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Monitoring the residues of test coverage in actual use or during beta testing activities can
validate any assumptions of their impact on quality. But this is unlikely to be accepted by
customers unless the performance impact is small. A previous work presented a proof-of-
concept tool written for Java programs to demonstrate that the performance overhead of
running instrumented executables is low if instrumentation is removed from already
executed basic blocks. It is however not clear whether and to what extent this result
depends on the high run-time overhead of the Java platform. It is also an open question
whether residual coverage monitoring would have a significant advantage relative to
complete coverage monitoring if the complete monitoring were implemented using the
best known monitoring techniques. This work answers the above questions by using EEL,
an tool for instrumenting compiled languages, a quick profiler, QPT2 and standard SPEC

CINT95 benchmarks.
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CHAPTER 1

INTRODUCTION

Beta testing activities are typically used by software companies to predict program
behavior at customer sites before the software is released to the field. However feedback
from these activities is often limited to problem reports and does not include the kind of
feedback about the program dynamic behavior that can help the developers and testers
validate and refine the models they have relied on during quality assurance. An example
of such feedback is structural coverage information. Structural coverage information
about the program can not only offer insight into the effectiveness of the beta test that
was conducted but also can help expose areas in the software that were not covered by
unit and system tests.

Software is often released without 100% structural coverage, which means that

testers are explicitly or implicitly assuming that the remaining test obligations or residues
are either unfeasible or occur so rarely that they have negligible impact on quality.
Monitoring the residue of test coverage in actual use or beta testing activities can validate
these assumptions. But this is unlikely to be accepted by customers unless its
performance impact is small. The goal of residual test coverage monitoring is to provide

deployed software with monitoring of adjustable level and focus to address varying



performance requirements with user control to address concerns of security, and
confidentiality {15]. The main challenge to this approach, performance (the other being
security and confidentiality concerns), is addressed by reducing execution overhead to
acceptable levels by instrumenting executables such that they contain instrumentation
code only along previously unexecuted paths. A proof of concept prototype tool, which
selectively monitors basic blocks in Java programs, has been constructed in a previous
work [14]. The tool inserts instrumentation code in each basic block of a user program
that has not been executed in previous runs. When the user program is executed under
some test cases, information about which monitored basic blocks have been covered is
produced. The run time impact of such residual coverage monitoring for example Java
programs was shown to be reasonably low (typically 3-5%) after a few iterations of
instrumentations and runs.

It is however not clear whether or to what extent this result depends on
peculiarities of the platform studied, i.e., relatively slow interpreted code. It is possible
that while the marginal cost of residual coverage monitoring is low with respect to
execution that is already incurring large overheads for interpretation, the cost of residual
coverage monitoring could be much higher relative to compiled code with fewer inherent
run-time overheads. It is also an open question whether residual coverage monitoring
would still have a significant advantage relative to complete coverage monitoring if the
complete monitoring were implemented using the best known monitoring techniques.
Program profiling counts the number of times that each basic block or control-flow edge

in a program executes. Profiling tools are widely used to measure instruction set



utilization, help determine program hot-paths useful for compiler optimizations. These
tools can be modified and used for determining software test coverage. Recent work has
resulted in optimized profiling tools like @PT2 [6] and PP [10], which significantly
reduce the run-time overhead of instrumentation. These algorithms reduce measurement
overhead by both inserting less instrumentation code and by placing instrumentation

carefully in the program control flow where they are least likely to be executed.

Current Work

This body of work tries to answer the above questions raised about residual coverage
monitoring. The Ball and Larus quick profiler, QPT2, is used as the primary tool to carry
out our experiments. Though this tool primarily profiles and traces code, it was suitably
modified to study program statement coverage. QPT2 is built on the EEL executable
editing framework that allows us to instrument compiled imperative languages (C, C++,
FORTRAN). We compiled SPEC CINT95 [7] benchmarks and instrumented the resuliing
executables in the following manner: QPT2 is run with a -s option, which places
instrumentation in every basic block of the executable and creates a fully instrumented
(and therefore slower) version of the executable. QPT2 is then run with a -¢ option such
that it places instrumentation optimally as defined by Larus and Ball and creates an
optimal version of the instrumented executable. Since each benchmark executable comes

with several data-sets, after each run of the slow/residual version for a particular data set,



the residual version of the executable is re-instrumented such that the any basic block that
has already executed in a previous run is not re-instrumented. For each data set, the run
time of the original executable is compared to that of the version that has quick
instrumentation and the version that has the residual instrumentation. Figure | illustrates

the whole process.

— input instrumented
Start - Exeautable ———{  QPT2 - Instrumented
Executable
. . un
input reinstrumentation
cycle
QCumulative QCounts file

FIGURE 1. Instrumentation and Execution Process

A cumulative coverage file captures the structural coverage by the data sets for the
benchmark executable. For a few benchmarks we also reran the above by changing the
order of the input data sets (for example, we changed the order of the Perl programs we
run when we instrument the 134.Perl benchmark) to see how it effects the performance of

the instrumented executable.



The availability of different data sets for each benchmark execution offers a
couple of advantages. First, it provides an unambiguous and unbiased set of input data
sets. The second main benefit is that it helps in the comparison of residual coverage
monitoring against any future monitoring technique. Though the test statistics were
collected over several instrumentation runs, the cost of re-instrumentation was not
considered to be a factor in evaluating the usefulness of this technique. This is because in
practice one would re-instrument only after several test executions. We however have

quantified the effect of instrumentation on the size of the executables.

Related Work

Though quite a bit of work has been done to study program run-time behavior using
program profiling, including tracing as well as path profiling [5,6,10,11,19], most of it
has been done from the perspective of program optimization. Structural coverage is often
cheaper than performance profiling and tracing in that it does not require knowledge of
the number of times a piece of code executes, but only whether a particular piece of code
has been executed at all. Work in the area of program coverage as well as automatic test
case generation tools closely resembles our work. Agarwal [2] presents a technique to
find a small subset of nodes in a program flow graph with the property that if the subset is
covered, the remaining nodes are automatically covered. Thus the tester needs to develop

test cases targeted to cover the nodes in the subset rather than the entire set. Qur work



focuses on determining software program coverage in the beta phase or the deployed
environment assuming that all the test obligations are not met, whereas Agarwal’s work
focuses trying to get meet all the test obligations in the testing phase.

There seems to be very little work done in the area of operational testing or beta
testing though an exception to this is in the area of reliability estimation, which is
fundamentally different. Podgurski et. al. [3] make the following distinction between
synthetic and operational techniques in software testing: Synthetic testing involves
selecting test data systematically based on an analysis of a program or it’s specification,
whereas Operational testing involves having the intended users of the software employ it
in the field as they see fit. They describe a technique for operational testing that does not
rely only on ordinary beta users and which is intended to provide accurate and
economical estimates of the reliability that the software has exhibited in the field. The
techniques involves collecting execution profiles of captured beta test executions and
applying automatic cluster analysis to the profiles in order to partition the executions
based on the dissimilarity of the profiles. A stratified random sample of executions is
then selected, reviewed for conformance to requirements, and used to estimate the
proportion of failures in the entire population of captured executions. They go on to show
with experiments how stratified random sampling produced significantly more accurate
estimates of failure frequency than did simple random sampling without requiring larger
samples.

Run time assertion checks are also a kind of residual monitoring in that they can

be turned off if need be i.e. when performance becomes an issue. The Gnu Nana [13] tool



provides flexible ways to deactivate run-time assertion checks for C and C++ programs.
Some of the work in this area has been to enrich assertions in Ada to include facilities for

formal specification of program behavior [16].



CHAPTER II

INSTRUMENTATION AND PROFILING TOOLS

Residual coverage monitoring addresses performance overhead concerns by
instrumenting executables such that they contain instrumentation code only along
previously unexecuted paths. In order to be able to do this, we need ways to insert and
remove instrumentation from the executables. There are three possible approaches to this:
source level instrumentation, compiler modifications and executable editing using
compiler-like tools. We chose the latter approach, as it was the most portable as well as
the least intrusive solution. This chapter discusses our choice of the executable editing
tools and frameworks for instrumentation. It also discusses the details of the executable
profiling tools that we used to do performance comparisons and evaluations of

executables with residual instrumentation.

Executable Editing Tools

We mainly considered two publicly available tools/frameworks for executable editing

and for building the program analysis tools. Executable Editing Library (EEL) [12] is a



Cs-+ library that hides much of the complexity and system-specific details of editing
executables. It provides abstractions that allow for the building of a tool without having
to be concerned with particular instruction sets, executable file formats, or the
consequences of adding foreign code or deleting existing code. Analysis Tools with OM
(ATOM) [17], allows limited modification of existing instructions, and invokes foreign
(analysis) code through a function call. We chose EEL over ATOM as our instrumenting
framework. One of the primary reasons for rejecting ATOM for instrumentation was
because ATOM was available on the Ultrix Operating System, which was difficult for the
author to gain access to. The choice of the EEL framework was also simplified since
profiling tools (QPT and PP) were already available.

The choice of Quick Profiler and Tracer (QPT2) as the optimized profiler was
important for several reasons. QPT2 was built using the EEL toolkit, which offered better
C++ abstractions, and so was simple to modify. Additionally, Larus and Ball had already
done some benchmark calculations of performance improvements with optimized
profiling using QPT2 [6]. So, in addition to determining the performance gains that were
realized using executables with test residues, we could also compare our results against
those of optimized profilers. Finally and most importantly, QPT2 and EEL distributions
were available on SPARC architecture and the SunOS operating system which was the

main operating system the author had convenient access to.

EEL Abstractions



EEL provides five major abstractions for examining and modifying executables:
executable, routine, CFG, instruction and snippet. An executable contains code and data
from an object, library or executable file. A tool opens an executable, examines and
modifies its contents, and writes an edited version. An executable primarily contains
routines and also non-executable data. A tool can examine and modify routines in any
order and place them and new routines in the edited executable in any order. EEL
represents a routine’s body with two further abstractions, control-flow graphs (CFGs) and
instructions.

A CFG is a directed graph in which nodes are basic blocks and edges represent
control flow between the blocks. EEL provides extensive control-flow and data-flow
analysis for CFG’s. Blocks contain a sequence of instructions, each of which is a
machine-independent description of a machine instruction. A tool edits a CFG by
deleting instructions or adding code snippets to blocks and edges. A snippet encapsulates
machine-specific foreign code and provides context-dependent register allocation. EEL
modifies calls, branch, and jumps to ensure that control flows correctly in the edited
program. EEL’s internal representation is a register-transfer level instruction description
where EEL'’s instructions try to capture the semantics of a machine instruction.

Figure 2 shows a block diagram of the different EEL abstractions and the
relations among them. Later chapters will refer to the above abstractions while specifying
the details of the instrumentation. More details of the different abstractions are available

in the reference {12].
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FIGURE 2. EEL Abstractions

Quick Profiling and Tracing Tool (QPT2)

QPT2 is an exact (as different from program statistical profiling tools like the UNIX prof

and gprof) and efficient program profiling and tracing tool built using the EEL toolkit.

The programs under consideration are assumed to be written in an imperative language

with procedures in which control flow within a procedure is statically determinable. It

rewrites a program’s executable file by either inseriing code to record the execution

frequency of every basic block (straight-line sequence of instructions) or control-flow

edge or by inserting code to trace every instruction and data reference.



After the instrumented program executes, another program, gpt2_stats can
calculate the execution cost of the procedures in the program by using results collected
during the execution. Unlike the Unix tools prof and gprof, gpt2 records exact execution
frequency, not a statistical sample. gpr2 operates in two profiling modes. In a slow mode,
it places a counter in each basic block in a program in the same manner as the MIPS tool
pixie. In a quick mode, gpr2 places counters on an infrequently executed subset of the
edges of the program’s control-flow graph. This placement can reduce the run-time cost
of profiling up to 3-4 times compared to profiling every basic block. The quick algorithm
requires more program analysis and consequently increases the run time of gpr2 and
qpt2_stats. The additional cost to instrument a program and report the results, however, is
quickly gained back when profiling long-running programs. Additionally, the algorithms
used to determine the placement of instrumentation along edges are based solely on the
CFG information and does not use any other semantic information that could be derived

from the program text like via constant propagation or induction variable analysis.

QPT2 Algorithm Details

QPT2 instrumentation algorithms use the intraprocedural control-flow structure of
programs derived from the EEL framework to determine where to place instrumentation
code. Interprocedural control flow occurs mainly by procedure call and procedure return
(gpr2 does not handle exceptions and interprocedural jumps). A CFG is a rooted directed

graph G = (V, E} that corresponds to a procedure in the following way: Each vertex in V
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represents a basic block of instruction and each edge in E represents the transfer of
conirol from one basic block to another. A CFG is created for each routine in the
program. For slow profiling, the algorithm is straightforward in that each basic block for
the CFG is instrumented to contain the profiling code.

For the optimal profiling instrumentation, a weighting W of CFG G assigns a non-
negative value to every edge, subject to Kirchoff’s flow law: For each vertex v, the sum
of the weights of the incoming edges to v should be equal to the sum of the weights of the
outgoing edges of v. A spanning tree of a directed graph G = (V, E), is a subgraph H =
(V. T), where T < E, such that every pair of vertices in V is connected by a unique path
(i.e., H connects all the vertices in V, and there are no cycles in H). The tool uses a simple
heuristic of giving edges that are more deeply nested in conditional control structures
lower weight, as these areas will be less frequently executed. A maximum spanning tree
of this weighted graph is constructed such that the cost of the tree edges is maximum.
QPT2 then places instrumentation code on the control-flow graph edges not in the

spanning tree. More details of the algorithm can be found in [6].



CHAPTER III

PROGRAM DETAILS

This chapter explains the instrumentation details of the tools and the modifications to
enable residual test coverage analysis of compiled binary programs. The source code for
EEL and gp:2 is distributed under license [20]. We built the executables using g++ 2.93
[8] and binutils [9] distribution that contains the GNU bfd library (a library used by the

GNU assembler, linker and the debugger gdb) that is used to instrument executables.

EEL Details

Initially EEL reads the program’s symbol table and eliminates all duplicate, temporary,
and debugging labels in the text segment. Reference [1] and [18] gives details of the
UNIX program layout. Tt also discards labels that are not aligned on an instruction
boundary or that are the target of a branch or a jump from the preceding routine. The
remaining labels form the initial set of routines. If the executable has no symbol table, the
initial set contains only the program’s entry point and the first address of the text

segment. EEL then makes an extra pass over the program’s instructions to find direct



subroutine calls. It then examines instructions to find jumps out of a routine or calls on
routines not in the initial set. With all this information, EEL then constructs a routine’s
control flow graph. A reachable but invalid instruction in a CFG leads EEL to assume
that the routine contains data. However, unreachable instructions at the end of a routine
comprise another routine, CFG’s allow EEL to represent the control flow in an
architecture-independent fashion. It explicitly represents instructions’ control flow in a
CFG, so that internal and external control flow are treated uniformly and instructions
appear to have no control flow. This is important because now a tool can add foreign
code before or after almost any instruction without considering how the code interacts
with local control flow, in other words the tool need not be aware of architectural details.
A tool edits a routine's CFG by deleting instructions, adding new code before or after an
instruction or adding code along a control-flow graph edge. A snippet contains the new
code. EEL accumulates the edits without changing the CFG and uses callbacks to modify
an edit. EEL’s instructions are abstractions of RISC-like machine instructions and are
divided into functional categories like memory references, control transfers and
computations. The instruction interfaces provide several functions to query the
information about the instruction. Code snippets are machine specific in that they are
typically written in assembly. The registers manipulated within the snippets are
placeholders to the actual registers. EEL performs live-register analysis and maps these

place holder registers to the actual physical registers.
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Figure 3 shows the snippet for incrementing the profile counter for SPARC.

3 movOnl el PSYS e
13 g0 Penit sysall

' INCR_COLNT recends a basic block or edge by incrementing its counter in
** the counn array
L1

! Modifies. Fg3. % g6 (undefined by SPARC ABI}

SR Ttear’
.global incr_count

incr_count:

1*  sethiOxl, %g6 ! upper bus of &counter
2 I [%lotOx1) + % g6). Fg5 ! boad counter

add Fg5, 1, Fg5 Yincrement
3* st FgS. [FlotOxl1 + Tg6) ! store counter

class iner_count_snippet : public agged_code_snippet
{
public:

incr_couni_shippetiaddr counter_address)
tagged_code_shippettincr_couni_code,
sizeofliner_count_code),
NULL,
NULL.
incr_count_offscts.
sizeot{iner_count_offsetsh)
{
SET_SETHI_HI{ *find_inst{ 1). counter_address):
SET_SETHI_LOW(*find_insi(2). counter_address)
SET_SETHI_LOW(*find_insi(3), counter_address):
|

FIGURE 3. Sample Snippet Code

Beneath the machine-independent portions of EEL are system- and architecture-specific
components that manipulate executable files and machine instructions. Apart from
reading and writing Unix executable files using the GNU bfd library, it uses a tool called
spawn to transform a file of annotated C++ functions and a machine description into
machine-specific code for analyzing and manipulating binary instructions. More details

of this tool are available in [12].
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QPT2 and QPT2 STATS

This section discusses the program details of gpt2, gpt2_stats as well as the modifications
we made for the current work. QPT2 is a tool written using the EEL framework. QPT2
inserts profiling code and runs in two modes. Running it with a -5 option makes it insert
profiling instrumentation in every basic block of the executable. It uses the snippet
specified in Figure 3 to do this. Running it with a -g profiling option makes it insert
optimal profiling instrumentation along the edges in a CFG as described in the previous
chapter. Both the instrumented executables create a profile file that has a QCounts
extension. The program gpt2_stats analyzes the executable run by reading both the
original executable and the QCounts file. It can report hierarchical procedural statistics
like the unix tool gprof, draw CFG’s of routines, percentage of the different types of
instructions that were executed, register scavenging information etc.

We modified gpt2 such that when it is run with a -5 option, it firsts reads a file
with the filename of the executable and an extension QCumulative. This file has the
cumulative coverage statistics from the different executable runs, For the first run, since
there has been no coverage, the cumulative coverage file does not exist and gpt2
instruments every basic block. For subsequent gpr2 runs, as usual a counter is assigned to
every basic block of the executable while the executable is analyzing the CFG of a
routine. However, if the corresponding counter in the cumulative coverage file has its

count greater than zero, the edit for that particular basic block is skipped. This is done for
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every basic block in the routine and iteratively done for all the routines in the executable.
The executable file is then re-written to give us an executable that carries only residual
instrumentation.

Running the instrumented executable produces the QCounts file as usual. This file
has the record of every executed basic block during the current run. We modified
gpi2_stats such that it reads both the QCumulative and the QCounts file and then updates
the QCumulative file to record the overall coverage. Figure | shows the details of the
instrumentation process. All in all we had to only make minor modifications to the two
executables, gpr2 and gpt2_stats. Also, since the tool was originally written using g++

2.6, we had to make modifications to resolve compile errors for g++ 2.95, the current

version of g++.



CHAPTER IV

EXPERIMENTS

This chapter discusses the details of the various experiments run and their analyses.

Standard Performance Evaluation Corporation Benchmarks

SPEC, the Standard Performance Evaluation Corporation, is a non-profit corporation
formed to establish, maintain and endorse a standardized set of relevant benchmarks that
can be applied to the newest generation of high-performance computers [7). We decided
to use the SPEC95 although SPEC2000 was available mainly due to memory and
execution time constraints. SPEC2000 has high memory requirements in that it
recommends the use of 256MB RAM machines. Most of the computers avajlable to the
author had [128MB RAM, which was more suitable to run the SPEC95 benchmarks.
These benchmarks are designed to provide comparable measures of performance for
comparing compute-intensive workloads on different computer systems. We used these
benchmarks for comparing the performance of the different versions of the instrumented

executables by testing on the same computer system. The CINT95 benchmarks that were
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used do not stress other computer components such as /O (disk drives), networking or
graphics. These benchmarks emphasize the performance of the computer’s processor, the
memory architecture and the compiler.

CINT95 consists of 8 moderately large C programs. We compiled these programs
with only a level one optimization (-0), so as not to confuse the program’s structure and
introduce complications in constructing the program's control flow graph. This is the
same as the benchmarks run in the base mode to indicate conservative optimizations.
Also, these benchmarks are classified as speed benchmarks in that they measure the
speed and not the throughput of computation. Timings were run on a UltraSparc SunOS
5.7 sundu sparc with local disk and 128MB of main memory. We used the UNIX time
command and the times given in the tables and graphs are the user time component of the
time. We used the user time instead of the usual wall time because this component is not
dependent on the system load and additionally the time that is spent in system processing,
the system time component is low for SPEC benchmarks since they use few system
commands. We have documented all the three components, and there is typically little
difference (in the order of .05 seconds) between the system and user times. Each
benchmark was run twice, and the lowest run time was recorded. The workstation was
networked and there was only a single user process running on it. Also, each run was
started when the load average on the computer was below 0.05 as measured by the UNIX
uptime command.

The reference data for each of the CINT95 benchmarks, under the sub-directory

data/ref/input for each benchmark, was split into 2 or 3 data sets depending on how the
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benchmark data was organized. The first data set was run with the uninstrumented
program, and then with an optimally instrumented program and then finally with a
program with full instrumentation. Times and executable sizes were recorded and the
feedback files QCounts and QCumulative were used 1o re-instrument the executable to
obtain the residual instrumented executable. The original, optimal and residual
instrumented executables were then run against the second data set and the times,
executable sizes and the number of basic blocks instrumented were recorded. This cycle

was repeated for a third data set if one was available.

Experiment Results

The following sections give details of each of the benchmarks and how the input data sets

were organized.

Results for 124 m&8ksim

This benchmark simulates the Motorola 88100 processor running Dhrystone and a
memory test program. We used the Dhrystone program as one benchmark data set and
the memory test program as the other data set. The results for the performance runs are

shown in Table 1. Figure 4 shows the performance results of running the 124.m88ksim

benchmark.
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TABLE 1. 124.m88ksim Performance Results

Executable Memory Test (s) Dhrystone(s)
Original 116.08 171.18
Optimal 166.11 292.26
Residual 239.15 189.03
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FIGURE 4. 124.m88ksim Performance Graph

A comparison of the sizes of executables created on each run is shown in Table 2. The
number of basic blocks instrumented is given in brackets for the residual instrumented

executable.



TABLE 2. 124. m88ksim Executable Size Comparison

Executable Memory Test (Bytes) Dhrystone(Bytes)
Original 260072 260072
Optimal 540093 540093
Residual 6465589(8377) 622013(6901)

Resuits for 126.gcc

The gnu C compiler compiles pre-processed source into optimized SPARC assembly
code. The benchmark data set consisted of pre-processed source files, which we split into
3 data sets in the following fashion:

* amptjp.i, c-decl-s.i, cccp.i, cp-decl.i, dbxout.i

* explow.i, expr.i, insn-recog.i, integrate.i, protoize.i

* recog.i, reloadl.i, stmt-protoize.i, stmt.i ,toplev.i, varasm.i

The run times recorded for each data set were obtained by compiling each file thrice (this
was because the benchmark specified the running of 3 copies of each pre-processed
source file). Due to the large number of source files, the files that had the longest compile
times were used for determining the coverage for each data set. These were cp-decl.i, and
expr.i respectively. The results of the performance runs are shown in Table 3. Figure 5

shows the performance resuits of running the 126.gcc benchmark in a graphical format.



TABLE 3. 126.gcc Performance Results

Executable Program Set1(s) Program Set2(s) Program Set3(s)
QOriginal 22.68 11.51 14.55
Optimal 31.14 15.54 20.03
Residual 52.05 13.49 16.77

126 gec

FIGURE 5. 126.gcc Performance Graph
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A comparison of the sizes of executables created on each run is shown in Table 4. The

number of basic blocks instrumented is given in brackets for the residual instrumented

executable.
TABLE 4. 126.gcc Executable Size Comparison
Executable | Program Setl(Bytes) | Program Set2(Bytes) | Program Set3(Bytes)
Original 1663660 1663660 1663660
Optimal 4039932 4039932 4039932
Residual 5432572(11540) 4976337(96785) 4943569(95293)

Results for 129.compress

Comopress is a compression program that compresses large text files (about 16MB) using

adaptive Limpel-Ziv coding. The amount of compression obtained depends upon the size

of the input, the number of bits per character, and the distribution of common substrings.

This was the only benchmark for which only one reasonably sized data set existed.

Hence, the author ran a smaller version of the provided data-set, and called it small-test

and then ran the big-test which was the input data set provided by SPEC. The following

were the contents of the small and big tests.

SmallTest.in



1900000 e 2231

BigTest.in
14000000 e 2231
The results are shown in Table 5. Figure 6 shows the performance results of running the

129.compress benchmark in a graphical format.

TABLE 5. 129.compress Performance Results

Executable Small Test (s) Big Test (s)
Original 33.30 23497
Optimal 39.54 283.68
Residual 59.23 235.88
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FIGURE 6. 129.compress Performance Graph

A comparison of the executable sizes is shown in Table 6. The number of basic blocks

instrumented is given in brackets for the residual instrumented executable.

TABLE 6. 129.compress Executable Size Comparison

Executable Small Test (Bytes) Big Test (Bytes)
Original 83904 83904
Optimal 185906 185906
Residual 185906(379) 185906(104)

Results for 130.1i



This program is a Lisp interpreter. The benchmark runs several lisp programs and records

the run-time for the programs. We split the runs into 3 sets that were divided as follows:

* au.lsp, boyer.Isp, browse.lsp, ctak.lsp, dderiv.Isp, deriv.Isp, xit.Isp

* aulsp, destruQ.Isp, destrul.lsp, destru2.Isp, destrum0.Isp, destrum|1.lsp, destrum?2.1sp,
xit.Isp

e au.lsp, tak0.lsp, tak1.Isp, tak2.1sp, takr.lsp, triang.lsp, xit.lsp

We ignored the programs puzzleQ.lsp and puzzlel.lsp as they couldn’t run in the isolated

data sets. The results of the performance runs are shown in Table 7. Figure 7 shows the

performance results of running the 130.1i benchmark in a graphical format.

TABLE 7. 130.li Performance Results

Executable Program Set[(s) Program Set2(s) Program Set3(s)
Original 14.38 74.98 105.61
Optimal 17.47 93.39 127.86
Residual 29.08 72.3 107.63




A comparison of the size of the executables is shown in Table 8. The number of basic
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FIGURE 7. 130.1i Performance Graph

blocks instrumented is given in brackets for the residual instrumented executable.

TABLE 8. 130.1i Executable Size Comparison

Executable | Program Seti(Bytes) | Program Set2(Bytes) | Program Set3(Bytes)
Original 140884 140884 140884
Optimal 354433 354433 354433
Residual 419969(5734) 395393(4152) 395393(4078)

Resulis for 132.ijpeg
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This program performs jpeg image compression and decompression with various
parameters. The results of the performance runs are shown in Table 9. Figure 8 shows the

performance results of running the 132.ijpeg benchmark in a graphical format.

TABLE 9. 132.jpeg Performance Results

Executable Penguin(s) Specmun(s) Vigo(s)
Original 142.00 129.44 147.33
Optimal 155.02 140.04 160.9
Residual 198.34 130.93 148.58

R |

FIGURE 8. 132.ijpeg Performance Graph
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A comparison of the size of the executables is shown in Table 10. The number of basic

blocks instrumented is given in brackets for the residual instrumented executable.

TABLE 10. 132.jpeg Executable Size Comparison

Executable Penguin(Bytes) Specmun(Bytes) Vigo(Bytes)
Original 232608 232608 232608
Optimal 545558 545558 545558
Residual 660246(9060) 619286(6556) 619286(6556)

Results for 134.perl

This Perl interpreter benchmark performs text and numeric manipulations (anagrams and
prime number factoring). The three programs Primes, Scrabble and Jumble were used as

the data sets. The results of the performance runs are shown in Table 11.

TABLE 11. 134.perl Performance Results

Executable Primes(s) Scrabble(s) Jumble(s)
Original 71.88 120.88 15.94
Optimal 121.10 219.29 16.91
Residual 277.82 220.48 17.35




A comparison of the size of the executables is shown in Table 12. The number of basic

blocks instrumented is given in brackets for the residual instrumented executable.

TABLE 12. 134.perl Executable Size Comparison

Executable Primes(Bytes) | Scrabble(Bytes) | Jumble(Bytes)
Original 407204 407204 407204
Optimal 994067 994067 994067
Residual 1280787(23544) | 1223443(20630 | 1198867(18961)

Figure 9 shows the performance results of running the 134.perl benchmark in a graphical

format.
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FIGURE 9. 134.per] Performance Graph

We also ran the experiments by changing the order of the Perl programs and the Table 13
shows the performance results. Figure 10 shows the performance results of running the

134.perl benchmark with the changed order of the data sets in a graphical format.

TABLE 13: 134.perl Performance Results with Different Execution Order

Executable Primes(s) Scrabble(s) Jumble(s)
QOriginal 71.99 [29.62 15.93
Optimal 169.5 271.18 17.07
Residual 99.27 344 .47 18.06
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A comparison of the size of the executables is shown in Table 14. The number of basic

blocks instrumented is given in brackets for the residual instrumented executable.

TABLE 14. 134.per! Executable Size Comparison Using Different Order

Executable Primes(Bytes) Scrabble(Bytes) | Jumble(Bytes)
Original 407204 407204 407204
Optimal 994067 994067 994067
Residual 1207059(19499) | 1280787(23544) | 1198867(18961)
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Resuits for 147.vortex and 099.go

Vortex builds and manipulates three interrelated databases and Go is a game playing
software in the area of artificial intelligence. The author had compilation problems with
Vortex and hence was unable to run this benchmark. With Go, the author was unable to

partition its data sets so as to run the necessary experiments.
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

This chapter discusses conclusions of this work and suggestions for future work.

Conclusions

The following were the major contributions of this work:

* We demonstrated through empirical study that residual coverage monitoring is viable
for compiled programs, whereas previously we had only data for Java programs.

¢ We demonstrated that residual coverage monitoring performed quite well when
compared to the best of the currently available optimized program profilers.

Previous work had shown that the run time impact of residual coverage monitoring for

Java programs was reasonably low after a few iterations of instrumentations and runs

[14]. The results from [15] of the two biggest executables analyzed are shown in Table 15

and Table 16 for reference.
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TABLE 15. Elevator Program Execution in Seconds

Executable Test1(s) Test2(s) Test3(s)
Original 5.5 6.1 6.5
Instrumented 6.3 6.8 6.6
Blocks 323 240 119

TABLE 16. Instrumentation Program Execution in Seconds

Executable Test1(s) Test2(s) Test3(s)
Original 43 1.7 4.4
Instrumented 4.7 1.8 4.4
Blocks 1000 614 547

For the SPEC95 benchmarks, which are all written in C, we have observed that the
performance impact of running instrumented executables with residues after running just
two data sets decreased considerably. In other words, performance impact of residual
coverage monitoring is reasonably low just as for Java programs.

The executables with residues did quite well relative to the executables with
optimally placed instrumentation code. Larus [6] had shown that vertex profiling with
edge counters was cheaper than veriex profiling with vertex counters when the counters
are placed optimally. Our work compared the performances of vertex profiling using
edge counters with that of the placing counters in every non-executed basic block, and

the latter performed better for a majority of the SPEC95 benchmarks that we ran. The



38

Perl benchmark was the only exception, where the executable with residual
instrumentation did only slightly worse than the optimally instrumented executable.

We are not advocating that residues be used instead of these optimized profiling
techniques, only that for structural coverage information, residues appear to remove the
performance concerns that users might have while running instrumented executables and
hence instrumented executables can very well be used in beta or deployed situations.
Also, this work helps us validate the residual approach in that if we had concluded that
the optimally instrumented executables had better performance numbers, we would have
suggested that these profiling techniques were indeed superior to residual coverage
monitoring both in terms of performance as well as in the amount of information that
could be derived from the profiles.

We noticed that the executable size did not shrink significantly when the
instrumentation from the already executed basic blocks was removed. Also, for each re-
instrumenting cycle, we were still re-instrumenting a considerable percentage of the basic
blocks. Since the SPEC95 benchmarks are positive benchmarks, i.e. they are guaranteed
to run without errors, we believe that there must be several basic blocks of error-handling
code that never gets executed and hence these basic blocks will always get instrumented.
Though we cannot claim that the benchmarks we used are truly representative of a variety
of typical applications, we come close as one of the criteria for the selection of programs
as SPEC benchmarks is diverse application areas. Also, we studied only the base rate
performance, as we did not want to pursue aggressive optimizations that could confuse

the instrumentation tools when they try to determine program structure. In other words,
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we are limited in our ability of studying residues to the extent of the instrumentation

tool’s ability to understand any optimized program structure. We inherited other

limitations of the executable editing tools that include:

* Ability to run only on the SPARC platform and instrument only SPARC executables.
We don't believe this is a serious limitation as the platform specific work is isolated in
the snippets and the rest of the instrumentation code is portable,

* [Inability to deal with dynamically linked executables. The executables we studied
were statically linked.

* The tool does not understand semantic optimizations that are typical in current day

compilers.

Future Work

In this work we have only tried to address the performance concerns that users might
have while using the instrumented versions of the executables. However, the program
size of instrumented executables is about 2-3 times that of the uninstrumented ones. The
current work has not determined the cause of this, though we suspect that the non-
executed error processing code for the SPEC935 benchmarks is partly responsible for this.
We believe that this component will be eliminated if testers run negative test cases to

cover error scenarios. Tools that address privacy and security concerns for users while
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providing feedback to developers and testers, allowing them to refine their test data as
well as their test cases, are candidates for future work in this area.

Work in the area of program coverage and test case analysis [2] can be extended
to incorporate feedback from residual test coverage monitoring. There is currently quite a
bit of work being done on path profiling [11,19,4], though hot-paths is the primary focus
of this work. The work here could be extended to coverage monitoring so that we could

selectively remove instrumentation already executed paths instead of basic-blocks.
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