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Local calculations are used to extend the notion of image-driven polygon mesh
simplification. An implementation of the existing image-driven simplification algorithm
is presented and it is shown to have the most important features of the original method.
A simple technique is developed to evaluate the collapse cost for an edge by generat-
ing and considering only image data local to that edge. In addition, the requirement of
maintaining images of the original mesh is eliminated. These techniques are combined
with the traditional image-driven simplification approach to enable simplification with-
out at any point rendering the complete mesh. Benefits of this method include automatic
prevention of interior simplification, easier sampling camera definition, and more flex-
ibility for future implementations. A technique to reduce texture shifting during mesh

simplification, using real-time solid texturing, is also described.
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CHAPTER I

INTRODUCTION

Complex polygon meshes are a common occurrence in computer graphics. Sources
of complex meshes include laser scanners and mesh generating algorithms like auto-
matic surface subdivision. Applications involving meshes in computer graphics often
need to be able to reduce the size of these meshes, since the performance of algorithms
operating on meshes is often dependent on the number of polygons they contain. Au-
tomatic polygon mesh simplification algorithms, which convert a complex mesh into a
simpler one, are in common use in the field of computer graphics. These algorithms
take advantage of the fact that complex meshes often contain more information than
is detectable by interaction with the mesh. While in computer graphics the method of
interaction is most often visual, all but the most recent simplification algorithms are
guided by geometric measures.

In their paper introducing image-driven simplification, Lindstrom and Turk present
the first simplification algorithm to be guided by a mesh’s visual representation [14]. To
accomplish this they perform an edge collapse, render images of the mesh from many
camera positions, then compare those images with images of the original mesh. The
process of image comparison simulates the experience of a human observer watching
each edge collapse and selecting the one that affects the appearance of the mesh the
least. In this thesis, image-driven simplification is described in detail and a particular

implementation of it is presented.



While the actual cost of an edge collapse in an image-driven framework is not
generally limited to the region of the collapse, in this thesis we show that the error
introduced by enforcing such a limit does not significantly impact mesh quality. We
therefore present a pair of modifications to image-driven simplification which make the
edge cost computations completely local. Local cost assignment is useful because it
enables future implementations to cache local data, and it provides a smaller domain in
which to pursue optimization.

Another problem commonly faced when simplifying a mesh is texture shifting
caused by changes in geometry. As the mesh definition is altered, incorrect redefini-
tion of texture coordinates can cause drastic distortion in the appearance of texture on
the mesh surface. Current methods for reducing texture shifting attempt to regenerate
the parameterization using a fixed texture definition. We present a technique that uses
real-time solid texture to regenerate the texture definition and parameterization as sim-
plification proceeds. A benefit of using solid texture is that the parameterization is very
simple. Also, because the texture is mathematically defined, the texture shifting that
does occur during simplification is predictable.

The next section summarizes previous work in the field of polygon mesh sim-
plification. Following that, Chapter II describes Lindstrom and Turk’s image-driven
simplification method, and our implementation of it. Chapter III presents our extension
to image-driven simplification, and compares results from the extended version with
results from the original. In Chapter I'V real-time solid texture is presented and an im-
plementation is described. Chapter V summarizes the work done and presents future

directions in which these techniques may be applicable.



Previous Work

Execution times for existing simplification algorithms vary from seconds to days.
The most expensive algorithms are those that minimize complex energy functions. The
fastest algorithms are those that can determine collapses locally with simple geometric
calculations. It should be noted that a full solution to the error minimization problem
for polygon meshes requires exponential time, therefore all practical methods known
are approximation methods. L

Previous work in mesh simplification can be divided into methods which use ver-
tex removal, and methods which use edge collapse. Vertex removal methods simplify
a mesh by first removing a vertex, then re-triangulating the hole created. Edge col-
lapse techniques perform simplification by replacing edges with vertices, then updating
the surrounding triangles to account for this replacement. The following summary is
inspired by the one in [14].

Schroeder et al. use a vertex removal method in which error is assigned to ver-
tices based on their distance to the average plane formed by adjacent vertices. In this
method vertices are classified into different types based on their contribution to the mesh
geometry, and each type is handled differently [19]. Ciampalini et al. maintain global
error measures that represent the distance between the surfaces formed by the original
and simplified meshes. They also allow edge flips during simplification, which greatly
improves the quality of their results [2]. Cohen et al. maintain a pair of envelopes,
one internal and one external, around the mesh. Valid removals are those whose re-
triangulation does not pass through either of the envelopes [6]. Rossignac and Borrel
in [18] group vertices by placing them in the cells of a grid. A representative vertex is

then associated with each cell. When a collapse is considered, all vertices in the cell



are replaced by the representative vertex. Their technique allows merging of previously
unconnected areas of the mesh, as long as they fall inside the same cell.

The edge collapse method of Hoppe et al. works to minimize an energy function
with a combination of edge collapses, edge swaps and edge splits [10]. Ronfard and
Rossignac also use a method of repeated edge coliapse, but they associate each vertex
with a list of planes [17]. These planes are initially defined by the faces adjacent to the
vertex. The cost of collapsing an edge to one of these vertices is defined as the sum of
the distance of the vertex to its associated planes. Finally, the plane lists of the edge
endpoints are merged together after the edge collapse occurs. Garland and Heckbert
expanded upon Ronfard and Rossignac’s idea by encoding implicit versions of the plane
equations into a 4 x 4 matrix for each vertex, called a quadric [7]. Quadrics enable
fast computation of the distance measure, and efficient merging of the plane equations
after collapse, by summation. Garland and Heckbert also permit two points in a mesh
to collapse together even if they are not connected by an edge.

Surface preserving techniques have recently become popular. Garland and Heck-
bert extended their quadric error metric in [8] to work with larger dimensions than the
three for vertex position. Instead of using the space of vertex positions in 3D, they
use vectors of vertex positions extended by vertex attributes. For n vertex attributes, a
(3+n)-dimensional quadric is associated with each vertex. Hoppe improved upon Gar-
land and Heckbert’s surface preserving technique in [11] by introducing a more efficient
method of storing the quadric error, as well as a technique for efficiently re-computing
the quadric error for every collapse. This ‘memoryless’ simplification improves the
quality of the resulting mesh, and is less memory intensive because it does not store the

quadrics. Cohen et al. use a decoupled representation in which color data and texture



data are stored separately from the vertex data, in color and texture maps respectively.
A surface parameterization is used to map between the color and texture data and the
vertices [4]. Using this representation, they are able to limit texture coordinate deviation
in screen space, and provide bounds on screen space error introduced by texture shifting
during simplification [5].

Most recently, Lindstrom and Turk used actual rendered images in the interme-
diate stages of simplification to sample the error introduced to geometry and surface
properties as a result of edge collapse [14]. Image error was used to guide a memory-
less collapse heuristic similar to the one used by Hoppe in [11]. Their method, called
image-driven simplification, is the starting point for the work presented in this thesis.
While computationally expensive, image-driven simplification can be used to guarantee
results of high visual quality. It has roots in image-based rendering as well as geometric
mesh simplification. This algorithm can be viewed as sampling the light field around a
mesh, then consulting that light field measurement to evaluate prospective collapses. It
generates simplification steps that cause little distortion of rendered images of the mesh
relative to rendered images of the original. It can also allow simplifications of interior
geometry and other occluded geometry that a geometric algorithm would not directly

allow.



CHAPTER 11

IMAGE-DRIVEN SIMPLIFICATION

Previous approaches to simplification for computer graphics have centered around
achieving geometric and topological similarity. Because geometrically similar meshes
tend to look similar, these methods have been able to produce pleasing results. While
recent extensions to geometric methods have allowed simplification to take parameter-
ized surface properties into account, such as vertex colors and texture coordinates, these
methods still only indirectly measure changes in appearance.

The goal of image-driven simplification is to maximize the visual similarity be-
tween a base mesh and a simplified one by directly sampling image difference. Visually
similar objects are objects that appear identical to each other when viewed by a human
observer. While the type of image difference metric affects how accurate this method is,
even the simplest type of image difference metric can lead to simplified meshes of high
quality. Image-driven simplification as implemented by Lindstrom and Turk is sensitive
to surface detail, and can measure changes due to color, texture, geometric detail, and
silhouette affects.

A secondary aim of image-driven simplification is efficient execution. The method
is inherently expensive due to repeated comparisons of many images to evaluate error,
so several optimizations have been implemented by its authors. These include restricting
the update of error in an image to regions in which error is introduced, use of a limited
number of sampling points, and lazy evaluation of edge error effects caused by edge

collapse.



Overview

Lindstrom and Turk’s method of image-driven simplification is similar to existing
edge collapse simplification methods in that it uses a greedy algorithm to select edges.
First the algorithm computes and stores edge collapse costs for all the edges. Then it
repeatedly extracts the minimum-cost edge collapse, performs it, and updates the af-
fected edge collapse costs. The algorithm terminates when the target number of faces is
reached.

The image-driven approach differs from previous methods in how it evaluates the
cost of edge collapses. With geometric methods, edge collapse cost is a function of a
mesh’s geometry. In image-driven simplification, edge collapse cost is a function of
multiple images of the rendered mesh before and after collapse of an edge. Section 2.2
more closely examines how this is achieved.

Running times for the image-driven technique lengthen as the number of images
used to sample the mesh increase. Running times are also dependent on the time re-
quired to render the images. This effectively limits the technique to meshes and ren-
dering methods that can be considered in real-time. Lindstrom and Turk use hardware-
accelerated OpenGL rendering with flat or smooth shading, texture mapping, and a sin-

gle light source.

Sampling the Mesh

To sample the appearance of a mesh, an arrangement of virtual cameras is selected
so that every polygon is visible from at least one camera. One technique to do this is to
arrange the cameras on a sphere centered at the mesh’s center, with the complete mesh

in the view frustum of each camera. This provides an even sampling of the mesh from



FIGURE 1. The 20 sampling views of the Stanford bunny.

each direction. Enough cameras must be used to prevent aliasing of the collected error
values. Aliasing is prevented by averaging the error over several cameras, so in fact each
polygon should be visible from several cameras. Lindstrom and Turk used 20 cameras
arranged on a sphere to simplify the Stanford bunny mesh. Following the idea of a figure
in [14], Figure 1 shows the Stanford bunny from these 20 viewpoints.

An appropriate resolution must be chosen for the sample images. While it is not
generally feasible to use as high a sampling resolution as a final viewing resolution, us-
ing a lower resolution may introduce error. If the area affected by a collapse is less than

a pixel in the sampling resolution, but not in the final viewing resolution, the algorithm



may allow a collapse that is of relatively high error when subsequently viewed. Lind-
strom and Turk use a sampling image size of 256 x 256 and a final viewing size of 512
x 512.

Once a set of images ) is collected for the original mesh and a set V¥ is collected
after the k** prospective edge collapse, an image based error can be associated with an
edge. First, however, an image difference metric must be selected. Lindstrom and Turk
used mean squared error which, while not a metric in a strict sense, provides an ordering
on image difference. In general any image difference metric could be used. For a mesh

after k edges have been collapsed, the mean squared error associated with an edge is:

] m n
dus(V°, V) = %ZZZ(% g @1

h=1 i=1 j

Optimizations

Image comparison is the most expensive step of image-driven simplification, so
Lindstrom and Turk attempt to limit the number and cost of image comparisons done.
First, they only difference images in the region of error collapse. This prevents comput-
ing most differences that would end up being zero. Next, instead of updating the error
introduced to surrounding edges immediately, they flag these edges. Subsequently, only
when a flagged edge is found to be the cheapest is its error updated. Because edge col-
lapses tend to increase the error associated with neighboring edges, this kind of lazy
evaluation will introduce only a small amount of distortion to the mesh. Finally, Lind-
strom and Turk rely upon hardware support for the OpenGL pixel buffer extension to
enable fast access to the frame buffer.

Since affected edges are mostly near the collapsed edge, adjacency information
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is calculated many times during a collapse. A mesh representation that stores edge
information is required for good performance. Unlike most edge collapse methods,
edges far away from a collapsed edge may have their error affected. However, Lindstrom
and Turk showed that by ignoring distant edge error their technique still chose edges that

were in the best 0.1% of edges on average.

Limitations

Using rendered images as a sampling medium may restrict the applicability of the
resulting mesh. Since geometric fairness is not guaranteed under image-driven simpli-
fication, meshes generated by it may not be appropriate for collision detection or other
geometry-based calculations. The resulting images can vary between rendering hard-
ware, causing the simplified mesh to look different from the original on different work-
stations. Finally, because a simplification is done with a specific lighting condition the
resulting mesh may not look similar to the original under different lighting conditions.

Because every edge must be collapsed and an image evaluated to determine error,
the running time of image-driven simplification can be prohibitive for large meshes.
Running time only varies linearly in the product of the number of faces in the mesh and
the number of cameras and the resolution used. However, since the constants for image
comparison are large, each edge collapse is expensive. For very large meshes, many
triangles will project to the size of a pixel, so the image-driven approach actually wastes
a good deal of effort on these meshes by comparing images that are equal. Lindstrom
and Turk instead pre-simplify the mesh with a fast geometrically-based algorithm, then

refine that mesh with image-driven simplification to get a high quality simplified version.
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An Implementation

Goals

This section describes our implementation of Lindstrom and Turk’s image-driven
simplification method. The primary use of this program is as a test platform for ex-
tensions to image-driven simplification, so some details of our implementation differ
from that of Lindstrom and Turk. Most notably, our implementation treats key elements
of image-driven simplification abstractly, including the edge collapse methodology, the
image metric, and the sampling-camera placement. Furthermore this implementation
works on consumer level hardware, requiring only hardware-accelerated video card sup-
porting OpenGL.

Some of the optimizations used by Lindstrom and Turk are omitted from our
implementation in the interest of maintaining an abstract system. Optimizations not
included are partial image updates (and therefore usage of the pixel buffer hardware
extension to OpenGL) and lazy evaluation of edge costs. However, to enable com-
plete simplifications and to successfully test the method some performance issues are
addressed. Fast queries of an edge’s neighboring vertices are available via an edge con-
nectivity data structure. Repeated edge cost evaluations are avoided by storing edge
costs in a table, and updating this table with the local error introduced to edges near an

edge collapse.

Implementation

Our implementation of image-driven simplification is described here in a bottom

up fashion. First, the subroutines that do the work are given. These subroutines embody
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FIGURE 2. The mesh edge data structure, with vertex list, edge list, and face list. |

the edge connectivity data structure, the method of collapse, details of camera place-
ment, the method of edge cost evaluation, and a technique for prevention of repeated
computation. Lastly, the routine that uses the above subroutines to achieve image-driven
simplification is given. Along the way the differences between our implementation and
that of Lindstrom and Turk are discussed.

Mesh data is stored in a structure that maintains connectivity information for
edges. A winged-edge and half-edge implementation were considered, but those would
limit meshes to being manifold surfaces. Instead, a custom structure was written that
supports non-manifold surfaces. This structure contains a list of vertex objects, a list of
face objects, and a list of edge objects. Each vertex object contains a list of the indices
of edges incident to it, and a list of indices of faces incident to it. Face objects have a
list of indices of the vertices that make up the face. Edge objects have a list similar to
that for faces. With this structure, connectivity information can be retrieved in constant
time. See Figure 2 for an example of this data structure.

The above mesh structure supports edge collapse, and subsequent re-expansion of

that collapse. When doing an edge collapse, an edge is collapsed to a vertex, and that
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FIGURE 3. The new vertex is placed at random at either of the two original edge
vertices.

new vertex must be placed somewhere. While Lindstrom and Turk use a volume pre-
serving calculation to place the new vertex, our technique randomly chooses one of the
existing vertices as the new vertex position, as shown in Figure 3. The memoryless ap-
proach tends to produce better meshes, but the random choice approach has been shown
to have good performance as well. Contrary to intuition, using the midpoint between
the vertices of the collapsed edge is actually the worst simple placement choice. Lind-
strom and Turk provide an excellent comparative analysis of these approaches in [13].
Using existing vertices may also be beneficial for hardware accelerated rendering using
progressive meshes that are generated with this method, since a single immutable vertex
list can be used.

Instead of an automatic camera placement routine, here the camera placement is
done by the user specifying each camera explicitly. This allows more flexibility to ex-
periment with camera positioning. A camera placement was determined for the Stanford
bunny that matches the one used by Lindstrom and Turk. For n cameras, the set of im-

ages V* = {¥i, ..., Yin} is generated by rendering the mesh for each camera view and



14

'
JAVAVAVAVA

FIGURE 4. Shaded triangles are directly affected by collapse of edge e to the darkened
vertex. After collapse, the error associated with the darkened edges on the right must be
updated.

copying the frame buffer of OpenGL to one of n arrays in memory.

To avoid repeated computation of edge costs, these costs are stored in a table.
After an edge collapse, the costs of edges affected by that edge collapse are updated.
Since we have made the simplifying assumption that the effect of an edge collapse on
edge cost is limited to a local region around the collapsed edge, significant performance
gains can be realized by a table update. The exact set of edges that gets updated on
collapse of an edge e is all edges that contain at least one vertex that is part of a triangle
touching a vertex of e. This set is illustrated in Figure 4. To retrieve the minimum cost
edge, a linear search is performed on the table to find the minimum cost edge to collapse.

Now that the individual subroutines are in place, they can be combined with the
greedy strategy outlined in Section 2.1. Pseudocode for our image-driven collapse rou-

tine is as follows:
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COLLAPSE-EDGE(target, mesh)

[—

edgeFrrorTable + NIL
minErrorEdge + oo
affectedEdgeList « NIL
while NUM-FACES (mesh) < target
do if FIRST-COLLAPSE()
then edgeErrorTable < TEST-COLLAPSE-ALL(mesh)
minErrorEdge + FIND-MIN(edgeErrorTable)

affectedEdgeList « COLLAPSE-EDGE(minErrorEdge, mesh)

v G0 -1 o s W N

UPDATE-ERROR (affectedEdgeList, mesh)

[—
o

DELETE(minErrorEdge, edge Error Table)

This algorithm is greedy because at every stage it selects the lowest-cost edge to

collapse. When the loop exits, the mesh contains the simplified mesh.

Results

Simplifications reported in this thesis were performed on a desktop computer with
a 900MHz AMD Athlon processor, 256MB of RAM and an NVIDIA GeForce2 GTS
video card with 32 MB of RAM. Timings reported by Lindstrom and Turk in [14] were
done on a 250 MHz R10000 Silicon Graphics Octane workstation with 256 MB of ram
and IMPACTSR graphics. We used a sampling resolution of 128 x 128 for images.

Figure 5c shows the output of our implementation of image-driven simplifica-

tion using the Stanford bunny. The bunny was simplified from 65,451 faces to 1,336
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a. QSlim, 1,336 faces b. Original, 14,535 faces c. Image-driven, 1,336 faces

FIGURE 5. The center mesh is the base mesh. Note the smooth edges on the bunny’s
ear in our result in c, along with the drastic simplification of the bunny’s face.

faces, by first using QSlim' to simplify from 69,451 to 14,535 faces, then using our
implementation of image-driven simplification to simplify from 14,535 to 1,336 faces.
For comparison, Figure 5a shows the result of QSlim simplifying from 69,451 to 1,336
faces, while Figure 5b shows the mesh with 14,535 faces.

In Figure 6 we compare the results of our implementation of image-driven simpli-
fication against the implementation presented by Lindstrom and Turk in [14]. Figure 6a
is an image taken from their image driven simplification result for 1,336 faces. Again,
Figure 6b is again the mesh with 14,535 faces and Figure 6¢ is our result with 1,336
faces. Figure 6a took Lindstrom and Turk’s method 970 seconds to compute. We can
see that our implementation made some simplifications similar to Lindstrom and Turk’s
method. In particular, the silhouette is well-represented, at the expense of interior detail.

From inspecting Figure 5 we can see that image-driven simplification preserves
the silhouette better than QSlim, the geometric technique. Also, the haunches and ears

of the bunny appear to be more accurately preserved by this implementation of image-

'QSlim v2.0 was used, with options -B 10.



17

il

a. L&T IDS, 1,336 faces b. Original, 14,535 faces c. Our IDS, 1,336 faces

FIGURE 6. Left: Lindstrom and Turk’s result reprinted from [14]. Right: our result.

driven simplification than by QSlim. The algorithm allowed simplification of surface
detail, but kept the silhouette relatively well defined. These tendencies are similar to

those reported by Lindstrom and Turk in [14].
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CHAPTER 11

SHARD-DRIVEN SIMPLIFICATION

Goals and Introduction

Lindstrom and Turk’s image-driven simplification method restricts computation
of image difference to a region around the collapsing edge, but for every prospective
edge collapse renders the entire mesh from every camera position. There are a couple of
reasons why rendering the whole mesh is undesirable. If an expensive shading model is
being used, the cost of evaluating it on all the triangles in the mesh could be unacceptably
high. Also, many cameras are required to sample complex meshes. This is particularly
important for self-occluding meshes, since any collapse must be visible from several
cameras. In this chapter we describe an implementation of a local edge cost evaluation
technique that addresses these issues.

It is possible to specify the set of all triangles that can contribute to the cost of
collapsing a particular edge. A triangle contributes to the collapse cost of an edge e if
the appearance of the rendered version before collapse of e differs from the appearance
of the rendered version afterward. In practice there are a limited number of ways that
such a contribution can be made. One possibility is that the geometry of the triangle
can change. In this case the pixels that make up the triangle in the rendered image may
either be shaded differently or occur in a different place from those of the original. An-
other possibility is that the pixels of a triangle may have been visible before a collapse,
but made invisible after the collapse, or vice-versa. Only triangles which experience a

change in geometry or visibility can contribute to the collapse cost for an edge.
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We propose that only the set of triangles that can contribute to the cost of collapse
of an edge e need to be rendered to compute the cost of e in an image-driven scheme.
We call this set of triangles a shard for e, and hereafter refer to the cost of collapse of e
as simply the cost of e. In the following section, shards are more restrictively defined.

By limiting the rendering during edge cost calculation to a shard, the cost of eval-
uating an expensive shading model is minimized. If shards are localized and consist of
a small number of triangles, self-occlusion is rare and it is easier to guarantee every face
is seen by a camera. Finally, a shard-based approach may allow the consideration of

edge costs for shards independent of a particular instance of a mesh.

Implementation

Our implementation computes the cost of collapse of an edge as its effect on a
shard of triangles whose geometry is altered by that collapse. The method of greedy
edge choice is the same as in image driven simplification and is reused. The mesh
data structure is retained but expanded upon, and all the edge placement and collapse
routines are unchanged. Additions include new edge cost evaluation routines and an
updated mesh data structure.

This section describes the updated mesh data structure and the new edge cost eval-
uation routines. Following Section 2.5, we describe the technique from the bottom up.
A technique to generate shards from mesh data is given, then routines to compare shards
to each other are specified. We show how these subroutines are combined together to
evaluate edge cost, and how the new edge cost result is used with the greedy strategy of

Chapter II to perform shard-driven simplification.
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FIGURE 7. The dark line shows the perimiter of the shard. It is unaltered by collapse
of the shard’s associated edge

Shard Generation

Shards in this implementation are more restricted than those defined above. Here
a shard is composed only of triangles that directly experience geometric changes as a
result of the collapse. For an edge e between vertices v; and v, this set is composed of
the triangles that share a vertex with v, or vy, as in Figure 4. No triangles outside this
set are geometrically affected by the collapse of e. The perimeter of this set of triangles
is fixed under collapse of e, as shown in Figure 7.

it is important to note that triangles outside of the aforementioned set may con-
tribute to the actual cost of collapsing e. These triangles are exactly those that experience
a change in visibility as a result of the collapse of e, but whose geometry is not changed.
By rendering only shards, the contribution of these triangles is replaced by a contribu-
tion from the background color as in Figure 8. In this way using shards introduces error
into the edge cost calculation

The error introduced can be an over-estimation or under-estimation of what the
difference would be if the full mesh was used. An over-estimation occurs if the far
triangles are closer in intensity to the near triangles than is the background intensity. An
under- estimation occurs if the intensity of the background and near triangles are more

similar than those of the near and far triangles. In Figure 9 we see an over-estimation
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t
— N[l-
FIGURE 8. Collapse of e to v; should reveal triangle ¢. However, the contribution of

t (the shaded region) will be replaced by the background color when just the shard is
rendered.

and in Figure 10 an under-estimation. Using a directional light source aligned with the
camera, far and near triangles will be shaded similarly along a line of sight, thus over-
estimation of edge cost is more likely. Positional light sources that include an attenuation
factor will cause some over-estimation and some under-estimation. Our implementation
uses directional light sources, without attenuation, to minimize the effect of this type of
error.

We modify the mesh data structure described in Chapter II to generate a shard for
an edge e by consulting the lists of triangles stored with each vertex of e. These lists are
merged into a list of triangles that form the shard. The shard itself is a mesh, thus edge

collapses can be performed on it and it can be rendered.

Shard Comparison

Shards in shard-driven simplification are compared in much the same way as the
full mesh is compared in image-driven simplification. Multiple cameras are used, in
the same positions as in traditional image-driven simplification. There is a difference,
however, in how the images themselves are compared. In image-driven simplification
images of the original mesh are compared with images taken after each prospective

collapse. But finding the set of triangles in the original mesh that corresponds to a shard
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FIGURE 9. At left, comparison using image-driven simplification. At right, using
shard-driven simplification. When the intensity of the background is similar to that
of the occluding geometry, the error is over-estimated.
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FIGURE 10. At left, comparison using image-driven simplification. At right, using
shard-driven simplification. When the intensity of the occluded triangle is similar to the
background, the error is under-estimated.
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in a partially simplified version may be difficult. Furthermore, the images of shards
from the oniginal mesh would have to re-generated for every prospective edge collapse,
so there would be no performance benefit gained by comparing against the original
mesh.

To avoid the complications described above, we deviate from the technique used
by Lindstrom and Turk and instead evaluate image differences incrementally. Images of
the mesh are saved just before a collapse, then compared with images of the mesh after
a collapse. Figure 11 compares the two techniques. In incremental evaluation a set of
images Y*~! is generated before the k** edge collapse. To evaluate the cost of collapse
of an edge e, e is collapsed and a set of images J* is generated. The cost of collapsing
e is das(V* 7}, J*), with dyss the same as in Equation 2.1. The failure to maintain
images of the original mesh to compare against may contribute to a loss of fidelity in

this implementation.

Edge Cost Evaluation

Evaluation of edge costs is performed differently than in image-driven simplifica-
tion. Instead of computing prospective collapses for each edge in the overall mesh, we
extract the shard associated with each edge, and collapse the edge in the shard that is
equivalent to the edge in the original mesh. This eliminates the step of expanding the
collapsed vertex into an edge after a prospective edge collapse.

Given the shard collapse and shard comparison subroutines, shards are now used
to evaluate the cost of an edge e as a candidate for the k** edge collapse. This process is
illustrated in Figure 12. First the shard P associated with e is extracted from the mesh,

where P has an edge €' that is equivalent to e in the original mesh. Shard P is rendered
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@ Static
difference

Image of original Image of model
model after k" edge

collapse

@ Incremental
difference

Image of model Image of model
before k" edge after k" edge
collapse collapse

FIGURE 11. In static difference, the image of the original mesh is maintained. In
incremental difference, only the image of the mesh before and after collapse are used.

from each of the camera viewpoints, with the resulting images stored as the set Y*~1
Next e’ is collapsed in P to form a mesh P’, and the set V* is generated by rendering P’
from all the camera viewpoints. Finally, the cost of e is computed using the incremental

difference routine on P and P'.

Integrating With The Greedy Solution

To use the greedy strategy given in Chapter I, we replace the use of prospective
edge collapses in the pseudocode in Section 2.5 with the shard based edge cost evalua-
tion described above. Edge collapse costs are still stored in a table, and the same ran-
domized endpoint edge placement algorithm for the edge collapses is employed. Using
this randomized approach requires remembering which endpoint was randomly selected

in the test collapse and using that one for the actual collapse.
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Mesh structure

Patch extracted from mesh

Pre-collapse images

Edge collapse

Post-collapse images

Image differencing

FIGURE 12. The sequence of operations for incremental difference with shard-based

simplification.
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A Side Effect: Simplification of Interiors

Lindstrom and Turk went to considerable effort to extend image-driven simplifi-
cation to prevent simplification of hidden interiors in [14]. With shard-driven simpli-
fication, such simplification is prevented automatically. When triangles are rendered
a shard at a time, there is little chance for occlusion to occur. This has the effect of
preventing simplification of hidden interiors, since interior geometry is always visible
for an interior prospective edge collapse. The removal of self-occlusion effects makes
defining sampling cameras easier, because it is no longer necessary to position cameras
to sample around occluding geometry.

An extension to shard-driven simplification is possible that would allow simplifi-
cation of hidden interiors. This would entail rendering all faces of the mesh except those
in the shard with the background color. Such an effect could allow faster simplification
than traditional image-driven simplification if a complex shading model was being used,
since most faces of the mesh could be rendered as the background color using a simple

shading model instead.

Results

The following are conclusions about the shard-based approach, and results of sim-
plification using it, compared to other methods. The images in this section were gener-

ated on the same system as specified in Section 2.5.

Running Time

In Table 1 the running times for QSlim, Lindstrom and Turk’s implementation

of image-driven simplification, our implementation of image-driven simplification and



TABLE 1. Compared running times for QSlim, Lindstrom and Turk’s of Image-driven
Simplification, and our Image-driven and Shard-driven simplification.

Method | QSlim | L and T image-driven | Our image-driven | Our shard-driven
Time | 4 seconds 970 seconds 34,577 seconds 6,611 seconds

shard-driven simplification are given. Both of our methods are largely unoptimized.
Again, the goal of this work is to compare mesh quality, under the assumption that opti-
mizations similar to those Lindstrom and Turk used will be applicable to our technique
1n the future.

Shard-driven simplification took 6,611 seconds to simplify the Stanford bunny
mesh in Table 1, while our implementation of image-driven simplification took 34,577
seconds, as in Chapter 1I. This occurred because the flat shading model used here 1s
very fast compared to the image comparison step. Hence the time gained by restricted
rendering 1s enough to overcome the extra time used in extracting shards from the base
mesh to evaluate collapse costs. We believe that using a technique like Lindstrom and
Turk used in [14] to restrict the area of image difference computation would make the

shard-driven method even faster.

Mesh Fidelity Compared

Figure 13 shows a wireframe version of the Stanford bunny mesh simplified from
14,535 to 1,336 faces under QSlim, and our implementations of image-driven simplifica-
tion and shard driven simplification. Our implementation of image-driven simplification
dedicated more triangles to silhouette edges than did QSlim, particularly around the ears
and base of the mesh. However, for silhouette preservation the shard-driven technique

is clearly superior, having dedicated far more triangles to the silhouette edge than ei-
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¢. Shard-dnven, 1,336 faces

b. Image-driven, 1,336 faces

d Onginal,

4,535 faces

FIGURE 13. Wireframe rendering of the output of QSlim, our image-driven simplifica-
tion, our shard-driven simplification, and the base mesh.

ther QSlim or the original image-driven simplification technique. Note the particularly
well-rounded ears, feet and tail.

In Figure 14 the distribution of triangles in non-silhouette surface geometry is
more apparent. After shard-driven simplification relatively few triangles are used to
represent the flat portions of the Stanford bunny. QSlim and image-driven simplifica-
tion appear to have more faithfully captured the variations in geometric detail on the
non-silhouette surfaces of the bunny such as the eyes and haunches. The shard-driven
technique spent more resources on the silhouette, at the expense of the non-silhouette

geometry.
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a. QSlim, 1,336 faces b. Image-driven, 1,336 faces c. Shard-driven, 1,336 faces

d. Original, 14,535 faces

FIGURE 14. Flat shaded rendering of the output of QSlim, our image-driven simplifi-
cation, our shard-driven simplification, and the base mesh.
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, a.QSlim, 1,336 faces b. Image-driven, 1,336 faces  c. Shard-driven, 1,336 faces

d. Original, 14,535 faces

FIGURE 15. Another viewpoint of the result from QSlim, our image-driven simplifica-
tion, and our shard-driven simplification.

Figure 15 shows how well the silhouette was preserved for the shard-driven method
from a different viewpoint. While in Figure 14 the shading of the haunches is less ac-
curate after shard-driven simplification than QSlim or image-driven simplification, the
silhouette of the head of the bunny was better preserved by the shard-driven technique.
Also the curvature of the inside part of the ear appears more well defined after shard-
driven simplification than after the other techniques.

The wireframe and shaded renderings of the Stanford bunny created with the
shard-based technique appear to be of high quality when compared to those created
by Image-driven Simplification and QSlim. The shard-based technique spent more re-

sources to preserve the mesh silhouette, and less to preserve interior detail. This effect
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is even more pronounced than in our implementation of image-driven simplification. It
is clear that both image-driven simplification and shard-driven simplification produce

meshes of comparable or higher quality than QSlim.

Summary

Using the a shard-driven approach to image-driven simplification appears to per-
form no worse than image-driven simplification, and can produce meshes with better
defined silhouettes, at the expense of representation of non-silhouette surface details.
This feature is in the spirit of image-driven simplification, as Lindstrom and Turk in [14]
cited enhanced silhouettes and simplified surface detail as a beneficial feature of their
approach. Furthermore, this quality was achieved using incremental comparison which
is a lower quality method of image comparison than that used by Lindstrom and Turk.

Using shards instead of the full mesh allows the experimenter more freedom to
experiment with effects using image-driven approaches to simplification. We also feel
it makes image-driven simplification more like geometric edge collapse methods, since
it forces the calculations to be local. One could implement an out-of-core image-driven
simplification technique using shard-driven simplification with only a few modifica-
tions, since rendering does not require the full mesh. See [12] for a description of

current methods for out-of-core polygon mesh simplification.

Future Directions

The local nature of shards should also allow a future implementation to consider
shards that are transformed away from their position on the original mesh, and consid-

ered in isolation. Then, a single array of cameras and a single lighting condition could
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be used in place of the hemispherical camera and light set of image-driven simplifi-
cation. Individual shards would be successively moved in front of these cameras and
transformed to face them in a predictable way, then evaluated.

Given such a system, we envision a process of storing the error associated with
certain representative shards in a database. When a similar shard is encountered else-
where in the mesh, its error value can be retrieved from the database and used in place
of an explicit image differencing operation. This technique has the potential of greatly
accelerating the use of complex and expensive image metrics in image-driven simplifi-
cation, particularly in regularly sampled meshes with many triangles. Such meshes are
commonly generated by three dimensional scanning equipment.

This technique poses several challenging implementation problems. Driving most
of these problems is the need for a database of spatial information that has small access
times. Each shard, which may in some cases be quite irregular, must be transformed
to face the bank of sampling cameras. Furthermore, a sampled shard must be stored
with sufficient auxiliary information to allow it to be found by the lookup function of
the database. A statistical evaluation of the geometric content of some representative
meshes would be useful to predict what kind of compression would be possible in this
database as well.

We note that this technique has an analog in fractal image compression, where a
subset of small pieces of an image are rotated, translated, and scaled to reproduce that
image. Fractal image compression is described in [3]. In our technique, a subset of the
shards that form a mesh would be rotated, translated and scaled so that their combined

error would form the total error of the mesh as the result of any edge collapse.
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CHAPTER IV

REAL-TIME SOLID TEXTURE

Motivation

This chapter discusses a technique that uses OpenGL hardware accelerated tex-
ture mapping to render meshes with solid texture in real-time. Meshes that use texture
in OpenGL have vertices with texture coordinates as well as position. When an edge
collapse happens during mesh simplification, nearby texture coordinates must be up-
dated along with vertex positions. This task is made more difficult by the fact that a
simplification is an action in three dimensions, while texture coordinates are two dimen-
sional. Inaccuracies of texture coordinate assignment are manifested as shifts of texture
content. Image metrics and mean squared error calculations are very sensitive to subtle
shifts in image content, hence they tend to overestimate the error such shifts represent.
To improve the quality of simplified meshes that use texture, a good texture placement
scheme is needed.

One way to simplify the problem is to move texture coordinates into three dimen-
stons. Here, a good placement routine for vertex positions will translate directly into a
good placement routine for texture coordinates. Three dimensional texture coordinates
lead naturally to the notion of solid texture, as introduced by Peachey in [15] and Perlin
in [16]. However, these techniques as given are too slow and memory intensive to use in
a real-time system. For real-time solid texture we turn to the method introduced by Carr
et al. in [1], which achieves real-time rendering of solid texture by packing the solid

texture data into mesh-specific two dimensional texture maps.
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We have implemented a simple version of the real-time solid texturing method
of Carr et al. This implementation provides insight into future texture parameterization

solutions for mesh simplification, and generates appealing images in real-time,

Implementation

Qverview

Carr et al. store the solid texture contribution in a two dimensional texture map
tailored to the mesh. Since the meshes considered are composed exclusively of triangles,
it suffices to sample the contribution of the solid texture to a number of points on each
triangle. These contributions are then stored together in a single two dimensional texture
map. By using traditional textured rendering with this texture map, current rendering
hardware can render solid textured meshes in real-time.

There are a number of technical issues to be resolved in order to get good quality
solid texturing with this method. The first is efficient use of texture memory. Memory
is a limited resource, and each triangle must have its own dedicated piece of texture
memory in the texture map. This places restrictions on the sampling density for trian-
gles. Also, irregularly-sized and stretched triangles complicate texture packing, and can
introduce distortion artifacts in the rendered mesh.

Our implementation of real-time solid texturing uses the simplest sampling method,
and hence the simplest texture packing scheme. We take the same number of samples
for each triangle, producing identically-shaped and sized texture data elements for them.
These data elements can then be easily packed together into a single texture since they
all have the same size and shape. We use hardware accelerated OpenGL for the final

rendering.
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FIGURE 16. Sampling grid for S=4. F is evaluated at the 10 grid crossing points,
shown darkened here.

Sampling

Solid texture sampling is an offline process that produces a texture map for a given
mesh. This texture map stores samples of the surface of the mesh taken from within
the solid texture object. Since the meshes we consider are all composed of triangles,
we only describe how our implementation samples triangles in the solid texture space.
Meshes with more complex primitives than triangles can be tessellated to consist only of
triangles, so our algorithm is not particularly restrictive in the meshes it can be applied
to.

A solid texture in our implementation is defined as a function F that takes a posi-
tion in object space and returns a color value. To map from the solid texture space to a
point p on a triangle in object space we simply evaluate the solid texture function at p.
To collect sufficient information about a triangle, multiple samples must be taken of it.
In our implementation we fix the number of samples per triangle side as S. In practice
S can vary from 10 to 100, where selection of S is done by the user. A good choice of S
depends on the mean size of triangles in the mesh and the frequency content of the solid

texture relative to the size of the mesh.
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FIGURE 17. The shaded regions may be incorre_ctly included in the texture generated
for the triangle with texture coordinates 7, § and ¢.

To form a basis for sampling, we randomly select a vertex of the triangle, then treat
the two triangle edges emanating from that vertex as the axes of a sampling grid. Each
edge is divided S times, forming a grid over the triangle, as shown in Figure 16. Now
for each crossing point of the grid, F’ is evaluated. This generates an isosceles-shaped
dataset, where the number of points is

S x (S +1)

5 @.n

Since the data of adjacent triangles are not typically adjacent in the resulting tex-
ture map, floating point inaccuracy in the texture lookup functions can result in sampling
from distant triangles, as in Figure 17. This produces noticeable artifacts when the mesh
is rendered. To eliminate these artifacts we over-scan each triangle by one unit along
each axis, resulting in a buffer of valid pixels around the data for each triangle, shown

in Figure 18.
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FIGURE 18. The shaded region represents result of over-scanning the triangle. Open
circles are the points used for over-scanning the shown triangle.

Texture Packing

Instead of storing the data for each triangle in its own texture map, we pack the
data for all of the triangles in the mesh into a single texture map. Because we discretize
all triangles uniformly, we can pack them together using a relatively simple packing
scheme. Triangles are first packed together along the  texture map axis until reaching
the edge of the texture map. Then v is increased by the height of the triangle data.
Repeating this process until all triangle data is stored completes the texture map.

In order to pack the data from two triangles along the u coordinate together, we flip
one of the data-triangles in both u and v. The inverted data can then be placed adjacent
to the first one with no loss of space in the texture map. Rectangles formed by joining
two triangles can be packed into a single structure by just placing them adjacent to each
other. When the resulting data is written to the texture map, we also record the (u,v)

coordinates of each of the three comers of the triangle data and save these coordinates



39

with the mesh vertex data. These corners are one texel inside the data in each dimension,
to take advantage of over-scanning. The packing process is illustrated in Figure 19.
More advanced texture packing schemes are discussed by Carr et al. in [1] and
Hart etal. in [9). Carr et al. acknowledge the attractiveness of simple non-adaptive
packing schemes similar to the one we have used, but also describe a flaw. This tech-
nique performs poorly when the mesh triangles are radically different in size, and when
they are irregularly shaped. Both these conditions will cause the data to be sampled ir-
regularly from the texture space, triggering distortion of the texels that are stored in the
texture map, as in Figure 20. We overcome this flaw by using sufficiently high sampling

rates, and avoiding meshes with irregularly shaped triangles.

Rendering

After sampling the solid texture and packing the resulting texture maps, all that
is required to render a mesh with solid texture is traditional texture mapping such as
that in OpenGL. Each pixel of each rasterized triangle takes its color information from
the texture map associated with that triangle. There are a couple of techniques that can
make real-time solid rendering look more appealing. We enable linear magnification
and minification filtering, which tends to smooth out seams that form along triangle
boundaries as well as the appearance of diamond-shaped texels. Gouraud shading also

helps hide artifacts along triangle edges.

Results

Here we present the results of our solid texturing algorithm. The images in this

section were generated on the same system as specified in Section 2.5. Gouraud shading
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FIGURE 19. Triangles are packed together by inverting every other triangle.
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FIGURE 20. The square texels at right, stored in the texture map, get mapped to
diamond-shaped regions in the actual triangle.

was enabled for all images, and a light was placed at each camera to illuminate the scene.
The following shows the result of varying texture frequency content and the triangle
sampling rate. Then we show some examples of correctly rendered meshes.

The images of the Stanford bunny (simplified to 5,000 faces with QSlim) in Fig-
ure 21 display the application of a single solid texture while varying the triangle sam-
pling rate. 50 total samples were taken for Figure 21a, 450 for Figure 21b and 3,200
for Figure 21c. In the least-sampled result, artifacts caused by texture mismatches along
triangle boundaries are visible. In Figure 21b these artifacts are less prominent, and in
the most highly-sampled result, the artifacts are not easily visible.

In Figure 22 we show the result of using a solid texture with a greater proportion
of high frequency content. Triangle sampling rates of 50, 450 and 3,200 samples per-
triangle were used in the following three images. With a higher-frequency texture, 50 or
450 samples per triangle is not enough to hide sampling artifacts in the textured mesh.
At 3,200 samples per triangle, image artifacts are acceptably reduced.

Figure 23 shows a 5,000 face Stanford bunny textured with a solid texture that



42

2%

a. 50 samples/triangle b. 450 samples/triangle ¢. 3,200 samples/triangle

FIGURE 21. Sampling rates of 50, 450 and 3,200 samples per triangle with low fre-
quency texture.

a. 50 samples/triangle b. 450 samples/triangle ¢. 3,200 samples/triangle

FIGURE 22. Sampling rates of 50, 450 and 3,200 samples per triangle with higher
frequency texture.
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FIGURE 23. View of the Stanford bunny with marble solid texture.

has a marble appearance. 450 samples per triangle were used, requiring 42 seconds
to generate the texture map on the system specified in Section 2.5. Figure 24 shows a
close-up of the head of the bunny mesh, displaying the quality of our technique even at
short range. Figure 26 and Figure 27 show a different texture applied to the same mesh,
again with 450 samples per triangle. The texture maps generated for these meshes were
each 2,048 x 2,048 pixels in size, and are shown in Figure 25 and Figure 28.

The above results show that with an appropriate sampling rate, our technique can
generate convincing solid textured meshes that can be displayed in real-time. Even
using the simplest texture sampling and packing techniques available the results are

convincing.



FIGURE 24. Close-up view of the Stanford bunny with marble solid texture,

FIGURE 25. The texture map for the Stanford bunny with marble solid texture, origi-
nally 2,048 x 2,048 pixels.



FIGURE 26. View of the Stanford bunny with wood solid texture.

FIGURE 27. Close-up view of the Stanford bunny with wood solid texture.
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FIGURE 28. The texture map for the Stanford bunny with wood solid texture, originally
2,048 x 2,048 pixels.

Solid Texturing and Image-driven Simplification

Here we discuss a possible integration of image driven simplification and solid
texture. Solid texturing is useful because it can be used to limit texture shifting dur-
ing simplification by forcing the texture associated with triangles during collapse to be
sampled in a well-defined way.

When an edge is collapsed, a set of triangles experience geometric alteration. Af-
ter collapse these triangles pass though a different region of the solid texturing space.
To correctly texture these triangles, they must be re-sampled in the solid texture, and
the portions of the texture map that they correspond to must be updated. Since our edge
collapse routine never generates new triangles, the texture map can be updated in place.
After updating these triangles the texture map for the mesh contains a correct sampling
of the solid texture. Hence, edge collapses which introduce very little distortion to the

mesh automatically introduce very little distortion to the texture of the mesh. Further-
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more, the distortions are predictable, because they are consistent with the original solid

texture definition. -
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CHAPTER V

CONCLUSION

We described an implementation of image-driven simplification which achieves
many of the results of Lindstrom and Turk’s implementation. Like that of Lindstrom
and Turk, our algorithm sacrifices some of the interior surface detail of a mesh in order
to more accurately represent silhouette detail. Our method also simplifies away hidden
interiors. Our implementation is not nearly as fast as that of Lindstrom and Turk, due to
a deliberate lack of optimization.

Our extension of image-driven simplification to a shard-driven approach was shown
to produce meshes of acceptable quality relative to the implementation of standard
image-driven simplification. This technique allows more freedom in how collapses are
considered in an image-driven framework, because shards are rendered and evaluated in
isolation from the rest of the mesh. We also demonstrated that iterative image updates
for differencing can produce meshes of acceptable quality when using a shard-driven
simplification. This allows even further freedom for implementers of image based sim-
plification techniques, since images of the original mesh are not required. Shard-driven
simplification was also shown to be much faster than our implementation of image-
driven simplification.

We would like to see the shard-driven approach expanded upon, to take advan-
tage of the abstraction available. By considering shards in isolation, we believe fewer
cameras can be used than in image-driven simplification. We would also like to see an

extension to image-driven simplification in which error for shards is stored in a database,
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and retrieved upon demand to act as an approximation to the error of similarly-shaped
shards elsewhere on the mesh. We believe such caching would result in a significant
performance improvement when more advanced and time consuming image difference
metrics are used in place of mean squared error.

We also described an implementation of real-time solid texturing in OpenGL. By
pre-computing the contribution of a three dimensional solid texture to a particular mesh,
and storing the contribution in a two dimensional texture map, we were able to achieve
interactive frame rates while viewing that mesh with solid texture. While this method
makes use of a great deal of texture memory in OpenGL, it does not use nearly as much
memory as methods that store a fully sampled solid texture. Furthermore, since the
contribution is pre-computed, the method is significantly faster than evaluating a solid
texture definition in real-time. We proposed using solid texture as an exploratory mech-
anism for mesh simplification algorithms that use texture. Because the actual texture
definition is in the same space as the mesh vertices, texture deviations are less numer-
ous, and more predictable, than those introduced by using traditional two dimensional
texture mapping alone.

The possibilities afforded by the image-driven and shard-driven techniques are
quite tantalizing. Lindstrom and Turk discussed incorporating models of human vision
into the edge collapse heuristic in place of mean squared error. We believe this idea
has a great deal of merit. Even the simple addition of models that include the human
response to brightness or human threshold sensitivity would allow collapse of geometry
that is invisible to a human viewer, freeing polygons to be used elsewhere in the mesh to
preserve detail that humans are drawn to. The use of more advanced models, including

the Samoff and Daly models of human vision, would further increase the possibility
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of collapsing geometry that contains content invisible to human viewers. We believe
the highest quality mesh simplification algorithms will eventually include these kinds of
human visual components, with image-driven and shard-driven simplification being the

first steps toward an efficient implementation of such algorithms.
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