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This thesis investigates multi-source spanning tree problems where, given a graph
with edge weights and a subset of the nodes defined as sources, the object is to find
a spanning tree of the graph that minimizes some distance related cost metric. This
problem can be used to model multicasting in a network where messages are sent from
a collection of senders, and the goal is to reach every receiver within minimum total
cost. In this model, it is assumed that communication takes place along the edges of a
single spanning tree. For a set of possible cost metrics for creating such a spanning tree,
this thesis determines whether the problem is NP-hard; otherwise, it demonstrates the

existence of an efficient algorithm to find an optimal tree.
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CHAPTER 1

THE K-SOURCE SPANNING TREE PROBLEM

A Brief Introduction

The motivation behind this thesis is the problem of multicasting in which a mes-
sage is broadcast to multiple receivers across a network. One possible paradigm of
multicasting is when several sources from a fixed set of vertices transmit the data, and
every vertex in the network is a potential receiver. Multicast protocols often use a single
routing tree which is shared by all transmissions. The goal is to minimize the time it
takes to complete a message broadcast, and this thesis examines the feasibility of con-
structing optimal routing trees for such a protocol. The optimality of a tree is determined
by minimizing some given cost function. Multiple cost metrics are considered because
different situations may call for different requirements and because some of the metrics
turn out to be intractable.

If there is only one source, an algorithm to find the single source shortest paths
spanning tree, such as Dijkstra’s or Bellman-Ford, will produce an optimal tree for each
of the cost metrics considered. Therefore, the investigation considers only situations
with more than one source. The problem is interesting because a shortest paths tree
from one of the sources will probably not yield good results when used in conjunction
with the other sources.

An obvious cost metric is to consider the total sum of the distances from each

source to every vertex. With this cost function, this problem is an instance of the more



general Optimum Communication Spanning Tree (cf. [ND7] in [2])} as defined in [3].
Also, if every vertex is a source, this problem becomes the Shortest Total Path Length
Spanning Tree (cf. [ND3] in [2]). Unfortunately, both these problems were proven NP-
hard in [4], and even in the case of two sources and uniform edge weights, finding an
optimal tree which minimizes this cost metric is still intractable. 1]

This thesis presents six distance related cost metrics and the problem of construct-
ing an optimal spanning tree minimizing each of the metrics. One of the problems is
known to be A/'P-hard and another is known to have a polynomial time solution. [6]
After the presentation of these results regarding the complexity status of the two prob-
lems and a strategy for proving that a spanning tree problem is polynomial, this thesis
considers the four problems of, until now, unknown complexity status. Two of these are

proven to be A/P-hard and two are proven to be solvable in polynomial time.

A Few Definitions

A graph is a pair G = (V| E) where V is the set of vertices, also called nodes,

and E C V x V is the set of edges. There is a length function defined on the edges,

[ : E — R. This thesis will also make use of points where a point may be either a vertex

of G or a location along an edge of G. The sources of a graph are a nonempty subset of

the vertices.

A spanning tree T of G is a connected acyclic graph which connects all vertices
of G using a subset of the edges of G.

The distance function, d : V x V — R, on nodes u and v is the sum of the
lengths of each edge on the path from u to v. Depending on the set of edges considered,

we distinguish between the tree distance dr(u, v) which is the distance of the unique



path in T from u to v and the graph distance dg(u, v) which is defined to be minimum

distance from u to v over all possible paths fromu to v in G.

The Problems

The problems investigated in this thesis are generalized as a family of decision
problems called k-Source Minimum Spanning Tree with Cost-i (k-SMSTi), parameter-
ized by a positive integer £ and given a cost metric cost;. The basis of all the metrics is
the tree distance between sources and vertices, and the operations combining the differ-
ent distances are max and sum.

k-SMSTi:

Instance: A graph G = (V, E) with a length function, [ : E — R, k sources § =

{s1,---,8:} C V,apositive integer K.

Question: Is there a spanning tree T of G such that cost;(T) < K?

The cost metrics are defined as:

cost) (T) = ZZC[T(S,'U)

3E85 veV
costa(T) = ma&chT(s,v)
ve a€S
costz(T) = mast:dT(s, v)
€ vev
costy(T) = Zmaxdr(s,'u)
vev ES
costs(T) = Zmaxdr (s,v)
€S
costg(T) = , gslff)ecv dr{s,v).

It should be noted that each of these problems is in A/P as one can simply guess



a spanning tree and, in polynomial time, calculate the appropriate cost metric.

The first of these metrics, k-SMST1, was proven to be A"P-complete in [1], and
the last, k-SMST6, was shown to be polynomial in [5] and [6]. The remaining four
metrics were presented as open problems in [6], and this thesis completely characterizes
the complexity status of each of the four remaining problems, k-SMST?2 through k-

SMSTS.

Known Results

The k-SMST1 Problem

The optimization version of the k-SMST1 problem seeks to minimize the total
cost from every source to every vertex. This problem is also known as k-Source Short-
est Paths Spanning Tree (k-SPST) and was proven A'P-complete in [1]. The proof is
a reduction from the 3-SAT decision problem to the 2-SPST decision problem. The
intractability of the more general k-SPST problem follows naturally.

An instance of 3-SAT (problem [LO2] in {2]) is a set of disjunctive clauses
(Ci, - .., Cp) involving literals of the variables (z, ... ,Z,), and we are asked whether
there is a truth setting of the variables which satisfies every clause. The reduction in-
volves constructing a variable gadget for each z;. The gadget is a four-cycle with the
vertices labeled, in order, :r:;, :c'f, :r,',-', and a:f . The variable gadgets are linked together
in a lattice chain so that z; = z,,. Each clause C; is represented by a vertex c;, and
for each literal in C}, there is a unique path of = — 1 vertices from c; to the appropriate
literal vertex =7 or zF. Finally, additional nodes are attached to one of the sources and

to each clause vertex. These nodes serve to weight the graph and force an optimal tree

to have a specific shape. See Figure 1 for an example of the reduction graph.



FIGURE 1. The construction for k-SMST1 (k-SPST); aclause ¢; = -z, V -z V Z,.



The general idea is that by adjusting the number of vertices attached to each clause
vertex and to the source vertex, we force the path linking the two sources in the tree to
traverse the literal lattice and not include any clause vertex. As exactly one of each
pair of nodes {z;, ~z;} will be on this path, the nodes included on the intrasource path
correspond to a truth assignment to the variables. A clause vertex is linked to the in-
trasource path by its literals. If a clause has a true literal, the clause vertex is a shorter
distance from the intrasource path than if all the clause literals are false. As the cost of
the tree depends on the distance of the clause vertices from the path, the bound K on
the cost of the tree is set so that an optimal tree exists only if every clause is satisfied by
the truth assignment. A similar reduction is used to prove k-SMST2 and k-SMST?3 are

NP-complete.

The k-SMST6 Problem

A solution to the k-SMST6 problem minimizes the source eccentricity of a span-
ning tree, defined to be the maximum distance between a source vertex and any other
vertex. This problem is also known in the literature as the k-Source Maximum Eccen-
tricity Spanning Tree (k-MEST) problem [1, 6] and the Minimum Eccentricity Multicast
Tree (MEMT) problem. [5] An efficient solution exists for this problem, and [6] presents
an O (|V|? + | E||V}log|V|) algorithm while [5] presents an O {|V|?) algerithm.

A Sufficient Set of Shortest Paths Spanning Trees

Given the general problem of finding spanning trees for a graph, if we can prove
that a shortest paths spanning tree from some point on the graph will solve the problem,

then a polynomial solution to the problem will exist.



Let @ be a set of spanning trees of G such that, for all points ¢ of G, Q contains
a single source shortest paths spanning tree (SPST) from ¢. An important result, for
this thesis, from [6] is that we can construct ¢} in polynomial time. The key idea is that
although there are an infinite number of points on a graph, we only need to construct a
shortest paths tree from a polynomially bounded subset of these points. Therefore, to
prove a problem is in P, it suffices to show that a SPST from some point ¢ is optimal for
the problem. Although this fact does not directly lead to efficient algorithms, it does at
least present us with a naive polynomial time solution which is to generate a SPST from
every necessary point and then choose the tree which has minimum cost. Because this
result is crucial to the proofs given later, it is described in full here with two theorems
of McMahan and Proskurowski. [6]

First, for each edge (p, ¢) in G, define a set of points ¢ 4). Foreach vertex v € V,
let v, € ['(;,4) be a point on the edge (p, g) so that for any point & € (p, 7,) the shortest
path from « to v is through the vertex p, and likewise for any point & € (7, ¢), the
shortest path from a to v is through the vertex g. Each of these.points can be located in

polynomial time. Let d,(+y,) be the distance along the edge (p, ) from p to 7,. Then,

&(3) = 5(de(a,v) = do(p,0) +1(p,0)).

For the next two theorems, consider a set ', q) and index the vertices of G so
that dp(Yv, ), @p(Vuy)s - - - » dp{71s,.) is @ nondecreasing sequence and consider the |V| + 1

intervals (7Yy,, Yuip1)-

Theorem 1.4.1.  For any two points a; and a; in the interval (7y,, Yy,,) for

1 < i < n, the set of SPSTs rooted at a;, is the same as the set of SPSTs rooted at .



Proof. For both a; and ay, the shortest path to a vertex v; goes through p if

7 < i and through ¢ if 7 > 4. Thus, a SPST from either o or @, contains a shortest

paths tree from p to the vertices vy, ... , v; and a shortest paths tree from g to the vertices
Vi4+i,- - - , Un. Therefore, the sets of all SPSTs from a; is identical to the set of all SPSTs
from as. 0

Theorem 1.4.2. Any SPST for a point & € (Vy,_,, Yui,,) is also a SPST for the

point y,,.
Proof. The proof follows from Theorem 1.4.1 and the definition of ,. D

Therefore, to create @, pick an arbitrary point & € (7, Vs, +1) for each interval
(Yvi» Yv:4 ) along an edge, find a SPST from c, and repeat the process for each edge in
G. As there are at most |V| + 1 intervals per edge, @ can be constructed in polynomial
time. More efficient methods for forming @ are possible. Both [6] and [7] give such

procedures, but these techniques are immaterial for the scope of this thesis.



CHAPTER H

THE NP-COMPLETE PROBLEMS

The k-SMST2 Problem

Instance: A graph G = (V, E) with a length function, [ : £ — R, k sources S =

{s1,...,sk} C V,a positive integer K.

Question: Is there a spanning tree T of G such that

costz(T) = maxpey D e s dr(s,v) < K?

This metric minimizes the sum of the distance to each source from the farthest
vertex in the tree. Unfortunately, this problem is A’P-hard. The proof is a reduction

from 3-SAT and closely follows the proof of k-SMST1 in {1] (cf. p. 4).

Theorem 2.1.1.  2-SMST2 is A'P-complete even for graphs with unit edge

lengths.

Proof. The proof is a reduction from 3-SAT. Given an instance of 3-SAT with
m clauses (Cy, ... ,Cp) and n variables (z,, ... ,z,), construct a graph G. For each
variable, z;, create a 4-cycle gadget with vertices labeled, in order, z;, z7, z;, zF. We
will connect these 4-cycles in a lattice such that z; = z;,, fori = 1...n — 1. For
each clause, Cj, create a vertex labeled c;, and for each of the three literals in the clause,
connect the clause vertex to the associated variable gadget by a chain of n nodes so that

if clause C; contains the literal x;, the chain will connect vertex c; to vertex z7 and if

clause C; contains the literal ~x;, the chain will connect vertex c; to vertex :cf" . Finally,
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FIGURE 2. The construction for k-SMST2; a clause C; = -z, V -1 V T,

let S = {s1,s2} with s; = 2, and s, = x,, and let K = 4n + 2. See Figure 2 for an
example of the reduction graph.

This graph can be constructed in polynomial time because the lattice of variable
gadgets has 3n+1 vertices and 4n edges and each clause vertex is connected to the lattice
by three paths of n vertices and n + 1 edges. So there is a total of 3n + 1 + m{3n + 1)
vertices and 4n + 3m(n + 1) edges in G.

The instance of 3-SAT is satisfiable if and only if G has a spanning tree T with
costa(T) <= K. If we have a satisfying assignment to the instance of 3-SAT, we can
construct an optimal tree T'. The path between s, and s; in T' will traverse the variable
gadget lattice according to the variable truth assignment. If z; is assigned true, z7 will
be on the path, and likewise if z; is assigned false, I will be on the path. The tree is

completed by noting which literal is critical to satisfying each clause C; and removing
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the edges from vertex c; to the noncritical literals of C;. Finally, the extra edges in the
lattice are removed. Define the cost of a vertex to be the sum of the distance to each
source and note that the cost of a vertex is equal to twice the distance of the vertex from
the s1s2-path plus the length of the s;s;-path. Each lattice vertex not on the path is at
distance one from the path, each vertex in a chain between the clause vertex and the
lattice is at distance at most n + 1 from the intrasource path, and each clause vertex is at
distance n + 1 from the path. Therefore, costy(T) = dn+2 = K.

Likewise, if we find an optimal tree for G, we can construct a satisfying 3-SAT
assignment by noting which literals lie along the s,s»-path and setting each variable’s
truth value accordingly. This is possible because if G has a spanning tree T with
costa(T) <= K, the path between s; and s; can not contain any of the clause ver-
tices, and the nodes on the path must correspond to a satisfying assignment for the Cjs.
If we allow the path to contain two or more clause vertices, then the length of the s, s5-
path will be at least 4n + 6, and if we allow the intrasource path to contain exactly one
clause vertex, then the length of the path will be at least 2n + 4. In this case, the cost
for some other clause vertex will be at least 4n + 6 because that vertex is at distance
n -+ 1 from the intrasource path, and so the cost of the tree will be at least 4n + 6. Thus,
no clause vertex can be on the path from s, to s;. Now, assume the tree does not cor-
respond to a satisfying assignment for the C;s. Then, by the way G was constructed,
some clause vertex must be at a distance n + 2 from the intrasource path, and, thus,
costz(T) = 4n + 6 > K. Therefore, G has an optimal tree if and only if there is a

satisfying assignment to the x;s. O

Corollary 2.1.2. k-SMST2 € A"P-complete.
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The k-SMST3 Problem

Instance: A graph G = (V, E) with a length function, [ : £ — R, &k sources § =

{s1,...,8:} C V, a positive integer K.

Question: Is there a spanning tree T of G such that

cost3(T) = max,es ) ey dr(s,v) < K?

This problem is also A/P-hard. The proof uses a similar technique to the proof
of Theorem 2.1.1, but in this case the reduction is from Exact Cover By 3-Sets (X3C)
{[SP2] in [2]). In X3C we are given a set X with |X| = 3m and a collection C of three
element subsets of X, and we are asked whether there exists C' C C such that every

member of X occurs in exactly one member of C'.

Theorem 2.2.1.  2-SMST3 is N'P-complete even for graphs with unit edge
lengths.

Proof. Given an instance of X3C with set X, |X| = 3m, and a collection C,
|C| = n, of three element subsets of X, construct the graph G as follows. First, without
loss of generality, assume n is odd since we can always supplement C' by a duplicate
member. The core of G will be m gadgets, and the gadgets are linked by m+1 separating
vertices (vy, ... ,¥m41). In gadget ¢ there will be a vertex ¢; ; for each subset ¢; € C.
The vertices are connected with an edge between v; and each ¢; ; and an edge between
each c¢;; and v;y;. Thus, for each subset ¢; € C, there are m vertices ¢; j in G. The
linking of the gadgets forms a diamond lattice in G. Also, for each of the 3m elements
z) € X there is a vertex z in G, and for every C; € C and for each z; € Cj, we

connect ¢; ; and . in G by a chain of m — 1 vertices, fori = 1. .. m. Finally, connected
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s2= Vm+l

FIGURE 3. The construction for k-SMST3.

to each vertex zj there will be R = 3m?n + Im additional vertices of degree one. See
Figure 3 for a diagram of this graph.

Now, let

9 1
K=4m®>+3m+ Eman = §m2n — 2mn + 6m*R + 3mR.



14

Note that

V(G) = 3m(R+1)+mn(l+3(m—-1)+m+1

5
8
I

2mn + 3mn(m — 1) + 3mR.

Thus, the reduction is in polynomial time. To complete the proof, it suffices to show
that X has an exact cover if and only if G has a 2-SMSTS3 tree of cost < K.

In the remainder of the proof, we show that for G to have a 2-SMST3 tree of cost
< K, the s;so-path in this optimal tree must pass along the diamond lattice and not
include any element vertex z;. Also, the path from an element vertex z; to a source
vertex will not include any vertex c; ; which is not on the 5152-path. Let T~ be such a
tree. If the s;s>-path does not include any x, there will be exactly m vertices c; ; on
the path, and since each ¢; ; vertex has a direct path to only three of the z;. vertices, T*
exists if and only if X has an exact cover.

First, look at the cost of T*. The tree is symmetric so the cost is the same for

either source. The cost of the s, s>-path is
2n
S i=2m*+m.

i=1

The cost of the paths between each c; ; on the 5, s;-path and its element vertices is



15

3[21+1 z‘l+3 +Z2m—1
= 3[mZm+mZm

i=1

= m+3m
) 2

The cost of the degree one nodes attached to each z;, is

m m m
3R (m+14+1)+) (m+1+3)+...+> (m+1+2m—1)]
i=1 i=1 i=1
= 3R[m(m —1)+Z 21 —1)]
i=1
3R[m? + m + m?

= 6Rm*+ 3Rm.

The remaining c; ; nodes which are not on the s;5;-path will hang from either vertex v;
or v;4.1, and from each of these ¢; ; nodes will hang three chains of m — 1 vertices. T
will be balanced so if a node hangs from v;, then another node will hang from v,_; ;.
Since n is odd, there will be an even number of these extra c; ;s to distribute so it will be

possible to balance the tree. The cost of “garbage collecting” these extra nodes is

m(n —1)[(m+1) + SmZ-:(i +m +1)]
- I9m? —m
2

9 1
n—2mn — §m3 + §m2 + 2m.

= (mn —m)| -2

= 2m3n - %mz
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So the total cost of T* is

1
costy(T*) = 4m? + 3m + gman - §m2n —2mn +6m’R+3mR =K,

and thus T** is optimal for k-SMST3.

Now, we show that the s, s,-path in an optimal tree can not contain any element
vertices. If the s,5,-path contains an element vertex, z,, then the length of the intra-
source path is at least 2m + 2. Also, for some source, at least half of the paths in the tree
from that source to the element vertices must include z,, and after taking into account
the paths to the remaining element vertices, there are still m(n — 1)(3m — 2) additional
nodes in the graph to be counted. From this, we can estimate the cost of such a tree 7"

to be

i=1

costy(T') > Ez‘+(3—2"3—1) [i(i+2m+1)+(3m+2)R

i (3_m +1) [Zm:(z + 1)+ {m+ 2)R] +m(n —1)(3m — 2)

i=1

= gm:’ + Em2 + Tm + 3m®n — 2mn + 6m%R + 4mR

2 2
= ?m +—2—m +Tm+2Tm’n + 18m°n 4+ 3m*n — 2mn

2
> 30md + §m2 +3m + 27m'n + 18m®n — %mzn — 2mn
g 1
= 4m®+3m+ Em?‘n = Emzn —2mn +6m*R + 3mR
= K.

Therefore, the s15,-path in an optimal tree can not include any element vertex z,.

The remainder of the proof makes use of the following observation.
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Observation 2.2.2.  cost3(T) > & - costy(T) where cost,(T) is defined as

IS]
COStl ZaES Zvel’

Define 7 = {T|s1s2-path in T does not contain an element vertex z}. There-
fore, T* is optimal for k-SMST3 if costy(T") = %I minper{cost;(T)}.
To calculate minger{cost,(T)}, we make use of an additional observation from

[1, Observation 1].

Observation 2.2.3. The cost of a 2-SMST1 spanning tree T' of a graph G with N
vertices is equal to V- d(p) +2 3. d(v, p) where p is the s;55-path, d(p) is the length

of p, and d(v, p) is the shortest distance from v to a vertex of p.

To calculate mingc7{cost, (T)}, fix an arbitrary s, s,-path along the diamond lat-
tice and look at the minimum distance in G of each vertex v to the path. By Observa-
tion 2.2.3, we can use this distance to find the minimum cost. Note that there are 2m +1
vertices on the path, 3m + m(n — 1) vertices at distance 1 from the path, 3mn vertices
each at distance from 2 to m from the path, and 3m R vertices at distance m + 1 from

the path. Summing these up,

%-neig;{costl(T)} = (2m)[3mR + 4m + 3m*n — 2mn + 1]

+2[(Bm+m(n—1))+ Y [3mn(i)] + 3mR(m + 1)]
i=2
8m? + 6m + 9m3n — m®n — dmn + 12m?R + 6mR

= 2cost3(T*) = 2K.

Thus, by Observation 2.2.2, T* is minimal for costs;, and we have proven that

cost3(T*) = K. Note that in T* the path from each element vertex x;. to a source only
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includes subset vertices c; ; which lie on the s,5,-path. If the path from z; to a source
included a subset vertex not on the s;se-path, the distance from z; to the s;s,-path
would increase by one. By Observation 2.2.3, cost;(T*) of the tree would increase and,
by Observation 2.2.2, so would costs(T™*).

Thus, a spanning tree T with cost3(T) < K can only exist if the s,55-path does
not include any clcment- vertices and if the path from each element vertex to a source
does not include any subset vertex not on the s, s,-path. As there are 3m element ver-
tices, m subset vertices on the s;5,-path, and each subset vertex directly connects to
exactly 3 element vertices, G will have a spanning tree T with cost3(T) < K if and

only if X has an exact match. 0

Corollary 2.2.4. k-SMST3 is N'P-complete.
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CHAPTER 111
THE POLYNOMIAL PROBLEMS
The key strategy used in this chapter for proving that a k-SMST problem has an
efficient solution is to prove that a single source shortest paths spanning tree (SPST)

from some point ¢ is optimal for the given cost metric. By the argument presented in

Chapter I (p. 6), if some SPST is optimal, we can find the tree in polynomial time.

The k-SMST4 Problem

Instance: A graph G = (V, E) with a length function, [ : £ — R, k sources S =

{s1,...,sx} C V,apositive integer K.

Question: Is there a spanning tree T of G such that

costs(T) = 3, ey Max,es dr(s,v) < K?

Define a vertex to be critical to a source if it is at the maximum distance from

the source. The first lemma shows that the paths between two sources and their critical

points must intersect along the s, 5,-path.

Lemma 3.1.1. Given atree T and s,, s, € V(T'), then for all ¢;, ¢, € V(T) such
that dr(s;, ¢;) = maxyey dr(s;, v), we have dr(sy, p(e1)) > dr(s1, p(c2)) where p(v) is

the projection of v on the s, so-path.

Proof. Letd, = dr(si,p(c1)). D1 = dr{er,p(c1)), d2 = dr(s2,p(c2)), D2 =
dr(ca,p(co)), and let d' = dr(s1, p(ca)} —dr(s1, p(c1)). Figure 4 sketches this situation.

Assuming the theorem does not hold, d' > 0. However,
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FIGURE 4. Diagram for the proof of Lemma 3.1.1

di+d + D,
do +d + Dy

di+dy+D1+ Dy
0

v

v

dy +dy+ Dy 4 Dy + 2d
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A contradiction is reached, and the lemma is proved. a

Corollary 3.1.2. s;c;-path M spcp-path # 9.

The next lemma shows that in a tree the path from each vertex to its critical source

must include the midpoint of the s,s,-path.

Lemma 3.1.3. Given a tree T and sy, s, € V(T), let x be the midpoint of the

s152-path in T. Then for all v € V(T), if dr(s;,v) > dr(sz,v), then dr(s),x) <

dr(s1, p(v)) where p is the projection of v onto the s, s5-path.
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Proof. Let dr(sy,v) > dr(s2,v) and dr(sy, x) > dr(s1,p(v)). Then

dr(s1,v) = dr(s1,p(v)) +dr(p(v),v)
< dr(s1,x) +dr(x,v)
= dp(sqs, x) +dr(x,v)

= dT(321U)'

Thus, a contradiction is reached, and the lemma is proved. O

Corollary 3.1.4. If dr(s,,v) = dr(sq,v), then dr(sy, x) = dr(s1, p(v)).

Corollary 3.1.5. The path from v to its critical source must pass through .

We are now ready to prove that there exists a SPST from some point in G which

is optimal for k-SMST4.

Theorem 3.1.6. Given a graph G with sources sy,...,3; € V(G), there exists a

point x such that any SPST rooted at x is an optimal tree for k-SMST4.

Proof. Let T* be an optimal tree for k-SMST4 and let s; and s, be the sources
with maximum intrasource distance in T'. Pick x to be the midpoint on the s;5;-path in
T.

First, we prove that for any vertex v and any source s;, 1 = 1...k,1 # 1,1 # 2, ei-

ther dr(v, s1) > dr(v, s;) or dr(v, 32) > dr(v, s;). Assume, without loss of generality,
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that dr(v, 51) > dr(v, s2). Then by Corollary 3.1.5, dr(v, s1) = dr(v, x) + dr{x, 51).

dT('U, 51') S dT(Ua X) + dT(X’ 35)
< dp(v,x) +dr(x, 51)

dr{v, s1)

Given T,, a SPST from x, assume cost;(T*) < costy(Ty). Thus, there exists
some vertex v and a source s, of greatest distance from v in T'x for which dz- (v, 5;) <
dr, (v, 51). This implies, from Corollary 3.1.5, dr- (v, x) + dr-(x,51) < dr, (v, x) +
dr, (X, 51) but contradicts the fact that T'y is a shortest paths tree. Therefore,

costs(T*) = cost4(T,) so a SPST from x is optimal for k-SMST4. |

Theorem 3.1.7. k-SMST4 € P.

Proof. The proof follows directly from Theorems 3.1.6, 1.4.1, and 1.4.2. 0

The k-SMSTS5 Problem

Instance: A graph G = (V| E) with a length function, { : E — R, k sources S =

{s1,...,8:} C V,apositive integer K.

Question: Is there a spanning tree T" of G such that

costs(T) = ) ,cg MaxXyey dr(s,v) < K?

To prove this problem is polynomially solvable we will again prove that there
exists some single source shortest paths spanning tree T for which costs(T') is optimal.

The diameter of a graph is the maximum distance between any two vertices, and the next
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(b) Assume paths do intersect.

FIGURE 5. Diagrams for the proof of Lemma 3.2.1

lemma proves that a path from a source to a critical vertex must intersect the diametric
pathin T'. Also, one of the endpoints of this diametric path will be critical to the source.
From this lemma, we can prove that all paths between source nodes and their critical

vertices will intersect at the midpoint of the longest path in 7.

Lemma3.2.1. Foratree T withs; € V(T),1=1...k, let
¢i = maxyev{dr(si,v)}, and let z — y be the path of maximum distance in T'. Let x
be the midpoint on this path. Then x € s;c;-path. Moreover, if C; = {u|dr(s;,u) =

maXyey dr(si,v)}, then {z,y} UC; # 0.

Proof. First, show the zy-path in tree T intersects with the s;c;-path for some

i. If the two paths do not intersect, they must be joined by some path 7. Let & be the
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terminus of 7 on the s;c;-path, and let [ be the terminus of 7 on the zy-path. Now, let
a =dr(s;, k), b =dr(k,c;), e = dr(z,l), f = dr(l,y),and z = dr(k,!). See Figure 5a
for a diagram of these assumptions. Note that f > z + b, otherwise the z¢;-path would
be longer than the zy-path. Also note that b > z + f, otherwise the s;y-path would be
longer than the s;c;-path. Yet, these two facts imply z < 0, and thus the zy-path must
intersect the s;c;-path.

The next step is to show y € Cj. Let 7 be the intersection of the zy-path and the
s;c;-path, and let & and [ be the endpoints of this intersection aithough the intersection
could be a single vertex. Assume the situation is as in Figure 5b with e = dr(z, k),
b=dr(l,c). and a, f, and z defined as before. Let ¢ be the diameter of T and thus the
length of the zy-path. Asc; € C;,a+z+b > a+ 2+ f whichimplies b > f, and as the
zy-path is the path of maximumlengthin T, e+ 24 f > e+ z -+ b which implies f > b.
Thus,b= fsoa+z+b=a+ z+ f and dr(s;, ¥) = dr(si, ¢;) = max,ev dr(s;, v).
Therefore, y € C;.

Finally, let x be the midpoint of the zy-path so dr(z,x) = dr(y,x) = £, and
show that x lies in 7 and thus on the s;c;-path. If x € 7, then eithere > 1 or f > 1. If

we lete > 1, then

z+f < 2 =

z+b < 2 =
e > z+b =

a+e > a+z+b,

and a contradiction is reached. Also, if we let f > %, then

g
b > 1 =

b+ f > gq,
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and a contradiction is again reached. Therefore, e, f < %, 50 x € 1, and thus x is on the

s;c;-path. D
With this lemma, we can prove k-SMST5 € P.
Theorem 3.2.2. A SPST rooted at x is optimal for k-SMSTS5.

Proof. Let T be an optimal tree, let g be the diameter of T, and let = and
y be the endpoints of a diametric path. From Lemma 3.2.1, all s;c;-paths include ¥,
and z or y is critical for each source. Let T, be a SPST from x. By definition, ¢; €
V is defined such that dr(s;, ¢;) = maxyey dr{s;, v). Define ¢ € V such that

dr (81, €) = maxyey dry (s, v).

costs(T) = Z(dr(si,x)'*'dT(Xa ¢i))

costs(Ty) = Z(drx(sh ct))
< Z(drx (8i,X) + dr, (x, 1))
< Z(dT(si: x) + g)

= > (dr(si,x) + dr(x, )

costs(T)

I

By the assumption that T is optimal, costs(T") < costs(T, ). Therefore,

costs(T) = costs(T,) so T, is optimal. O

Theeorem 3.2.3. k-SMST5 € P.

Proof. The proof follows directly from Theorems 3.2.2, 1.4.1, and 1.4.2. O



CHAPTER IV

CONCLUSION

This thesis considered the problems of constructing optimal multi-source span-
ning trees with six different distance related cost metrics. One of these problems is
known to be AP-hard and another is known to have an efficient solution. After sum-
marizing these two results, this thesis presented proofs of the complexity of the other
four problems which until now had unknown complexity status. Two of these metrics
were shown to yield A/P-hard problems, but the other two metrics could be minimized
in polynomial time.

Further possible research on this topic includes finding efficient algorithms for
the polynomially solvable problems and approximation algorithms for the A/P-hard
problems. There has been some work on approximation algorithms for the more general
Optimum Communication Spanning Tree in [8] which can be applied to constructing
a tree for k-SMST1 (k-SPST). Also, this thesis made no judgement as to the relative
goodness of each of the metrics nor did this thesis attempt to apply any of the metrics to
specific problems.

Beyond the practical results of demonstrating which cost metrics are feasible for
possible multicast routing trees, this thesis may have some theoretical significance by
further defining the boundary between the polynomially solvable and the A"P-complete

problems for multi-source spanning trees.
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