but all possible events, messages, and operations that may be
generated are mentioned (with the exception of those exceptional or error-handling
conditions which are more properly seen as implementation issues).

Once these Resulis are specified, the events that the operation generates should be
summarized in the Sends clause. This clause serves as a quick reference, which can be
consulted when investigating the possible outcomes of a scenario by tracing through the
operation schemata.

Having specified the Sends clause, the designer should create an Assumes clause
listing all assumptions that must be valid for the operation to make sense. These items
are in more traditional terms the preconditions for the operation; in order to fulfill their
responsibilities of the contract, the clients of the operation must ensure that these
assumptions are valid before calling upon the operation. For the example operation of
manual_conirol, we have specified that the user should only use manual manipulation of
the robot if it is not currently under control of an active behavior. Manipulating the robot
while a program is driving it will almost certainly confuse the software, so it is expressly
disallowed. As a matter of proper user-interface design, of course, management of this
precondition will be the responsibility of the user interface, rather than the end user
directly. Explicitly listing the assumptions of the operation in this design artifact
commits to paper an essential aspect of the operation.

Finally, the Reads and Changes clauses should contain the values that are,
respectively, read and modified by the operation. These summaries are used to identify
data dependencies and coupling issues between classes and operations.

After the completion of schemata for all the system operations, the analysis phase
is complete. Designers should pause here to review the consistency and completeness of

their analysis products. Check completeness by ensuring that all aspects of the system’s
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operation are described by appropriate scenarios, a schema describes each system
operation, and that the system object model completely describes the static composition
of the system. Furthermore, a complete data dictionary should be kept throughout the
analysis phase and rechecked at this point for agreement with the graphic models.

In summary, during the analysis phase of Fusion, designers are involved in a
structured study of the problem domain, identifying natural abstractions which can be
used to describe the problem, and defining the role of the project system in the domain.
Thus analysis, though not as passive as the name implies, is a process of discovery,
guided by the experience of the architect. Design, on the other hand, is a process of

active invention.

Design

In the Fusion design phase, developers describe a system which will exhibit the
properties and behaviors described during the analysis phase. This will involve creating
and documenting new abstractions which will cooperate to become the software
expression of the system object model. This distinction between analysis and design is
useful to make; while a set of requirements will probably only result in a small number of
largely similar analysis models, each these models could yield a wide variety of designed
systems depending on the designers. The result of design is a specific solution to the
problem explored during analysis.

This said, however, Fusion developers realize that software engineering is an
organic process that should not always respect strict divisions and dichotomies.
Sometimes aspects of design creep into analysis, and portions of analysis are discovered
only after some design. This is natural, and shouldn’t be feared: the important
contribution of Fusion’s division is to remind the designer to separate the questions of
what the system does from how it works. If part of an answer to the first question

suggests an answer to the second, there is no advantage to artificially suppress it.
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Object interaction graphs (Figure 7) are the first artifact of the Fusion design
phase. These are graphical depictions of the objects interior to the system and their
specific roles during collaboration. For each system operation, an object interaction

graph is generated, showing all objects involved in the performance of the desired task.

(1} (1.7)
start_behavior{behavior:String) behavior

oo R
stort behuvior{hehuvinr:StringL L L T

Description:
The controller passes the request to the behavior object (1), which invokes the behavior fundtion
{1.1) associoted with the named behavior. The implicit call stack interrupts any currently-adive behavior.

Figure 7: Fusion Object Interaction Graph for start_behavior,

The Object interaction graph for start_behavior shows how simple its function is;
the controller passes the command to the behavior object, which looks up the behavior
name in a table and invokes the proper behavior function. It also implies the system
mechanism of using the source language’s call stack as a mechanism for stacking active
behaviors. These graphs have the disadvantage, from this perspective, that they cannot
effectively depict exceptions for source languages that provide them; the diagram
notation was not designed with exceptions in mind. In the case of ODMR, this omission
is significant, because there are two common ways the start_behavior function can
terminate: normal function return, if the behavior completes its task, or via source-
language exception, if there is some non-recoverable problem which prevents normal
termination. ODMR uses language-level exceptions to express abstract behavior-level
conditions such as collisim{, fulfillment of abortion conditions, and so on. Fusion cannot
satisfactorily express these uses directly; the Object Interaction Diagrams illustrates only
normal execution, not error handling, even though high-level error handling may be an

important part of a system’s design.
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In order to express important error-recovery procedures using exception-handling
mechanisms in an Object interaction graph, the Fusion method developer might express
exceptions either as method invocations or events, parailel to and in the reverse direction
to the original call. By extending the graph notation as shown in Figure 8, these
additional relationships can be expressed at the cost of some complexity and reduced
readability of the graph. Such extensions are not part of the Fusion specification, but

adhere to its spirit.

(1) (.1}

stort_behaviar(behavior:String) behavior
¥
stort_behavior{behavior-String L L behovior
1.2)
- exceplion
Dascription:

The controller passes the request to the behavior object (1), which invokes the behavior fundion
(1.1) associated with the nomed behavior. The implicit call stack interrupts any currently-octive behavior,
In the eveni of abnormol lermination, the behavior function may throw an exception {1.2] to the caller of
start_behavior.

Figure 8: Fusion Object Interaction Diagram for start_behavior with exceptions.

Because object interaction graphs are central to documenting the responsibilities
and relationships of objects, and describing the dynamic behavior of the system, we will
look at another example here, handle_robot_message. This operation is invoked in
response to a b/2_message event from the B12 robot hardware. The object interaction

diagram for handle_robot_message is shown in Figure 9.
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n .
handle_robot_message{m:String),_ L notity_robol{m:String) Inrpreter
(1.11:1) - (1.2) (1.1
p exceplion ';::c"?:: (121 react treale
: 2
< Irigger new Event
(122
teatt L
Dascriptions

The controller colleds the robot message and notifies the interpreter (1). The interpreter colleds
the input, and when it finds o complete message it porses its contents.

Depending on the type of message, the inlerpreler creates a new event objed with the
uppropriote information about the event {1.1), then instructs the event obiect to trigger reactions {1.2).

For ench reaction registered fo the event type, the reaction is triggered (1.2.1). This reodion
objed may perform virtually any tosk, induding throwing on exception (1.2.1.1) which will travel back to
the active behavior,

After triggering all reodions to the event type, the evant's base type is instruded lo trigger iis
own readions {1.2.2), allowing polymorphic event readtion using recursion over the event type's bose dass.

Figure 9: Fusion Object Interaction Graph for handle_robot_message.

This is a more complex operation, resulting in a more complex object interaction
graph. There are several aspects of this diagram which are not self-explanatory. Item
1.2.1 is a method invoked on all members of a collection, in this case all reaction objects
collected in a registration list. The dotted outline of the target object marks itas a
collection. If the collection were to be filtered, the criteria would be indicated on the
diagram inside square brackets near the arrow label. If reactions could be individually
activated and deactivated without removal from the registration list, for example, the
trigger method might be annotated with “[active = true]” to indicate that the method is
applied only to reaction objects whose active attribute is true. The exception event
shown as item 1.2.1.1 is another example of a common exception being illustrated as an
event as described before. Because this extension to the standard notation may be
unfamiliar, it is noted explicitly in the description that accompanies the diagram.

Since the object interaction graphs describe both responsibility and relationship
information at a relatively fine level of detail, work on object interaction graphs

represents a large portion of the Fusion process documentation and effort. The diagram is
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somewhat more complex than other portions of the notation, because it resolves more
complex details in a compact format, and is a large part of the overall system
documentation. Prospective or new Fusion developers should spend time familiarizing
themselves with the object interaction graph’s uses.

After the object interaction graphs are complete, developers can generate from
them visibility graphs for each class. Visibility graphs summarize the collaboration
relationships from the perspective of each object, and are useful when writing class
interface specifications (such as C++ class declarations). Construction of these graphs is
straightforward, and follows almost mechanically from the object interaction graphs.
Visibility graphs for the Controller, Interpreter, and Event classes are shown in Figure
10.

. context

adion _ ol
il < * Interprater
Controller = new Evenl
Controller constant — e — N
—p-  interpreler
confext .
> Event readion_list:
> Reaction

Figure 10: Fusion Visibility Graphs for Controller, Interpreter, and Event classes.

Once again, consistency checking must be done to ensure that all the graphs and
diagrams agree with one another. The visibility graphs must identify all object
relationships indicated by the object interaction graphs, and all references noted as
exclusive in the visibility graphs should be instantiated by exactly one class in the object
interaction diagrams. Inconsistent sets of artifacts at this point are serious potential
design deficiencies, because not all aspects of the systern’s operation have been

adequately examined.
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class Controller
method request( action: Action )
method handle_robot_message( message: String )
method handle_user_message( message: String )
method start_behavior{ behavior: String )
endclass

class Interpreter
method notify_robot( m: String )
method notify_user( m: String )
method notify_open( c: Context )
method notify_close( c: Context )
endclass

Figure 11: Fusion Class Descriptions for Controller, Interpreter, and Event.

Class descriptions are a language-independent documentation tool for the Fusion
method. They fulfill a purpose similar to C++ class declaration, and have a similar look
as well. They are designed, however, to be read by human designers, and to convey all
attribute information relevant to design, rather than that relevant to compilation.

The ODMR event class hierarchy is rather large, because there are a significant
number of event and action types necessary to capture the events generated by the robot
hardware and the actions it accepts. A portion of the class derivation tree is displayed in

Figure 12.



18

Event
: FAN
! Senm;Event : MovemeniErvor Adion
. Event '
) !
Z;l | - I -
BumpEvent TronsloteError +~* RolateError BoseAdion StatusAction
Event | Event
|
LTrunsluleActinn Rotateldion ShuidownAdion

Figure 12: Fusion Inheritance Graph for Event Hierarchy.

There remain no further design steps. Before moving on to implementation, the
designers should once again pause to evaluate the design decisions by reviewing all of the
design procedures and artifacts. Having examined the whole system, they can now draw
on a broader perspective from which to judge the abstractions so far created. After this
review, the remaining phase of Fusion method is implementation of the system. These
pauses specified in the Fusion method help gain closure for the developers at more
regular intervals than whole revision cycles. Since Fusion is less cyclic than many other
methods, such instances of closure are valuable opportunities for goal-setting and

recognition of outstanding and overdue issues.

Implementation

The fusion method is designed to offer specific instructions and a reasonable

guarantee of progress by proscribing detailed procedures and notations for all software
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engineering activities from problem analysis through impilementation. At implementation
time, adherence to this regimen pays off, as codification of well-documented design
decisions is a nearly mechanical process.

The class descriptions developed late in the design process translate easily into
C++ class declarations. Attributes become member variables and methods become
member functions. Attribute parameters {constancy, binding exclusivity, etc.) translate
easily into C++ declaration modifiers for member variables. Methods are also
straightforward; virtual specifiers are added to methods that might be overridden in
descendant classes, and type signatures are given directly in the class descriptions.

Many of the necessary method implementations can be achieved by translating
object interaction graphs directly into code. Some operations that appear simple in the
graphs will be more complex, as some abstractions which are easy to depict graphically
are nontrivial to code, or require extensive error-handling or boundary condition
checking. For instance, the notify_robot method of the Interpreter class appears
relatively straightforward in Figure 9, but in practice takes some care to implement
properly due to the limited capabilities of the available robot hardware; it must perform
text processing on potentially incomplete messages, and be prepared to interrupt and
restart parsing of partial messages. In addition, the number of different event types is
significant, leading to a fan-out of private methods performing the task of interpreting
message arguments and creating properly initialized event objects. Finally, a context is
maintained between interpreter and controller to ensure that the robot controller
hardware, which cannot effectively accept more than one command at a time, is not
confused.

Fusion has relatively little to say about the period between initial code generation
and software release. Althéugh guidelines for testing and code review are offered, the
method focuses on the architect’s and designer’s task of converting system requirements
into software, and views the surrounding tasks as management issues which are best

handled when considered separately from core analysis, design, and implementation.
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The Software Development Process

Both the Fusion and Booch methods draw a distinction between the micro-
development process, as described above, and the “macro-process,” or management
structure of the project. The overall development macro-process of Fusion is largely
similar to a traditional “waterfall” model of software engineering. As such, it seems
designed more to encourage an atmosphere of discipline than to offer much real benefit
over other management methods, quite in contrast to the intent of the micro-development

portion described above. Figure 13 gives a graphical outline of the procedure.
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Figure 13: Fusion Software Development Process.

Defining the product entails achieving consensus on the goals of the project, and
developing a set of requirements. This task will be highly dependent upon the domain
and the development team and organization, as in any software project, but the result
must be an understanding of what the project should accomplish. In some situations, it
might be the result of a market analysis, while in others it is a clear need to solve a
problem. In all cases, it clearly states the reason for the softiware’s existence. A system
architecture is a broad overview of the strategy for creating the software. Major

sequential system components are determined, each of which will be developed
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separately, and the data flow between these components is identified. At this point, the
paradigm of the system (batch, real-time, graphical, etc.) is identified and specified.
Planning the project properly results in an understanding of its feasibility,
measured by its scale and possible risks. It is largely dependent upon the raw experience
of the architects and developers to compare the project to existing systems and recognize
applicable similarities. Developing the architectural components is the application of the
core Fusion process as outlined above, and results in the production of an executable
system. Finally, delivering the product moves it into the mature state of continuous

testing and maintenance.



CHAPTER 1II
THE BOOCH METHOD

While the designers of Fusion aimed to provide a systematic method with strict
guidelines and well-defined procedures, the method of object-oriented analysis and
design created by Grady Booch forms a more abstract approach to software engineering.
The Booch method divides the process into two parallel levels, as with Fusion, but in
Booch the macro-process is described as that followed by the project team as an
organization, while the micro-process is followed by each team member independently.
As the project progresses, the goals of project as a whole follow the macro process
timeline, while each member independently follows the micro process in an iterative
manner. This arrangement, reasons Booch, more closely agrees with the reality of
software development. Creativity and productivity, which are the most valuable human
resources during analysis and design, come when a developer is personally and
individually involved with the work; a process which forces all members into the same
single-minded track, while attractive to management due to its strong feedback, does not
scale well.

The Booch method, then, is a non-linear progression from requirements to
product. This documentation of its application to ODMR is largely concerned with the
macro-process as the software engineering tool employed by the development team.
Discussion of the macro-process, however, is incomplete without first addressing the
micro-process which forms the daily routine of a project team member. Below is an
abbreviated summary of the most important aspects of this process as it affects the larger

process described subsequently.
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The Micro Process

During the progression of a Booch project from concept to product, an individual
developer follows a cycle of discovery, invention, and implementation that Booch calis
the micro-process of software development. The process starts with an identification of
class and object abstractions capturing parts of the problem domain. For ODMR project
this meant, for example, describing events and actions as classes in an inheritance
hierarchy which could be traversed at run-time to trigger a reaction mechanism.
Recognition of such abstractions and their consequences is the goal of this first stage of
the micro process. Scenarios, class responsibility and collaborator (CRC) cards, and
simplified class and object diagrams are the most useful tools.

Having identified an abstraction or a group of cooperating abstractions, the next
task is to determine the semantics of the abstractions and their contribution to the system
using more detailed and formal techniques, such as primary and secondary scenarios,
detailed class diagrams, state machines, and prototype executable programs for proof of
concept. Integral to this task is the investigation of the relationships between
abstractions. Before a class may be accepted as a valid abstraction, its relationship with
respect to each other class in the system must be understood. Classes with overlapping or
conflicting responsibilities result in a confused architecture: proper analysis of class
relationships avoids this.

The main system architecture of ODMR was originally created using this Booch
methed of class and abstraction analysis; the top-level classes were implemented in
skeleton form, and synthetic test events were generated to test the interaction of behavior
functions and the recursive nature of the program activation stack with the controller and
interpreter objects playing .referee. Experience with a vastly-simplified prototype
yielding proof of concept allowed the use of this abstraction as a fundamental building
block for the entire system.

The final step for any abstraction, of course, is implementation. As each system

abstraction is formalized, its prototype can be evolved into an implementation. The
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advantage to incremental implementation is clear: substantive results can be used to
meter the health of the project, and project-threatening problems can be identified much
earlier than in a method where implementation is delayed for as long as possible, as is
potentially the case with the Fusion method. While the Booch method encourages early
implementation of well-understood abstractions, it still warns that even classes whose
implementations are complete are subject to review, modification, or possibly elimination
as later analysis and design redefines their roles. It is for this reason that the micro
process is iterative on a small, rapid scale; it allows structured development with the
ability to revise without altering the schedule of the entire project.

The broader view of the Booch method, the macro process, is discussed below.

Analysis

Analysis in the Booch system has a similar character and goal as its counterpart in
Fusion, but with a substantially different notation and vocabulary. The starting point for
Booch analysis is the requirements as presented above in Fusion. The ODMR
requirements are the same, so they will not be reiterated. A useful diagram in the Booch
notation similar to Fusion’s system interaction diagram is the perhaps slightly misnamed
process diagram, which depicts as graphical blocks the system-level entities involved in a
problem domain. If desired, specific icons representing the different hardware platforms
that make up the system can replace the blocks, but shaded icons tend to represent
programmable components, such as embedded CPUs or as in the case of ODMR,
application servers, while light icons represent non-programmable elements controlled by
the active systems. Figure 14 is a process diagram for ODMR, showing the hardware
that makes up the DMR system. Being a control program application, ODMR can take
advantage of such a diagram; many applications will not interact with outside hardware
in any substantial form, so the process diagram will be less useful.

A substantive difference between this diagram and the system interaction diagram

is that the Booch method does not consider interaction with humans in these diagrams,
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but only other electronic devices. User-interface, it is reasoned, is not well-mannered
enough to formally define in the same terms as the operations and events of other

software systems and hardware devices.

. Radio Radio
ODMR Host [ ‘ ) . DMR

Figure 14: Booch Process Diagram.

Since the micro process is more explicitly decoupled from the macro process in
Booch, any of the diagrams in the notation may naturally appear at any point in
development. This is useful for communication between team members, because it
allows system to be documented as the creative ideas of its developers become available.
However, in any software project, it is always possible to become lost in the details; the
less stringent scheduling of the Booch method as compared to Fusion means that Booch
developers must exercise more self-discipline to avoid becoming lost in a sea of random
diagrams. This is avoided by always keeping the current state of the macro process in
mind during individual execution of the micro process.

As such, it is common in Booch for inheritance diagrams to appear very early in
the process, as the early ODMR event abstraction diagram shows in Figure 15.
Inheritance is a very powerful abstraction mechanism; aggressive and effective
application requires inheritance to be part of the system concept from its inception.
Figure 15 is a class diagram in the Booch notation showing how inheritance is a basic
concept in the ODMR event mechanism. The notation is considerably more complex
than Fusion’s object model diagram, both in symbology and visual style, but there are

good reasons for both differences.
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A Booch class diagram expresses several related kinds of information about
classes at once. As just mentioned, it shows inheritance relationships, using directed
arrows from derived class to base. Other adornments shown here include “A” triangles
marking abstract base classes, and filled circles attached to open squares, representing
containment by reference of objects in the class on the square end of the link. These
relationships are also labeled with their description (*“registration™) and roles (“trigger”

and “finished reaction™).
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Figure 15: Booch Class Diagram for Event Hierarchy.
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Two techniques that are actively promoted by Booch for discovering main system
abstractions are scenarios and class responsibility and collaborator (CRC) cards. Booch
method scenarios and notation are quite similar to those of Fusion, and serve the same
purposes, but while Fusion scenarios are intended to express interaction between system
agents (such as users) and the system, Booch scenarios are used to describe interaction
between any number of abstraction entities internal to the system.

Interaction diagrams graphicaily illustrate scenarios in the Booch method; a
scenario for a Move behavior, including intervening events, is illustrated in

Figure 16. Again, the Booch version of the interaction diagram is somewhat more
complex, expressing at one time more information about the scenario’s details than the
Fusion equivalent. In particular, the Booch notation places boxes along the timelines for
each object showing the duration of the method’s activation, and encourages English
descriptions along the left edge to clarify the meaning of clusters of method invocations.
These additional elements however, are quite useful for furthering a reader’s
understanding of the scenario, and overall are a valuable extension to the notation.

CRC cards have been around far longer than the Booch method; they are a very
low-tech means of collecting and reviewing the details about class abstractions and how
they may interact in the system. A CRC card in its simplest form is just a 3- by 5- inch
note card divided into three sections. Across the top is the class name and attributes
(such as base class, abstract or virtual nature, and other fundamental characteristics);
down the left are the responsibilities of the class; and across on the right are the

collaborating classes which work together with the class to fulfill its responsibilities.
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Figure 16: Booch Interaction Diagram for Move Behavior.

The cards are somewhat an anachronism in a method such as Booch which in
many deployments relies on computer-aided drawing and CASE tools for effective use of
much of its notation, but their use is strategically important. CRC cards are a
brainstorming and visualization technique; the ability to lay out cards on a table,
rearranging or replacing cards by simply taking from and replacing to a deck, is an
unobtrusive mechanism which would be difficult to reproduce in a computer. The
designer can grab several cards at once and hold them up next to each other to see if the
class collaborations agree with one another, or quickly arrange inheritance hierarchies
visually. If desired, it can even be a social process involving several team members and a

potentially large number of cards.
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Design

Transition from analysis to design in the Booch method is gradual, with no border
point in between. It is marked by a shift in focus from identification of abstractions to
formalization of the relationships and collaborations between them necessary to turn the
model into software. In particular, the fundamental product of design is a careful
specification of the architectural framework in which the classes and objects will operate.
Unlike in Fusion where each step of the method employs different artifacts, the notation
for this stage is no different than analysis; it is the character of the goals and the purpose
for the diagram elements that have changed. Accordingly, the architectural framework
developed during Booch design of the ODMR system is illustrated by another class
diagram as in Figure 17.

The class diagram for the architectural framework shows the top-level objects and
the collaborative relationships between them. It also shows the nature of the endpoints of
the relationships: circles represent the ‘source’ or controlling side of a relationship, filled
meaning ownership of an object, while squares show the kind of aggregation, either filled
for by-value or open for by-reference. The dotted line attaching the Action class to the
request relationship of Behavior to Controller in Figure 17 specifies that the Action is the
requested item. Any relationship adornments that are left out of a class diagram simply
mean that the particular details are unspecified, such as the unspecified number or role of

the Reaction objects which are “updated” by the Knowledge class.
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Figure 17: Booch Class Diagram for ODMR Architectural Framework.

The particular visual style of the Booch class diagram notation has been a source

of controversy by many users and reviewers of the method. Booch himself, while

collaborating with other scientists to create a successor (the “Unified Method”) to the

current method, has apparently given in to pressure to revise the notation, eliminating the
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class and object ‘cloud’ shapes in favor of rectilinear shapes which are ostensibly easier
to draw and manage. However, there were and are valid reasons for choosing a
distinctive, non-rectangular, and uncommon symbol for the classes. First, as originally
reasoned by Booch, the irregular shape is possibly mnemonic for the clustering of
attributes and methods that form the very conceptual basis for object-oriented
methodology. In addition, the rounded amorphous icon makes the important class and
object symbols quickly recognizable to the eye and quite distinct from connecting lines
and grouping rectangles which proliferate in more complex and involved applications of
the notation. This allows a complex diagram, which would otherwise quickly become a
painfully garbled tangle of parallel lines and 90 degree angles, to remain amenable to
scanning and tracing by a reader’s eye.

One remaining artifact of the Booch method not yet described is the object
diagram. Like a cross between the class diagram and a scenario, the object diagram
depicts a dynamic slice of the system during a specific operation, with focus on the
ontology of objects and their relationships rather than on the order of the action as was
illustrated in the interaction diagrams above. Figure 18 is an object diagram for the first
part of the scenario given in Figure 16.
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Figure 18: Booch Object Diagram for Move Event Scenario.

Evolution

In the Booch method, an evolutionary refinement stage follows design. After the
basic abstractions have been designed and agreed upon by the project members, the
project consciously shifts into a state of cyclic refinement. Although the basic system
logic works with some early-implemented functionality already intact as a resuit of the
design stage, major features are added and performance is analyzed and optimized to
reach the goals set forth in the requirements documents. This state is called Evolution in
the Booch method, and if differs from design primarily in two ways.

First, system abstractions and the classes created to express them are extended
and revised, but rarely are the underlying principles significantly modified. In ODMR,
for instance, Action classes were originally not a subclass of Event, but rather a separate
class hierarchy. It was found desirable, however, to allow reactions to be registered to

Actions as well as Events, so that behaviors could be written to modify other behaviors.
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Consequently, the Event class was inserted as a base of Action, and Action was modified
to allow reactions either before or after the robot action is performed.

This was modification was performed as a refinement of one working ODMR
revision to yield another working program, illustrating the second major difference
between design and evolution. The Booch method encourages experimentation via
executable prototypes and even early implementation during the design step, but the
focus is on architectural development. During evolution, the project places more value
on releasable executables as it nears delivery date. The most effective way to manage
evolution, then, is to base development on a pattern of incremental extensions to a source

base, each aimed at getting the system closer to the goal.

Maintenance

A final difference between Fusion and Booch is the termination point; the
published Booch method extends its reach past delivery into the maintenance stage of the
software’s lifecycle. Since most software spends the vast majority of its useful life in this
state, and most researchers seem to agree that software maintenance is the most time-
consuming portion of a software engineer’s job, a more comprehensive outlock on the
software process is a valuable attribute of the method.

In addition to simply extending the tasks begun in the evolution stage, project
members in the maintenance state keep a prioritized list of problem items that should be
remedied. In many projects, an entirely new team may carry out the maintenance stage,
while the development team moves on to begin another project, although in others the
development team, which has a maternal familiarity with the software, can be used to

rapidly and efficiently implement any desired changes.
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CHAPTER IV
EVALUATING THE METHODS

With the case study of the methods in deployment complete, we turn to drawing
conclusions and extracting some principles for comparing object-oriented methodologies.
To do so in a meaningful way means understanding what makes software engineering
difficult, and what a method should offer to mitigate these difficulties.

The primary enemy of the software developer is complexity. In its purest form, a
developer’s task is to take as input a problem description and produce from it a program
executable on a computer that solves the problem. Although computer programs are
often comfortingly compared to cooking recipes, the complexity of a solution to a useful
problem is much more realistically compared to a recipe for the chemistry of the human
digestive system than that for chicken noodle soup.

Complexity in the software development process comes from many sources. The
project’s problem domain itself is usually the first and most direct source of complexity
for team. Reality, it is believed, contains infinite complexity, and any software system
tasked with interacting with its environment is tasked with categorizing and generalizing
significant partitions of reality in order to act rationally. Even programs which interface
only with users bear the unpredictability of human behavior. Furthermore, computer
systems themselves, being discrete systems, can exhibit behavior that is notoriously
difficult for people to characterize. While the human mind typically thinks in terms of
continuous, linear, or differentiable processes, digital computers discretely sample their
environment, so small changes in input can result in arbitrarily large changes in output.
Finally, as implementation languages grow in power, they inevitably also grow in size

and scope, and hence fundamental complexity.



35

Virtually all aspects of the software engineering task potentially contribute vast
complexity. In order to perform any useful work at all, the developer must adopt a well-
designed and well-defined process which divides and categorizes the issues into smaller,
more manageable pieces in such a way that they may later be reassembled into a
complete solution, and which can be performed using the human resources available to
the project. We examine here each of these needs as criteria for evaluation of the Fusion

and Booch methods.

Decomposition of Tasks

The primary feature of an object-oriented method is its process of task
decomposition. The overall task of software development is divided at least into
analysis, design, and implementation, and usually others depending on the method.

These tasks are further subdivided in various ways, until the individual segments are
separately approachable.

As shown, the Fusion method was designed to focus primarily on this facet of the
process. By providing an unambiguous roadmap with tools for guaranteeing forward
momentum, the designers sought to minimize the risk and uncertainty seemingly inherent
in software analysis and design. They have certainly been successful in this respect; the
method is straightforward and relatively easy to leam, with a specific sequence of steps
from requirements to delivery.

We can be critical, however, that so rigid a structure may be unrealistic. Software
is a very flexible medium, and specific problem domains and software architectures are
sometimes better served by different development cultures. For instance, safety-critical
software, by its nature, demands nearly religious attention to correctness, but may still be
well served by object-oriented implementation by virtue of its reputed ability to simplify
the resulting software system, reducing the opportunities for errors. Fusion, however,
does not address the issue of provable correctness, nor is it clear where the proper

techniques should be inserted into the method.
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Fusion also downplays the use of aggressively object-oriented concepts such as
inheritance and polymorphism, which may result in simpler object-based or component-
based architectures, where classes are used primarily for their encapsulation and
modularity features, rather than for object typing, dynamic binding, and stronger
abstraction. Although over-zealous application of such aggressive linguistic tools has
been a criticism of much object-oriented work, disregard for them is equally dangerous.

The scope of Fusion, kept limited so that the method might be easier to adopt,
may likewise be a liability. Since the high-level management process discussed briefly
by the method’s designers is relatively unsophisticated, it seems likely that Fusion’s
success in real-world projects will depend on its insertion into an already effectively
managed organization; young organizations still developing their management strategies
may find Fusion inadequate guidance in that respect.

With respect to this criterion, the Booch method is nearly opposite to Fusion in
principle. Rather than narrow the focus to disambiguate the process, Booch attempted to
provide a flexible method with two parallel processes for the individual and the project as
an organization. Furthermore, the Booch macro-process offers a much broader scope,
from conceptualization and requirements formulation through delivery and later product
maintenance. The procedures offered by Booch form a comprehensive set of resources
for an organization using the Booch method.

Inside this method of broader scope, the Booch method also delivers more
attention on discovering inheritance, polymorphism, aggregation methods, attribution
relationships, class genericism, and other advanced or highly descriptive design and
implementation mechanisms offered in modern object-oriented languages. Booch chose
not to present a language-independent view of software development, instead discussing
constructs specific to C++ and Ada. For the majority of mainstream developers, this is a
direct benefit, reducing the semantic gap between analysis and design artifacts, and the
implementation tasks that follow. However, with recent rising interest in more special-
purpose languages such as Java which offer a slightly different set of mechanisms and

abstractions, this slant towards the status quo in languages may become a limitation in the
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future. For example, analysis using aggressive Booch methods may suggest an
architecture which makes extensive use of multiple-inheritance and template genericism,
while the chosen implementation language may be Java, which supports neither.
Although architects under either method can avoid such problems by understanding the
limitations of the intended implementation environment and language from the start,
neither method addresses this issue.

The ODMR system was first developed under the Booch method, by a single
architect with a small number of additional developers assisting with specific
subproblems. Itself a small project, it is not sufficiently large to illustrate any of the
issues of scale which will be of interest to most potential users of either Fusion or Booch
methods. Reanalyzed under the Fusion method and the design process revisited, few
changes to the basic design were made, although it did become apparent that many of the
artifacts generated by the Fusion process seemed to oversimplify the relationships

compared to their Booch representations.

Notation and Integration of Artifacts

After the method guides the developer through the analysis of the problem
domain and again after the design of individual abstractions to model the solution, it must
then provide resolution and integration of these products into a system which can be
understood by all team members, implemented and finally delivered. The efficiency of a
method during this reintegration process is highly dependent on the notation which
expresses its analysis and design artifacts.

Notation is an important part of any engineering methodology. The notation a
methodology creates is its language, and since the purpose of software engineering is the
organization and communication of ideas about software abstractions, the notation’s
linguistic properties will largely determine its effectiveness. Both Fusion and the Booch

method include their own notations. Since these methods use somewhat different sets of



38

artifacts, the notations are difficult to compare on a direct, side-by-side basis. However,
we can still establish some objective rules of measure.

One of the most important diagrams in an object-oriented methodology, and the
one most directly associated with the system’s central abstractions, is the object model.
Fusion utilizes an object model directly as one of its artifacts, and expands the model
with object interaction graphs, while the Booch method builds one out of class diagrams
and object diagrams. The purpose of this artifact is to express the basic relationships
between the system’s abstractions.

An object model diagram, like any expressive artifact, is subject to the influences
of style; even for the same project, it can fill any of several roles depending on the style
in which it is drawn. In both methods, the object model diagram is most affected by the
level and distribution of detail used when creating the object model. Minute detail can be
specified when specific implementation choices are critical to the effectiveness or
performance of a system component, or omitted when it would obfuscate the relationship
lattice and make a complex collaboration more difficult to understand.

From these desired properties of object model diagrams, we can derive some rules
of evaluation. First, since our task is to manage complexity, the notation should be easy
to read but expressive. These attributes may seem mutually inconsistent, but a good
compromise can be reached after a bit of digression into linguistic and information
science. If we view a diagram as a one-way message exchange between a speaker and a
listener, we can see that the speaker’s job is to encode a complex message (the
relationships between abstractions) into a medium (the diagram), while the listener must
decode the symbols from the medium to reconstruct the message. The speaker’s task is
made easier if the language medium is robust and unambiguous, with simple and direct
symbols or constructs for each idea to be expressed. The listener can best decode the
message if the symbols are unambiguous and quickly recognizable. Hence, the
vocabulary of the language must be large enough to cover all possible ideas to be

conveyed, constructs of symbols must be simple to decode.
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Information science tells us that we can achieve these goals by dividing the
elements of the language into classes, each of which is used to resolve different levels of
ambiguity. Just as a Huffman code uses varying code lengths to express data of varying
frequency, a notation can efficiently express concepts of varying complexity by defining
symbols with varying diversity.

To make this abstract discussion concrete, consider an old numeric construct:
Roman numerals. While this form of numerals are less practical than the Arabic
numerals typically in use today, they illustrate nicely how a notation can use constructs of
symbols to optimize communication efficiency.

Most numbers we encounter in everyday life—excluding the increasingly
complex realm of personal finance—are very small. To express common situations, such
as the number of objects on a table or the number of people in a room, we usually only
need precise numbers less than five. The simplest numbering system for this range is to
use hash marks. As a result, the first three roman numerals are ‘I’, ‘II’, and ‘III’. (In
fact, through much of the active lifetime of these numerals, the number four was
represented in the vernacular as ‘IIII'.) Five, as the number of items countable in one
hand, in expressed as *V’. The first five numbers, then, are instantly recognizable and
easy for the number-shy to leam.

After these few very common numbers, however, a more concise and efficient
mechanism is needed. The first nontrivial construction, addition, is used for symbols
‘VT" through ‘VIII", followed by subtraction for ‘IX’ (and the more proper representation
for four, ‘IV’). The next, more complicated step, is to replace all the symbols to express
numbers larger than ten, and concatenate with the smaller numbers to build precise
numbers of higher order.

This numerical digression illustrates how simple symbols can be used to make
simple concepts very easy to express, while more complex constructs can be added to
express ideas of arbitrary size. Careful selection of the symbols and the constructs makes
for an efficient language. The languages in which we are interested for this discussion are

the notations of the Fusion and Booch methodologies.
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The notation of Fusion is simple and direct. Consistent with the linguistic
principles suggested above, it is designed to disambiguate specifically the information
that is intended to be expressed in the particular diagram. For example, the object model
diagram is intended to show two primary categories of information: the objects involved
in the system, and the named relationships between them. The notation was designed so
that each of these is shown by a distinct symbol, either a rectangle for an object or a
diamond for a relationship, and the connective lines are marked with auxiliary
annotations such as cardinality and, where appropriate, subtyping. Another look at
Figure 5 illustrates the efficiency of the notation.

Fusion, in some cases, uses diagrams to summarize the details of analysis or
design. Visibility graphs, an example of which is Figure 10, contain information which is
largely already derivable from the object interaction graphs. By gathering them together
in one place, however, Fusion intends to simplify the chore of a reader trying to
understand the system’s operation.

The Booch notation is considerably more complex, as the diagrams are intended
to have much more power to express intricate relationships concisely. The Booch class
diagram of Figure 17 gives more information about the system architecture than does
Fusion’s system object model diagram. Part of the additional complexity derives from
the ‘cloud’ symbols and their adornments, as discussed earlier. The shapes of these
symbols are more complex and organic than those of Fusion, which are dominated by
lines and rectangles. The Booch class diagrams also embrace auxiliary adornments, such
as the filled and open circles and rectangles with optional single-letter extensions, the
triangular class adornments, and role labeling on relationship arcs. Most of these
adomments were shunned when the Fusion notation was designed, but while this decision
made many diagrams easier to read, it also placed hard limits on the utility of these
diagrams for many projects.

The ODMR project’s Event mechanism is one example of a system which needs
some of the Booch notation’s extra expressive power. Figure 15 describes the

relationships of the classes derived from Event and Reaction. The attributes of collection
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aggregation by reference and the roles of the Event, Reaction, and Action classes would
not be easily expressible in a Fusion object model diagram without additional English

notes, while they are reasonably simple to express using the Booch class diagram.

Education

The Fusion method post-dates the Booch method, however, and there was another
principal reason for its significant reduction in scope. A commercial project is composed
of software engineers which are an expensive and scarce resource. The larger a project
gets, furthermore, the more sophisticated its developers’ communication abilities must be
in order to make an effective contribution toward the goal.

In object-oriented methodologies, it is the method and the notation which provide
the primary means of communication among architects, developers, and other
programmers. If the architects use a method, then the developers and programming
teams will need to be able to understand the method and read its artifacts in order to carry
out their duties. The more complex and time-consuming it is to learn the method and its
notation, the more expensive it is to educate the project members into effective team
members.

In light of this fact, the designers of Fusion made not only the notation easier to
learn and use, but simplified the process of software development as well. By laying out
a rational process with few forking paths, they hoped to create a development
environment in which even the least sophisticated member would not feel lost, resulting
in a sense of unity and progress, a commmon ground under which all the members could
effectively communicate and work.

It is undeniable that the Fusion method is easier to teach and learn than the Booch
method; on the other hand, it is unclear that the entire method must be employed by all
members. The architects of the system, who are ultimately responsible for the creation of
a workable design, must certainly be fluent in the method in able to steer its course in a

strategically sound way. Designers should also be experienced in the method so that they
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can work efficiently with the architects to create and develop the abstractions on which
the end product will be based.

In all but the smallest projects, however, there will be a pool of team members,
developers and programmers, who need a less sophisticated familiarity with the method.
They will be largely unconcerned with strategic decisions, focusing mostly on the tactical
development of small numbers of classes, or even just implementing classes that have
been designed and documented by the architects or designers. For these members, it may
be necessary only to effectively apply the micro process within the context of the macro
process as executed by the architectural team. Indeed, for large projects, it is possible
that top-level comprehension of the entire project is unlikely to be possible for any but a
few managing team members; in these kinds of projects, Fusion method teams will be

unable to take advantage of the common ground the method attempts to offer.
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APPENDIX A

FUSION PROCESS SUMMARY

This appendix and the following are distillations of the specifications offered in
the literature for the respective methodologies. It serves as a common-format reference
for the methods and a model for the kind of meta-analysis which should be performed
when an architect is deciding between methodologies.

This appendix is adapted from:

D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist, F. Hayes, P. Jeremaes, 1994.
Object-Oriented Development: The Fusion Method, Prentice Hall.

Fusion — Process

Important attributes:
1. The method should be viewed as an ideal for making plans and decisions, and for
facilitating production, not a rulebook for developer conduct.
s ANALYSIS
=  Analysis is about describing what a system does and is, rather than sow it does it.
* Focus is on the domain of the problem and is concerned with externally visible
behavior; isolate and specify a model of the system and its environment.

® Products
s  Object Model
e System Interface
¢ Interface Model
s Life-Cycle Model
e Operation Model



= Activities

¢ Develop the Object Model.

¢ Brainstorm a list of candidate classes and relationships.

¢ Enter classes and relationships into a data dictionary.

¢ Incrementally produce an object model looking for:

Generalizations: “kind of” or is-a relationships (inheritance).
Aggregations: “part of” or has-a relationships.

Attributes of classes.

Cardinalities of relationships between objects.

General constraints that should be recorded in the data dictionary.

e Determine the System Interface.

o Identify agents, system operations, and events.

o Produce the system object model, a refinement of the object model

developed in the first step of analysis:

Using information from the system interface, identify classes and
relationships on the object model that embody the operational state of
the system.

Identify and document the system boundary to produce the system
object model. Use scenarios to represent external agents involved with

the system and what their expectations of the system are.

e Develop an Interface Model.

o Create a life-cycle model:

Generalize scenarios and form named life-cycle expressions.

Combine life-cycle expressions to form life-cycle model.

e Create an operation model. For each system operation:

Develop Assumes and Results clauses.

¢ Describe each aspect of the result as a separate subclause of

Results.
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¢ Use the life-cycle model to find events that are output in Results.
¢ Check that Results does not allow unwanted values.
¢ Add relevant system invariants to Assumes and Results.
o Ensure that Assumes and Results are satisfiable.
s Update data dictionary entries for system operations and events.
e Extract Sends, Reads, and Changes clauses from the Results and
Assumes.
e Check the analysis models for:
¢ Completeness against the requirements.
+ Simple name consistency.
e Semantic consistency.
 DESIGN
= Software structures are introduced to satisfy the abstract definitions produced
from the analysis. Transform the artifacts of analysis into specifications of
design.
» Products
e Object Interaction Graphs
o Visibility Graphs
e C(Class Descriptions
¢ Inheritance Graphs
= Activities
o Create Object Interaction Graphs. For each operation:
o Identify the objects which cooperate to perform the computation.
o Establish the role of each object:
¢ Identify controller.
o Identify collaborators.
¢ Decide on messages between objects (establish contracts).

» Diagram the interaction of the identified objects: object interaction graph.
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Check consistency with analysis models: each of the classes in the system
object model is represented in at least one object interaction graph.

Verify functional effect. Double-check that each object interaction graph

describes the same effect as the specification of its system operation given

the operation model.

Extract Visibility Graphs.

Inspect all object interaction graphs. Each message on an object
interaction graph implies a visibility reference.

Decide on the kind of visibility reference required taking into account:

s Lifetime of reference.

- Visibility of target object.

e Lifetime of target object.

e Mutability of target object.

Draw a visibility graph for each design object class.

Check consistency with analysis models: for each relation on the system
object model there is a path of visibility for the corresponding classes on
the visibility graphs.

Check mutual consistency: exclusive target objects should not be
referenced by more than one class and shared targets are in fact referenced

by more than one class.

Write Class Descriptions.

Record methods and parameters from the object interaction graph.
Collect data attributes from the system object model and data dictionary.
Determine object containment and reference attributes from the visibility
graph for the class.

Check that all methods and attributes from previous sources are

represented.

Create Inheritance Graphs.

Find generalizations and specializations in the object model.
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s Collect common methods in object interaction graphs and class
descriptions.
» Find common visibility in the visibility graphs.
¢ Update Class Descriptions
¢ Add inheritance information from the inheritance graphs.

¢ Check that object interaction graphs are not invalidated by the creation of

abstract classes.

e [IMPLEMENTATION

Translate artifacts into software. Following specific procedures, a revision-zero
executable can be generated directly from the design artifacts.

Products

o Executable code
Activities
e Coding
o Translate system life-cycle.
o Implement regular expressions as state-machines.
¢ Implement class descriptions.
e Specify interface of the classes in the target language.
e Attribute declarations
e Method declarations
¢ Inheritance
¢ Implement method bodies.
¢ Error handling (violation of preconditions)
¢ FError detection
s Error recovery
e Iteration

o Cover data dictionary.
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¢ Implement functions, predicates, and types that are both found in
the data dictionary and used by methods.
o Ensure that assertions are respected by adding any necessary code

to all affected methods.

¢ Performance analysis (optional).

Design for performance and utilize profiling data to focus performance

maintenance.

e Review

Inspections

¢ Simple review of code, both static and dynamic (via analysis of a
running system) to ensure that conditions have been preserved through
assumptions.

Testing

e Checking state observation and manipulation.

e Applying algebraic properties such as associativity and identity
preservation to member function invocation.

e Checking that destructors in C++ are consistent with corresponding
constructors.

e Checking proper use of initialization.

e Checking that casting in C++ is being used in safe ways.

e Trying to trigger exception-handling capabilities via extreme boundary

value inputs.
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APPENDIX B

BOOCH PROCESS SUMMARY

The following is adapted from:

Grady Booch, 1996. Object Solutions: Managing the Object-Oriented Project. Menlo
Park, California: Addison-Wesley.

Grady Booch, 1994. Object-Oriented Analysis and Design with Applications, Second
Edition. Menlo Park, California: Addison-Wesley.

Booch — Macro Process

Important attributes:

1.

The macro process of object-oriented development is one of continuous

integration.

At regular intervals, the continuous process yields executable releases that grow

in functionality at every release. Utilize rapid prototyping to reduce cost of these

executables and multiply their accessibility.

It is through these “milestones and measures™ that management can measure

progress and quality, and hence anticipate, identify, and then actively attack risks

on an ongoing basis. (Risk management through situational awareness)

e [Iterative, incremental releases force the development team to closure at
regular intervals.

s Management can schedule a suitable response and fold these activities into

future iterations, rather than disrupt ongoing production.
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s A rhythmic development process allows a project’s supporting elements
(including testers, writers, toolsmiths, and domain experts) to give timely
feedback,

¢ CONCEPTUALIZATION - ESTABLISH CORE REQUIREMENTS
» Bracket the project’s risks by building a proof of concept
* Products

¢ An executable prototype

e A risk assessment

e A general vision of the project’s requirements
¢ During conceptualization, focus upon establishing the project’s vision by

quickly developing a fairly broad yet shallow executable prototype. At the
end of this phase, throw the prototype away, but retain the vision. This
process will leave the project with a better understanding of the risks
ahead.

= Activities

¢ Establish a set of goals for the prototype including a delivery date.

e For projects of modest complexity whose full life cycle is about one year,
the conceptualization phase typically lasts about one month.

» Assemble an appropriate team to develop the prototype, and let them proceed,
constrained only by the prototype’s goals and schedule.

¢ Evaluate the resulting prototype, and make an explicit decision for product
development or further exploration. A decision to develop a product should
be made with a reasonable assessment of the potential risks, which the proof
of concept should uncover.

" Agents

» Architect(s), perhaps one or two other developers who collectively continue
their engagement through analysis and design.

e ANALYSIS-DEVELOP A MODEL OF THE SYSTEM'S DESIRED BEHAVIOR
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Develop a common vocabulary and understanding of the system’s desired

behavior by exploring scenarios with end users and domain experts.

Products

A description of the system’s “context”

o Establishes the overall boundaries of the project

A coliection of scenarios that define the behavior of the system

* A *“use case” specifies a given portion of a system’s behavior.

» A scenario is an instance of a use case, and thus represents a single path
through that use case.

A domain model

e Visualizes all of the central classes responsible for the essential behavior
of the system.

o Not merely a product of invention; largely a product of discovery.

A revised risk assessment

o Identifies the known areas of technical and non-technical risk that may

impact the design process.

Activities

Scenario Planning

¢ Enumerate all of the primary system functions and, where possible,
organize them into use cases denoting clusters of functionally related
behaviors.

e Specify the system’s context.

e Make a list of primary scenarios that describe each system function.

o For each interesting set of system functions, storyboard primary scenarios.

o Interview domain experts and end users to establish the vocabulary of the
problem space. First through techniques such as CRC cards, then more
formally through scenarios that define the system’s behavior in this

vocabulary.
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e As needed, generate secondary scenarios that illustrate special behavior or
behavior under exceptional conditions.

» Organize the web of scenarios that defines a system along two
dimensions: first in use cases according to major system functions, then
between primary scenarios and secondary ones (representing variations on
the theme of primary ones, often reflecting exceptional conditions).

e Update the evolving domain model to include the new classes and objects
identified in each scenario with their roles and responsibilities.

o Where the life cycle of certain objects is significant or essential to the
behavior of the system, develop a scenario or a state machine diagram for
this class of objects.

» Where external events tend to drive the system’s behavior, enumerate all
such events and analyze their impact on upon the system by tracing these
events through the domain model. Discover which classes are responsible
for detecting each event, which classes are responsible for handling each
event, and which classes are responsible for reacting to each event.

o Scavenge for patterns among scenarios and the domain model, and express
these patterns in terms of generalized scenarios or abstract classes that
embody common structure or behavior.

¢ Domain analysis (analysis by analogy)

o Study existing systems that are similar to the one under development.

e For those areas of great uncertainty, develop a prototype to be used by the
development team to validate its assumptions about the desired behavior
of the system, or to serve as a basis of communication with end users.

= Agents
o Small (2-6) team including architect, analysts/developers, domain experts/end
users, testing team member.
¢ DESIGN —CREATE AN ARCHITECTURE FOR THE IMPLEMENTATION
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Establish a strategy for the solution and tactical policies for implementation by

constructing the system’s architecture.

Products

e An executable and baselined architecture:

Exists as a real application that runs in some limited way.

Carries out some or all of the behavior of a few interesting scenarios
chosen from the analysis phase.

Is production-quality code.

Either constitutes a vertical slice that cuts through the complete system
from top to bottom, or goes horizontal by capturing most of the interesting
elements of the domain model.

Touches upon most if not all of the key architectural interfaces.

Makes a careful set of explicit simplifying assumptions which do not

assume away reality.

e The specification of all important architectural patterns:

All well-structured, object-oriented systems embody a number of patterns

at various levels of abstraction:

¢ Idioms, at the level of the implementation language.

e Mechanisms, representing important object collaborations.

¢ Frameworks, which codifying well-understood solutions to large
functional sub-domains.

They capture the architect’s intent and vision, and propagate that vision in

a tangible way.

They provide common solutions to related problems, so are necessary for

efficient creation of simple systems.

* A release plan

Later product of design which serves as a management planning tool that

drives the next phase of development.

o Testing plan



54

Test criteria, and where possible, actual test scripts.

¢ A revised and updated risk assessment

= Activities

¢ Architectural planning:

Consider the clustering of functions from the products of analysis, and
allocate these to layers and partitions of the architecture. Functions that
build upon one another should fall into different layers; functions that
collaborate to yield behaviors at a similar level of abstraction should fall
into partitions which represent peer services. This builds a hierarchy and
taxonomy of abstractions.

Validate the architecture by creating an executable release that partially
satisfies the semantics of a few interesting system scenarios as derived
from analysis.

Instrument the architecture and assess its weaknesses and strengths.
Identify the risk of each key architectural interface so that resources can be

meaningfully allocated as evolution commences.

e Tactical design:

Relative to the given application domain, enumerate the common policies
that must be addressed by disparate elements of the architecture.
Consider whether any existing frameworks can be adapted to satisfy the
needs of these mechanisms.

For each common policy, develop the scenarios that describe the
semantics of that policy. Further capture its semantics in the form of an
executable prototype that can be instrumented and refined.

Document each policy and carry out a peer walkthrough, so as to

broadcast its architectural vision.

» Release planning:

Given the scenarios identified during analysis, organize them in order of

fundamental to peripheral behaviors. Prioritizing scenarios can best be
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accomplished with a team that includes a domain expert, analyst, architect,
and quality-assurance personnel.

Group these scenarios and assign them to a series of architectural releases
whose final delivery represents the production system.

Adjust the goals and schedules of the stream of releases so delivery dates
allow adequate development time, and releases are synchronized with
other development activities, such as documentation and field-testing.
Create a task plan, wherein a work breakdown structure is identified, and
development resources are identified that are necessary to achieve each

architectural release.

Small team of the project’s top people: architect and one/two developers.
e EVOLUTION-EVOLVE AND DEPLOY THE IMPLEMENTATION
s Refine the architecture and package releases for deployment. Tthis phase typically

requires further analysis, design, and implementation

» For projects of modest complexity whose full life cycle is about one year, the

evolution phase typically lasts about nine months

»  Products

A stream of executable releases exhibiting:

A growth in functionality, measured by new scenarios.

Greater depth, as measured by a more complete implementation of the
system’s domain model and mechanisms.

Greater stability, as measured by a reduction in the changes to the

system’s domain model and mechanisms.

Behavioral prototypes

Quality assurance results

System and user documentation

= Activities

Application of the micro process
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Release assessment and change management

Qualify each release against the project’s minimal essential characteristics
as well as against certain other predictors of health, such as stability,
defect discovery rates, and defect density.

Identify the project’s next highest risks, and adjust the scope and schedule

of the next series of releases as necessary.

Staffing reaches its peak:

Implementation of the classes and collaborations of classes is specified by
the architect and abstractionists.

Completion of system functions through the assembly of the classes and
patterns invented by the abstractionists and implemented by other
application engineers.

Completion of behavioral prototypes used to explore design alternatives or

new avenues of technology.

During evolution, a full 80% of the team should be focused on pumping out

each new release. The remaining 20% or so should be assigned to secondary

tasks that attack new risks and that prepare the groundwork for the next series

of releases.

¢ MAINTENANCE — MANAGE POST-DELIVERY EVOLUTION

Continue the system’s evolution in the face of newly-defined requirements.

Largely a continuation of the previous phase of development (evolution) except

that architectural innovation is less of an issue.

Products

All those of evolution

A punch list of new tasks

Activities

All those of evolution, plus:

Prioritization and assignment of tasks on the punch list
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e Prioritize requests for major enhancements or bug reports that denote
systemic problems, and assess the cost of redevelopment.
¢ Establish a meaningful collection of these changes and treat them as
function points for the next evolution.
s Ifresources allow, add less intense, more localized enhancements (the so-
called low-hanging fruit) to the next release.
¢ Manage the next maintenance release.
= Agents
e Typically carried out by a truncated core of the original development team, or
by an entirely new team.
¢ Virtually identical to that of the development team during evolution, with two

exceptions: there is no architect, and there are few if any abstractionists.

Booch — Micro-process

Important attributes:
1. The process is cyclic, like the macro-process, with each path through the process
focusing on different partitions of the system or bringing light to a different level

of abstraction.

2. It is opportunistic, meaning that each cycle begins with only that which is best
known, with the opportunity to refine that work on every subsequent pass.

3. Itis focused on roles and responsibilities rather than on functions and control.

4. It is pragmatic, meaning that it achieves closure by regularly building real,
executable things. -

o IDENTIFYING CLASSES AND OBIECTS

= Select the right abstractions that model the problem at hand.

a  The development team focuses on discovering the abstractions under the
vocabulary of the problem domain.

= Products
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A dictionary of abstractions:

In most cases either an intellectual product that lives in the minds of its
developers, on a collection of CRC cards, or in the form of any related
notation; or it is a byproduct of other artifacts, such as a view upon the
system’s domain model or its executable architecture.

As development proceeds, this dictionary will grow and change, reflecting

the team’s deeper understanding of the problem and its solution.

Activities

Agents

Discovery and invention of abstractions:

Examine the vocabulary of those familiar with the domain.

Pool the wisdom and experience of parties interested in the product.

Use scenarios to drive the process of identifying classes and objects; CRC
card techniques are particularly effective at getting interested parties

together to work through scenarios.

Not every developer has the skills to perform this step, but then, not every

developer needs to be involved here. Rather, this activity is primarily the

work of a project’s architect and abstractionists, who are responsible for a

system’s architecture.
¢ IDENTIFYING THE SEMANTICS OF CLASSES AND OBJECTS

Determine proper distribution of responsibilities among classes and objects

identified up to this point in the development process.

This phase involves a modest amount of discovery (to understand the deeper

meaning of each abstraction), an equal measure of invention (to determine the

right set of roles and responsibilities in the domain and then to attach these

decisions to a concrete form).

Products

A specification of the roles and responsibilities of key abstractions.
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As design and evolution proceed, these roles and responsibilities are
transformed into specific protocols and operations that carry out these

contracts.

o Software that codifies these specifications (that is, their interfaces).

¢ Diagrams or similar artifacts that establish the meaning of each abstraction.

During analysis, scenario diagrams are quite useful products at this stage
to formally capture the team’s storyboarding of key scenarios. During
design and evolution, it is common to introduce class diagrams, scenario
diagrams, state machine diagrams, and other kinds of diagrams as well.
Start with the essential elements of any notation and apply only those
advanced concepts necessary to express details that are essential to
visualizing or understanding the system that cannot otherwise be
expressed easily in code.

The primary benefit of these more rigorous products at this stage is that
they force each developer to consider the pragmatics of each abstraction’s
deeper meaning. Indeed, the inability to specify clear semantics at this

stage is a sign that the abstractions themselves are flawed.

s Activities

e Scenario planning

Select one scenario or a set of scenarios related to a single function point;
from the previous step in the micro process, identify those abstractions
relevant to the given scenario.

Walk through the activity of this scenario, assigning responsibilities to
each abstraction sufficient to accomplish the desired behavior. As needed,
assign attributes that represent structural elements required to carry out
certain responsibilities. CRC cards are a particulariy effective technique
to use here.

As storyboarding proceeds, reallocate responsibilities so there is a

reasonably balanced distribution of behavior. Where possible, reuse or
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adapt existing responsibilities. Splitting large responsibilities into smaller
ones is a very common action; less often, but still not rarely, trivial

responsibilities are assembled into larger behaviors.

Isolated class design

Select one abstraction and enumerate its roles and responsibilities.

Devise a minimal and sufficient set of operations that satisfy these
responsibilities. (Where possible, try to reuse operations for conceptually
similar roles and responsibilities.)

Consider each operation in turn, and ensure that it is primitive, meaning
that it requires no further decomposition or delegation to other
abstractions. If it is not primitive, isolate and expose its more primitive
operations. Composite operations may be retained in the class itself (if it
is sufficiently common, or for reasons of efficiency) or be migrated to a
class utility (especially if it is likely to change often). Where possible,
consider a minimal set of primitive operations.

Particularly later in the development cycle, consider the life cycle of the
abstraction, particularly as it relates to the creation, copying, and
destruction. Unless there is compelling reason to do so, it is better to have
a common strategic policy for these behaviors, rather than allowing
individual abstractions to follow their own idiom.

Consider the need for completeness: add other primitive operations that
are not necessarily required for the immediate clients, but whose presence
rounds out the abstraction, and therefore would probably be used by future
clients. Realizing that it is impossible to have perfect completeness, lean

more toward simplicity than complexity.

Pattern scavenging

Given a reasonably complete set of scenarios at the current level of
abstraction, look for patterns of interaction among abstractions. Such

collaborations may represent implicit idioms or mechanisms, which
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should be examined to ensure that there are no gratuitous differences
among each invocation. Patterns of collaboration that are nontrivial
should be explicitly documented as a strategic decision so that they can be
reused rather than reinvented. This activity preserves the integrity of the
architectural vision.

e Given a set of responsibilities generated at this level of abstraction, look
for patterns of behavior. Common roles and responsibilities should be
unified in the form of commeon base, abstract, or mixin classes.

e Particularly later in the life cycle, as concrete operations are being
specified, look for patterns within operations signatures. Remove any
gratuitous differences, and introduce mixin classes or utility classes when
such signatures are found to be repetitious.

¢ Employ pattern scavenging as an opportunistic activity to seek out and
exploit global as well as local commonality. Ignore this practice and you
run the high risk of architectural bloat which, if left untreated, will cause

your architecture to collapse under its own sheer weight.

= Apgents

]

This work is generally performed by developers in conjunction with domain
experts, and should always be an open process (subject to peer reviews).
Pattern scavenging may be undertaken by ‘tiger teams’ which are tasked with

searching out opportunities for simplification.

¢ JDENTIFYING RELATIONSHIPS AMONG CLASSES AND OBIECTS

»  Products

A specification of the relationships among key abstractions

¢ These products serve to capture the patterns of collaboration among a
system’s classes and objects, and represent an important dimension in any
system’s architecture.

Software that codifies these specifications
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e Successful projects try to capture these relationships concretely in the
form of code or similar executable artifacts. Typically this means refining
the interfaces of classes specified in the previous phases, by introducing
sernantic connections from one class to another.

» Diagrams or similar artifacts that establish the meaning of each relationship as
well as larger collaborations

e Because these relationships by their very nature span many individual
abstractions, various kinds of diagrams become an even more important
product at this phase. The best use of diagrams is to illustrate relationship
semantics that are important to the problem, yet cannot be easily enforced
by the linguistics of any programming language.

= Activities
¢ Association specification

o Start identifying the relationships among abstractions by considering their
associations first. Once these are reasonably stable, begin to refine them
in more concrete ways.

o Collect a set of classes that are at the same level of abstraction or that are
germane to a particular family of scenarios; populate this set (via CRC
cards, in scenario diagrams, or in class diagrams) with each abstraction’s
important operations and attributes as needed to illustrate the significant
properties of the problem being solved.

e In a pair-wise fashion, consider the presence of a semantic dependency
between any two classes, and establish an association if such dependency
exists. The need for navigation from one object to another and the need to
elicit some behavior from an object are both cause for introducing
associations. Indirect dependencies are cause for introducing new
abstractions that serve as agents or intermediaries. Some associations (but
probably not many) may immediately be identified as

specialization/generalization or aggregation relationships.
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For each association, specify the role of each participant, as well as any
relevant cardinality or other king of constraint.

Validate these decisions by walking through scenarios and ensuring the
associations that are in place and are necessary and sufficient to provide

the navigation and behavior among abstractions required by each scenario.

Collaboration identification

Mechanisms (which represent patterns of collaboration that yield behavior
that is greater than the sum of the individual participants in the
collaboration)

Generalization/specialization hierarchies

The clustering of classes into categories

The clustering of abstractions in modules

The grouping of abstractions into processes

The grouping of abstractions into units that may be distributed
independently

Association refinement

Given a collection of classes already related by some set of associations,
look for patterns of behavior that represent opportunities for specialization
and generalization. Place the classes in the context of an existing
inheritance lattice, or fabricate a lattice if an appropriate one does not
already exist.

If there are patterns of structure, consider creating new classes that capture
this common structure, and introduce them either through inheritance as
mixin classes or through aggregation.

Look for behaviorally similar classes that are either disjointed peers in an
inheritance lattice or not yet part of an inheritance lattice, and consider the
possibility of introducing common parameterized classes.

Consider the navigability of existing associations, and constrain them as

possible. Replace with simple using relationships, if bi-directional
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navigation if not a desired property. Expand these associations if
navigation requires significant underlying behavior to carry out.

As development proceeds, introduce tactical details such as statements of
role, keys, cardinality, friendship, constraints, and so on. It is not
desirable to state every detail: just include information that represents an
important analysis or design position, or that is necessary for

implementation.

e The identification of relationships among classes and objects follows directly

from the previous step. As such, the activities of this stage are carried out by

the same kinds of agents as for the identification of the semantics of classes

and objects.
o. IMPLEMENTING CLASSES AND OBJECTS

Whereas the first three phases of the micro process focus upon the outside view of

abstractions, this step focuses upon their inside view.

Products

s Software that codifies decisions about the representation of classes and

mechanisms

Activities

¢ Selection of the structures and algorithms that complete the roles and

responsibilities of all the various abstractions identified earlier in the micro

process.

For each class or each collaboration of classes, consider again its protocol.
Identify the patterns of use among its clients in order to determine which
operations are central, and hence should be optimized.

Before choosing a representation from scratch, consider adapting existing
classes, typically by subclassing or by instantiation. Select the appropriate
abstract, mixin, or template classes or create new ones if the problem is

sufficiently general.
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o Next, consider the objects to which you might delegate responsibility. For
an optimal fit, this may require a minor readjustment of their
responsibilities or protocol.

¢ If your abstraction’s semantics cannot be provided through inheritance,
instantiation, or delegation, consider a suitable representation from
primitives in the language. Keep in mind the importance of operations
from the perspective of the abstraction’s clients, and select a
representation that optimizes for the expected patterns of use,
remembering that it is not possible for optimize for every use. As you
gain empirical information from successive releases, identify which
abstractions are not time- and/or space-efficient, and alter their
implementation locally, with little concern that you will violate the
assumptions clients make of your abstraction.

e Select a suitable algorithm for each operation. Introduce helper operations
to divide complex algorithms into less complicated, reusable parts.
Consider the trade-offs of storing versus calculating certain states of an

abstraction.

= Agents

This phase requires substantially different skills than the other three of the
micro process. For the most part, these activities can be carried out by
application engineers who do not have to know how to create new classes, but
at least must know how to reuse them properly and how to adapt them to some

degree.
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