A FORMAL DESCRIPTION OF BEHAVIORAL VERILOG BASED

ON AXIOMATIC SEMANTICS

by

JOHN HOWARD ELI FISKIO-LASSETER

A THESIS

Presented to the Department of Computer
and Information Science
and the Graduate School of the University of Oregon
in partial fulfillment of the requirements
for the degree of
Master of Science

August 1998

ii

“A Formal Description of Behavioral Verilog Based on Axiomatic Semantics,” a
thesis prepared by John Howard Eli Fiskio-Lasseter in partial fulfillment of the
requirements for the Master of Science degree in the Department of Computer and

Information Science. This thesis has been approved and accepted by:

Dr. Amr Sabry

A%w 2, 48

Date

Accepted by:

i

An Abstract of the Thesis of
John Howard Eli Fiskio-Lasseter for the degree of Master of Science
in the Department of Computer and Information Science
to be taken August 1998
Title: A FORMAL DESCRIPTION OF BEHAVIORAL VERILOG BASED

ON AXIOMATIC SEMANTICS

Dr. Amr Sabry

Reasoning about hardware designs written in Verilog is problematic, in large
part because of the lack of a formal semantics for the language. The behavioral
aspects of many constructs within the language are unclear, even with the existence
now of an official language standard. As a result, a program may contain many
subtleties which can be overlooked without careful analysis, and which may not
even appear, depending on the implementation of the simulator that is used. In this
thesis, we present a formal description of a large subset of behavioral Verilog, based
on axiomatic semantics. Our primary contribution is an explicit formalization of the
Verilog simulation cycle. In addition, we discuss some of the constructs that pose
particular challenges to formal description, and offer axiomatic descriptions of these

constructs that appear to match the behavior of the leading simulation packages.

iv

CURRICULUM VITA

NAME OF AUTHOR: John Howard Eli Fiskio-Lasseter
PLACE OF BIRTH: Raleigh, North Carolina

DATE OF BIRTH: 29 December, 1968

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon

Earlham College

DEGREES AWARDED:

Master of Science, 1998, University of Oregon
Bachelor of Arts, 1992, Earlham College

ACKNOWLEDGEMENTS

My thanks first of all to my advisor, Dr. Amr Sabry. Without his exceptional
inspiration and guidance, as well as the occasional kick in the pants {much needed),
this project would not exist.

Thanks to Steven Sharp and Steve Meyer for their helpful correspondences and
explanation of Verilog semantics. And thanks to the members of the Internet Ver-
ilog community of comp.lang.verilog who participated in my nonblocking assign-
ment experiment—Hitesh Brahmbhatt, Larice Robert, Magnus Soderberg, Edward
Arthur, and Robert Szczygiel.

Finally, a huge thank you to Janet, my life partner and closest friend—for

being there.

Vi

DEDICATION

To my parents, who taught me to look, Bob Horn, who taught me how, and to

Janet, who helped me to know what I saw.

vii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION i i 1

Related Work e 5

II. A BRIEF TOUR OF THE VERILOG LANGUAGE 7

III. ZMETHODOLOGY i i it e e 16

Finding a Suitable Grammar., 17

Normalization 19

The Initial Transformation 21

IV. NOTATION e e e e e e e e e e e 29

Simulation Cycle Phases 30

V. DESCRIBING THE SEMANTICS OF VERILOG 34

“Normal” Statements 34

Reasoning About Side Effects via Blocking Assignment 35

Non-Blocking Assignment 42

Delay Controls, 48

Intra-Assignment Timing Controls 54

Event Controls 58

VI. CONCLUSIONS AND FUTUREWORK 65
APPENDIX

A, SYNTAX . . . e 69

Syntax of Behavioral Verilog Subset, 70

Evaluation Contexts 71

B. AXIOMATIC DESCRIPTION OF VERILOG 72

Ordinary Statements 72

Access to the Store (Exciuding Event Controls) 72

Chapter Page
Non-Blocking Assignment 73
Scheduling of Delayed Threads 74
Event Controls cocs e womr o7 mns a8 s o e 75

BIBLIOGRAPHY ¢oes we so0% 08 o0 o8 et .« . 76

Table
1.

LIST OF TABLES

Results of nbupdate_test.

........................

ix

CHAPTER 1

INTRODUCTION

The Verilog hardware description language has become one of the leading
tools for circuit designers. Like other simulators and simulation languages intended
to aid in circuit design, Verilog supports a rich set of primitive constructs represent-
ing low-level digital design elements such as logic gates, transistors, and capacitive
networks. What sets it apart from an ordinary circuit simulator, however, is the
support for rapid prototyping using behavioral specifications of the same circuit.
The hardware designer can use Verilog to specify a circuit using low-level structural
elements, but she can also create a circuit with the same behavior by drawing from a
large number of high-level programming constructs in syntax resembling C, such as
loops, assignment, conditional statements, and so on. Further, Verilog is a parallel
programming language, and thus provides the usual complement of tools for the
parallel programmer (guards, semaphores, etc.).

First and foremost, however, Verilog is a simulation-driven language, which
is to say that the semantics of its constructs are largely defined by a standardized

discrete event execution model. In order to really understand the semantics of

Verilog constructs, therefore, one must understand them with respect to this model.
Thus a thorough understanding of the behavior of the simulator is crucial. As the
IEEE Standard states ([12], p.45): “Although the Verilog HDL is used for more than
simulation, the semantics of the language are defined for simulation, and everything
else is abstracted from this base definition.”

In this thesis, we propose a formal description of behavioral Verilog that also
includes an explicit formalization of this simulation cycle. This formalization is
implemented as an aziomatic semantics, an approach which we believe offers a
number of advantages. First of all, the axiomatic approach is more abstract. Since
we reason only by transformation of Verilog programs into other Verilog programs,
our semantics do not resemble any particular implementation—higher order logic,
duration calculus, etc.—too closely. This offers the possiblity of greater flexibility
and thus a more general-purpose description.

Further, the axiomatic approach corresponds to a common way in which most
Verilog users think about the language. The typical life cycle for a Verilog design
is roughly the following: a prototype of the circuit is rapidly created using Verilog's
high-level behavioral constructs, and after some testing to verify that the overall
black-box approach is sound, the circuit is re-written at a lower-level of abstraction,
and tested again. Finally, when all of the circuit has been written in a sufficiently
structural description (usually at the logic-gate level), a netlist can be synthesized

from the code, the results tested against the original program for behavioral equiva-

lence, and (if successful) given to a fabrication tool which produces a corresponding
IC die.

Often, these transformations are performed manually, rendering from a behav-
ioral specification of a circuit an equivalent structural description. In this way, the
Verilog engineer comes to know the semantics of the high-level constructs in terms of
more primifive ones. The point here is that this is essentially the way an axiomatic
semantics works. Consequently, the axiomatic approach is in many ways the most
intuitive approach to formal description: there is no need to understand any com-
plex mathematical objects, as with an operational description, nor any denotational
models.

In addition to providing a foundation for the application of various formal
methods to Verilog programs, the specification of a formal semantics for Verilog can
bring to light many subtle points of the language that may be overlooked otherwise.
Verilog began as (and remains today) an industrial language whose design was geared
toward providing a practical tool for engineers rather than a tool for academic
research. Until the release of the IEEE Standard [12] in 1996, there was no official
standard semantics for the language. At the time of this writing, no complete formal
semantics exists at all. Moreover, there is still, to our knowledge, no existing formal
description of the Verilog language that explicitly captures the simulation cycle itself
or describes the behavioral constructs in terms of this cycle. As a result, there are

many constructs within Verilog whose behavior can vary subtly from simulator to

simulator; one cannot simply look at a Verilog program and know what it does
without running it.

This point must be emphasized: it is not merely a statement about the pres-
ence of race conditions, which are a hazard of concurrent languages in general, nor
is it simply a point about the theoretical mismatch between the expressive power
of behavioral versus structural constructs in Verilog'. What is meant here is that
without a formal semantics to precisely define every aspect of a construct’s behav-
ior, different Verilog simulators can give subtly different results on the same piece of
code. This can occur even if both simulators correctly implement the same seman-
tics: without the precision of a formal description, however, such differences may
not be easily detectable.

Some of these subtleties are discussed in this thesis, along with the develop-
ment of each construct’s formal representation. The goal of our work is to provide a
general-purpose formal representation of Verilog’s behavioral constructs and of the
behavior of the Verilog simulation cycle in a manner that expresses as accurately as
possible each construct’s “standard” semantic definition, yet also corresponds in a

plain fashion to the ordinary human intuitions about the language. In the following

chapter, we describe the basic methodology.

1There are behavioral programs in Verilog for which no corresponding structural version-—and
hence no circuit—can exist. This is known as the model mismaich problem, and is discussed by
Szu-Tsung Cheng [4] in the introduction of his doctoral dissertation.

Related Work

Research by the members of the Verilog Formal Equivalence Project (VFE) at
Cambridge has had a strong influence on the present work. Many of the subtleties
of the language represented in our semantics are described in Gordon’s “Semantic
Challenge” paper [9), and it is from this work that this author first learned about
Verilog. Gordon’s recent work has been directed toward the development of different
theoretical models for understanding Verilog and other HDL semantics ([8], [10]),
using subsets of the language with simplified semantics. Stewart is investigating the
semantic properties of many structural constructs, particularly port connections and
continuous assignment ([16], [15]).

Another prominent effort in formal reasoning about behavioral Verilog is the
work surrounding the VIS system and its FSM compiler, v12mv ([5], [6], [7}). VIS
has successfully synthesized and verified substantial Verilog programs, and is even
capable of performing some optimizations on the resulting logic. The formal se-
mantics developed for the language are only implicitly given by the transformation
algorithms, however. Formal descriptions of a program’s timing properties and con-
current behavior are actually performed on the resulting FSMs generated by the
compiler.

Pace [13] has recently published a paper detailing a formal semantics for Ver-

ilog, but with slightly simplified behavior. In this paper, he gives an operational

semantics, based on a variant of the discrete duration calculus, as part of a larger
effort to develop a unified framework for simulation and formal verification.

VHDL is a hardware description language similar in character to Verilog. Van
Tassel [17] gives an operational semantic description of its simulation cycle, formu-
lated in the higher-order logic notation of the Cambridge HOL system.

The only other axiomatic semantic description of a hardware description lan-
guage of which we are aware is a short paper by Hua and Zhang [11], in which they

describe an axiomatic semantics for the Jowa Logic Specification Language.

CHAPTER II

A BRIEF TOUR OF THE VERILOG LANGUAGE

A circuit can be specified in Verilog using low-level constructs that represent
common circuit elements such as logic gates, transistors, and intra-circuit wiring.
In addition, one can specify the desired timing properties of each component. The
resulting design can then be tested using the Verilog event-driven simulator or even
formally verified via a number of commercial and public-domain products. For
example, a simple one-bit adder (with carry-in and carry-out), might be designed

at the gate-level like this:

module halfadder(x,y,sum,car);
input x,y;
output sum,car;

assign #1 sum = x ~ y;
assign #1 car = x & y;
endmodule

module fulladder(x,y,carryin,sum,carryout);
input x,y,carryin;
output sum,carryout;
wire s1,cl,c2;
halfadder hO(x,y,sl,cl);
halfadder hi(sl,carryin,sum,c2);
assign #1 carryout = ¢l | c2;
endmodule

All Verilog programs, are composed of one or more modules, in one sense the
highest-level construct in a program. The manner in which one module is connected
to another is specified by the designer. From the point of view of the containing
module, each contained module can be thought of as a black box, once we have
established its input/output and timing behavior. In addition to the instantiation
of sub-modules (if any), a module consists of some number of threads, each of which
executes concurrently with all the other threads of all instantiated modules in a
program. Threads may run continously, such as those declared with always or
assign, or be declared initial, and run only once.

The data type of variables in Verilog programs can be roughly classified in two
ways: register and nef. Register variables include traditional types such as integer
or real, or they can be declared reg, which simply corresponds to a variable whose
size (in number of bits) can be explicitly declared.

Net types include wire variables, such as those declared in our adder, as well

as a number of other types. Representing the physical connections within a circuit,

they do not hold any data, but simply “carry” a value from one point in the circuit
to another. In other words, we can inspect the current value of a net variable,
but traditional procedural assignment cannot be applied to it. The only allowable
“assignment” is the representation of a wiring connection, either at declaration
or with the use of assign, which is known as confinuous assignment. The basic
idea behind a continuous assignment is that it is specified exactly once, and then,
whenever any part of the right hand side of the expression changes value, the entire
right hand side is reevaluated and the result becomes the new value of the left hand
side. Occasionally, as in our example, one may specify a constant-valued delay,
which causes the update to the net variable to be delayed for the specified number
of clock cycles, each time the right hand side changes.

Let us now create another version of the same halfadder:

10

module halfadder_beh(x,y,sum,car);
input x,y;
output sum,car;
reg sum,car;

always @(x or y) begin
if (x == 1) begin
if (y == 0) begin
sum <= #1 1;
car <= #1 0;
end else begin
sum <= #1 0;

car <= #1 1;

end

end else begin
car <= #1 0;
if (y == 1) sum <= #1 1;
else sum <= #1i 0;

end

end
endmodule

This second version demonstrates a number of behavioral constructs, including
the use of an event control. A guard (“@(x or y)”) is set to watch for any change
in x or y, and it blocks further execution of the thread at this point. These changes
are also called edges, and event controls are therefore referred to as edge-sensitive.
Whenever there is an edge, the logical AND and XOR of x and y are re-computed.

We write out directly the procedure for these computations, using conditional
statements and a sequence of procedural assignments (<=). Actually, Verilog sup-
ports two different types of procedural assignment. Traditional procedural assign-

ment may be specified using the = operator, and is known in Verilog as blocking

11

assignment. Blocking assignment corresponds to the way we normally think of pro-
cedural assignment: when one is encountered, the value of the right hand side is
computed and the register variable is immediately updated with this value, which
it holds until the next update.

By using the <= operator instead, we use nonblocking assignment, which be-
haves like blocking assignment with one important difference: when one is encoun-
tered, the value of the right hand side is computed, but the update to the register
variable is not performed until the end of the current clock cycle. Until that time,
the variable retains its value from the beginning of the clock cycle (unless changed
by a blocking assignment, of course). If, for instance, a is 1 and b 0 at the beginning

of a simulation cycle, then

"N
]

b;
a;

o p
A
i

will cause a to be 0 and b 1 at the end of that cycle.

In order to represent the timing behavior of a component, Verilog provides a
procedural delay control using the # operator. The # operator may be used with
any expression as an argument: the effect, when one is encountered, is to evaluate
this expression and schedule a delay of the thread for the number of clock cycles
specified by the expression’s value. When used at the beginning of a statement, the

effect of a delay control is to block further execution of a thread at the beginning

12

of this statement, until the simulation clock has advanced to the point specified by
the delay.

Both delay and event controls may also be used in a timed procedural as-
signment, known as inire-assignment delay, although it is more generically termed
intra-assignment timing control. The effect of such a timing control is radically dif-
ferent, depending on whether it is used with a blocking or nonblocking assignment.

With an intra-assignment delay on a blocking assignment, which is of the form
x = #e; e, the effect is to evaluate e; and e; immediately, and schedule at the time
specified by e; an update to x of the value computed for e;. Further execution of
the thread is blocked until this point. The only real difference between this kind of
intra-assignment delay and a delayed blocking assignment statement (#e; x = e3)
is that with the ordinary delay, e, is evaluated, and then the thread is blocked: e,
will not be evaluated until the thread is reawakened at a later time. The use of an
event conirol has similar properties, the only differences arising from the standard
distinctions between delay and event control release of a thread.

If we use a nonblocking assignment instead (x <= #e; e;), €; and e; are imme-
diately evaluated as before, and a nonblocking update is scheduled to be performed
on x at the time specified by the delay. The crucial difference here is that further
execution of the thread is not blocked, but continues right away, with x retaining

its old value. The use of an event control merely puts off the execution of the non-

13

blocking assignment until the specified guard can fire, and also allows continued
execution of the original thread.

In all cases, Verilog also supports the concept of a §-time delay (i.e., an event
that will happen in the current clock cycle, but guaranteed later than the other
events currently active), by using a #0.

These timing controls provide some ordering constraints on the threads in a
program: all uncontrolled threads happen before zero-delayed threads, and both
happen before any threads that are blocked by a guard or scheduled (with a delay)
to another time slot.

In fact, a single cycle of a Verilog simulation consists of five phases, which

execute in the following order([12], section 5):

1. The active events. These are “ordinary threads”—the threads that are not
blocked by either delay or event controls of any kind. If there are any such

threads scheduled to run in this cycle, they are run, in arbitrary order.

b

The delayed events. All threads that were blocked with a zero delay are made
active at this point, and run in arbitrary order. Note that it is possible to
block a thread with more than one #0, and that threads blocked by multiple
zero-delays will still execute in the current cycle, but after all threads blocked

with fewer zero-delays.

14

3. Non-blocking updates. In this phase, all updates scheduled by non-blocking
assignments are executed, in the order in which the original assignments oc-
curred. Note that if the nonblocking assignment was made with an intra-
assignment delay, the update is not performed here, but rather during the

non-blocking updates phase of a later clock cycle.

4. The monitor events. These are the events corresponding to the Verilog con-
structs that begin with the $ symbol, such as $display. When such a con-
struct is encountered in a thread, the corresponding monitor event is scheduled
to run at this phase of the cycle, after all active, inactive, and non-blocking
update events have run. Monitor events execute in the order they were sched-
uled. These constructs are not really part of a program execution, but rather
are used to display information about the state of computation at a certain
point. We will not, therefore, consider them further in our formalization of

the simulation cycle.

5. Future events. These are the threads that are either blocked by a guard or
delayed to run at some future time. When there are no more active or delayed
threads, and no more non-blocking updates, the simulation clock is advanced
until one of the events can be run. The IEEFE Standard divides future events
into two classes— future inactive events and future nonblocking assignment up-

date events—which correspond, respectively, to those events which will occur

15

during the active events phase of a later cycle and those which will occur

during the nonblocking updates phase.

Although not directly stated in this section of the Standard, we can also classify

the fulure inactive events as being either guarded or delay-blocked. Qur axioms

use this distinction explicitly.

16

CHAPTER III

METHODOLOGY

The idea elaborated in this thesis is to develop a formal description consisting
of a set of reduction azioms. For each syntactic construct there are associated with
it one or more axioms, each of which specifies a legal reduction of that construct to
another one. Although this thesis does not directly use the results of either work,
we acknowledge previous work by Boehm [2] and a paper by Sabry and Field [14]
as foundational and inspirational sources.

Each axiom describes formally the behavior of a construct Sy in terms of a
(usually) simpler construct, S;, by stating that any occurrence in a program of 5y
can be rewritten as S;.

For example, we can describe the behavior of if-then statements as follows:

if(n)sS — S eifn#0
if (0) S — €

IThe intuition here is similar to the sort of reductions that are carried out in elementary algebra:
“Wr? — z", for example.

17

This says that an if-then statement that executes S only on condition of true
(i.e., 2 non-zero value) can be rewritten as S itself, and that the execution of S
on condition of the value false can be deleted altogether*. With this approach we
are able to define a “symbolic execution” of Verilog programs, through the repeated
evaluation of program elements. Notice how both of these axioms require that the
(ezp) in the conditional evaluation be a constant value. Notice further that since
these are the only two axioms whose left-hand side can be matched to any form of if-
then statement, the conditional expression itself must first be evaluated completely.

Otherwise, no further reduction is defined.

Finding a Suitable Grammar

The Verilog language is enormously rich and feature-laden, and to atiempt
a complete account of every syntactic element would introduce a complexity that
would quickly overwhelm other efforts. In papers concerning formal semantics or
formal reasoning about Verilog, therefore, it is typical to treat only a subset of the
full language specification, and the present work is no exception.

The aim of this work is to provide a general-purpose formal description of the
behavioral subset of the language, and of the simulation cycle. Hence our main

criteria for a language subset is that it be a large enough subset of real Verilog to

2Throughout our notation, we make frequent use of the null character, ¢, typically in order to
indicate that something has been deleted. Note that ¢ is not a syntactic element of the language:
it is merely a notational device to indicate a null or empty element.

18

be representative of the most useful constructs in the language, yet small enough
not to obstruct the work of describing the simulator.

We will choose, therefore, a “core” subset of the full syntax consisting only of
some representative behavioral elements. In particular, we explicitly ezclude system
constructs (i.e., those causing monitor events) as well as the non-standard additions
to the language provided by many vendors.

Further, we exclude the “structural elements” of the language, such as continu-
ous assignment (with or without delay), capacitive nets, and gate or transistor-level
primitives. This may seem to be a strange limitation, but again, our goal is to pro-
vide a formalization of the behavioral constructs of Verilog, along with the behavior
of these constructs within the simulation cycle. For reasons that are discussed briefly
in the conclusion, the formalization of the structural components of the language is a
different problem from that of formalizing the behavioral components. Introducing
them would likely require additional techniques that are unnecessary in accounting
for behavioral modeling. This is an area that requires further work before it can be
successfully integrated into the present semantic description.

The complete grammar of our behavioral subset is given as an Appendix.

19

Normalization

In order to make the task of reasoning about a Verilog program tractable, we
will first perform a number of normalizing transformations to each module.

The first normalization is a flattening transformation, borrowed from Gordon
[9], by which we collect into a single top-level module the set of threads to execute
concurrently. The basic procedure consists of (i) renaming the variables local to each
module instance to avoid clashes (ii) replacing module instances by the instantiated
threads that they contain, and finally (iii) redeclaring all local variables at top level.
This last part includes the variables that are local to labeled blocks. At this point,
we can also delete the labels themselves, since we are not including the disable
construct in our subset.

Gordon observes (p.8) that after flattening, the only way that a wire can be
driven is by a continuous assignment. Since we do not, in the present work, include
continuous assignment at all, we can eliminate wires entirely. Since wires only exist
to connect ports together, a bottom level module can have only a reg variable, r,
as a source on an output port. Thus, the wire, w, connecting to this port from the
containing module is guaranteed to be connected to a register. Ordinarily, this port
connection would be replaced by a continuous assignment (i.e., assign w = r;).
Here, we can simply replace each occurrence of w with ». This leaves us with a

reg variable that can only be connected across modules as either (i) the source

20

on an enclosed module’s input port or (i) the source on the enclosing module’s
output port.

When this process has been repeated on all enclosed modules, the result is
a new bottom level module (the original enclosing one, now flattened) that only
has reg variables as the sources on its output ports. The flattening can now be
continued at the next higher level. At the very top level, if the module contains
no ports, we will have no wires left. If it does contain ports, those declared as
input will be wires, to which we can simply assign initial constant values.

Note that this elimination will not work if a wire is connected to more than
one output port sink, since this results in a logic conflict. For present purposes, we
will disallow such connections.

The elimination will also fail if we allow continuous assignment, since at this
point we risk the possibility of feedback. This is the case where the expression on
the right hand side of a continuous assignment refers, either directly or indirectly,

to the net variable on the left hand side. For example:

assign x =z & y;
assign y = x;
In such cases, the attempt to replace occurrences of the left hand side by the
right will result in an infinite loop. On the other hand, the elimination procedure is

also undesirable if we wish to include continuous assignment.

21

The Initial Transformation

Simple constructs such as if (e) S are easy to represent in an axiomatic
fashion because all the information we care about (i.e., whether S executes) is
directly representable within Verilog. Other behavioral aspects of Verilog—including
the simulation cycle—pose a number of challenges, however.

For representing the contents of memory at any given point, we can use a
sequence of ordinary blocking assignments to constant values, one for each declared
register variable. So that it can easily be identified as the block representing the
contents of the store, we define a special labeled environment for it (which we know
is unique, since we have removed all other labels during normalization). Thus, for
a module with reg variables a, b, and ¢, whose current values are 1, 0 and x (the

unknown value), we would include in our module the following thread:

initial
begin: _ST
a=1;
b = 0;
c = X;
end

In fact, we will include not one but fwo representations of the store, ST, and
ST,, which represent (respectively) the most recent update to each variable and the
contents of the store just before the current set of updates. The reason for this

concerns the problem of representing edges, and is discussed in detail in Chapter V.

22

Of course, the computational state of a Verilog program does not just include
the contents of the store. In addition to this, we must also provide an explicit formal
representation of all the threads on the event queue at any given point.

Here, the real challenge is to represent the threads of execution in each of the
various phases of the cycle in such a way that we guarantee an order of execution
corresponding to that specified in the standard ([12], section 5). How we do it
depends on how we choose to represent each phase of the cycle.

To begin, we will represent the pending nonblocking updates in a similar fash-
jon to that of the store: as a labeled sequential block of non-blocking assignments
to constant values. Suppose, for example, that we perform two non-blocking as-
signments to a variable a which evaluate to 0 and 1, followed by an assignment to
b of 1 and another assignment to a of 0. Then we would represent the scheduled

nonblocking updates as:

initial
begin: _NBU
a <= 0;
a <= 1;
b <= 1;
a <= 0;
end

For the moment, let us defer represention of the threads in the various other

phases of the cycle. Given our choice of representation for the store and the non-

23

blocking updates, the ordering constraints of the four main cycle phases, which we

detailed above, require that we guarantee the following ordering of execution:

1. The “old” copy of the store—i.e., ST;—which represents the state of memory

with which the current program begins execution.

2. The scheduling of non-blocking updates. Literally speaking, these are the non-

blocking assignments in the NBU block.

3. Those threads that belong to the future threads phase, both delay-blocked and
guarded. These are all the threads that were blocked at the point of execution

represented by the program.

4. The “current” copy of the store—i.e., STo—which represents the state of mem-
ory after all the updates that were made just at the point of execution repre-

sented by the current program.
5. The active threads.

6. The delayed threads.

Some explanation for this is obviously in order. The execution of ST, before
anything else is obvious, since this is the initial state. Actually, we can also consider
the execution of the nonblocking updates block to happen first: it does not much
matter which of these is first or second, since nonblocking updates will not be carried

out until later on in the cycle anyway. What we are doing here is making sure that

24

all the updates which were already scheduled at the start of this computation will
in fact be scheduled before any other updates which should come later.

Perhaps the strangest claim is that the future threads must be run immediately
after (1) and (2), and before any of the current updates to the store, the active
threads, and the delayed threads. Consider, however, what a future thread really
is: it is a thread that begins with either a delay or event control. In other words,
when we run these threads, each one will block, as it should. The importance of this
occurring lies really with the guarded threads. Remember that the future threads
are those threads that have already been blocked. In the case of the event controls,
this means that if the execution of the second copy of the store (5T2) causes a change
to any variable on which a guard is waiting, the guard should be able to see it and
wake its thread appropriately. If the guards have not already been evaluated (and
placed in the future threads phase), these changes will be missed.

Given this argument, the remainder of the ordering constraints should be clear.
(1) through (3) set up the complete computational state, as it stands at the start
of a program’s execution. (4) then executes all the changes to the store that “were
about to happen” at the start of the computation. (5) and (6) then correspond to
the rest of program that has not yet been executed at the start of this computation.

There may be a number of ways to guarantee this ordering, but we will make

use here of the §-delay (#0) for its intuitive clarity:

25

1. Neither the ST, nor the nonblocking updates blocks shall have any delay on

them.

2. Likewise, those future threads that are blocked by delay controls shall remain
unmodified (remember that these will block immediately anyway, so the use

of a #0 is pointless).

3. The future threads blocked by event controls will have a single #0 just before
their event control. This ensures that no guard accidentally fires when the

updates in ST, are performed.
4, ST, will have two consecutive é’s (#0#0) inserted before the first assignment.

5. All other threads will have three §’s (#0#0#0) inserted before each one's first
statement. Notice that this means that the delayed threads will in fact begin

with at least four, not three é’s.

Now we may complete our normalization process from the previous chapter.

Suppose we now have a flattened, label-and-wire-free single module:

module M1;
reg a,b;

always statement,
initial sialiemeni,
endmodule

26

First, normalize each always and each initial construct by first transforming
each always thread into an equivalent initial. Then enclose each thread body in

a sequential block that begins with a 3-6 delay:

module M1;
rega,b;

initial begin #0#0#0 forever statemeni; end

initial begin #0#0#0 statement; end
endmodule

The lack of distinction between initial and always threads may seem a bit
strange, but it is justified by the fact that always S is semantically equivalent to
initial forever S°.

Now add the nonblocking updates block (NBU) which, of course, is empty for

now (we haven’t started the program yet):
module M1;
reg a,b;
initial begin: NBU end
initial begin #0#0#0 forever statement; end

initial begin #0#0#0 siaiemeni; end
endmodule

Lastly, add the representation of the store, by inserting the ST, and ST, blocks

into the module and adding to both of them exactly one assignment of the unknown

3Steven Sharp, personal communication. See also Gordon [9].

27

value, x to each declared variable. Since each block only assigns to a variable once,

the order of the assignments does not matter. The final, transformed program, is:

module M1;
reg a,b;
initial begin: 5T1 a = x; b = x; end
initial begin: ST2 #0#0 a = x; b = x; end
initial begin: NBU end
initial begin #0#0#0 forever statement; end

initial begin #0#0#0 statiement, end
endmodule

Notice that we initialize variables to the Verilog unknown value, x, in accor-
dance with the official specification ([12], §3.2.2), but that there are other choices.
We could just as easily choose another set of initialization values, for instance, if we
wanted to examine the behavior of the port variables in a module under different
valuations.

Under the transformations specified, we assert that in all cases, the trans-
formed programs exhibit behavior that is identical to the originals and hence they
are equivalent. The reason for this is fivefold. First, the initial transformation never
adds any threads in a future threads representation, since before the program begins
execution, there are no such threads. Second, the initial addition of the nonblocking
updates thread has no effect on a program, since it is always added as an empty
sequential block. Third, the ST, and ST, blocks are added in such a way that they

perform identical assignments that correspond to the initialization values specified

28

by the Standard, and therefore neither one effects any net change to the memory
state before the program proper (i.e., the active threads). By these three arguments,
therefore, we can see that no change to the computational state can occur before
the original program threads can begin execution.

Now for the active threads themselves. Notice that the addition of a begin-
end to each of the original program threads has no effect: this is the fourth point.
Finally, although the addition of three é’s to the beginning of each thread obviously
effects a slight change in the simulator’s scheduling behavior, it affects every thread
in the same way. Clearly, therefore, the ordering properties of the original threads
are preserved.

Nonetheless, a literal axiomatic description of the resulting programs threatens
to be quite confusing, requiring very long axioms in order to capture the syntactic
elements which indicate the properties of each construct about which we wish to
reason. In order to make this task manageable, we introduce some notation, to

which we now turn.

29

CHAPTER IV

NQTATION

What we have created so far is an explicit representation of the full compu-
tational state of a behavioral Verilog program within Verilog itself. For the sake of
some clarity, we now introduce several pieces of notation, in which the axiomatic
description itself will be written.

Some of the notation is fairly straightforward. We use ¢, for example, to
represent the empty construct. It is not a syntactic element, of course, but merely
a notational reminder, typically indicating that something has been deleted. The
reduction symbol — is used to indicate that a reduction may be made between
the left and right hand sides; that is, the left hand side may be re-written into the
form specified on the right hand side. Some of our axioms group elements together
with { }, in order to enhance readability.

In order to shorten our axioms a bit, we will also use quite a few notational
devices whose appearance within the axioms resembles real syntactic elements.
THREAD [], is the generic representation of a thread body, and a THREADLIST in-
dicates zero or more threads within a particular cycle. We will also find it useful

to use the shorthands UPDATES and NBUPDATES, which are simply sequences of

30

blocking (resp. nonblocking) assignments to variables of constant values. Other
“pseudo-syntax” notation is a bit more complicated, and is explained in the follow-

ing sub-sections.

Simulation Cycle Phases

The various cycle phases introduce by far the greatest complexity into our
notation. Since most of our axioms will need to account for the complete com-
putational state, we specify a shorthand for this: ST, AT, DT, NBU, FD, and FG,
which correspond (respectively) to the store, the active threads, the delayed threads,
the nonblocking updates, and the two classes of future thread: delay-blocked and
guarded. Notice that we ignore the classification of future nonblocking assignment
update events, which exists in the Standard ({12], §5).

The first and second copies of the store are denoted by ST, and ST»,.

In all cases, however, remember that this is only notation, not syntax. At bot-
tom, we are still working only via transformation from Verilog programs to Verilog
programs. The order in which we write each phase shorthand does not imply that
these threads occur in the source text in any order at all (such order is irrelevant
in a parallel language): it is simply a concise way of representing the relevant in-
formation about the source text contents. If a particular phase is relevant to some
axiom, it is included there. If its contents are not relevant, the shorthand is typically

omitted from the axiom. Each of these pieces of notation corresponds to the set of

31

threads in the source text that match a particular syntactic form:

® ST, and ST, are both sequential blocks, one labeled _ST1, and the other _ST2.

NBU likewise is a sequential block with the label NBU.

o FD are, literally, the threads that begin with a constant-valued, non-zero delay.
FG are the threads that begin with exactly one #0, followed immediately by

an event control.

o AT are those threads that begin with exactly three occurrences of #0, and

DT are those threads with more than three.

In some of the side conditions of our description, we make use of the e symbol
to indicate the absence of any threads in a particular phase, as in “AT = €” (read:
there are no active threads).

The occurrence of ST; = ST, in a side condition denotes a requirement that
all of the assignments to same variables be consistent between each copy of the store

(which means that no edges are currently present).

Evaluation Contexts

We make use of the notation “I'[¢])” to denote an occurrence of o within context
I'. Two of these contexts—& and G—specify evaluation order within expressions and
guards, and are part of the axiomatic description itself. They are formally defined

in Appendix A.

32

We will also use this notation informally to indicate the occurrence of an
element within one of the cycle phases. For example, “[¢]” on either ST or ST,
should read: “the occurrence of the assignment & in ST, (or 5T3).

Further, the use of [¢] with a given phase, such as AT[o] denotes the occurrence
of o as the body of a THREAD, which is itself executing in parallel with the other

threads in that phase. See also the following. ..

Parallel Execution

“a || B” denotes the execution of @ and § in parallel. Occasionally, we will also
use this notation with a phase ® (for example, AT | a) to denote the execution of a
THREAD (or even an entire THREADLIST) « in parallel with all the other threads in
phase ®. An important point to stress about “a | 5” is that no guarantee is made

regarding the order of execution or the interleaving of threads.

Representation of Thread Scheduling

Obviously, the same thread will be represented in different ways, depending on
whether it is active, zero-delayed, delay-blocked, or guarded. In most cases, however,
we are not interested in the particulars of this representation, and need only to
state that a thread has been rescheduled somewhere else. The particulars of the
representation are only interesting in developing the appropriate data structures for

each phase.

33

If we wish to indicate the change of a thread’s status from guarded to zero-
delayed, for example, the actual re-write would involve replacing the event control

on the beginning of the thread with four é’s:

initial begin #0 @({guard)) (stat) end
— initial begin #0#0#0#0 (stat) end

This is cumbersome and unnecessary when we need to give a complete formal defi-

nition, however, so we use instead:

FG | THREAD [@({guard)) §] — AT|THREAD [#0 5]

which conveys the necessary information in much less space.

34

CHAPTER V

DESCRIBING THE SEMANTICS OF VERILOG

“Normal” Statements

The constructs in our subset of Verilog can be roughly classified according to
whether they reference or alter the store and according to whether their execution
includes any timing controls. Those that do neither one are “normal” procedural
statements, such as conditional execution, discussed above. In general, these con-
structs are the easiest to describe, as their semantics are well-understood. They

are:

if(n)s — S eif n £ 0
if(0) S — €
— 5 oif n#0

if (0) S, elseS; — S5,
vhile ({ezp}) S
— if ({ezp)) begin §; while ({ezp)) S end
(6) forever S — while (1) §
() € S — 5
(8) THREAD [begin S; (statlist) end)
— THREAD [§; begin {statlist) end |
(9) THREAD [begin € end 5]
— THREAD [§]
(10) THREAD [€] e

(1)
(2)
(3) if (n) 5 else S;
(4)
(3)

35

Reasoning About Side Effects vie Blocking Assignment

Because we exclude the function construct from our subset, expressions can-
not produce changes to the store. As a result, the task of axiomatizing side effects
and lookup is greatly simplified.

In our semantics, the primitives representing the memory state are the assign-
ments of constant values to variables that occur in ST and ST;, which, because
of the behavior defined by the axioms, are the most recent values assigned to each
variable at any point in the computation.

The axioms concerning the store fall into three categories: update of a vari-
able’s value, lookup of a variable’s value, and the presence or absence of an edge in
each update (for event controls). Specifically, the following facts about side effects

in Verilog must be expressed:

1. When an assignment is made to a variable z, the location in memory repre-

sented by z must be updated to the new value. However,...

2. If an update to z causes a certain kind of change from z’s old value, then

every event control guarding on this kind of change must be released before

any further updates can be made to z.

3. When a variable z is encountered in the evaluation of an expression, its current
value in memory may be substituted for any occurrence of z in the expression,

but the value of z in memory is never changed as a result of this.

36

In our description, the simplest task lies in describing updates. Since changes
to the store can only happen within statements, we need only concern ourselves
with axiomatizing assignment. Verilog supports two kinds of assignment—blocking
and nonblocking—and each may be executed with or without an intra-assignment
timing control. In our semantics, however, the only type of assignment that can
effect changes to the store is blocking assignment without any timing control—
specifically, those blocking assignments that occur in the active threads phase of the
simulation cycle (AT). This is sufficient because, as we shall see, the other three types
of assignment are really just blocking assignments whose timing controls enforce a
certain order to their execution.

At a first pass, then, we might axiomatize updates as:

ST[z = n1] AT[z = ny; §] — STlz = ng) AT[S]

This is not sufficient, however, to accomodate the constraint given above in
(2), since it offers us no way to detect edge changes. Our approach to this is the
double representation of the store using ST and ST,. In this scheme, ST, is used
to represent the most recently assigned value to a variable. The value held by that
variable just before the assignment is kept in ST;.

With this approach, we have an explicit representation not only of the store,

but also of any rising or falling edges on each variable. It introduces yet another

37

subtlety, however, which is best explained by giving the final form of the single

axiom governing side effects in our semantics:

(20) STi[z = n1] STa[z = n4] AT{z = ny; S} — STi[z = n4] ST3[z = ny] AT[S]

Notice that this axiom can only be applied to the case where the value of
z is the same in both ST, and ST (i.e., no edges are present on). With this
requirement, we ensure not only that the proper value is written to z, but also that
if an edge occurs, it cannot be deleted while there are still guards that could fire on
it.

Of course, we then need to specify how such an edge is cleared and the update
committed to both ST; and ST,. This and other matters pertaining to event controls

are discussed below.

Expression Evaluation

As with most procedural languages, the rules that define how expressions are
evaluated in Verilog are extremely complex, but generally uninteresting. Two points
are worth noting, however.

First, all operations on variables are modulo 2", where n is the bit-size of the
variable. This is true of most languages, of course, but in Verilog, the bit-size of

many variables can be explicitly declared, using an optional range specification!.

'Without a range specification, variables of type reg, wire, or one of several others, are assumed

38

Variables can be accessed bit-by-bit, using the operator [¢], which accesses the i**
bit. This means that attention must be paid to the range declaration of a variable
when determining the modulus of operations on it.

Secondly, each digit of a variable can take on one of four values: i, 0, z
(high-impedance), or x (unknown value). A description of the semantics of various
operators requires a truth-table-like exhaustion of possible combinations over all
four values. Because of this “four-valued” logic, the usual rules for arithmetical and
boolean operations on variables increase substantially in complexity.

We would, for example, describe the semantics of the “==" operator thus:
n,==n, — 1 eif each bit in n, and n; the same,
and neither number contains an x or 2
ny==n, — 0 eif any bit in n, and n, differs,

and neither number contains an x or z
ny ==ng — x eif either number contains an x or z

...and so on. As is apparent from this, the semantics of expression evaluation
involve a large number of very similar axioms whose specification is tedious and
whose complexity is unproductive for present purposes. Hence, we will avoid a
full description in this thesis, referring the reader instead to Section 4 of the IEEE
Standard [12).

There are some general properties of expression evaluation that we will include

here, however. We can specify how an expression is evaluated (i.e., the order of

to be 1 bit in size. Variables of integer, real, etc. have the usual size conventions.

39

evaluation) by defining an evaluation contezt for expressions, £. Other than operator
precedence rules, the Standard does not specify any particular order: for the sake
of simplicity, we will assume here that it is left-to-right. This is not an axiom, of

course, but belongs instead with the syntax of the language:

{(NUMBER) (b_op) &€

|
I € (b-op) (ezp)
| €7 (ezp): {exp)

As suggested in the previous section by constraint (3), most expression eval-
uations share in common a need to reference the value of one or more locations in
memory. A reasonably complete semantics should at least include rules that de-
fine this. For the sake of readability we define nine, each of which corresponds to

expression evaluation in a different context:

(11) ST[z = n] AT[if (€[z]) 5]
— STy[z = n]AT{if (€[n]) S}

(12) STz = n] AT[if (£[z]) S; else Sy
— STy[z = n] AT[if (€[n]) Si else S,]

(13) ST[zy = n] AT[z, = E[z4]]
—+ ST3[zy = n] AT[z2 = €[n])

(14) STa[zy = n] AT[z, = (delay-or_eveni_control) E[z,]]
—+ ST[x; = n] ATz, = (delay_or_event_conirol) E[n]]

(15) STa[zy = n] AT[z, = #E[z,1] (ezp)]
—+ STalzy = n] AT[z2 = #&[n] {ezp)]

40
(16) STQ[.’El = n] AT[:L‘g <= 8[.‘1’:1]]
L STylz, = n] AT[zs <= E[n]]

(17) STi[z; = n] AT[x; <= (delay-or_event_control) E[z:]|
— STz = n] AT[z; <= (delay_or_event_control) E[n]]

(18) ST2[$1 = n] AT[CCg <= #8[2‘1] (e:t:p)]
— STy[z) = n] AT[z; <= #E[n] {ezp}]

(19) STz[z = n] AT[#E[z] 5]
—+ STz = n] AT(#E[n] S]

(20) ST1[$ = nl] STQ[I = nl] AT[:B = TNa, S] e ST1[.'B = n1] STQ[:B = 712] AT[S]

In effect, they all state that an expression context containing a variable £ may
replace that occurrence of z by its value in the second (current) copy of the store,
without altering that value.

Note that unlike the single axiom governing writes, we relax the requirement
that the value of = be consistent between ST; and ST;. In a language like C, in
which expressions can themselves cause side effects, this would result in an incorrect
description of the semantics of event controls, for the reasons discussed above: we
might cancel a change in a variable’s value before all relevant guards can fire on it.
Our subset of Verilog does not permit this behavior, however.

Note further that the value of an expression in a certain state is not necessarily

well-defined. Consider the following (somewhat silly, but legal} code:

initial begin x = 1; if ((!x) || x) some_.statement; end
initial x = 0;

41

Will some_statement execute? In almost every case, yes, but we cannot guar-
antee it. Suppose we first evaluate the assignment of x to 1, applying Axiom 20,
followed immediately by an application of Axiom 11 to the !x portion of the if-
expression (which will evaluate to 0). Now since there are no guards to fire (see V.6,
below), we apply the axiom that allows us to clear the rising edge from memory
(Axiom 32), and then apply Axiom 20 to the assignment of x to 0. Finally, we
apply Axiom 11 once more in order to evaluate x; only now, x has the value 0 in
memory, so the whole expression evaluates to (0 || 0), and some_statement will
not execute.

It is doubtful that one could find a Verilog simulator that did not guarantee
execution of some_statement. Although we were unable to verify this firsthand, the
Verilog-XL package from Cadence reportedly implements the notion of time foken
movement, which prevents the interleaving of statements that execute as a single
block between timing controls®. Since almost every Verilog simulator follows the
behavior defined by Verilog-XL, one could reasonably expect never to see this kind
of interleaving in practice.

Time-token movement would certainly be sufficient to prevent another thread
from changing the value of a variable in the middle of an expression evaluation,
and since it would be more in the spirit of real Verilog simulators, we could choose

to reflect this in our semantics. However, it is still not clear that we could prevent

2Steve Meyer, personal communication.

42

intra-assignment, once we introduce the fork/join construct, which executes in one
thread and runs the statements within its body concurrently. Further, the intro-
duction of the function construct would introduce the possibility that expression
evaluation could itself produce side effects, which again leaves us vulnerable to this
interleaving.

Regardless of the practicalities of implementation, the Standard itself is fairly

clear on the matter:

Another source of nondeterminism is that statements without time-
control constructs in behavioral blocks do not have to be executed as one
event. .. At any time while evaluating a behavioral statement, the simu-
lator may suspend execution and place the partially completed event as
a pending active event on the event queue. The effect of this is to allow
the interleaving of process execution. Note that the order of interleaved
execution is nondeterministic and not under the control of the user ({12],

§5.4.1)

Thus, we choose to implement a conservative, “worst case” semantics, which
allows full interleaving of statements and expression evaluation. In truly simulta-
neous execution of the two threads above, one cannot guarantee, in a formal sense,

that some_statement executes, and this is what our semantics reflects.

Non-Blocking Assignment

Non-blocking assignment (NBA) is supported in Verilog by using the <= op-
erator instead of =. It is often used in Verilog programs to model the way register

transfers work in some systems: in general, its effect is to assign to a variable at

43

the end of a time unit the value of the right-hand side of the assignment from the
beginning of the time unit.

Other than the time at which the updates actually occur, however, non-
blocking assignment has exactly the same effect on the store as ordinary blocking

assignment, and our axioms defining its behavior reflect this:

(21) AT[z <=n; S] {initialbegin: NBUNBUPDATES; end}
— AT([S] {initialbegin: NBUNBUPDATES; x <= n;end}
(22) ST, ST, AT DT {initialbegin: NBUNBUPDATES; end}
—+ STy ST, {THREAD [UPDATES;]| AT} DT
initial begin: NBUeend
oif AT=DT =¢) and ST, =ST2
e each nonblocking assignment in NBUPDATES; is transformed
to a blocking assignment in UPDATES;, according
to the schema:
r<=n; — T =n,;

In english, (21) says that a NBA of a constant value to x schedules an update
to x that will occur immediately after all the other non-blocking updates already
scheduled. Notice how we require that the right-hand side be a constant value, which
ensures that it is fully evaluated before the update is scheduled. Axiom 22 then says
that when all active and delayed threads have been run, and when there are no more
rising edges that could trigger a guard, the sequence of nonblocking updates occurs.
Actually, the requirement that ST, = ST, is unnecessary, and it is included only
for intuitive clarity. Since the updates execute as blocking assignments in an active

thread, Axiom 20 already ensures that any edges that should be detected will be.

44

Notice, by the way, that unlike most of the other representational transforma-
tions involved in moving a thread between different phases, the transformation of
the body of the NBU block into an active thread is non-trivial. Axiom 22 is really
an axiom schema, which a specifies a simple transformation to be applied to each
assignment in the NBUPDATES block. This is one of three axiom schemas in our
semantics (the other two are Axioms 24 and 25).

This brings up, however, two important subtleties of ordinary NBA that are
easy to overlook. The first point, which is more of an explanation than a new
observation, is that when a nonblocking update to a variable is scheduled, it must
be performed, even if another nonblocking update to that same variable is scheduled
immediately afterwards. This is, in fact, stated quite clearly in section 5.4.1 of the
Standard: “Nonblocking assignments shall be performed in the order the statements
were executed.”

Without a thorough understanding of the reasons for this, however, one might
be tempted (as this author first was) to optimize the nonblocking updates phase
by keeping only the last scheduled update to each variable. This will not do, how-
ever, because nonblocking updates can themselves change the computational state.

Consider the following:

45

module nbupdate_test;
reg [1:0] x, y;
initial #10 $stop;
always Q@(posedge x) y = x;
initial y = 2;
initial begin

x = 0;
#5 x <= 1; x <= 0;
end
endmodule

A simulator that executes every scheduled nonblocking update will cause y to
get the value 0 at the end of the 5" time step. On the other hand, a simulator
that (incorrectly) attempts to optimize away the earlier update will fail to trigger
the waiting posedge x guard, and y will have the value 2 throughout all 10 clock
cycles.

Within industry, this does not appear to be a common bug, however. The
Veriwell free simulator {v2.1.7), to which we had direct access, sets y to 0. An
informal collaborative experiment, in which this code was run on a number of differ-
ent simulator packages by participants of the USENET group comp.lang.verilog,
suggests that most all of the commercially-available packages also implement this
behavior correctly, as shown in Table 1.

The exceptions are the FinSim and Chronologic simulators, although when x
is changed to a 1-bit register, FinSim sets y correctly.

As an interesting aside, note that although the posedge x is triggered, the

body of the statement never sees x with the value 1, since this value has been

46

TABLE 1. Results of nbupdate_test.

Simulator Version Reported Result
Veriwell 2.1.7 0
SuperFINSIM 4.5.11 2
Modelsim 5.1d 0
Verilog-XL 2.6.18 0
ChronologicVCS 4.4.1 2
NC-Verilog 1.22(s37) 0

overwritten by the later nonblocking update. In the Verilog-XL and NC-Verilog
simulators (both from Cadence Systems), this is the occasion for an (optional) ex-
plicit change to the semantics 3: the +delay_trigger command line option changes
the semantics of event controls so that a guard is only triggered if the process wait-
ing on the guard actually sees the condition being waited on. If this option is used,
both simulators leave y with the value 2. Further, both simulators reportedly are
optimized to only schedule the last nonblocking update in a sequence of assignments,
if they come from the same assignment statement. For example, the @(negedge 1)

guard in the following code will not fire :

3Steven Sharp, personal communication.

always Q(negedge r) statement
initial begin
i=0;
while (i <= 1) begin
r <= 1i;
i= i+1;
end
end

The second point about nonblocking assignment—a consequence of the first—
is that the completion of the scheduled non-blocking updates does not necessarily
mean the end of the current cycle. This is specified in the IEEE Standard ([12],

§9.2.2), albeit somewhat confusingly:

At the end of the time step means that the nonblocking assignments
are the last assignments executed in a time step—with one exception.
Nonblocking assignment events can create blocking assignment events.
These blocking assignment events shall be processed after the scheduled
nonblocking events.

What this appears to mean, based on the previous discussion, is this: because
nonblocking updates can cause waiting guards to fire, it is possible for a series of
nonblocking updates to make one or more threads active again, in the same cycle.
It is therefore not only blocking assignment events but any event that can be made
active in the same time step, but after the scheduled nonblocking updates.

It is for this reason that Axiom 22 specifies that the UPDATES in the NBU phase

be executed as a series of blocking assignment in a single active thread: in effect,

48

these updates create the possibility that the cycle can start over again, without
advancing the simulation clock. The following code, for example, will cause an
infinite loop at simulation time 5:
initial begin
ith x = 0;
end
always @(negedge x) begin
x <= 1; x <= 0;
end
always @(posedge x) begin
x <= 0; x <= 1;
end
When x is assigned 0 at time 5, the negedge x guard fires, causing two non-
blocking assignments to be scheduled. When these updates are carried out, they will
in turn release the waiting posedge guard, which schedules two more non-blocking

updates, causing the negedge guard to fire once again, and so on. This behavior is

similar—though not identical—to that of an infinite loop described by Gordon ([9],

pp.3-4).

Delay Controls

Of the two types of Verilog timing controls, delays are the simplest to describe,
because their timing properties are more readily predictable. Delay controls are

used in two ways: at the beginning of a statement, and in intra-assignment delays.

49

Delays used in the “ordinary” way always serve to halt continued execution of a
thread until a later time step. Non-zero delays suspend a process until a later tic
of the simulation clock. A & or zero-value delay, on the other hand, still causes a
process to execute in the current time step, but serves to guarantee some ordering

of execution between processes.

Non-Zero Delays

When a statement of the form #n S is encountered in a thread, the effect is
to suspend execution of the thread at this point. Then, when the current time step
is finished, the simulation clock is advanced until the earliest delay scheduled in any
thread is reached. All such threads that were delayed to this point are made active
and run, in arbitrary order.

Equivalently, we can say that when #n § is encountered, it is simply sus-
pended. Then, when the current time step has finished, the simulation clock ad-
vances by one lic, and we evaluate the thread again, only this time as #(n-1) § .
This process of evaluation/suspension is repeated, until there is no delay left, at
which point the thread is able to continue execution at S. This interpretation is

expressed by two axioms:

(23) {THREAD [#n S]| AT} FD — AT {FD|THREAD [#n S |}
eif n>1

50

(24) ST, ST, AT DT NBU {FD | THREADLIST;}
— ST, ST, {THREADLIST; | AT} DT NBU FD
oif AT=DT=NBU=FD =¢, and ST, = ST,
e the body of each THREAD in THREADLIST; is transformed to an
active thread representation, according to the schema:
THREAD [#n §] — THREAD [#(n-1) §], if n> 1
THREAD [#1 §] — THREAD[S] , otherwise

Axiom 23 states that a thread whose body begins with a constant-value delay
greater than 1 is added to the future threads phase of the cycle, unchanged. Literally
speaking, the only change we make to the source text is to remove the three #0’s
that mark the thread as active.

The final axiom (Axiom 24) states that once there are no more active, delayed,
or non-blocking update events to run (i.e., once the current cycle is really over),
the threads suspended by delays will be re-evaluated (in arbitrary order) as active
threads. The effect of this on the computational state is the same as advancing the
simulation clock to the next time at which a thread can become active, except that
we don’t need to keep track of the clock time. Note that the side condition FD = ¢
ensures that all of the delay-blocked threads are made active at the advance of the
clock: it is impossible to choose 2 THREADLIST that is only a proper subset of FD.

Axiom 24 is another axiom schema, and the specified representational trans-
formation of each thread is easy, but important. Notice that we do not permit a
statement of the form #1 S to be re-released as #0 S, because a thread scheduled to

wake up in the current cycle becomes part of the active threads phase, not delayed.

5]

Actually, this is a distinction without a difference, in some sense. The behavior of

delayed threads would be just as correct if we used the schema:

THREAD [#n S| — THREAD [#(n-1) S|, if n >0

so that the thread is finally released with a zero-delay.

The reason for this is that if we get to a point in the computation where we
are able to apply (24), it means (by assumption of the side conditions for the axiom)
that no other threads except for those in FD can run. Consequently, the threads
released from FD are guaranteed to have the earliest execution time. If the least
possible delay on any thread in this group is #0 instead of no delay at all, then such
threads will still be the first to execute in the cycle. We would therefore have a
de facto implementation of the proper semantics, even though, strictly speaking, it
would be incorrect.

On the other hand, our optimization, in addition to being more in the spirit of
the true semantics, saves us from having to repeatedly apply the axioms concerning
#0 each time we “advance the clock”.

As in Axiom 22, we also require that ST, and ST,. In this case, however, the
side condition is not merely illustrative but necessary for correct execution. Without
it, we may inadvertently release a thread delayed to the next cycle while there are
still guarded threads that can run in this one. Suppose for instance that we add #1

some_statement to our infinite loop example from the previous discussion of NBA:

92

initial begin

#5 x = 0;
#1 some_statement;
end

always Q(negedge x) begin
x <= 1; x <= 0;
end
alwvays Q@(posedge x) begin
x <=0; x <=1;
end
Because time step 5 will never finish in this example, some_statement, which
is delayed to time 6, will never execute. If we don't require that ST, and ST, be
consistent, however, then we have no effective way to determine that no more guards

can fire. Thus we could, incorrectly, apply Axiom 24 and allow some_statement to

run.

Zero-Delays

Zero-delays (#0), also called 6-delays, corresponds to an event that happens
at no quantifiable distance away on the clock, but nonetheless happens “later than
n

now”. It is typically used as a way of forcing determinacy of execution between

threads, as in

always @(posedge clk) #0 x = y;
always Q(posedge clk) y = y + 1;

33

which guarantees that the assigment to x is always made after y increments its
previous value.

Were we to need a formal definition of the effect of a #0 on a thread’s scheduling
behavior (i.e., the change in a thread’s status from active to zero-delayed), we would

use an axiom along the following lines:

{THREAD [#0 S]|AT} DT — AT {THREAD [S]| DT}

In our representation of a thread’s status, however, this would mean only that
we deleted the #0 from the beginning of the thread body, and then in changing from
active thread to zero-delayed thread representation, we replaced the initial #0#0#0
with #0#0#0#0. In other words, this axiom does nothing whatsoever under our
semantics, because no active thread body can begin with a #0! Any active thread
that begins with a #0 actually begins with at least four of them. Consequently, it
already is a zero-delayed thread, and we do not need to reason about it further at
this point.

On the other hand, we do need to define the transition from zero-delayed to

active. This is accomplished by the following axiom:

(25) ST, ST, AT {DT | THREADLIST;}
— ST, ST, {THREADLIST; |AT} DT
oif AT =DT =€, and 5T, =57,
e cach THREAD in THREADLIST; is transformed to an
active thread representation, according to the schema :
initial begin #0#0#0#0 S end
— initial begin #0#0#0 S end

Axiom 25 is the third of our three axiom schemas, and is quite similar in
appearance to Axiom 24, which governs the release of nonzero-delay blocks. How-
ever, the representational transformation of each thread is actually trivial, since it
involves nothing more than the ordinary rewrite of the initial four §’s to three. It is
included largely for the sake of clarity.

In a similar fashion to 24, we require here that the DT matched is in fact empty.
In other words, if this axiom can be applied all, it must be applied to the entire
THREADLIST that is currently classified as zero-delayed. Here, too, the requirement
that all edges be cleared from the state (5T, = ST3) is essential, for the same reasons

given for the release of nonzero delays.

Intra-Assignment Timing Controls

Blocking Assignment with Timing Control

Of the two kinds of intra-assignment timing control, blocking assignment is the
simplest, containing few surprises. As mentioned previously, the difference between

a blocking assignment with liming control (z = C €) and a timing controlled blocking

99

assignment (C z =€) is in the time at which the right hand side of the assignment
is evaluated. With an intra-assignment control, e is evaluated immediately, as is
the event control C, and the thread is then blocked until the time specified by C.
At this point, = will get the value that was computed for e, and the thread will
continue execution. With a timing controlled assignment, on the other hand, C will
be evaluated, and then all further evaluation of the statement is suspended until the
specified time. At this point, the thread will be re-activated, e will be evaluated,
and z will immediately get this value.

If e is itself a constant expression, then the two types of timing control are
equivalent in every respect. Thus, we can define an intra-assignment timing control

on blocking assignment quite easily:

(26) =z = (delay_or_event_control) n; — (delay_or_eveni_control) z = n;

This, of course, effectively requires that the right hand side be fully evaluated before

the axiom can be applied, as it should.

Non-Blocking Assignment with Timing Control

The single axiom governing nonblocking assignment is not much more com-

plicted than its cousin:

56

(27) AT[z <= (delay.or_event_control) n; S}
—+ {AT[S]| THREAD [(delay-or_event_control) = <=n; |}

In words, this states that the occurrence of a nonblocking assignment with a
timing control schedules a nonblocking update of n to be made to z at the point
specified by the (delay_or_eveni_control), and that further execution of the original
thread continues without interruption. The continued execution of the thread is the
obvious difference between the use of nonblocking versus blocking assignment.

There is, however, a more obscure difference here that our axiom reflects.
Multiple non-blocking assignments with timing controls can lead to unexpected race
conditions, even if the order of the original statements was well-defined.

The account of this in the Standard is brief, but clear: “When multiple non-
blocking assignments are scheduled to occur in the same register in a particular time
slot, the order in which the assignments are evaluated is not guaranteed—the final
value of the register is indeterminate” ([12], p.102).

The following code, for example, results in a race condition on x:

initial begin
x <= #4 1;

x <= #4 0;
end

and so does:

a7

initial begin

x <= @(posedge clk) 1;

x <= @(posedge clk) 0;
end

Morevover, this is the reason that x <= #0 y; is not necessarily equivalent to
x <= y;. The sequential block

initial begin

x <= 1;

x <= 0;
end

produces a guaranteed sequence of values for x, but

initial begin
x <= #0 1;
x <= #0 0;
end
has an indeterminate result. There is nothing explicitly said about this last point
in the Standard, but it is the natural interpretation, given the above.
The delayed nonblocking update events are referred to as the future nonblock-
ing assignment update events in section 5.3 of the Standard. We can see that this is
something of a misnomer, however, and the nondeterministic aspect of such events

can be more clearly seen if we dispense entirely with this term. Instead, we adopt

the interpretation that in a nonblocking assignment with intra-assignment control,

58

it is not a nonblocking update that is scheduled but rather a new delay-blocked
thread, whose body consists of a nonblocking assignment statement.

Now the behavior is obvious. Ordinary nonblocking assignments schedule their
updates to occur “in the order the statements were executed” ([12], p. 47). Since an
intra-assignment timing control actually causes the creation of a new thread, which
is then blocked, and since all threads scheduled to run at a certain time do so in

arbitrary order, we immediately see the resulting nondeterminism.

Event Controls

Of all the constructs in our semantics, event controls pose perhaps the greatest
challenge to effective representation. There are many reasons for this, but the main
one seems to be the fact that what is guarded upon—the rising or falling edge of a
change in signal level—is an event, not a data value, and consequently, the ordinary
means for representing the memory state are insufficient. This is the impetus for
the double representation of the store, which allows us at least an indirect way to
express these edges, but the resulting axioms are fairly complicated.

Overall, we are concerned with accurately expressing three aspects of event
control behavior: blocking on an event control in an active thread, release by a
guard (also called firing) when the relevant event occurs, and the removal of these

events from the computational state when no more guards can fire on them.

99

To define evaluation order, our grammar includes an evaluation context for

guards. Again, we choose left-to-right ordering for the sake of simplicity only:

=[]
| G or (guard)
| posedge (ID) or G
| negedge (ID) or G
Unlike the evaluation context for expressions, £, we do not define any variable lookup
on G, since events hold no data.

The specification of blocking itself is the most straightforward task, since we

do not to be concerned with the type of event control used:

{AT | THREAD { {event_control) S]} FG
— AT {FG || THREAD [(event_conirol) S]}

This expresses correctly the form of the reduction itself: we simply rewrite the
representation of the thread so that it is no longer an active thread. It is not entirely
accurate, however, because it allows an event control to block while the event on
which it guards is present in memory. As a result, we could fire a guard on an event
that occurred before the event control blocked.

Only event controls that have already blocked their threads can see an edge,
however, and a failure to understand this can lead to incorrect analysis of a program

execution. Consider:

60

initial begin
x = 0;
x=1;

end

always Q@(posedge x) some_statement

In our representation, these are both active threads:

initial begin #O0#0#0
x = 0;
x =1;
end
initial begin #O0#0#0
forever @(posedge x) some_statement
end
Whether the posedge x guard executes depends entirely on the order in which
a particular simulator evaluates the source code!. From a formal point of view, the
execution is indeterminate. In order, therefore, to prevent a guard in an active
thread from incorrectly releasing its thread, we will keep the reduction as written,
but require that before it can be applied, the two copies of the store are identical
(i.e., no edges are present). This is slightly more conservative than we need—the

real requirement is that there be no edges on any variable occurring within the event

control—but this form is simpler to write:

1 As written, the Veriwell simulator will fire the guard—if we reverse the order of the threads,
it will not.

61

(28) ST, ST, {AT|THREAD [{eveni_control) S]} FG

——+ ST, ST, AT {FG] THREAD [(event_control) S |}
oif ST, =ST,

In order to correctly define guard release, we need to consider a number of facts
about its behavior. The first is the manner in which a guard releases its thread.
Gordon ([9], pp.4 and 10) presents results that suggest strongly that a guarded
statement is actually released with a zero-delay, so that it executes strictly after all
the threads that were scheduled to run when the release occurred. We shall assume
this convention here, as well.

The second fact is a point about the evaluation of the guard itself; namely
that, if the value on which a guard is watching is greater than one bit, the evaluation
always takes place on the low-order bit ([12], p.114). The four-values allowed on each
bit make the rules for firing a guard fairly complicated, and like most of the rules for
expression evaluation, they are tedious to express in a formal manner. On the other
hand, no semantic description of guard release would be complete without them, so
we will introduce additional notation here, [sb(), which indicates the least-significant
bit of its argument.

Finally, when an edge occurs, every thread guarding on that event must fire:
“When an update event is executed, all the processes that are sensitive to that event

are evaluated in an arbitrary order” ([12], p.45). As with assignment, therefore, we

62

must take care to leave an edge alone and not alter the memory state in any way
when a guard fires.
The result is a set of three similar axioms, accounting for posedge, negedge,

and generic guard release:

(29) STi[z =n4] STa[z = ny) AT {FG| THREAD [@(G[posedge z]) S |}
— STy = n] STa[z = ng] {AT | THREAD [#0 S]} FG
oif Isb(ny) # 1 and lsb(ny) =1, or
eif Isb{n;) = 0 and lsb(n,y) # 0
(30) STy[z = ni] STz[z = n3] AT {FG|| THREAD [@(G[negedge z]) S |}
—+ STifz = ny] ST2[z = no] {AT| THREAD [#0 S |} FG
o if {sb(n;) # 0 and lsb(n;) =0, or
eif Isb(ny) =1 and Isb(n,) # 1
(31) STy[x = ny] STa[z = ny) AT {FG| THREAD [@(G[z]) S]}

. STy{z = m1] STe[e = na) {AT|THREAD [#0 S|} FG
o if lsb(n,) # Isb(nq)

We are left, finally, with the question of when the representation of an edge
should be removed from a program. We have already stated the rather straightfor-
ward requirement that every guard should have the opportunity to fire when the
relevant event occurs. But is every blocked guard guaranieed to fire? Although
the Standard does not say so explicitly, an affirmative answer again seems natural.
Thus in our semantics, a blocked guard is guaranteed to fire when its associated
event occurs.

The immediate consequence of this is that we must impose some complicated

side conditions on the axioms that define edge removal, which say, in effect, that

63

there are no more guards left to fire on this particular edge:

(32) STl[:L‘ = n1] STQ[.'B = n'z] FG — ST1 [:B = ‘ng] STQ[:B = ng] FG
o if both of the following hold :
oeither (Isb(n;) # 1 and Isb(ny) = 1) or (Isb(n1) = 0 and Isb(n3) # 0)
o there is no t | FG such that either:
ot = THREAD [@(G[z]) S], or
ot = THREAD [@(G[posedgez]) S]
(33) ST] [m - Tl.l] 5T2[.’E = ng] FG — 5T1 [.'B = n2] STQ[:L' = '."i.g] FG
oif both of the following hold :
oeither (Isb(nq) # 0 and lsb(n;) = 0) or {{sb(n,) =1 and lsb(nsz) # 1)
othere is no t | FG such that either :
ot = THREAD [@(G[z]) S|, or
ot = THREAD [@(G[negedgez]) S |

The exception to this is the case where an edge was not really present in the
first place. Since edge-detection only occurs on the low order bit, this amounts to
an assertion that we can immediately update the value of a variable from ST, to

STy, if the two values have the same lsb:

(34) ST1[.’L‘ = '.'1.1] STQ[.'B = 'n,z] e ST1[.’L‘ = Tl.g] STz[.’B = TLQ]
oif Isb(ny) = lsb(ny)

Finally, we address a point that may have been overlooked by the reader up
to now: the fact that when we chose our subset of Verilog, we limited a guard
only to simple identifiers. The full Verilog grammar, in fact, allows any expression

whatsoever to be used. However, we have purposefully chosen to limit guards, for

two reasons.

64

The first is aesthetic: allowing arbitrary expressions would vastly complicate
the rules for determining whether or not an event had actually occurred at a given
point in the program, without providing much in return in the way of useful semantic
knowledge.

The second point is more serious, however: if we allow the evaluation of arbi-
trary expressions within guards, then guard release becomes susceptible to the same
interleaving problems suffered by expression evaluation. As our semantics stands,
we are able to guarantee that when an event occurs, every guard that has blocked
on that event will fire. Since guards only watch on simple identifiers, this guaran-
tee is independent of the interleaving problem in expression evaluation, which our
semantics allows. Were we to allow an arbitrary expression in a guard, we would
lose this guarantee. Under the present semantics, which we believe are implied by
the Standard, there is the possibility of a state change during expression evaluation,
which could result in an edge on the value of some expression that disappears before

the expression can be evaluated.

65

CHAPTER VI

CONCLUSIONS AND FUTURE WORK

In the present work, we have defined a formal semantics for a large subset of
behavioral Verilog that works entirely by transformations from Verilog programs to
Verilog programs. As a result, our semantics can be used to reason about Verilog
programs in a direct fashion. One of the key features of this approach is that we
have been able to represent in a formal manner not only the memory state, but also
the also the state of the discrete event queue whose behavior defines the semantics
of Verilog constructs.

However, there are clearly areas for future improvement.

First, the semantics should be expanded to account for the full behavioral
subset of Verilog. We have ommitted several often-used constructs from our subset,
largely on the grounds of their redundancy. Most of them—for, repeat, case,
etc.—could be easily included with no real modifications to the existing axioms.
Others, such as wait, disable and fork/join would probably some minor changes

to the overall structure of many axioms, particularly with respect to some of the

side conditions.

66

The introduction of function poses a special challenge, since the assumption
that expressions are free of side-effects would no longer hold. Boehm [2] proposes a
way to axiomatize side-effects and aliasing under this more general condition.

Second, while the semantics given in this thesis are accurate models of Verilog
behavior, there are probably alternative formulations that are just as correct, but
produce better code from the point of view of their synthesizability.

Can we find transformations that take behavioral programs to equivalent struc-
tural ones? This question is still open, but developing such a set of transformations
would be tantamount to developing a method for behavioral synthesis by program
transformation. This correlation with synthesis suggests that one fruitful approach
might be to investigate to what degree we could apply the axiomatic approach to-
ward the deduction of certain data and control-flow properties. Manual translation
of Verilog programs from behavioral to structural versions usually results in a set
of modules that represent in a direct fashion the control and data-flow properties
of the original behavioral module. Further, the extraction of data and control-flow
graphs forms the basis of many of the successful results in automatic synthesis ([3],
(1], ([5))-

All of these works sharply restrict the syntax of behavioral constructs and limit
the set of allowable programs to those written in styles known to be synthesizable.
It seems certain that we would have to do the same. The formal semantics described

in this thesis imposes many fewer restrictions on syntax and program structure, and

67

as a result, we have had to trade off synthesizability in our axioms for the sake of
more general behavioral descriptions.

Finally, the greatest limitation of the present semantics is, of course, the exclu-
sion of the structural subset of Verilog. The successful application of the axiomatic
approach to a formal representation of structural Verilog remains an open prob-
lem, as does the integration of the behavioral and structural constructs in a unified
semantics.

In many ways, continuous and procedural assignment are unrelated, which
makes representation of one in terms of the other extremely problematic. Only a few
easy direct translations are possible between the two, since the register and net data
types on which each operates cannot be interchanged. There are behavioral aspects
of wire connections that have no analogue at all within the behavioral subset—
inertial delay, for instance ([9], p.5), or feedback (connection of a gate to itself).
The reverse is, of course, also true. Further, many of the semantics of the structural
constructs’ timing properties do not appear to be entirely well-understood. There
is ongoing work by members of the Cambridge VFE project to identify this part of
the semantics ([8], [10], {15], [16]).

It is likely that the integration of the structural constructs into our semantics
will require some changes to the current approach. Inclusion of these constructs
means that we will have to keep track of two more aspects of the computational

state: the values on the sinks of each wire, and the next value (if it is different) that

68

is scheduled to appear at the sink, along with the time of its appearance. Obviously,
we cannot present this as a series of simple assignments, since procedural assignment
does not apply to net data types. At this time, we are working on alternative

approaches.

69

APPENDIX A

SYNTAX

In the following extended BNF grammar, a number of notational conventions

1 n

are observed, We use the common BNFI characters “::=" and

“|” to represent “is
defined as” and “or”, respectively. The special symbol “¢” is used to represent the
null token. The symbols “*"” and “?”, when they immediately follow terminal or non-
terminal items, represent (respectively) Kleene-closure and “zero or one occurrences”
of that item?.

With the exception of these five special symbols, all characters outside of those
contained within angle brackets occur as literals within the source code. Words
in angle brackets represent terminal and non-terminal symbols: neither the angle
brackets nor the chararacters inside of them appear literally in a program. Terminal

tokens are represented within angle brackets as capitalized words. All other words

within angle brackets represent non-terminals.

'The reader should take care to distinguish between the BNF symbol “?” and the keyword
character “?”, which appears in “{ezp)? {ezp): {ezxp)”

Syntax of Behavioral Verilog Subset

{program)
{module)

(

(net._decl)
(input_decl)
{output_decl)
(

{always_construct)
(initial_construct)
(stat)

(untimed_stat)

(timed_stat)
(blocking.asgn)
(nonblack:ng_asgn)
(

(

statlist)

{delay.or_event_control)

e [.
. . -

Wi ——

.

..

I (R

e .a

{module)

module (MODULE_ID) (port.tist)? ;
(set.of-declarations)
(module.body)

endmodule

({port) (,{port))*)

(PORT_ID)

(thread)+

(declaration)x

(reg-decl) | (net_decl)

(input_decl) | {outpui_decl)

reg (REG.ID) (, (REG.-ID)}*;

wire (NET_ID) {(,(NET.ID})#;

input (PORT.ID) {,(PORT.ID))x;

output (PORT.ID) (,(PORT.ID))#;

{always_construct)

{initial_consiruct)

always (stat)

initial {stat)

€;

(untimed_stat)

(timed_stat)

{blocking_asgn)

(nonblocking_asgn)

if ((exp)) (stat)

if ({ezp)) (stat) else (stat)

forever (stat)

while ((ezp)) (stat)

{seq_block)

{delay.or_event_control) (stat)

(reg_lvalue) = {delay -or_event_control)? (ezp);

(reg-lvalue) <= (delay_or_event_control)? {exp);

begin (statlist) end

(stat) {statlist)
(delay-control)
{event_control)

70

(delay_control) ::
(event_control) ::

(reg_lvalue)
(guard)

(ezp)

(u-op)
(b-op)

as s Y] s am u

. "
e an

71

#exp)

Q({guard))
(REG.ID)

(ID)

posedge (ID)
negedge (ID)
(guard) or {guard)
(ID) | (NUMBER}
(u-op){ezp)

{ezp) (b-op) (ezp)
(esp)? () ex)

o I NNl 2 21 N N I el Ml B
‘—l*l/lyl::ll:l::: |=.—.|&&|||
[<l<=|>|>=[&[1]I7|"" 7" [<<|>

Evaluation_Contexts

[]

(uon) €

& {b-op) (ezp)
(NUMBER) (b.0p) &
f’; {exp): (ezp)

G or {guard)
posedge {ID) or G
negedge (ID) or G

— — p— .
O B Q0 DD
N e N S !

APPENDIX B

AXIOMATIC DESCRIPTION OF VERILOG

See Chapter IV for an explanation of the notation used.

Ordipary Statements

if(n) S — S oif n#0
if(0) S —_ €
if(n) S elseS;, — & oif n #0

if (0) 5, elseS; — 5
while ({ezp)) S
—+ if ({(ezp}) begin §; while ({ezp)) S end

(6) forever S —+ while (1) S
(7) & S — S
(8) THREAD [begin S; (statlist} end |
— THREAD [S; begin (statlist) end]
(9) THREAD [begin e end S |
— . THREAD [§]
(10) THREAD [€] i €

Access to the Store (Excluding Event Controls)

(11) STfz = n] AT[if (&[]) S]

—+ STo[z = n]AT[if (E[n]) 5]

T2

(17)

(18)

(19)

(20)

(21)

73
STy[z = n] AT[if (€[z]) S; else Sy
—+ STo[z = n] AT[if (€[n]) S) else 53]

STa[z1 = n] ATz = E[z4]]
—_— ST2[$1 = n] AT[$2 = E[n]]

STq[z1 = n] AT[z; = (delay.or_event_control) E[z]|
—+ ST2fz; = n] ATz, = (delay_or_eveni_control) E[n]]

STa[z) = n] AT[z; = #&[z1] (ezp)]
—+ STo[zy = n| AT[zy = #&[n] {ezp)]

STi[z; = n] AT[z; <= E[z4]]
—+ STz = n] AT[z2 <= £[n])

STa{zy = n] AT[zy <= (delay.or_event_conirol) £[z,]]
— STy[zy = n] AT[z; <= (delay_or_event_control) E[n]|

STo[zy = n] AT[z, <= #E[z,] (ezp)]
— ST3[z1 = n] AT[z2 <= #E{n] (ezp)]

ST:[z = n] AT[#E[z] S)
—+ STy[z = n] AT[#E[n] S]

STi[z =] STe[z = 4] ATz = ny; S] — STz = ny] STo[z = ny] AT[S]

Non-Blocking Assignment

AT[z <=n; 5] {initialbegin: NBUNBUPDATES; end}
—+ AT[S] {initialbegin: NBUNBUPDATES; x <= n;end}

74

(22) ST, ST, AT DT {initialbegin: NBUNBUPDATES; end}
—+ ST; ST, {THREAD | UPDATES; | |AT} DT
initialbegin: NBUeend

oif AT =DT =¢, and ST, = ST,

¢ each nonblocking assignment in NBUPDATES; is transformed
to a blocking assignment in UPDATES;, according
to the schema :

r<=n; — T =7,

Scheduling of Delayed Threads

(23) {THREAD { #n S]|AT} FD — AT {FD|THREAD [#n S |}
eif n>1

(24) ST, ST, AT DT NBU {FD [THREADLIST;}
—+ ST, ST, {THREADLIST; | AT} DT NBU FD
oif AT =DT =NBU =FD =¢, and ST, = ST>
e the body of each THREAD in THREADLIST; is transformed to an
active thread representation, according to the schema:
THREAD [#n S] —— THREAD [#(n-1) 5], ifn>1
THREAD [#1 5] — THREAD [S] , otherwise

(25) ST, ST, AT {DT | THREADLIST;}
— ST, ST, {THREADLIST; [AT} DT
oif AT=DT =¢, and ST; = 5T,
e cach THREAD in THREADLIST; is transformed to an
active thread representation, according to the schema :
initial begin #0#0#0#0 S end
— initial begin #0#0#0 S end

(26) z = (delay.or_event_control) n; — (delay or_eveni_control) z = n;

(27) AT[z <= (delay.or_event_control) n; S|
— {AT[S]| THREAD [{delay-or-eveni.control) z <= n; |}

(28)

(29)

(33)

(34)

7

Event Controls

ST, ST, {AT] THREAD [{event.control) S]} FG
— ST1 STz AT {FG| THREAD [(event_control} S]}
] If ST1 = ST2

STi[x = ny] ST2[z = n,] AT {FG|| THREAD [@(G[posedge z]) S]}
—+ STy[z = ny] ST2[z =ny] {AT|THREAD [#0 S]} FG

oif Isb(ny) # 1 and lsb(nz) =1, or

eif Isb(n;) = 0 and Isb(np) # 0

STilz = ny] ST2[z = ny] AT {FG| THREAD [@(G[negedge z]) S]}
— STq[z = n1] ST2[z = ny] {AT|THREAD [#0 S]} FG

oif Isb(n;) # 0 and Isb(ny) =0, or

oif Isb(ny) =1 and Isb(n;) # 1

STy[z = ny) STafz = no) AT {FG| THREAD [@(G{z]) S]}
— STy[z = ny] STafz = ny) {AT| THREAD [#0 5]} FG
oif Isb(n) # lsb(ns)

ST][&B = Til] STQ[.’B = TLg] FG — ST1[.’L‘ = ’ng] STQ[IL‘ = ngl FG
eif both of the following hold :
oeither ({sb(n,) # 1 and Isb(nz) = 1) or (Isb(n1) = 0 and Isb(n,) # 0)
o there is no ¢ | FG such that either:
ot = THREAD [@(G[z]) S], or
ot = THREAD [@(G[posedgez]) S]

STi{z = ny] STa[x = na) FG — STi[z = ng| ST2[z = ny] FG
o if both of the following hold :
oeither ({sb(n,) # 0 and lsb(n;) = 0) or (Isb(n;) =1 and Isb(ny) # 1)
o there is no t | FG such that either:
ot = THREAD [@(G[z]) S], or
ot = THREAD [@(G[negedgez]) S |

STl[LB = ﬂ.]] STz[lE = 1’:‘.2] e ST]{J: = '.'1.2] ST2[$ = nz]
eif Isb(n,) = lsb(ns)

76

BIBLIOGRAPHY

{1] M.G. Arnold and J.D. Shuler. A Synthesis Preprocessor that Converts Implicit
Style Verilog into One-Hot Designs. In 1997 IEEE International Verilog
HDL Conference, pages 38-45, Washington, 1997. IEEE Press.

[2] H. Boehm. Side Effects and Aliasing Can Have Simple Axiomatic Descriptions.
ACM Transactions on Programming Languages and Systems, 7(4):637-655,
October 1985.

[3] R. Camposano. Behavior-Preserving Transformations for High-Level Synthesis.
In Hardware Specification, Verification, and Synthesis: Mathematical
Aspects, pages 106-128. Springer-Verlag, New York, 1990.

[4] S. Cheng. Compilation, Synthesis, and Simulation of Hardware Description
Languages—The Compositional Models of HDL’s. Phd thesis, Department of
Electrical Engineering and Computer Sciences, University of California,
Berkeley, 1998.

[5] S. Cheng and R. Brayton. Compiling Verilog into Automata. Memorandum
UCB/ERC M94/37, Department of Electrical Engineering and Computer
Sciences, University of California, Berkeley, 1994.

[6] S. Cheng and R. Brayton. Synthesizing Multi-Phase HDL Programs. In 1996
IEEE International Verilog HDL Conference, pages 67-76, Washington,
1996. IEEE Press.

[7] S. Cheng, R. Brayton, G. York, K. Yelick, and A. Saldanha. Compiling Verilog
into Timed Finite State Machines. In 1995 IEEE International Verilog HDL
Conference, pages 32-39, Washington, 1995. IEEE Press.

[8] M.J.C. Gordon. Event and Cycle Semantics of Hardware Description
Languages. Unpublished draft, available (as of 08-24-98) on the World-Wide
Web at http://www.cl.cam.uk/users/mjcg/Verilog/V/HDLPaper.ps.

[9] M.J.C. Gordon. The Semantic Challenge of Verilog HDL. In Tenth Annual
IEEE Symposium on Logic in Computer Science (LICS ’95), June 1995.
Revised version available (as of 08-24-98) on the World-Wide Web at
http://www.cl.cam.uk/users/mjcg/Verilog/V.ps.Z.

77

[10] M.J.C. Gordon and A. Ghosh. Language Independent RTL Semantics. In 1998
IEEE CS Annual Workshop on VLSI: System Level Design, to be published.
Available (as of 08-24-98) on the World-Wide Web at
http://www.cl.cam.uk/users/mjcg/0OrlandoPaper.ps.

[11] X. Hua and H. Zang. Axiomatic Semantics of a Hardware Specification
Language. In Second Great Lakes Symposium on VLSI, pages 183-190, Los
Alamitos, CA, 1991. IEEE Press.

[12] IEEE. Standerd Hardware Description Language Based on the Verilog
Hardware Description Language. IEEE Press, Los Alamitos, CA, 1996.
IEEE Standard 1364-1995.

(13] G.J. Pace and J. He. Formal Reasoning with Verilog HDL. In Workshop on
Formal Techniques for Hardware and Hardwere-like Systems, Marstrand,
Sweden, June 1998.

[14] A. Sabry and J. Field. Reasoning About Explicit and Implicit Representations
of State. In ACM SIGPLAN Workshop on State in Programming Languages,
pages 17-30, 1993. Tech. Rep. YALEU/DCS/RR-968, Dept. of Computer
Science, Yale University, 1993.

{15] D. Stewart. Combining Verilog Signals in Nets. Unpublished draft, available
(as of 08-24-98) on the World-Wide Web at
http://www.cl.cam.uk/users/djs1002/verilog.project/papers/
combining signals.ps.gz.

[16] D. Stewart. Modelling Verilog Port Connections. Unpublished draft, available
(as of 08-24-98) on the World-Wide Web at

http://www.cl.cam.uk/users/djs1002/verilog.project/papers/
ports.ps.gz.

[17] J.P. Van Tassel. A Formalization of the VHDL Simulation Cycle. In L.J.M.
Claesen and M.J.C. Gordon, editors, Higher Order Logic Theorem Proving
and its Applications, pages 359-374. Elsevier Science Publishers B.V.
(North-Holland), 1993.

