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This paper proposes a simple type-and-effect system for encapsulating memory
in Java. Encapsulation is particularly relevant to Java because programs are fre-
quently assembled from diverse sources. The ability to determine that an arbi-
trary expression will not affect other parts of the system is an important security
issue. We start with an already developed core language and add an expression
for encapsulation to the syntax. Then we extend the type system to include effect
information. Our effects are simply region names and every type includes region
information about the location of the instance, its fields, and the work that was
done to produce it. No attempt is made to infer types or effects. Our system is
rather limited but illustrates some of the issues that will have to be addressed in

adapting any such system to Java.
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CHAPTER I

INTRODUCTION

The use of shared memory in a programming language has a limiting effect
on our ability to understand programs written in that language. Remote sections
of code can interact in complex ways through shared data and it may be difficult
to distinguish between data which is relevant and that which is useless. Recent
research has attempted to address these issues with varying forms of encapsulation.
Encapsulation attempts to determine if an expression needs any information from
or provides any information to the rest of the program. Interaction with the rest
of the program is only allowed through explicit arguments or return values. In
essence, an encapsulatable expression should produce the same result from the
same arguments in any context. It should be able to run as a different process
on a separate machine at any point during the overall evaluation of the program.
Determining this statically would give compilers a great deal of power to optimize
the order of evaluation and parallelize programs. In addition, from a security
standpoint it would be highly desirable to know if a portion of a program will or
will not have any effects on the rest of the program before it starts to run.

We investigate a system of encapsulating memory in a Java-like language.
Encapsulation is especially relevant to Java because Java programs are frequently
assembled from various sources and issues of securely determining the effects of

any given expression before it is run are paramount. We propose a simple type-



and-effect system where memory is partitioned into regions and an effect is simply
the name of the region being read from or written to. We do not attempt any
inference and different regions are never combined to create new larger regions. In
this way the resulting system is fairly restricted. However, our research does reveal
some of the interesting questions that must be addressed when adapting such an

approach to Java or any object oriented language.



CHAPTER II

RELATED WORK

State In Haskell

One approach to encapsulating memory makes use of the concept of monads
[6]. The monadic approach separates the type system of a language like Haskell
into two parts: values, and computations. Functions like read, write, and new, that
interact with the store have return types that belong to the set of computation
types. Other parts of the language do not accept one of these types as an argument
and thus expressions that use the store and those that do not are are prevented by
the type system from interacting with each other directly. However, computations
can be strung together with special connectors, ThenST and LetST, which allow
them to share the same store. Then, in order to return a value back to the rest of
the program, a special transformer function, RunST, is provided that can translate
computations into values. RunST has special typing rules that assure that the
store used by the string of computations is no longer needed. This requires a small
change to the existing type system. In this manner, RunST encapsulates the string
of computations, preventing them from sharing their memory with the rest of the

prograin.



Type-And-Effect Systems

Another approach is to extend the type system to explicitly identify and
track the maximum possible effect of each statement [9, 7]. These “type-and-
effect” systems use the type system to not only track the minimal type of an
expression but also the maximal effect. These effects are of the form get(r), set(r),
or alloc(r), where r was the region of memory being affected. These effects are
accumulated during the process of static analysis. Function types include a latent
effect that represents the effect of executing the function body that does not occur
until the function is called. A means of masking the effects of an expression is
provided that enforces that the effects are not relevant to the rest of the program
and local regions can be discarded. These systems often use powerful systems of

inference to assign regions.

Monadic ML

A recent look at encapsulation in ML defines a simplified form of effect in-
ference and masking and then gives a translation to monadic form that preserves
the type, thus showing a relationship between the above two approaches [8]. Then
it shows the soundness of the type system using a semantics that allows dangling

pointers. Our research relies heavily on the techniques used in this semantics.

ClassicJava

CrassicJava was developed as a jumping off point for an analysis of “mix-
ins” and polymorphic types [4]. It represents many of the interesting aspects of

Java in a simple core language. We too use it as a jumping off point, though our



direction is unrelated. It is discussed in detail later in this paper.



CHAPTER III

SYNTAX

Java Syntax

Java is an object oriented language in which data and methods are structured
as part of the type definitions. Classes can extend other classes to form a tree-
like hierarchy that has one unique root, named “Object”, which is built into the
language. By extending a class, the subclass inherits all of its fields and methods.
This means that every field and method in every class on the path from the current
class to the root of the tree is defined in the current class. A class cannot declare two
fields of the same name. However, through inheritance, it is possible for multiple
occurrences of a single field name to occur. Thus, fields are only uniquely identified
by the combination of the field name and the source class name. When field names
are encountered in the code the source class is determined by searching up the tree
for the closest occurrence of that field name. The same is true for methods except
that when searching for the closest occurrence of a method name in the hierarchy
the argument types must be matched as well.

There is also a more subtle difference between the inheritance of fields and
methods. The search for the source class of a field starts in the hierarchy at the
static type of the instance while the search for the source class of a method does not
take place until runtime and starts at the runtime type rather than the declared

static type.



A method is run in the context of the instance which was used to invoke it
and has access to all the data and methods of that instance. The method also has
access to the keywords this, to refer to the instance itself, and super, to facilitate
accessing fields or methods further up the hierarchy. New instances are created
using the keyword new and fields and methods are accessed or invoked using the
standard operator, “."

In addition to classes, Java has an interface construct. This allows a type to
be defined that just describes a set of method types. The method bodies are not
defined in the interface definition but rather they are defined in any class definition
that “implements” that interface. This results in a more flexible polymorphism

by allowing diverse classes to all implement methods of the same signature, in

possibly dramatically different ways, and be considered of the same type.

ClassicJava Syntax

The syntax of REGIONJAVA is based on that of CLAssicJAvA [4]. CLAssIC-
JAVA was developed as a core language from which to expand into a discussion of
“mixins” and polymorphic types. It contains the basic features of Java-like classes
and interfaces with inheritance and polymorphism. It also uses standard object
oriented syntax like the “.” operator to access an instance’s fields and methods and
includes Java keywords new, this, and super which have their usual meanings.

CLASSICJAVA does differ from Java in some significant ways, however. Fea-
tures like primitive types and static data that add considerable complexity without

being particularly relevant to our purposes have been excluded. As a result, opera-

tors like Java’s “+” operator would have to be simulated with addition methods in



class representations of the relevant types like an “Integer” class. Thus, in CLAS-
SICJAVA everything is a reference to an instance of a class and the defined types
are the defined classes.

In addition, method bodies are reduced from a series of statements to a single
expression. The return value of the method is the result of the expression. A new
let expression was added to introduce variables and scope. A program is a series
of definitions followed by an expression. The expression roughly corresponds to
the main method mechanism used by Sun’s JDK except it is not considered within

the context of an instance of a class.

RegionJava Syntax

The surface syntax of our REGIONJAVA differs from CLaAssicJAvA only by
the addition of an encap expression. The encap expression is used to mask the
effects of a subexpression. Much of the type system is directed at ensuring that
the encap expression will only type check if its subexpression neither affects nor
is affected by the rest of the program. No data that is not explicitly provided or
returned should enter or escape. There is, however, a significant difference in the
elaborated syntax of method definitions. The elaborated syntax is not entered by
the programmer but added later during static analysis to pass information gleaned
from that analysis on to the runtime system. The elaborated syntax appears
underlined for clarity. The process of elaboration will be discussed in the next
chapter.

The effect of calling a method is different from the effect of defining the

method. Yet we only want to analyze the method once. Thus this information



is stored as part of the program where it can be locked up with each call. This
information includes assigning a region variable to each argument including the
implicit this argument that we have made explicit. Then the body is analyzed in
the context of this region information to determine information about the result
and the effect of evaluating the method when a call is made. All of this information
is visible in the elaborated syntax of the method definition.

The annotation ( ¢ at (p,R)) for a reference adds to the declared type, t,
the region in which that instance of ¢ lies, p, and a description of that instance’s
components, R. Each of the arguments to a method are annotated with this
information as well as the instance itself in the form of an explicit this argument.
The body is analyzed in the context of these annotations and an overall “latent”
effect is determined as well as the return type. The latent effect is the effect that
will occur each time the method is called. The latent and return effects annotate

the method definition as well.

The full syntax is given in figure 1.

Operators and Functions

We will use altered versions of the operators and functions defined for CLAS-
sicJavA. The operators allow us to conveniently express relationships between
classes or between a class and its members. Operators that relate classes to each
other organize the definitions in a program into a tree hierarchy. Classes can extend
at most one other class and cycles are not allowed. If a class does not explicitly
extend another class it implicitly extends the built in Object class which forms the

root of the tree. Other operators describe relationships between a class and its
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P = defn"e
defn = class ¢ extends ¢ implements i* { field* method* }
| interface i extends i* { method® }
field = t fd
meth = (tat(p,R)) md{{tat (p,R)) this, arg* ) { body }: p
arg = (!at(p,R)) var
body = e | mbstract
e = newc |var | null | e:e.fd | e:efd=e
| emd(e*) | super=this:cmd(e*)
| wviewte | letvar=eine | encape
var = a variable name | this
¢ = aclass name | Object
i = an interface name | Empty
fd = a field name
md = a method name
t = ¢ |i
p = aregion variable
R = a table of region variables

FIGURE 1. Syntax

members and make use of this hierarchy. For example, a field, fd, of a given type,
t, can be tested for membership in a given class, ¢, concisely and precisely with
(c'.fd, t} €% c. The distinction between ¢’ and c is necessary because the class
¢ may not explicitly declare the field fd but may inherit it from another class, in
this case ¢/. This makes use of the hierarchical information by requiring ¢’ to be
the closest class on the path between ¢ and Object that defines fd. This is defined
as the minimum. The operator definitions are given in figures 2, 3, and 4.

The functions establish more general properties about a program. For ex-
ample, establishing that all of the methods in all of the declared interfaces in
a program, P, are abstract can be tested with INTERFACESABSTRACT (P). The
level of complexity in the function definitions is high. We have proposed a set of
functions that appear to capture the essential aspects of our system. However,
certain subtleties need further examination and it is likely further refinement will

be necessary. The function definitions are given in figures 5, 6, and 7.
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Class is declared as an immediate subclass
€<%, ¢/ & class cextends ¢/ .- {---} is in P’

lnterface is declared as an immediate subinterface
i <p i & interface i extends --+¢'.--{---}isin P’

Class declares implementation of an interface
¢ 4%, i & class c implements -.-i..-{--.} is in P'

Class is a subclass
5?,, = the transitive, reflexive closure of <P

Interface is a subinterface ]
<ps = the transitive, reflexive closure of <,

Class implements an interface )
cxf, i A, at. ¢ < ¢ and i <%, i and e <%, i

Typeis a snbtyp_e
<pr = <G U <hy UG,

Field or method is in a type
Epr = Et;,, U G},.

FIGURE 2. Operators



€%
Field is declared in a class
(cfd t)ES crclasse ---{---t fd---}isin P’

Efs
Field is contained in class
(cfd, t)es, ce {fd t) €S ¢ and
¢=min{c"|c<s, "’ and 3 s (. fd, V' ) €S, '}

Eh
Method is declared in a class
{ md,

{“’ at (p0,Ra)), .-, (tn 8t (P Rn)) 22 {tr at (pr, Ry))),
vary,...,vary),

ep )%‘j,, e

class ¢ .- {

st,. at (pr,Ry)) md ( (cat (pg, Ro)) this,
(t1 at {p1,R1)) very,

(tn 8t (P, Rn)) vara )) { e }io

}isin P!

Method is contained in class
{ md,
((c at {00, Ro0)),....{tn at (pn,Rn)} L5 (tr 2t (or, RD)),
(vary,...,vara),
e)EL o
{{ md,
{(c' at {po, Ro)r. .-, {tn &t (Bn,Ra)) =+ (& at (pr, Re)))
(vary,...,vary),
e) E‘;,, ¢ and
¢ =min { " | c<, ¢ and
3¢’ var},...,varh, 0" P P B Ry R R AL
{ md,

(" ¢ (s Ryt % (o R} 5 (tr 2t (o, RED),

(var},...,var,),

¢) €L ' })

FIGURE 3. Class Member Operators
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Ff

Method is declared in interface
{ md,

((i 2t (po,Ro)), .., (tn at (on,Rn)) == (tr at (or,R:))),
(vary,...,varp},
abstract ) Gj,, i

interface i --- {

Lt.- at (pr,Rr)) md( (iat (po,Ro)} this,
it; at {p;,R1)} vary,

gt,: at (pn,Rn)) varn )) { abstract }:ps

}isin P

Method is contained in interface
{ md,
{(i at (po,Ro)}...(tn 2t (pn,Rn)) £ (tr at (pr, R))),
(vary,...,vara),
abstract ) G},, i&
3,0 0. P Ry R var], ... var], st
i E},. i’ and
{ md,
(1 at (s R} (tn 2% (s RE)) 5 (tr 2t (61, R,

{vary,...,var),

abstract } €}, i

FIGURE 4. Interface Member Operators
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CLASSESONCE(P')
Each class name is declared only once
Ve, class ¢ --class ¢ .- isin PP = c#/d

FieLpONCEPERCLASS(P)
Field names in each class declaration are unique
Vfd, fd class-..-{--- fd--- fd'..-}isin P' = fd # fd'

METHODONCEPERCLASS(P')
Method names in each class declaration are unique
vmd,md’ class---{---md(---) {---}---md'(--) {---}-+-} isin P! = md # md’

INTERFACESONCE(P')
Each interface name is declared only once
Vi, i interface {...interface i’ ... isin P' =i # i

INTERFACESABSTRACT({P')
Method declarations in each interface are abstract
Vimd,e interface .- {-.. md(---) {e} -} is in P’ = ¢ is abstract

CoMPLETECLASSES(P')
Classes that are extended are defined
rng(<) C dom(<%, } U {Object}

WELLFOUNDEDCLASSES{P’)
Class hierarchy is an order
<% is antisymmetric

COMPLETEINTERFACES(P')
Extended/implemented interfaces are defined
ng(<pr } U rng(Kp ) € dom(<, ) U {Eapty}

WELLFOUNDEDINTERFACES{P')

in@erface hierarchy is an order
<P is antisymmetric

FIGURE 5. Functions

14



CLASSMETHODSOK(P’)

Method overriding preserves the type

chclu e,e’.md, toyccosbnyle B0y -y Pny perUi' . oRm 'R.,-,

rer bty Bl e oo 1 P Pra Rpys - Ry, R, vary, ... var,.

{{ md, ,
((tO at (PD"RD))'A --'(tn at (Pﬂ»Rn)) _b} (tr at (PrrR!‘)))l
(vary,...,vara),
e ) E;,, tp and

{ md,

o,
{(ty at (PB'R:?))' (15 av (AL, RY)) = (tr at (oL, RL))),
{vary, ..., vary),

(((ti =¢; for j € [Lin], and t, = 1),

(Rj =R} for j € [1,n], and R, =Ry, and Rf € Ra), and
(pj = p} tor j €[0,n], pr = p}., and p, = p})} or
to ﬁ;,, th)

INTERFACEMETHODSOK(P’}

Redeclarations of methods are consistent

Vl‘,‘l",md, tO" A 'tﬂ!t!‘l POy lpﬂlperOr' . |RI'IIRI'!

Hyyeooslhathy Bhye e s B0y PR Ry o Ry Ry vars, ... vars.

({ md,
((t0 at {p0,R0))...(tn at (pn,Rn)) £ (tr at (or, R:))),
(vary,..., uar:n),
abstract } €}, to and

{ md,

r
P
((to at (pp, Ro)): --- (tn 2t (6, R},)) — (1) at (g}, R},
var],...,var,),
abstract ) €}, t5 ) =
(((¢; = t:f for j € (1,n], and t, =1},
(R; =R tor j € [L,n], and R, =R}, and Ry C Ro), and
(pj = P; tor j € [0171]3 Pr= P:-I and pp = P;,)) or
Ve g5, to or £ £, 1)

FIGURE 6. Method Overriding Functions
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CLASSESIMPLEMENTALL(P')

Classes supply methods to implement interfaces

Wi,cc<h i =

({ md,
((¢ 2t (p0, Ro})y ..+ (tn 8% (pn, Rn}) 2 (¢ at (pr, Rr))),
(vary,..., vera),
abstract ) €}, i =

{ md,

((c at (gh, Ro),-- - (tn 2% (ph, RE)) =2+ (& at (o}, RL))),
{vary,...,var,},
eL Y €%, c and
(ti =t fori € [1,n], and ¢, =]},
(Ri =R! tori€fl,n], and R, =R, and R}, C Ro), and
(pi=ptorie[0,n], pr =pp, pp = Pﬂ,)

NoABSTRACTMETHODS(P’, c)
Class has no abstract methods (can be instantiated)

de:tm---ttﬂitrvmv--- »PmPr.Pb'RD»---vaRn"ﬂ"h---."af'meb

{ md,

((c at (po,Ra)) .- (tn &t (pn, Rn)) 2 (tr at (pr, Rr))),
(vary,...,vary),
ey ) €Ef ¢ =

ey # abstract

FIGURE 7. Abstract Method Functions

16
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CHAPTER IV

TYPES

Static analysis in REGIONJAVA has greatly extended the types of CLASSIC-
JAVA to include information about regions. Memory is partitioned into regions to
facilitate independent “workspaces” for different encapsulated expressions. Effects
in our system are simply names for these different regions. We make no distinction
between the reading from and writing to a region and only observe the fact that
some interaction with that region occurred. References to instances are annotated
with the region in which the instance lies. In addition, since instances are records
of fields and fields are themselves references to instances that lie in regions, refer-
ences are also annotated with a description of their components. This annotation
takes the form of a lookup table from field identifiers to region information. Thus
each reference has a type description of the form ( ¢ at (p, R)). This includes the
type, t, the region in which that instance of ¢ lies, p, and a description of that
instance's components, R.

An expression’s type-and-effect description is of the form ( (¢t at (o', R)) ! p).

H'”
.

The first part of this description, up to the “!”, includes all the information of the
previous paragraph needed to describe the resulting reference. After the “I” is
a additional region which indicates where the work was done that produced that
result.

The basic structure of the type rules is similar to that of CLASSICJAVA.

Judgements are of various types as described in Figure 8. For example, the judge-



18

Fp P=P : ({tat {;p,R))! p2)
P elaborates to P! with type — and — effect
P’ kg defn = defn’
defn elaborates to defn’
P't F;m meth= meth'
meth in t elaborates to meth’
PP ke e=e : ({tat{m,R})! pm)
e elaborates to ¢’ and has given type — and — effect
PPT +, e=e : ({tat (p, R} ! p3)
uses subsumption
Py t
t is a defined class or interface name

FIGURE 8. Judgements

ment for expressions uses the elaborated program, P/, and a type environment, T,
to elaborate an expression and determine its type. Judgements for methods use
the elaborated program and the class in which the method occurs to elaborate the
method definition. It is important to note that many of these judgements use P’
This means that an elaborated program is necessary for the elaboration process.
Thus the process is not currently one of discovery but rather one that checks in-
formation that has already been provided up front. This is a big barrier that will
have to be overcome before any attempt to implement the system is made.
Elaboration of expressions is written e = e’. Other forms of elaboration are
written similarly. Elaboration is the process of recording static analysis informa-
tion to be used later by the runtime system. This occurs in three instances and
is underlined in the syntax for clarity. First, since in Java the field to be accessed
is determined based on the static type of the expression, and the static type of
an expression may differ from the runtime type, the static type is inserted into all
the field access expressions. Similarly, in Java the type of the keyword super is
determined during static analysis, and is therefore also inserted into expressions

using super. In addition, unlike CLASSICJAVA, method definitions in REGION-
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JavA contain elaborated information. This allows the region of the return type to
be based on the effects of the method body rather than be forced to match the
location of the instance in which the method is invoked. This allows work done by
the method to take place in a remote region as long as it does not access the this
pointer.

The type rules are very similar to CLASSICJAVA except that in each rule,
REGIONJAVA, in addition to checking type information, also checks region infor-

mation. For example, in CLASSICJAVA, the rule for setting a field is:
Plt,e=¢€ : t,
( C.fd, h ) €pr t2

PThr,e, =€) : 4
PTteefd=e, = e:cfd=¢el :

In REGIONJAVA this becomes:
PTr.e=¢€ : ((tzat (p,R)) ! p)
( C.fd, t1 ) Ep tg

PTl,e, =€), : ((th at Rle.fd)) ! p)
PTt.efd=e,=>e:cfd=¢l, : ({t; at R(c.fd)) ! p)

This requires the class of the value to match the declared class of the field in
the same manner as CLASSICJAVA. However, this new rule also requires three
additional things. First, by using the same region variable for both the instance
location and the current working region in the first judgement, this new rule re-
quires that the instance whose field is being accessed lie in the current working
region. Second, by using the region obtained from the accessed fields entry in R in
the third judgement, this new rule also requires that the new value come from the

same region as the existing value for that field. Third, by using the same working



CLASSESONCE(P') INTERFACESONCE(P')
MeTHODONCEPERCLASS(P') FIELDONCEPERCLASS(P')
CoMPLETECLASSES(P') WELLFoUNDEDCLASSES(P')
COMPLETEINTERFACES{P’) WELLFOUNDEDINTERFACES(P')
CurassFIELDSOK (P') CLASSMETHODSOK(P')
INTERFACEMETHODSQK(P') INTERFACESABSTRACT(P’)

CLASSESIMPLEMENTALL(P')
P=defn; ... defn, e

P’ = defn} ... defn), ¢

P’ b4 defn; = defn_'i for j € [1,n]
Pl kee=e : ((tat {p',R))!p)

P’ bp defny ...defn, e = defn ... defn &' : ({t at (', R))!p) [prog]

P! Iy t; for each j € [1,n}
P'cky methy, = meth], for each k € [1,p)
P'lgelass ¢ ... { &1 fdy ... iy fdy methy ... methy } =
classec ... { &1 fd1 ... ta fdn meth] ... meth] }

[cdefn)

PliFm meth; = meth; for each j € [1,p]

P' k4 interface i ... { meth; ... methp } =
interface i ... { meth| ... meth} }

[idefn]

Pyt

P' -y ¢ for j £ [1,n]

P’ [ this = {fo at {po,Ro)),
vary — (t1 at {p1,R1)),

varn = (tn 8t (pn,Rn)) 1 Fs e = € ¢ ((t 8% (5 Re)) ! p3)
P tobm & md{ty vary,... tn varn) { e } =
{ tr at (pr,Rr)} md( (fo at {po,Ro)) this,
(t1 at (p1,R1)) vary,

(i a8 (o)) ) { & i

t € dom(<%,) U dom(<%,) U {Object, Empty}
Pyt

[type}

FIGURE 9. Type Rules For Defintions

[meth)
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PThc.e=¢ : ((tz at (p,R)) 1 p)
{efd, h YEp: t2
PTreefd=e':cfd : ((t1 at R(c.fd)) ! p)

[get]

PTre.e=e : ((tz at (g, R)) ! p)

((Lfd, ty ) Epr 12

PTh, en =€, ¢ ((t at Ric.fd)) ! p) -
PTleefd=ey=>eic.fd=1¢) : ((t1 at R(c.fd)} ! p)

PTl.e=¢e : ((to at (po,Re)) ! p)
P'Tthae; = e} o ((t; at (p;,Ry)) ! p) for j € [1,n]
{ md,
({to at (p0,Ro)) ... (tn at (pn,Rn)) = (tr at (or,R,)),
{vary ...vary),
[} )Ep' ta
P'T e e.md(en,...,en) = &' .mdle],...,e}) : ((t- at (pr,Re))!

p) fealt

P'T I, this = this : ((c2 at {pp, Ro))} ! p)
e2 <%, a1
PTh,e; = ¢ : ({t; at (p;,R;)) ! p) for j € [L,n]
e, # abstract
{ md,
((c1 at (po,Ro)) .. (tn at (pn,Ra)) == (t- at (pr, R+)),
(vary ...vary),
ey }Epr ey
P'T |-, super.md(e;,...,es) =
super= this : cy.md(e},....eh) : ({tr ot (5, Rr)) ! p)

[super]

FIGURE 10. Type Rules For Fields and Methods
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P'Fic
NoABSTRACTMETHODS{P', €)
P'Tth. newc=newc : ({cat {p,R))!

2 new]

where var € dom(T’)
PTlevar = var : (T{var)!p)

fvar]

Phret I
P'T Fe null = null : {{t at {p',R)) ! p) [oull

PTFy,e=¢e : ({tat (o, R))!p)
PPl viewte=e : {(tat {o",R)) ! p)

[weast]

PThee=e' : ((t2 at (¢, R2)) ! p) '
t <prtz or ty € dom(<}, ) or ¢ € dom(<3,,)

P'Tt, view &) e= view £; & : ({1 at (¢, R3)) ! p)

[ncast}

P'Thcep=e) & ((t1 at (p1,R1)) ! p)
P'T[var — (t1 at (p1,R1))] Fe e2 = e : ({t2 at (pz,R2)) ! p)

P'T k. let var = e; in ez = let var = ¢} in &} : ((tz at (p2,R2)} ! p)

PTF.e=¢ 1 ((t2 at {p',R2)) ! p)
tz<pr h

PTrh,e=¢ : ((t1 at {p,R2)) ! p)

[sub)

Pt
P'T |-, abstract = abstract : ((t at (o', R)) ! p)

{abs]

PTh.e=¢ : ((tat (p,R)!p2)
p2 # p1 and p3 ¢ FV(T)

P'TF. encap ¢ = encap ¢' : ((t at {p1,R)} ! p)

[encap]

FIGURE 11. Additional Type Rules For Expressions

[1et)
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region for each judgement, this new rule requires that all of the work takes place
in the same region.

It should be noted that none of the rules in the system tries to combine
distinct regions into a new region that includes them both. We do not infer any
of the region information but rather assume a valid assignment of region names to

region variables is provided up front and only proceed to check its correctness.
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CHAPTER V

SEMANTICS

Our semantics shares some similarities with CLASSICJAVA as well. Both are
specified operationally using reductions that transform program configurations. In
both systems a configuration is a pair in which one term represents the expression
and the other represents the store. CLASSICJAVA configurations are written (e, S)
and in REGIONJAVA they are written sto A e. The representation of objects in the
store also comes from CLASSICJAVA. Objects are represented as a pair consisting
of the class name and a mapping of field names to references, {c, 7). The store is
a mapping of references to these objects.

However, at this point our semantics diverges significantly from CLASsIC-
JAva and instead models the semantics of Monadic ML [8]. Like Monadic ML, we
add sto A e to the syntax as a valid expression so that they can be nested. Nest-
ing expressions allows us to cleanly localize store usage even when an encapsulated
expression encapsulates one of its subexpressions. The A above, unlike S, actu-
ally stands for a series of partitions, 8, ...8,. The leftmost partition is considered
the current working region. Partitions to the right of the current working region
are not accessable but are maintained to allow dangling pointers. The complete
extended syntax is in Figure 12 .

Since the sto expressions are added to the syntax, additional type rules
are added as well. These are listed in Figure 13 . The checking of references is

described with [loc]. In addition, a new judgement type was added to describe the



. |ref [sto Ae

object (e, F)
p = reflnull
F = {(cl-fdlrpl)v'-'l(cﬂ'.fdﬂopﬂ)}
8 = {(ref,object;),...,(ref,, object }}
A = 8i6A

FIGURE 12. Extended Syntax

T(ref) = (t at (¢', R))
P'T 1~ ref = ref : ((t at (¢, R)) ! p)

[toc]

dom{F) =dom(R) = {c'.fd |3t {.fd, L) €Epr ¢}
R(c.fd) = p' and F(¢'. fd) = p' implies
I tp, Rp,pp &.t.
Prre 7 : ((tp at (7, Rp)) ! pp)
P'TFy {c, F)oa(cat {p,R))

[obj]
P'T [[IEf)j =+ (tlj at (,(J;|,,72.]-.,'))];:;l

irefkj ~ (tx; at (px, Ryz));k, ) Fo object;; oa (5 at (pi, Rij))

P'T [[I'efu' — (t; at (pl'R"J'))]jl:l

[refij = (tx; at (o, RejDlih ) Fe e = e’ ¢ (1" at (0", R")) ! ;1)
pi, o' distinet  p; € FV(T)
P'Tk. sto {(ref1;,object,;)IL }... {(refs;,objecty;)’x } e =
sto {(reflj,objectlj)jél}...{(refkj,object,,_f)jf__l} e {(t" at (p", R M)
where 1 <i<k, 1<j<s, and1<m; <nyj

[ste]

FIGURE 13. Additional Type Rules
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consistency between an object in the store and a type-and-effect description. This
is the {obj] rule. This is then used by the [sto] rule to require that objects in the
store be consistent with the type of the references to them. The [sto] rule defines
how pairs from each partition are used to add relevant pairs to I'. Each pair added
to I' has region information that identifies the partition of the referenced object,
and then the expression is checked in the new environment and required to do all
of its work using only the leftmost partition. There may be many partitions yet
there is always only a single partition that is considered active at any one time.

Evaluation proceeds syntactically as a series of term rewriting. The rewrite
rules are of the form P'T' - e <= ¢, representing one step in the evaluation. Multiple
steps are written e < ¢'. The rules are given in Figure 14. Rules are expressed
using the evaluation contexts of Figure 15. These determine the order of term
rewriting. Since sto expressions may be nested, it is critical that an expression use
the innermost set of partitions. This is ensured by two separate contexts which are
identical except that the A context does not contain the sto expression. Thus, the
expression sto A Afref] will allow ref to be contained within a complicated context
but will require that, should ref be used to access the instance, ref will be looked
up in the given A. The other characteristics of the contexts are the standard left
to right evaluation and call by value.

The rules (new), (get), and (set) describe how to continue execution with a
new expression and a possibly modified store. The (new) rule uses the term F§,;,
to describe an F whose domain is the range of €% for the given class, and where
all of the values are initialized to null. The rules (call) and (super) describe how to

execute method bodies using substitution for the arguments and the this pointer.



(new)

{get)

(set)

{call}

(super)

(view)

{view™)
{let)
(maak)

(encap}

P

P

sto §A Alnew c}j =
sto 8'A Alref]]
here ref ¢ dom(fA), and
@ =@u{(ref, {c, FZ;, N}

g mm

E[sto A Alref:c.fd]] —

E[stoe 8A Alp])

whete &(ref) ={ ¢, F}, and
Flcfd)=p

E[sto @A Afrefic.fd =p1]] =

E[sto &'A Alp1]]

where 8(ref) ={¢c', 7},
Fle.fd) = pa,
@ref)={c, F'}, and
Flle.fd)=m

E(sto 8A Alref.md(p1,...,pn)lj <=
E[sto 8A Aley[ref/this,pifvary,..., pnjvary]]|
where O(ref) = (¢, F ), and
{ md,
((c at (po,Ro)}...,{tn at (pn,Rn)) Ly (t- at (e, R4)))s
(vary,...,vary),
ep ) Epl c

E[sto 8A Alsuper= vef : /.md(py,...,pa)]] =
El[sto 8A Aley[ref/this,pfvary,...,pnfvara]]]
where 8(ref) = { ¢, F ), and

{ md,

(¢’ 2t (0, Ra)) .., (tn Bt {Pn,Rn)) == (& at (pr, R:))),

{vary,...,vary),
[ ) Epl C'

E[sto 8A A[view t' ref]] —
E[sto 8A Afref])
where ¢ <p/ t', and
trefy = (¢, F)
E{view ¢ null] — E[null]
E[let var = p in €] — E[e[p/var]|
E[sto A A[sto A’ p]] — E[sto AA’ Alp]]

Efencap €] — E[sto {} €]

FIGURE 14. Reduction Rules
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A = [J| Acfd | Accfd=e | pefd=A
} Amd(e...) | pmd{p...Ae..))
| super=ref:cmd(p...Ae...)
j wviewtA | letvar=Aine

E 0! Ecfd | Eic.fd=e | prcfd=E

| E.mdie...) | pmd(p...Ee...}
| super=ref:cmd(p...Ee...}
| wviewitE | letvar =Eine

| stoAE

FIGURE 15. Evaluation Contexts

{view®) P' F E[sta A A[view ' ref]] = error: bad cast
where &(ref}) = (¢, F)and c £p '

{get=} P’ F E[sto A null_c.fd] < error: null pointer
{aet=) P’ I E[sto A null_c.fd = pj = error: null pointer

{call®} P’ + E[sto A null.md(py,...,pn)] = error: null pointer

FIGURE 16. Reductions to Errors
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The (let) rule uses substitution as well to handle variables. The (mask) rule allows
nested stores to be lifted out of the expression while {(encap) creates a new working
partition for the given expression that can later be lifted out with (mask). Note
that these lifted partitions are added to the right of the list of partitions and
are thus not accessible to work with, but are retained to accommodate dangling
pointers. We have also added a (view™) rule which was not present in CLASSICJAVA
to allow null references to be cast to any type.

Some expressions lead to errors but are not caught during static analysis.
These runtime errors are the result of specific data values that cannot be deter-
mined without running the program. For example, the type of an expression may
be a class that is appropriate for a specific field or method access. But if its value
at run time is null then there is no instance to access and an error has occurred.

This situation results in one of the error configurations listed in Figure 16.



30

CHAPTER VI

TYPE SOUNDNESS

Our examination of the soundness of the system follows the standard syn-
tactic approach [12]. Namely it depends on three steps. First, we must show that
every program is an answer, faulty, or corresponds to a rewrite rule. Second, we
must show that the process of rewriting preserves the type. Third, we must show
that faulty programs are untypable. Once each of these has been determined then
typable programs must either diverge, written P'T' - eft, produce an answer of the
right type, or produce and error configuration.

Like the soundness proof of CLASSICJAVA[3] we create judgements that each
correspond to an existing judgement, performing all the same checks, except they

operate on already annotated terms and do no further elaboration. For example,
PThr.e=¢€ : ((tat (;m,R))! p2)

will correspond to
PTr.e : ((tat (p,R)) ! p2)

The only deviation from a complete correspondence is that |-, judgements ignore
[wcast] rules for simplicity since it is only an optimization.

We start with some basic definitions.
Definition 1 (Programs)

A program is a series of class and interface definitions and a closed

expression.
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The initial expression, e, given by the programmer is written sto {} e to

provide an initial working region for the program.

Definition 2 (Error Configuration)

An error configuration is any one of (view®), (get®), (set®), and {call®).

The error configurations are runtime errors and are not targeted by the type
system. They are therefore considered distinct from the faulty expressions.

Definition 3 (Answers)

An answer is a term of the form sto A p.

The faulty expressions correspond to stuck states where the semantics is
undefined.

Definition 4 (Faulty Expressions)

The following expression are faulty:

sto A ref where ref € 8

sto @A ref: . fd
where 8(ref) = (¢, F ), and
(c.fd, t) €p c, or where
f(ref) is undefined
sto fA ref: c'.fd=p
where &(ref) ={¢, F),,and
(c.fd, t)&p c, or where
O(ref) is undefined
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sto 8A ref.md(py,...,pm)
where 8(ref) = (ty, F ), and either

{ md,
((tO at (PO:RD)): sy (tﬂ at (men)) 25 (tr at (prrRr))):
(vary,...,var,),

es ) €pr c, oOr
m # n, or where

6 (ref) is undefined

Definition 5 (Redex)

A Redex is any expression, e, where there exists an e’ such that
PlLe—eé.

We first want to show how expressions can be broken down.

Proposition 1 (Decomposition)

Every term e can be decomposed into one of the following forms:

b,

Alnew c], Alp: c.fd], Alp:c.fd = p'], Alp.md(p; . .. pa)),
A[super= this : c.md(p, ..., p,)], A[view t p], or A[sto A pl.

E[var], E[Redex], E[Faulty], an error configuration,

This can be shown by induction on the structure of terms. Then we can use

this information to state the following corollary about closed expressions.
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Corollary 1

A closed expression of the form sto A e can be decomposed into one

of the following forms:

sto A p, which is an answer,
E{Redex],
E[Faulty], or

an error configuration.

This can be shown by induction on the structure of terms. Now we have our
four desired categories. It remains to be shown that those in the redex category are
typable and reduce to answers of the given type, while those in the faulty category
are not typable.

The following propositions are necessary to our subject reduction proposition.
First, we want to be able to add to or remove from the environment when doing

so has no effect on the expression.
Proposition 2
P T'H.e: ((tat (p1,R)) ! p2) and T'(z) = I'(z) for all free z in e

then P'T" . e : ((t at (o1, R)) ! p2).

This follows from the structure of derivations. We also want to show that
the hole in a context can be filled with any expression of the same type without

changing the type of the overall context.
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Proposition 3 (Replacement)

Let C=AorE

If  P'TrCle : ((tat (o1, R1)) ! p2),
P'Th.e : ((t2 at (p3,R2)) ! pa), and
P'Th e o ((t2at (p3,R2)) ! pa),

then P'T . Cle'] : ((t1 at (;1,R1)) ! p2).

This is a direct result of the fact that holes in either context correspond
directly to antecedent rules. If e and e’ both satisfy the antecedent then the
consequent can be rebuilt using either. Then we want to be able to replace variables
in an expression with their corresponding values. However, we need to account for

the fact that a variable may be assigned a value that is a subtypes of the variable’s

type.
Proposition 4 (Substitution)

Let o ={(vary,p1),...,(vars, pn)}

n

7 = [var; — (t; at (p;, Ri))]i—y

If  dom(T')Ndom(7) =0,
PToh.e : ((tat (#,R))!p), and
PThyp; ¢ (8 at (05, Ry)) ! ) for j € [L,n],
then P'TH,a(e) : ((tat (¢, R))!p)

This follows by induction on the structure of e. Since substitution leaves us
with subtyping judgements, it is useful to have a replacement rule that addresses

them directly.



Proposition 5 (Replacement with Subtyping)

Let¢t C=Aork

If P TH,Cle]: ((t1at (p,R1))!p),
P'Tl.e : ((t2 at (p2,R2)} ! p), and
P'TtH. e : ({ts at (p2,R2)) ! p), where
i3 <& ta,

then P'T'F, Cle'] : ((t1 at (o1, R1)) ! ).

This follows by induction on the depth of the evaluation contexts: Since
faulty expressions are not typable, we know that if a context which is filled with
an expression is typable, that expression must also be typable. In addition, from
the structure of our type system we also know that working regions are forced to

match. This information is expressed in the following proposition.

Proposition 6 (Region Flow)

Let C=AorE

If P THFCle : ((tiat (o1,R1)) ! p)
then P'TFe : ((t at p2,R2)) ! p)

This is a direct result of the fact that each context’s hole participates directly
in a antecedent of the type rule that requires the regions match. Now we are ready
to consider the subject reduction proposition. This proposition ensures that each
rewrite preserves the overall type of the expression. Note that we consider it

enough if the resulting type is a subtype of the original type.
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Proposition 7 (Subject Reduction)
If P The: ((t"at (p],R")! o) and
P re—eé

then P'TH, e : ((t" at (o], R")) ! pf).

This follows from a case analysis on the reduction rules (see Appendix). We

now address faulty expressions.

Proposition 8 (Faulty Expressions are Untypable)

If e is faulty there is no P’, [, ¢, ¢/, and p such that PT F, e

((tat (', R)) ! p).

This follows from a case analysis of the definition of faulty expressions. Fi-

nally, from Propositions 7 and 8 we have the following corollary:

Proposition 9 (Syntactic Soundness)
If PriE.stoAe: ({tat (p,R))!p)
then P'F sto A eft,
P'I- sto A e <+ an error configuration, or
P'I sto A e <=3 sto A p where
PT,sto Ap : ((tat (¢, R))! p).
This expresses the desired result that if an expression is typable, it must
either diverge, reduce to an error configuration, or reduce to a value, if it is not

one already, that has the same type as the expression.
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CHAPTER VII

CONCLUSION AND FURTHER WORK

We have conducted an investigation into a type-and-effect system for encap-
sulating memory in Java. Our system looks at merging the syntax of CLASSIC]JAVA
with the semantics of Monadic ML. Qur simple use of region names for the effects
proved to be quite constraining. Qur attempts to overcome those limitations by
adding more effect variables to each single type caused a level of complexity that
proved difficult to manage. In addition, they only provided a strange hybrid of
functionality. Nonetheless, many of the issues of trying to encapsulate memory in
an object oriented language are well illustrated. It is a complex task to manage
region information in a language with inheritance, where types are frequently sub-
sumed to other types, and where values are references to a collection of references.
Much work remains to be done to resolve these issues more cleanly. In addition,
the ability to infer types rather than check a type assignment is another major
barrier that must be addressed before any such system that encapsulates memory

can be implemented.



then P'TH.€ :

APPENDIX

SUBJECT REDUCTION

P'Th.e : (("at (pf,R") ! ph),and

P Fe—e¢

((#" at (pi, R")) ! p3)-

We proceed by case analysis on the reduction rules. Let:

6]

B

8,

{(ref,, object,),.. ., (ref,, object,}},
[ref; = (25 at (p, R;))]}=1s
8,

{(refi1, object;,), . .., (refy,,, object;, )},

[refi; = (ti; at (pi, Rij)Yjis

—
IA
FAN

-

=t [
IAIA
A IA
x> =
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o = s 1<is<k,
8, = {(ref},object}),..., (ref;,',object:-,:)}, 1<i<H,
B = [refi; (8 at () Rep))lia, 1<igH,

A = #6,...,6,, and
A = §,...9,

Case [new) :

By assumption:

PT I, E[sto A Anew c]] : ((¢" at (p},R")) ! p3)

Taking first the contents of E, by Proposition 6 we have

PT . sto 6A Alnew ¢] : ((t" at (6", R")) ! p3)

from (A.2) by [sto] we have

P'TOA -, object; >4 (t; at (p, R;))

P'TOA |, object;; < (t; at (pj, Rij))

PTAA |, Alnew ¢} : ((t" at (p{,R")) ! p)
P, pi, Py distinct

g0 & FV(D)

39

(A1)

(A.2)

(A.3)
(A.4)
(A.5)
(A.6)

(A7)
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and from (A.5), [new], and using Proposition 6 again, we have

PTOA . newc : ((cat (p,R))! p) (A.8)

Let ref be a new location not occurring in dom(#A) then by Proposition 2

and (A.8)

P'T[ref — (c at (p,R))] A, (A.9)

new ¢ : ({cat (p,R))! p)

By (A.9), and [loc] we have

P'TA[ref = (c at (p,R))] Al (A.10)

ref : ({(cat {p,R)) ! p)

By Proposition 2, (A.5), and (A.10) we have

P'T(ref = (c at (p,R))] At (A.11)
Alnew ¢ : ((t" at (5", R"™)) ! p)

and by Proposition 3, (A.9), (A.10), and (A.11)

P'TO[ref — (c at (p,R)}] A, (A.12)
Alref] = ((¢" at (', R™)) ! p)
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By (A.12) and the definition of F£;, we have

P'TO[ref — (c at (p,R))] A+, (A.13)
(&, Faw)(cat (p,R))

Then by [sto], (A.3), (A.4), (A.6), (A.7), (A.12), and (A.13) we have

PTHF, sto 80 {{ref, (¢, F&; ))} A Alref] (A.14)

(" at (A, R™) 1 6f)

And finally using Proposition 3, (A.1), (A.2), and (A.14) we have

PTHF, E[sto 8U {(ref, { ¢, F5; ))} A Afref]] (A.15)

(" at (p1, R")) ! p3)

Case [get] :

By assumption:

P' T I, E[sto 8A Afref c.fd]] : ((t" at (o}, R")) ! p}) (A.16)

Taking first the contents of E, using Proposition 6 we have

P'T I, sto 6A Afref.c.fd] : ((t" at (o), R")) ! p3) (A.17)



from which by [sto]

PTOA I, object; o< (t; at (p, R;))

PTOA I, object;; >3 (t;; at (p;, Ry;))

P'TOA &, Alrefc.fd] = ((t" at (o}, R™)) ! p)
p, pi, py distinct

p,pi & FV(T)
From (A.20), and Proposition 6 we have
P'TOA reficfd : ((th at (074 RYa)) ! )

By (A.23) and [get] we have

PPTOA L, ref : ({c, at (p,Ro)) ! p)

(cfd, tiy) €p co

By (A.18), (A.23), and (A.24)

ref = { co, F )
Fle.fdy=p

PTOAL,p : ((that (FfRYa)) ! p)
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(A.18)
(A.10)
(A.20)
(A:21)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)
(A.27)

(A.28)
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By Proposition 3, (A.20), (A.23) and (A.28)

P'TIAF A : (" at (5", R") ! p) (A.29)

By (A.18), (A.19), (A.21), (A.22), (A.29), and [sto] we have

P' T I, sto 0A Alp] : ((t" at (p}', R™)) ! p}) (A.30)

Then using Proposition 3, (A.16), (A.17), and {A.30) we can conclude

P' '+, E[sto A Alp]] : ((¢" at (p{,R")}! p3) (A.31)

Case [set] :

By assumption:

P’ [ I E[sto A Afref:c.fd=p]] = ((t" at (p],R")) 1 p3)  (A.32)

Taking first the contents of E, using Proposition 6 we have

P' Tk, sto 0A Afrefrc.fd=p1] : ((t" at (o), R™)) ! p) (A.33)



By (A.33) and [sto] we have

P'TYA I, object; 0a (t; at (p, R;))
P'THA -, object,; ba (;; at (pj, Rij))

P'IA k-, Alrefic fd =i} ¢ (" at (o', R™) ! o)

Ht

p, pi, py distinct

From (A.36), and Proposition 6

P'TOAF refrcfd=p : ((t}q at Ri(c.fd)) ! p)

By (A.39) and [set]

P'T8A L ref : ((c) at (p,R})) ! p)
(c.fd, thy) €pc,

PTOAF, p : ((tfy at Ry(c.fd)) ! p)

By Proposition 3, (A.36), (A.39) and (A.42) we have

PJ‘ 1-1 a Zl_g A[pl] . ((tm at (plfl’Rﬂ!)) ] p)
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(A.34)
(A.35)
(A.36)
(A.37)

(A.38)

(A.30)

(A.40)
(A.41)

(A.42)

(A.43)
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By (A.34), (A.39), and (A.40) we have

ref =( ¢y, F, ) (A.44)
Filc.fd) = p, (A.45)
P TR . pr ¢ ((hat Rc.fd) ! p) (A.46)

Since p; and p; have the same type by (A.42), and (A.46) replacing p; with p;
in FY will maintain consistency of F, and R,. Therefore by (A.34), (A.35),
(A.37), (A.38), (A.43), and [sto] we have

P' Tk, sto 0A Alpy] : ((2" at (o), R"™)) ! p3) (A.47)

Then using Proposition 3, (A.32), (A.33), and (A.47) we can conclude

P' Tk, E[sto 8A Alpy]] : ((t" at (o7, R")) ! o) (A.48)

Case [call] :

By assumption

P'T't, Efsto 0A Afref.md(py,...,pn)l] (A.49)

(" at (o1, R")) L p3)
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Taking first the contents of E, using Proposition 6 we have

P'TF, sto 8A Afref.md(py,...,pn)] (A.50)

(2" at (oL RM) 1 )

From (A.50) using [sto] we have

P'TAA k-, object; ba (¢ at (p, R;)) (A.51)
P'TBA -, object;; > (¢ at (pj, Ri;)) (A.52)
PTOA &, Alref.md(py,...,pa)] : ((t" at (o, R™)) ! p) (A.53)
p, pi, P distinct (A.54)
p,pi & FV(T) (A.55)

and from (A.53), and Proposition 6

P'T @A, ref.md(py,...,p.) : ((£" at (o™, R™)) ! p) (A.56)

Then using (A.56) and [call] we can say

P'T oA ref : ((t5" at (o, RE")) ! p) (A.57)
{ md, (A.58)
(8 % (A", RN, ... (B2 (o1, RU) 2 (87t (o, RI)

(vary,...,var,)

es) Epr ty"
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P'TOAF, p; ¢ ((t]" at (o], RI") ! p) for j € [1,7] (A.59)

And by (A.58) and [meth]

P' [ this — (& at (of", R3™M), (A.60)

vary = (" at (6", RY")),

var, — (I at (P, R Fsew = (" at (o7, R™) ! p)
Let
¢’ = ey[ref /this, p, /vary, ..., p,/vary]

Then by (A.60), Proposition 2, and Proposition 4

Pl el (8" at (0", R")) ! ) (A.61)

By Proposition 5, (A.53), (A.56) and (A.61)

P'TEAF, Al] : (" at (o, R™) ! p) (A.62)

Then there exists a ¢}’ such that t¥ <pr t" and

PTIAKAl] : (¢ at (0", R™) ! p) (A.63)



Then by (A.51), (A.52), (A.54), (A.55), (A.63), and {sto] we have

P' T, sto 8A Ale] = ((&) at (o], R"™)) ! p3) (A.64)

Since by definition ¢! <p/ t" we can also say

P' T I, sto 6A Ae'] : ((t" at (o', R")} 1 p) (A.65)

Then using Proposition 5, (A.49), (A.50), and (A.65) we can conclude

P' T+, E[sto 6A Ale']] : ((t" at (p],R")) ! o) (A.66)

Case [super] :

By assumption

PT |, E[sto 8A A[super= p; : c.md(py,...,Pn)]] (A.67)

(¢ at (B, RY) ! )

Taking first the contents of E, using Proposition 6 we have

PTF, sto A Alsuper= p, : cmd(py,...,Pn)] (A.68)

(2" s (A, R™) 1 4f)



From (A.68) by [sto] we have

P'TOA |, object; ba (t; at (p, R;))
PTOA |, object,; 1 (¢;; at (p;, Ri;j))
P'TA +, Alsuper= py : cmd(py, . .., pn)]

(" a (o, R™) 1)
p, pi, pi distinct

From (A.71), and Proposition 6 we have

P'TIA +, super= py: c.md(ps,...,p,)

(" at (A, RE) )

By (A.74) and [super] we have

PIOE ko po ¢ (" 2t (4", RY") ! o)
ty <3ty
( md,
(8 ot (93", RE), .., (2 (o1, ") L (87 at: (27,
(vary,...,var,)
ey) Epr t
PTOA b, p; : ((t]" at (", R}")) ! p) for j € [1,n]

e, # abstract
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(A.69)
(A.70)

(A.71)

(A.72)

(A.73)

(A.74)

(A.75)
(A.76)

(A.77)

RN

(A.78)

(A.79)



And by (A.77) and [meth]

P' [ this > (£ at (o', R4"),

vary — (8" at (p", R{"),

var, — ()" at (o, RN s es (" at (o, R"™) 1 p)

Let

€' = ep[py/this, py/vary,...,p./var,]

Then by (A.80), Proposition 4, and Proposition 2 we have

P'hye (6" at (47, RIM) 1 o)

By Proposition 5, (A.71), (A.74) and (A.81)

PTOA &, Ale'] = ((t" at (o), R"™) ! p)

Then there exists a ¢}’ such that ¢} <pr ¢" and

PTOAF, Ale] « ((t' at (o), R™) ! p)

Then by (A.69), (A.70), (A.72), (A.73), (A.83), and [sto] we have

P’F E_g StO HA A[e'] 0 ((t;:’ at (pT', R}H)) ' pg)

a0

(A.80)

(A.81)

(A.82)

(A.83)

(A.84)



Since by definition ¢ <pr " we can also say

PT F, sto 6A Ale'] : ((£” at ()", R™)) ! "
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(A.85)

Then using Proposition 5, (A.67), (A.68), and (A.85) we can conclude

PT |, E[sto 6A Ale']] : ((¢" at ()", R™)) ! p!

Case [view]:

By assumption:

P'T I E[sto A Alview t, p]] : ((t" at (o}, R")) ! p"

Taking first the contents of E, using Proposition 6 we have

PTF sto 0A Alview t; p] : ((t" at (o, R"™)) | p¥)

from which by [sto]

P'TIA |-, object; 1 (¢; at (p, R;))
PTOA |, Alview ¢, p] : ((t" at (o, R"™)} ! p)

p, pi, py distinct

(A.86)

(A.87)

(A.88)

(A.89)
(A.90)
(A.91)

(A.92)



p,pi ¢ FV(T)

and from (A.91), and Proposition 6
PTA F view t; p : ((t)" at (o', RI")) ! p)

By (A.94) and [view] we have

P’F@Z |‘p . ((tfzm at (pr{n,anr)) 1 P)

Htt

ta" <% 1" or t" € dom(=%) or t5" € dom( %)

By (A.95), (A.96), and [sub]

PTOAFp : ((#" at (o, R!™) ! p)

By Proposition 3, (A.91), (A.94) and (A.97)

PTOAF Alp] = ((t" at (o], R")) ! p})

and by (A.89), (A.90), (A.92), (A.93), (A.98), and [sto]

PT +sto 68A Alp] : ((t" at (p)",R™)) ! o}
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(A.93)

(A.94)

(A.95)

(A.96)

(A.97)

(A.98)

(A.99)
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Then using Proposition 3, (A.87), (A.88), and (A.99) we can conclude

P'T - E[sto 8A Alp]] : ((t" at (5", R")) ! g

Case [view"] :
By assumption:

PT k-, E[view ¢ null] : ((t" at (p},R") ! p)

Using (A.101) with Proposition 6 we have

Y

PT I, view ¢ null : ((t" at (p}", R")) ! o

Then by (A.102) and [null] we have

PTF,null : ((¢" at (o, R"™)) ! )

By Proposition 3, (A.101), (A.102) and (A.103)

PT k. E[null] : ((#" at (p},R")) ! p2)

(A.100)

(A.101)

(A.102)

(A.103)

(A.104)



Case [let] :

By assumption:

P'TF, E[let var =pine] : ((t" at {p],R")) ! ph)

Using (A.105) with Proposition 6 we have

PTF.let var=pine : ((t" at (p]',R™)) ! p})

Then by (A.106) and [let] we have

PTORF,p : (" 3 (4", R™)) ! f3)

P'TAA[var — (t" at (p}", R"™))] k.

e : (" a (o, R"™)) ! 4})

Then using Proposition 4 with (A.107), and (A.108) we have

PTOA &, elp/var] : ((" at (o', R™)) ! p3)

By Proposition 5, (A.105), (A.106) and (A.109)

PT -, Elelp/var]] : ((¢" at (6], R")) ! p2)

(A.105)

(A.106)

(A.107)

(A.108)

(A.109)

(A.110)



Case [mask] :

By assumption:
P'T k-, E[sto A Afsto A p]] : ((" at (o}, R")} ! o)
Looking first at the contexts of E, using Proposition 6 we have
PT k. sto A Afsto A’ p] : ((t" at (5", R"™)) ! pl))

From (A.112) and [sto] we have

P’FZ l‘o object,-j 24l (t,'j at (PJ: 7?,‘3))
PTA ', Afsto A’ p] = ((t" at (0", R")) ! p1)
I

pi, Py distinct

pi ¢ FV(T)

By (A.114) and Proposition 6 we have

PTAFesto A p @ (" at (o, R™)) ! py)

Using [sto] again with (A.117) we have

P'TAR' -, object];  (t}; at (o}, R);))
PTAR b,p : (" at (4, R™) 1 4)

1

i, py" distinct

4 ¢ FV(I'A)
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(A.111)

(A.112)

(A.113)
(A.114)
(A.115)

(A.116)

(A.117)

(A.118)
(A.119)
(A.120)

(A.121)
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Then since p is a value, from (A.119) we can also say

PTAA k. p : ((t" at (o, R"™)) ! p) (A.122)

Now we can use Proposition 3 and (A.114), (A.117), and (A.122) to say

PTAR k. Alp] : (" at (o, R™)) ! p}) (A.123)

Now we can use the [sto] rule with (A.113), (A.115), (A.116), (A.118),
(A.120), (A.121), and (A.123) to say

PT t, sto AA" Alp] : ((#" at (p]",R™)) ! p}) (A.124)
Finally, using (A.111), (A.112), (A.124), and Proposition 3 we have
PT k. E[sto AA" Afp]] : ((t" at (p],R")) ! p5) (A.125)
Case [encap).
By assumption:
P'T |- E[encap €] : ((t" at (o{,R") ! p}) (A.126)
By (A.126) and Proposition 6 we have

PTFencape : ((t" at (o), R") ! p}) (A.127)



Then by (A.127), and (encap)

PTHee @ ((t" at (o), R"™)) ! p3) (A.128)
Py # P1 (A.129)
py & FV(T) (A.130)

Then using (sto), since the rules regarding references and objects pass triv-
ially and the remaining ones result from (A.128), (A.129), and (A.130), we

can say
PT kg sto {} e : ((t" at (o', R") ! p3) (A.131)
Then by (A.126}), (A.127), (A.130), and Proposition 3 we have

PT - E[sto {} e] : ((t" at (p),R") ! p}) (A.132)
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