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The sequent calculus proof system, as an alternative to natural deduction and
Hilbert-style systems, has been well-appreciated for its structural symmetry and its
applicability to automated proof search. Over the past decade, it has additionally
been shown to have a computational significance, perhaps most notably as a type
system for the A-calculus, designed by Hugo Herbelin. It is the purpose of this thesis
to demonstrate that the structural properties of the A-calculus (derived from the
underlying type system) are ideally suited for describing the states and transitions of
several abstract machines that have been developed for executing programs written
in a functional style. We explore the surrounding issues and offer formal translations
of several abstract machines into versions of the X-calculus. In particular, we consider

the Krivine machine, the SECD machine, and the ZINC abstract machine.
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Introduction

The study of computation is connected to the field of logic on many different lev-
els. One of the most striking examples of this connection is the relationship known as
the Curry-Howard isomorphism {15]). The core of this relationship is a correspondence
between formal proofs in a logical inference system and terms of a programming lan-
guage, and the most basic instance is the connection between intuitionistic natural
deduction and the A-calculus. Griffin has been extended it to classical natural de-
duction, showing that the corresponding language must contain operations to modify
the control flow [11]. Curien and Herbelin extended the correspondence to sequent
calculus in [7]. They also show that different ways of executing a program can be
observed at the level of the logic. This thesis builds on their work. We show that se-
quent calculi naturally embed the data structures used in abstract machines and that
these structures are a key element in decomposing the process of A-term reduction to
steps of minimal size. Therefore, we claim that sequent calculi are better suited than
natural deduction for describing abstract machines.

The issues to be addressed in this thesis revolve around the observation that the
order, manner, and size of the steps used to carry out a computation vary significantly
depending upon what system is used. For instance, the traditional A-calculus treats
[-reduction as an operation that occurs in a single step, which would be considered a
high-level operation relative to the capabilities of a computer modeled after a Turing
machine. Non-determinism is another source of complexity, and reduction rules in
most computational calculi are non-deterministic. Even with a deterministic reduc-
tion strategy, a single reduction step may make changes arbitrarily far from the top
of the syntax tree, which has a computational overhead. Smaller factors also play a
role in the complexity of operations, such as the use of symbolic names in contrast to

the use of numbers.



Abstract machines are a tools for studying computation at a lower level, closer
to the level at which physical machines work. They are useful both to those who
study the theory and design of programming languages and to those who are inter-
ested in the practicalities of implementing languages. In particular, those who study
functional programming languages based upon the A-calculus have benefited from the
development of abstract machines that can break up the rule of -reduction into man-
ageable components. Some of the earliest abstract machines designed for normalizing
A-terms were the Krivine machine and the SECD machine. The former is a simple
but effective call-by-name machine designed by Jean-Louis Krivine.! The latter is a
right-to-left call-by-value machine introduced by G.D. Plotkin [24].

On the other hand, there has also been work directed at modifying the A-calculus
so that f-reduction can be simulated with smaller reduction steps. An important step
in this direction was the investigation of explicit substitutions in [1]. Lescanne [20}]
offers a comparison of several versions of calculi with explicit substitutions. Curien,
Hardin, and Lévy achieved an important goal in (6] by proving that the Aoy-calculus
is confluent on both closed and open terms. Furthermore, they introduce the notion of
weak and strong calculi of explicit substitutions. In [12], a weak calculus of explicit
substitution (the Ac,) is proposed as a useful “calculus of closures” for bridging
the gap between abstract machines and the A-calculus. They use it to prove the
correctness of several abstract machines by developing translations from machine
states to terms in the calculus.

This previously mentioned work on calculi with explicit substitutions was, gen-
erally speaking, motivated by the goal of deconstructing S-reduction into smaller
steps. However, another calculus containing explicit substitutions was designed with
an entirely different motivation. This was the A-calculus of Herbelin [13], which was

conceived as a term assignment for sequent calculus proofs. The explicit substitutions

'More than 20 years after its informal introduction, the Krivine machine has not yet been officially

presented in publication. Jean-Louis Krivine has recently written an article to remedy this situation
[18].



in this calculus are present precisely for the purpose of encoding a particular proof
structure. The subsequent work of Curien and Herbelin [7] of Wadler [28] in the area
of sequent calculus proof terms has elucidated some of the symmetries inherent in
computation, including the duality of the call-by-name and call-by-value reduction
strategies.

There are now several versions of the )-calculus. The version in [7] does not
contain explicit substitutions. (A more recent version of the A-calculus with explicit
substitutions has been studied in {14].) However, one key and distinctive feature
of all versions of the A-calculus is that application occurs between a term and an
argument list, rather than a single argument as it would in the A-calculus. On first
consideration, it may seem as though this feature would make the calculus operate
at a higher level, taking large steps that would need to be simulated by smaller steps
in the A-calculus. However, it turns out that almost the opposite is true. This will
be investigated in Chapter 1V.

The use of argument lists in the A-calculus actually grants a greater range of
expressiveness in structuring terms than is available in the A-calculus, and this more
refined level of expressiveness is, in our opinion, an essential tool for capturing the
low level details of B-reduction. We attempt to demonstrate this by using a version
of the A-calculus to simulate the operation of three abstract machines. Not only do
we simulate the operation of the abstract machines, but we show how this simulation
can be done using a reduction strategy in the A-calculus for which the computational
complexity of the A-term rewriting is constant.?

In the following three chapters of this thesis, we will begin by introducing various
proof systems for minimal logic, the A- and A-calculi, and abstract machines. There-
after, we will present an enhanced version of the -calculus, which we will call the
Aoy,-calculus. Then we will use this calculus to simulate the Krivine abstract ma-

chine. In the final chapter, we will introduce the fi operator into the calculus and use

2With & small exception in the case of the ZINC machine.



the resulting Aioy-calculus to simulate the execution steps of the SECD and ZINC

abstract machines.
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CHAPTER 1

Logic and Proof Terms

In this chapter, we will present natural deduction (VD) and the sequent calculus
(both LJ [10] and LJT (8]} along with their corresponding term assignments. We will
also review a few of the structural subtleties involved in these logical inference systems.
Only the implicational fragment of minimal propositional logic will be considered.
Although simple, this logic still has an important relationship with computation and
will allow a cleaner presentation of the main points.

The syntax of the implicational fragment of minimal propositional logic is given
in Figure I.1. A formula is built from a set of atomic types (X), which we will
leaveunspecified, and a single logical connective (—), which joins two logical formu-
las. We will use A, B,C,... as meta-variables that range over the set of formulas.
For the semantics of the formulas, we will assume a functional interpretation of the

propositional formulas (also known as Brouwer-Heyting-Kolmogorov semantics).

1.1. Natural Deduction

Although the sequent calculus proof system could be presented alone, we would
like to present it in comparison with the more widely used system of natural deduction
[26]. Natural deduction has become popular, especially in the area of computer

science, for several reasons. One reason is that it has an important connection with

FIGURE 1.1: Syntax of the implicational fragment of minima! propositional logic

Au=X|A— A




FIGURE 1.2: Prawitz’ natural deduction

aF
A—B A B .
B ° A—=B

the A-calculus, which will be addressed shortly. This proof system is also popular
due to the fact that its proofs can be read and constructed in a manner that is often
considered more “natural” for humans than using Hilbert-style systems or sequent

calculus.

Prawitz’ Natural Deduction

The inference rules for Prawitz’ version of natural deduction are given in Figure
1.2. There is one rule for the introduction of the implication connective and one for
the elimination of the connective. Proofs correspond to trees where leaves represent
the assumptions. A leaf can be open or closed. An open leaf would mean that the
assumption is active. A closed leaf would correspond to an assumption that could
have potentially been used in the proof but has been discharged by the end of it.

Whereas the elimination rule is fairly clear, since it corresponds to the traditional
modus ponens, the notation of the implication introduction rule is fairly complex. In
the elimination rule, the dots from the formula A to the formula B indicate a proof
of B, which can refer to the assumption A zero or more times; the brackets indicate
that, after the introduction of the connective, the assumption A may be discharged;
and the variable z associates the use of this rule with the corresponding discharged
assumption.

If one wants to know active assumptions at a point in the proof, one would need
to travel up the tree to the leaves. To remedy this, we present natural deduction in
sequent form. This also provides a more elegant way to clarify some details about

using the implication introduction rule that have been left unspecified.



Natural Deduction in Sequent Form

A sequent is a syntactic construct for asserting a relation between propositions—in

our case between a collection of formulas and a single formula—which we will write
' A

In this example, T is the aniecedent and A is the succedent. When using sequents, it
is necessary to specify what sort of “collection” the antecedent is. There are several
possibilities: sets, mutlisets, sets of named formula, and sequences are the primary
candidates.

A sequent is most naturally understood as a statement about derivability with
respect to the Prawitz’ form of natural deduction. I' + A may be interpreted as,
“There exists a proof tree whose conclusion is A, and all of whose open assumptions
are contained within I''"” When interpreted as a statement about the existence of a
proof, a sequent becomes a meta-proposition. This may be useful as a conceptual
guide; however, the specification of a logical system using sequents is not, in general,
formally dependent upon any previously-defined proof system.

Using sequents to formulate the rules of natural deduction allows clearer distinc-
tions between the possible methods of managing assumptions. No longer must we
work with open (or closed) assumptions at the leaves of the proof tree; instead, the
leaves will contain an instance of an axiom in the inference system, and assumptions
will be internalized into the antecedents of the sequents. Therefore, if one is inter-
ested in knowing the collection of active assumptions, one would simply look at the
left-hand side of the sequent.

In reformulating natural deduction, the first step is to choose the nature of the
collection. In order to note the differences, we will present three systems. The first
is given in Figure 1.3. In this system, the antecedent of the sequents should be

interpreted as a set of formulas.!

! As commonly done, we will use the comma to indicate the union of two collections of formulas



FIGURE 1.3: Natural deduction in sequent style

FAF A4

LHA-B THA_, LAr B _
I - B Tk A—-B '

The correspondence with the previous form of natural deduction should be fairly

clear. This system corresponds to a version of Prawitz’ natural deduction in which:

1. a proof tree may have associated “leaves” that are not directly connected to its

branches

2. implication introduction may not occur if there are no open assumptions of the

formula associated to the tree
3. no discharge need actually take place

4. all equivalent open assumptions in the tree must be simultaneously discharged

(and hence marked with the same name) if any of them are discharged

The first point arises from the fact that the axiom allows an arbitrary set of extra
assumptions . The second point is clear from the implication introduction rule. The
third point can be observed by noting that, in the implication introduction rule, T
may actually contain A, in which case I', A = I". The last point is inherent in the use

of sets to maintain assumptions. Here is a simple proof in the system:

AF Ads
ArF ASA L
F A—oA—A

In the first implication introduction step, note how the assumption A is not deleted.

If it were deleted, the second implication introduction step would not be possible.

{as in I", A) or the union of & collection and a single formula (as in I', A). When the comma is used
for sequences of assumptions, it should be interpreted as appending one to the other.



If we decided to manage assumptions with multisets, then we could simply reinter-
pret the rules in Figure I.3. In this new interpretation, the third and fourth statements

above would be replaced with
3. exactly one open assumption in the tree must be discharged

The proof of A — A — A in this system would be:

AAF AT
.._;i

AFA—-A

F A=A A '

Although these two versions of natural deduction in sequent form provide some
clarification on the use of implication introduction, they both lack some expressive
power with respect to Prawitz’ version. Each of the proofs above could correspond
to either of the two below:

ar 4,

AoA _f A=A,
A-A—A ¢+ A—A—A

Using sets of named assumptions solves half of the problem. We could then tell
which open assumption was discharged during an implication introduction, but would
still not know which assumption corresponds to the succedent in the axiom rule. One
solution to this would be to allow the attachment of names to the succedent in axiom
rules. Another solution is simply to use sequences to manage assumptions. This
requires a modification to the axiom, and the resulting system is presented in Figure

1.4. We will return to this system later on, when de Bruijn indices are discussed.
Structural Rules
When working with multisets or sequences in a proof system, it is sometimes

necessary to add structural rules. The three structural rules typically considered are

weakening, contraction, and ezchange (Figure 1.5). Clearly, in a system that uses sets
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FIGURE 1.4: Natural deduction in sequent style with assumptions maintained as
sequences

TAD - A Az

- A—-B LF A_, A+ B
T - B ¢ TFA-=B °

FIGURE 1.5: Structural rules

I - B ~ T,AAFB

TAF BV Tairp O
AT, B,I" - C
LB AT+ C

FEzch

of assumptions, only weakening is relevant, and in a system that uses multisets, only
weakening and contraction are relevant.

Adding these structural rules to a system may not alter the set of sequents that
is provable in the system; in that case, the structural rules are edmissible (but not
derivable). This is the case for the three systems of natural deduction presented. It is
worth noting that the precise formulation of the inference rules, especially the axiom,
can influence the admissibility of various structural rules. For instance, if we had
used the axiom

AE A4

in any of the inference systems, then weakening would be necessary to make the

inference system complete and would no longer be an admissible rule.

1.2. Sequent Calculus

Having considered natural deduction, we now turn to the sequent calculus, which
has been appreciated, since its introduction by Gentzen [10], for its symmetry and

its applicability to automated proof search. Instead of having introduction and elim-
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FIGURE I.6: Sequent calculus using sets of assumptions

TAF 447
r-ALBrC_, TAFB _
T.A-B F C T - A=B

TrAAFE,

TF B e

ination rules as natural deduction does, the sequent calculus has right introduction
rules and left introduction rules. Additionally, it has the significant Cut rule.

We first consider a sequent calculus proof system that manages assumptions as
sets. The inference rules are given in Figure I1.6. This system is complete; all of the
sequents that are derivable in the systems of natural deduction that we previously
considered are also derivable in this system. Furthermore, it is complete without the
cut rule; that is to say, the cut rule is admissible. (Demonstrating this fact is not
trivial, as it would be to demonstrate the admissibility of weakening in one of our

previous systems.)

Remark 1.2.1. Even though the cut rule is admissible, its presence gives the sequent
calculus a certain expressiveness that is quite valuable. For instance, it is relatively
trivial to give a translation of natural deduction into sequent calculus when the cut
rule is present. This expressiveness is one of the primary factors that makes the

sequent calculus so useful a as basis for computational structures.

Now let us turn our attention to finding a version of the sequent calculus that
manages its assumptions as multisets. In natural deduction, the presentation of the
systems using sets and multisets required no typographical changes to the inference
rules. Thus, we may be inclined to believe the same holds true with the sequent

calculus. However, if we wish to maintain the property of cut admissibility, this is
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FIGURE L.7: Sequent calculus with multisets of assumptions

T AF 44s

r-A rBrC A r B
-} - —3y
rNA-BF C ' A-B

'AA+F B

T,AF B
- A I‘,AF—BC
TFB ut

not the case. Consider the following proof:

ASBF ASBA® ASBAF Aﬂ’f
(A—-B)=AA—=B+F A (A-B)— A A—-B,B I B
A-B) A A-BF B

Az

-

This is a valid proof in the system of Figure 1.6 where assumptions are managed as
sets. Note that in the left introduction step just before the conclusion, there is an

implicit contraction step. In the application of the rule, we have
'=(A—-B)—AA—-B

However, the newly formed formula on the left is A — B, which is already present as
an assumption. So we get I', A— B = I'. There is a similar contraction in the first left
introduction rule. These contractions would not be automatic if assumptions were
kept as a multiset. There is no way to remedy the situation without changing the
inference rules. We may either alter the left introduction rule or add a contraction rule
to the system. We will take the latter choice, and the resuliing system is presented

in Figure L.7.

1.3. Proof Terms

Natural Deduction
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FIGURE 1.8: Syntax of A-calculus terms

t o= z|(Azl) | ()

FIGURE 1.9: Assignment of A-terms to proofs in natural deduction

''z:AF :J::AAm
P rt:A-B T Fu:d_, 'e:AFt:B .
'+ (tu): B ' (A\zt): A—=1B

We would now like to present the A-calculus as a means for encoding proofs. There
is a a natural bijection between the terms of the basic A-calculus and proofs in natural
deduction. The syntax of the A-calculus is presented in Figure 1.8, and the method
for matching proofs to A-terms is described by the inference rules in Figure 1.9. In
particular, whereas A-terms correspond fo proofs, formulas correspond to types. This
means that from now on, when we refer to a term calculus we actually mean a typed
calculus a la Curry [3]. In this case, we are encoding proofs from a system that
manages assumptions with sets of named formulas with a provision in the axiom to
assign a name to the formula in the succedent of the sequent.

Once we can encode proofs as terms, it becomes much easier to work with trans-
formations on proofs. The Curry-Howard isomorphism is properly an “isomorphism”
because the reduction rules of the A-calculus correspond to correct proof normaliza-

tion steps. Reduction in the A-calculus is done by means of the S-rule:
(Az.t) u — t[u/z]

Here we use the notation ¢[u/z] as meta-syntax to describe the term ¢, with all free

occurrences of x replaced by the term u.
Sequent Calculus

There have been many attempts to find proof terms for the sequent calculus

proofs that have similar properties to those for natural deduction proofs. A couple of
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problematic issues arise in this regard, though. In the case of natural deduction, we
needed to include all the expressive structure of Prawitz’ version into the sequents.
This meant that names needed to be added to assumptions and to the succedent in
the axiom. However, mimicking this in the sequent calculus is more difficult because
the assumptions are manipulated by the left introduction rule. What name is to be
given to the newly created formula at that point?

Another issue is that, although the Cut rule is admissible, there is often multiple
cut-free proofs of the same sequent. This arises from the inherent permutability of
the left- and right-introduction rules in the sequent calculus. We present the example

from [13]:

ACF A ZGBF B 4y ACBF BT
A—=BACF B _, Ar A" ABFC=B_’
A=BAFC—B A-BAF C—B ’

In proving this sequent, the right introduction rule that creates C — B and the left
introduction rule that creates A — B are permutable. In some general sense, though,
the two proof are the same. So, should these proofs have the same proof term or
different ones?

The solution offered by Herbelin to both of these problems is the use of a restricted

form of sequent calculus called LJT [8]. We will use two different types of sequents:
'+ A 'NA+ B

[ is still a collection of formulas, but now there is potentially a distinguished
formula on the left, separated by the vertical bar. Now we may reformulate the
rules of sequent calculus using both of these types of sequents. Figure 1.10 shows
the rules other than cut. They are constructed so as to allow only one cut-free proof
of any proposition. However, this new type of sequent offers four different ways of
reformulating the cut rule (Figure 1.11). We will consider the system that uses all four.
We will call the first two cut rules “head-cut” rules and the second two “mid-cut”

rules.



FIGURE 1.10: A version of sequent calculus with two types of sequents

15

TTAF 44"
THAT|BFC TAF B
-3 -
T[ASBF C T|AF B
IAlAF B

TAF B Cont

FIGURE 1.11: Four new types of cut

THAT|AFB

T F B Cuty
FT|CFHAT|AFB

T|C F B Cuty
TA DA+ B

T - B Cuts
r-ATDAICHB

T|CF B i

The M-calculus

FIGURE 1.12: Syntax of A-terms

Finally, we may present a term language for representing proofs in this permuta-
tion-free version of the sequent calculus. Herbelin calls this the A-calculus, and its
syntax is given in Figure 1.12. (We have made some very slight modifications to the
original definition of the syntax to accommodate enhancements later on.) The syntax
defines terms (t), contexts (e), and substitutions (s). Contexts are lists of arguments

made from the constructors nil (¢), cons {(-), and append (@), possibly with an

t == z{e} | (Az.t) | t{e} | t]s]
e u= Q| (t-e)|(e@¢€)]e[s]

s n= .=t




16

FIGURE 1.13: Assignment of A-terms to proofs

p F,z:A|.:AI-.{e}:BC
T|].:AF {0}:A77 Fz:AF z{e}:B ont

Fr+it:-A F|.:BI—.{e}:C’_}l Lg:AF¢:B
F.:A=B + .{t-e}:C Tk (Azt):A=B

'Fit:A T|.:AF {e}:B
'+ t{e}: B

Cut 1

F'|.:CF {e}:A T|.:AF {¢}:B

T|.:C F {e©@¢}:B Cuty
FrFu:A I",:r::AI—t:BCt
'+ tlz:=ul|:B s
: i O+
'ku:A I'Nz:A|.:C {e}C'ut4

r{.:C + {elz:=u]}: B

associated substitution.? substitutions bind more tightly than the The terms will
be used to represent proofs whose concluding sequent is of the form I' F A, and the
contexts will represent proofs whose concluding sequent is of the formI' | A + B. In
a sense, terms are producers of values whereas contexts are consumers. Substitutions
will be used for recording the use of the mid-cut rules. The assignment of terms to
proofs in the sequent calculus is given in Figure 1.13.

Herbelin [13] also offers reduction rules for the A-calculus (Figure 1.14)% and proves
that these are strongly normalizing as a means for cut elimination. These rules offer

a nice, orthogonal system for rewriting terms (z.e. proofs) {17]; however, they do not

?We will assume that substitution binds more tightly than (-) or {@) and omit parentheses when
no ambiguity results.

3We must assume that all variable names in an expression are unique or provide some other
means to avoid variable capture during substitution propagation.



17

FIGURE 1.14: Reduction rules of the A-calculus

(Brt) (Az.2) {0} — (zt)
(Booms) (M) {u-e} — t{z:=u]{e}
(Cuar) z{e}{} — z{e@¢}
(Crat) 0@e — e

(Ceons) (u-e)@e — u-(e@¢)
(Syes) z{e}(z:i=u] — ufe[z:=u]}
(Sne)  yi{e}[z:=u] — yle[z:=u]}
(5)  Gwd)lz=u] - Owtle=u]
(Snit) Ols] — 0

(Sems)  (t-€)[s] = t[s]-e[s]

allow a simulation of S-reduction in the A-calculus as one might hope. This will be
necessary for our endeavor; so one of the next goals of this thesis is the development

of a set of reduction rules for this term system that can simulate #-reduction.
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CHAPTER II

Weak Reduction and the Ao,-calculus

II.1. Reduction in the A-calculus

The A-calculus is an important theoretical model of computation. Moreover, it
is also the archetypal minimal functional programming language. As a programming
language, concerns arise with respect to implementation. The reduction relation in-
duced by the S rule is not a functional relation. Since the A-calculus is confluent, one
possible implementation of reduction would be to follow all reduction paths simulta-
neously until one of them reaches a normal form. However, this is clearly unacceptable
from a practical standpoint. Thus, we need to consider methods of reducing A-terms

that can be reasonably implemented.

Weak Reduction Strategies

An important factor related to efficiency is that weak reduction of A-terms is
often sufficient in programming languages. If we give an explicit specification of the
reduction relation on A-terms as in Figure I1.1, then we can define weak reduction by
omitting the rule (£) from this inference system. In other words, reduction does not
occur under abstractions. This is typically quite acceptable in most languages. Terms
that cannot be reduced in this modified system are in week normal form. However,
as noted in [6, 12}, weak normal forms are not unique, i.e. this reduction system is
not confluent.

A reduction strategy is a deterministic (functional) subrelation of a general re-

duction relation. Since machines (under the typical model) operate deterministically,
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FIGURE IL.1: Definition of the reduction relation on A-terms

(Aa) u—tlu/a] (B)

t—"t’ (&) t—Pt’ ’U.—*'U.'
Azt — Azt tu—t u tu—tu

FIGURE 11.2: Definition of call-by-name reduction

t—t
(/\I.t) U — t[u/:c] m

it is exponentially more efficient to specify a single reduction strategy than it is to
simulate non-determinism with a deterministic machine. Furthermore, since the weak
A-calculus is not confluent, the latter is not even a useful option in a theoretical sense.

The three most basic weak reduction strategies are given in Figures I1.2, I11.3, and
I1.4. In the call-by-value reduction strategies, there is a constraint that a term be a

value, which means that it cannot be further reduced by the strategy.

Closures

The previous alterations to the reduction relation were made with the goal of
limiting the number of times that the 8 rule would need be applied in reducing a
term. However, there is still a good deal of efficiency to be gained or lost in the
implementation of the § rule itself. Implementing f-reduction primarily involves the
propagation of substitutions through a term.

One important technique for efficient implementation is suspending the propaga-

tion of substitutions when possible. This is done by pairing an environment with

FIGURE I1.3: Definition of left-to-right call-by-value reduction

(Az.t) v = tv/z] visavalue (B)

t—t u—u visa value
tu—t u vu—vu
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FIGURE I1.4: Definition of right-to-left call-by-value reduction

(Az.t) v — tlu/z] visavalue (B)

t—t vis avalue u—u
tv—=tv tu—tu

a term to form a closure. The environment maps variable names either to terms
or {more likely) to other closures. From a static point of view, a closure is a term
with free variables that are defined in the associated environment. From a dynamic
point of view, a closure is a term in which the propagation of substitutions has been
suspended until it is clearly useful to propagate them further.

The process of suspending substitutions and working with closures cannot be
described by the A-calculus. Instead, we would need a calculus with more intensional
properties—a sort of calculus of closures. Such a calculus could be useful for proving
properties of mechanical implementations of A-reductions. In [19], Leroy uses the
Aenv-calculus for such a purpose, and in [12], Hardin, Maranget, and Pagano propose
the Aoy-calculus as ideally suited for this task. It is a simplified version of the Aenv
that is only capable of weak reduction. Furthermore, the Ao,-calculus is confluent,
thereby repairing, in a sense, the problem created by removing the £ rule from the

A-calculus.

11.2. De Bruijn Indices

Before proceeding with a description of the Aoy-calculus, we will first introduce
de Bruijn indices—a method of using natural numbers as the names of variables in A-
terms. Perhaps the best way to understand the motivation of Bruijn indices is to think
about them from the perspective of logic. In the previous chapter, we introduced a
method of maintaining assumptions in sequences rather than sets. If we would like

to assign terms that can represent proofs in this system, we need to slightly modify
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FIGURE I1.5: Syntax of Apg-terms

t o= nl (M) ()

FIGURE 11.6: Assignment of Apg-terms to proofs in natural deduction

(1Al =n) P
TLAAF ntl:47%
FFt:A-B T Futd_, ''Arti:B i
T+ (tu): B TF(M:A—B

the A-calculus. We will call these new terms Appg-terms and their syntax is given in
Figure I1.5. The assignment of terms to proofs (also the typing rules of Apg-terms)
is given in Figure I1.6. (We use the notation |I'| here to represent the number of
assumptions in the sequence I'.}) This typing system is essentially a fragment of a
typing system presented in [1].

The benefit of de Bruijn indices is that they eliminate the extra effort of managing
names for the assumptions. Of particular importance is the fact that they remove
conflicts in names. The uniqueness of names (both locally and globally) is no longer
something that must be enforced because it is now built into the naming scheme.
Since a machine (abstract or physical) would naturally use numbers to represent the
infinite set of variable names, this simply provides an organized manner of doing so.

As mentioned by several authors (e.g. [20] and [6]), we don’t actually need to
depend upon an externally-defined set of natural numbers; instead, we can integrate
them into our calculus if we have another term construction. Consider the new syntax
in Figure I1.7. There are no natural numbers here. Instead we may define them:

n—1 times

ni=e 1o

The new terms correspond to a logic with an explicit weakening rule. These typing

rules are given in Figure I1.8. We do not deal with reduction rules on this system,
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FIGURE II.7: Syntax of App-terms with explicit weakening

t o= | (A) ()|t T

FIGURE I1.8: Assignment of Apg-terms to proofs in natural deduction with explicit
weakening

TAF e 44

T +¢:A-B Thu:d_, Ak i:B
T+ (tu): B ' (AM):A—B

i

' Wt A .
T BF t1:A /Veok

since we will presently discuss a method of reducing terms with de Bruijn indices in

the Agy-calculus.

11.3. The Jg,-calculus

The Aoy-calculus [6, 12] is a version of the A-calculus with de Bruijn indices and
simultaneous explicit substitutions. The syntax of Ag,-terms is given in Figure I1.9,
and the reduction rules are given in Figure I11.10. Substitutions are now part of the
syntax. The substitution

[t-w-v-id]
means that ¢ will be substituted for the variable 1, u will be substituted for the

variable 2, and so on. This almost corresponds to

FIGURE I1.9: Syntax of Ao,-terms

t o= n|Aat|@t)]|t]s]

s u= id|t-s|1]|sos
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FIGURE I11.10: Reduction rules of the Ag,-calculus

(Beta) (A)[s]t' — t[t'-s]
(App) (&) [s] — (t[s]¢[s])
(FVar) 1[t-s] — ¢

(RVar)  n+1[t-s] — afs]

(Clos) (t[sh[s'] — t[sos]
(AssEnv)  (sos)os" — so0(s0s")
(MapEnv) (t-8)os’ — t[s']-(s05)
(ShiftCons) To(t-s) — s

(IdL}) idos — s

in the A-calculus, except that the substitutions in the Agy-calculus are simultaneous;
so the substitution of u for 2 will never be applied to the term £ in the \o,-calculus
as would eventually occur during reduction of the non-simultaneous substitutions in
the A-calculus. The use of simultaneous substitutions necessitates a provision for
substitution composition, which is found in the Ao,-calculus.

As mentioned before, one of the important features of this calculus is that this
calculus natively implements weak §-reduction. In comparison with the A-calculus,
this is possible because, among other things, substitutions can be propagated through
applications. If we were to provide a typing system for this calculus, it would follow
be similar to the basic one found in [1]. However, we will refrain from providing a
typing system for a calculus with simultaneous explicit substitutions until we present

the Ag,-calculus.
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CHAPTER III

Abstract Machines

Broadly speaking, an abstract machine is a formal model of a computer. The
key idea to be captured by an abstract machine is that, at any given point in time, a
computer has a state, and, based upon the current state, the computer will progress to
another state. Thus, an abstract machine is a transition system (as defined by Plotkin
[25]). However, we will only be interested in deterministic abstract machines and will
assume this to be an essential property. A set of final states may be described along
with the transition system. If & machine cannot progress according to the transition
relation, then it is either in a final state or it is stuck. If the set of final states is not
explicitly given, then we assume that all states without a transition are valid final
states.

A deterministic finite automaton and a Turing machine would both be examples of
abstract machines,! but programming language researchers study abstract machines
to figure out how computation is performed instead of simply what can be computed
by various machines. This leads to abstract machines that look somewhat different
from those used in automata theory.

Using abstract machines to study how computation can be performed is especially
important with respect to functional programming languages because they operate
in a manner very different from the natural behavior of physical machines. Another
important use is a practical one: Implementing an abstract machine on multiple
physical computer systems makes it possible to write just a single compiler for a

language that outputs abstract machine instructions. An overview of the use of

'The state of a machine, in our terminology, will correspond to the concept of 2 machine configu-
ration in automata theory. A set of staies, in the terminology of automata theory would correspond
to a set of atomic symbols that are used in defining the states of an abstract machine.
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abstract machines with respect to programming languages can be found in [9].

1I1.1. Measuring Abstractness

The definition of “abstract machine” given so far allows for a large range in the
level of abstractness. Abstractness arises when certain implementation details of the
computational steps are ignored. Examples of abstract machines include the strategies
for reducing A-terms that were given in the previous chapter. (In that case the A-term
i5 the machine state.) However, these seem to be somewhat more “abstract” than we
would expect of a typical machine. We will try to make this notion of abstractness
more precise.

Since any useful machine will have an infinite number of potential states (i.e. “con-
figurations”), the state transitions cannot be enumerated, but must be given by a set
of rules. Certainly, using these rules to move the machine forward one step must be
an effectively computable procedure; otherwise we have a machine that is not useful
for studying the process of computation. But more practically, we can make a dis-
tinction between machines that can always be moved one step forward in constant
time {i.e. O(1)) and those that cannot. It is important to note that this is as much
a property of the data structure used to represent the machine state as it is of the
rules governing the machine steps.?

If 2 machine’s steps can always be executed in constant time then we will say that
the machine takes steps of constant size, or steps of strictly bounded size. Sometimes
a machine does not take constant-sized steps in a strict sense, but we can pu{ a bound
on the step size for all future states after statically examining the current state. If

we can do this for all possible states, then we will say that the machine takes steps of

%It is also dependent upon the model of computation being used. For our purposes, we will
assume that the data structures being used are term trees and that manipulation of the branches
of a tree within a fixed distance from the root can always be done in constant time. We will not
assume the existence of random-access vectors by default, although, later on, we will mention how
they may be important.
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FIGURE III.1: Syntax of arithmetic expressions

e u= n|{e+e)
n o= 0] (n+1)

FIGURE II1.2: Arithmetic machine

O+n=n (m+D)+n—m+(n+1)

e e e— e
n+e—n-+e et+e' e +e

statically bounded size. This is a much weaker notion than steps of strictly bounded

size.

111.2. An Addition Machine

As a first example, we will consider two machines that evaluate simple arithmetic
expressions on natural numbers (in unary representation). The syntax of the source
language is given in Figure III.1, and we include addition as the only operation. The
first machine uses arithmetic expressions as its states, and its transition relation is
defined by the inference system in Figure II1.2. This machine could be called a smali-
step operational semantics on the language [25]. In fact, any small-step operational
semantics really defines an abstract machine. Furthermore, any strategy in a calculus
can be called a “machine” by this definition. However, this addition machine does not
have constant sized steps. In general, if it is necessary to use premises in an inference
system in order to define a machine’s transition rules, then the machine does not take
constant-sized steps. (There are various ways in which the converse may fail to be
true, though.}

Next, we present another machine that operates at a lower level and does take

constant-sized steps. This machine will work with a control stack and a value stack.
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A control stack (C) is a list of expressions or an Add instruction. A value stack (S)

is a list of integers.

n= ¢|Add; C|e C

§ = ¢|n-S

A machine state is simply a pair consisting of the control stack and the value stack:

M = (C/5)
The transition rules of the machine are:

(n; C/S) » (C/n-S5)
((e+€); C/8S) — (e €; Add; C / S)

(Add; C/0-n-8) — (C/n-85)
(Add; C /(m+1)-n-8) —» (C/m-(n+1)-5)

Now we need a means configure the starting state of the machine. A function (£) to

load an expression can be defined as:

Lie)=(e; /€)

We may also want a function to unload a value from the machine after it has stopped.
This simply takes the result out of the machine. In this case, it will suffice to say

that the result is the item on top of the value stack when the control stack is empty.

111.3. Compilation_and Decompilation

In both machines given above, the source expression was put directly into the
machine. Often, though, an abstract machine is designed to operate on a source

expression that has been compiled. (The notion that programs are compiled into
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a list of instructions is sometimes useful, but except for very simple languages, the
instructions in compiled code will often refer to other pieces of compiled code, in
which case the actual structure of the code bears more resemblance to a tree or graph
rather than a list.)

As an example of compilation, here is a function that will compile expressions for

a modified version of the arithmetic machine.

[n] = n

[e+el = le]; [€]; Add

It is easy to see that this function just turns the source expression into postfix nota-
tion, which is a typical thing to do during compilation. Here is the modified machine

that will execute compiled arithmetic expressions.

(n; C/8) — (C/n-5)
(Add; C/0-n-8) — (C/n-S)
(Add; C /(m+1)-n-8) —» (C/m-(n+1)-5)

Finally, we may provide a compile-and-load function (£) for running the machine on
an expression:
L(e) = ([e); / ¢)

Now we may compare the machine that executes compiled code with the one
that operates on source expressions. The difference is that exactly one rule has been
removed. This raises the question as to whether this is really a different machine
or not. In essence, the original machine integrated a compilation of terms on-the-fly
during execution. When we present the SECD machine later, we consider a version
that operates on compiled code instead of source terms as the original SECD machine
did [24]. The changes made to the SECD machine correspond exactly to the changes

made to this arithmetic machine.
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Decompilation indicates the translation of code, or an entire machine state to an
output language. If defined on machine states, it will usually be a total function, and
not just restricted to final states (as unloading may be). In the later chapters, we
will define several decompilation functions from abstract machine states to a version

of the A-calculus that will be presented in the next chapter.
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CHAPTER IV

A Calculus for Simulating Abstract Machines

As discussed in Chapter 2, if we are to find a calculus that operates at the same
level as an abstract machine, then it should be able to perform weak reduction and
to represent and manage closures. The Ac,-calculus satisfies these conditions, but

there is another factor that we cover presently.

1V.1. The Structure of Applicative Terms

Consider the application of a term.to three arguments in the A-calculus and the

A-calculus:

tuy us Uz t{ul-ug-u;;-()}

While the expressions look somewhat similar when read on paper, their abstract
syntax trees are quite distinct. Compare the two trees in Figure IV.1. In the case of
the A-term, the subterm t is at the bottom of the tree, and in the case of the A-term,
it is at the top. This is very significant because, in the definitions of all the useful

reduction strategies for the A-calculus, we find a rule of the form:
t— t'
tu—tu
An implementation of reduction based upon this rule requires a search of arbitrary
depth into the A-term. Such a search would also be required simply to discover
whether the term has a redex at all. However, there is no way to avoid this situation

when working directly with A-terms—it is a necessity given their structure.
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FIGURE IV.1: The structure of applicative terms in the A-calculus and the A-calculus

Uz t

Ug Uy

Uz Q

The applicative A-term, on the other hand, always has a redex at the top of the

term. If ¢ is an abstraction (e.g. t = (Az.t')), then we have:
(Az.t') {ur-up-uz- 0} — t'[z:=u]{us uz- 0}
And if ¢ is another application (e.g. t = t’ {e}), then we have:
t'{e}{us-up-uz- 0} — t'{e@u;-uz uz-9Q)}

The case where t = z {e} is effectively the same, and in the case where ¢t = ' [s],
the substitution can be propagated. Hence, in an applicative term in the A-calculus,
there is always a redexr within a fized distance from the top of the syntaz tree. This
property is inherited from the process of cut reduction in the sequent calculus LJT.
This is not the case in the A-calculus nor in the Ag,-calculus, both of whose terms
are related to proofs in natural deduction.

This property is of central importance in the design of a calculus that can simulate
abstract machines. The A-calculus becomes even more useful when we realize that
there is also a means to express the applicative structure of the A-calculus with A-
terms. This is pointed out by Herbelin in [13]. Consider the syntax trees of the

following two expressions:
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FIGURE 1V.2: Normalization of a natural-deduction style applicative term in the
A-calculus

t{u1- O} {uz- 0} {us- 0}
= t{ur- 0} {(u2-0) @ (uz- 0)}
= t{ur- 0} {uz- (0 @(ua-0))}
— t{u;- O} {uo-uz- 0}

— t{(u1 Q) Q@ (ux-uz-0)}
= t{u1 (0@ (uz-uz- 0))}

—  t{uy-up-uz- 0}

t'U.] Ua Uz t{ul'O}{u2°0} {Ua(}}
The translation from the first structure to the second is straightforward and actually
represents a translation from a proof in natural deduction to one in the sequent

calculus. As noted by Herbelin, the A-term reduces to the form
t{uy - ug-uz- O}

Moreover, it is also important to note that it can make this transformation with a
series of reduction steps that takes place entirely within a fixed distance from the
top of the syntax tree. The reduction is shown in Figure IV.2. The ability of the
A-calculus to express application in two ways is really the same expressiveness that

was noted in Chapter 1 with respect to the sequent calculus.

IV.2. Merging X and Ao,

Simultaneous Substitutions

After observing the structures of applicative terms in the A- and A-calculi, we

must turn attention to the structures of terms with explicit substitutions. We have
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FIGURE 1V.3: Syntax of the Ao-calculus
t o= eofe} | At|t{e} | t]s]

e u= Q| (t-e)|(e@¢€)|e[s]
s u= id|(t-s)|(ses) |7

already described the use of simultaneous substitutions in the Ao,-calculus, so let’s
present a term from the M-calculus and the corresponding one from the Ag,-calculus

side by side:
tlz:=w]{y = ux][2z = usz] tluy - us - uz-id]

Ignoring the differences in meaning and the fact that only one uses variable names,
we can note that the structures of these two terms are completely analogous with the
structures observed in the previous section. In this case, though, it is the A-calculus
whose potential redex is buried within the syntax tree. A redex for the Ao,,-calculus

would exist at the top of its term.

Weak Reduction

With respect to the operations of abstract machines that implement reduction
on A-terms, the Ag,-calculus surpasses the A-calculus in another way: the X-caleulus
has no direct support for closures or weak reduction. Moreover, its treatment of
substitution propagation prevents it from even simulating the B-reduction of the A-
calculus, as noted by Herbelin. Thus, we present a new calculus with the intention

of bringing together the desirable traits of the A-calculus and the Ag,,-calculus.

IV.3. The \g,,-calculus

The Aoy-calculus is a calculus with A-abstractions, argument lists, simultaneous
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explicit substitutions, de Bruijn indices, and a form of weak B-reduction.! Its syntax
is given in Figure IV.3. As in the )-calculus, there are terms (t), contexts (e), and
substitutions (s). The primary changes in the syntax are the removal of variable
names from terms, and the expanded constructs for substitutions. There is now only
one variable name (e), which is similar to a de Bruijn index of 1. We will define our
indices in this calculus in terms of this base variable and the weakening substitution

via the following abbreviations:

(11 = 1] [1]
n = «{O}T]""

We also provide typing rules (i.e. a proof system) for the terms of this calculus.
They are given in Figure 1V.4. The typing of substitutions is based on the examples
in {1] and [14]. We present the reduction rules for the Ao,-calculus in Figure IV.5.
These are somewhat different from the reduction rules of the A-calculus. They are
instead modeled after the reduction rules of the Ag,-calculus. The key features are
that substitutions can no longer be propagated under A-abstractions and they can
be propagated through applications. We conjecture that this calculus shares the
confluence properties of the Aoy,-calculus.

We will now use this calculus to simulate the reduction steps of the Krivine ma-

chine, as the first example of its correspondence to abstract machines.

IV.4. Simulating the Krivine Machine

The Krivine machine is a simple machine for reducing A-terms according to the

call-by-name strategy [18]. It has been described many times. One correctness proof

'Herbelin [13] describes a version of the A-calculus with de Bruijn indices and explicit weakening,
also. However, it did not have simultaneous substitutions, and its reduction rules were equivalent
to those of the original A-calculus.
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LA|.:AF .{e}:B
'j.:AF {0}:4 VA e{e}:B

Fr't:A T|.:BF .{e:C AR t:B

F|.:A-B + .{t-e}:C C't M:A—B

I'|.:CF {e}:A T].:AF {€}:B
I'l.:CF .{e@¢}:B

rrt:A T|.:At {e}:B
'+ t{e}: B

t: A

s:T=A4) TI|.:AF .{e:B s:('=>A) T
]:

I_
Al.:AF {e[s]}:B ALl t[s]:A

id: (=T}

T:(C=T,A)

s:(C=>A) AFt:A
t-s:(I' A= A)

s:(l'=A4A) s§:(A=1X)
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FIGURE IV.5: Reduction rules of the Ao,-caleulus
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(BetaNil)
(BetaCons)
(AppApp)
(ConcatNil)
(ConcatCons)
(ConcatAssoc)
(SubVarNil)
(SubVarCons)
(SubApp)
(SubSubTerm)
(SubNil)
(SubCons)
(SubSubContext)
(SubConcat)
(CompNil)
(CompCons)
(CompShift)
(CompAssoc)

(M) [s]{0} — (At)[s]

() [s]{t'- e}

t{e}{e}
0Q@e
(t-e)@e
(e@e)@e”
o {0} [t-s]
o {e}[t-s]
t{e}(s]
t[s][s]
os]
(t-e)[s]
e[s][s]
(e@e’) 5]
idos
(t-s)os
To(t-s)

(sosl)osﬂ

—

L 2 2 e A A A

!

t[t'-s]{e}
t{e@e'}
t-(e@e)
e@(@e")
t
t{e[t-s]}
t[s]{e[s]}
t[sod']

¢
t[s]-e[s]
e[sos’]
e[s]@e [s]
t[s']- (so s

SO(S.I'OSH)
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can be found in [29]. Curien and Herbelin {7] describe a version that operates at a
higher-level, performing substitution in one step and thereby eliminating the closures
managed by most versions, but their example of the Krivine machine offered a clear
motivation for the use of applicative contexts in the A-calculus. In this chapter, we
will try to extend the correspondence to a machine that does maintain closures and

our Aoy-calculus, which supports reduction on closures.
Definition of the Machine

Qur definition of the Krivine machine closely follows that of [12]. The machine

code comprises three instructions:

C = Acc(n)
| Grab; C
|  Push(C); C’

The basic values® that are manipulated by the machine are closures. In this case,
a closure is any code that is paired with an environment, an environment simply being

a list of values.

v

(C/E)
E == ¢|VE

During execution of the code, the machine will manipulate a stack of values, which

we will call the argument stack:
A = e|VA

The total state of the machine is represented by three components: the current code,

the current environment, and the current argument stack:

M = (C/E/A
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FIGURE IV.6: Rules for the Krivine abstract machine

(Acc(1) / (C/E).E' [ A) — (C/E[A)
(Acc(n+1) /V.E/ A) — (Acc(n)/ E [ A)
(Grab; C/E /V.A) » (C/V.E /] A)
(Push(C); C'/ E [ A) — (C' [ E [(C/E).A)

The machine takes steps according to the transition rules in Figure IV.6. By
examining these transitions, we can see exactly two cases in which the machine cannot
progress. One case occurs when there is an Acc instruction but the environment is
empty. We will say that the machine is stuck in this case. This cannot occur when
running the machine on an expression without free variables. The other case occurs
when there is a Grab instruction but the argument stack is empty. In this case, we

are at a final state.
Compiling and Loading

This machine will use Apg-terms as its basic source language, in which case the
compilation function is quite trivial. (A more complex function could compile M-
terms with named variables.) When viewed as unlabeled trees the source term and

the compiled code are isomorphic.
[n] = Acc(n)
[At] = Grab; [i]
[t )] = Push([u]); {t]

The compile-and-load function £ simply puts a compiled version of the A-term into

a machine with an empty environment and argument stack.

L@ = (f/e/e)

2Calling these closures “values” with respect to the machine is traditional, although they are not
necessarily values with respect to the call-by-name strategy.
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After running the machine, we can unload the code (which begins with Grab) and the

environment as we wish. (The argument stack must be empty.)

Decompiling to the Ao ,-calculus

It is interesting to note that although the Krivine machine structure can be easily
defined by an inductive definition as it is above, it is typical to describe decompilation
functions that do not operate on this natural structure, but instead treat the argument
stack as a sequence {12, 29]. Some difficulty arises from the fact that the structure of
the argument stack is contrary to the natural structure of A-terms. Yet, it is exactly
the structure of the argument stack that allows the Krivine machine to progress
smoothly with constant-sized steps. However, if we consider a decompilation to the
A-calculus, this issue with the structure of the argument is immediately resolved.

We now present a decompilation function from the states of the Krivine machine
to the Agy-calculus and then prove that execution can be simulated without loss of
detail. The decompilation will be purely compositional following the natural syntactic
structure of the machines components. First, we define how to decompile machine

code (decompilation of code is denoted {C}):
(Acclm)) = n
{Grab; c) = A{c)
{Push(c); ¢} = ('} {{c) -0}

]

We will denote the decompilation function for closures, environments, argument
stacks, and machine states as M, using a horizontal bar.? Closures have a straight-

forward decompilation.

(C7B) = (C)[E]

3We would also have liked to use the more standard notation of a horizontal bar for the decom-
pilation of code, but later on, we will need to add parameters to the decompilation function. Thus,
the notation {C} will be more suitable.
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Environments are also easily decompiled.

= id
V-E

o
e I
il

The decompilation of argument stacks is similarly compositional.

= 0
V.E

S
tml mw
Il

And finally the decompilation of machine states simply puts these pieces together.

(CTEJA) = (C)[E] {4}

Remark IV.4.1. Note that this translation is an injection. Hence, a partial function

for re-compilation could be defined from Ac,-terms to Krivine machine states.

The Krivine Strategy in the Ag,-calculus

Now that we can translate states of the Krivine machine into the Ao,-calculus,
we would hope that machine steps correspond to reduction steps in the calculus. Not

only can we demonstrate this, but we can demonstrate a stronger proposition:

Proposition IV.4.2. There ezists a deterministic strategy K in the Aoy -calculus

such that

a. the reduction sieps performed by K are confined to a fired distance from the top

of the syntaz tree
b. if M is a final state in the Krivine machine, then M is a K -value

c. if M — M’ in the Krivine machine, then M ——" 7, for some constant n
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FIGURE IV.7: The V strategy

Using rightmost outermost priority:

t[To (- s)] = t[s]

t{s][s'] D tlsos’)  t{e}[s] - t[s]{els]}

o {0} [t-5] >t

FIGURE IV.8: The P strategy

Ols] =50 (t-e)[s] Drtls]-e[s] t-0[s]-—t-0

FIGURE 1V.9: The J strategy

P
£ — €

J
e@e" — e @e"”

0@e-Le (t-e)@e L t-(e@¢) t-(0@e) Lit-e

FIGURE IV.10: The K strategy

Using rightmost outermost priority:
t{e}{e} S t{e@c}

J 7
e ——+ £

t{e} = t{e'}

bt RN Sy
T G0l sl )
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First we present the strategy. We decompose the strategy K into sub-strategies
to make the presentation easier, but it is crucial to note that there are no inference
rules that create a recursive definition of a relation. Hence, all reductions specified
by the strategy are confined to a fixed distance from the top of the syntax tree.

The V strategy is shown in Figure IV.7 and propagates substitutions through
terms. A priority must be assigned among these rules in order to make the strategy
deterministic. We have visually presented the rules so that rules toward the top of the
page have higher priority; however, it should be clear if we specify that the changes
made by these rules must oceur in a rightmost outermost manner.

The P strategy is shown in Figure IV.8 and propagates substitutions though
contexts. The J strategy propagates context concatenation and is shown in Figure
1V.9. The rules of the J strategy do not overlap, although an examination of the
P strategy is necessary to confirm this. Finally, the K strategy is shown in Figure

IV.10. Its rules do overlap, and again, we choose a rightmost outermost priority.

Simulation

Part a. of Proposition 1V.4.2 can thus be verified by examination of the strategy

given. To confirm part b., let
M = (Grab; C / E [ €)

Then,
T = (\(C)) [E] {0}

which is irreducible by the strategy K.

To confirm part c¢., we now provide the specific steps in the Ao,-calculus that
simulate the steps of the Krivine machine. The choice of the Krivine machine rule
is determined by the current instruction; so we consider cases according to the next

instruction to be executed.



¢ Assume the next instruction is Acc(1), and let
M = (Acc(1) / (C/E).E' | A) and M=(C/E/A)

Then we have

M= M

and

e Assume the next instruction is Acc(n + 1), and let
M= (Acc(n+1) /V.E | A) and M’ =(Acc(n) / E | A)

Then we have

M- M
and
B = a(1)[V-B){7}
2, a[1e(V-B)] {A)
~, a[E] (3}
— T

e Assume the next instruction is Grab.
M = (Grab; C / E | V.A) and M’:(C‘/V.E/A)

Then we have

M= M

43
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and

M

(M) [E]{V -4}
— (0) [V-E] {4}

g

¢ Assume the next instruction is Push.
(Push{C); C' / E | A) and (C'/ E ] (C/E).A)

Then we have

M- M

and

=l

= |= = |x |= |= v

(Y {(C)- 0} [E] {4}

(Y [E1{(C)-0) [E]} {4}
(€)Y [E1{((C)-0)[E] @4}
(¢} [E]{{(C) [E] -0 [E]) @4}
(Y [E]{({0) [E]-0) @7}
() [E]{(0) [E] - (0@A)}
(¢ [E]{(0) [E]- A}

7

Since the K-strategy is deterministic and cannot progress when the corresponding
Krivine machine state cannot progress, the simulation shown above also supports the

following proposition:

Proposition IV.4.3. If M e t, then there exists ¢ Krivine state N such that
Mw=" N andt 25N,
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CHAPTER V

Call-by-value Machines

We have thus demonstrated an excellent correspondence between the Ao,,-calculus
and a call-by-name abstract machine. Is it possible to accomplish a similar task with
a call-by-value machine? The answer is yes, but we need an additional feature in the

Acy-calculus in order to maintain the nice properties of the call-by-name case.

V.1. The i Operator

The reformulation of the A-calculus by Curien and Herbelin in [7] introduced
the use of two control operators: u and g. The g operator was borrowed directly
from Parigot [23] and was, for Curien and Herbelin, a key element of constructing
terms representing proofs in classical sequent calculus (just as Parigot had used it for
classical natural deduction). The /i control operator is the dual of the u operator and
allows an. encoding of A-terms into the X-calculus that permits call-by-value reduction
(left-to-right or right-to-left) to take place at the top of the term.

The Aoy-calculus does not have an explicit p control operator because Ag,,-terms
correspond to proofs in the sequent calculus for minimal propositional logic instead of
classical logic. The use of the p operator for controlling the substitution of contexts
for context variables is not necessary, since there can be only one context variable in
scope at any given time (corresponding to ¢ in the Xo,-calculus).

However, the [i control operator does have an important function, even in the case
of a calculus corresponding to minimal logic: it allows a simulation of call-by-value
abstract machines, while maintaining the property that all reduction steps can be

performed in the top of the syntax tree. So we present a version of the Ao,-calculus
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FIGURE V.1: Syntax of the Ag,-calculus
t u= e{e} | (M) [t{e} [t]s]

e 1= O|(t-e)[(e@¢€) | (it)|e[s]
s u= id|(t-8) | (sos) |1

with /i (calling it the Xjio,-calculus). The i provides one new syntactic case for
contexts (Figure V.1), and one new typing rule (Figure V.2). There are two new
reduction rules to accommodate the ji operator and these are shown in Figure V.3.
With these changes, we are ready to define translations for the SECD and ZINC

abstract machines.

V.2. SECD Abstract Machine

We will examine a version of the SECD machine that has been modified somewhat
from Plotkin’s original presentation [24]. The original machine operated on terms that
required no compilation, but performed an on-the-fly compilation step of exactly the
same nature as the one observed in the addition machine in Chapter III: changing
an operation from infix to postfix. In this case the operation is application instead
of addition. We have removed this step from the machine and added a compilation
function to perform this structural change in advance.

We have also added an accumulator, i.e. a position for a single value, in order to
delay the process of putting a value on the stack. A piece of code that would have been
put directly onto the stack in the original machine will now go to the accumulator
first. Then it may immediately be put on top of the stack with a Push instruction,
or it may be applied to the arguments on top of the stack with an Apply instruction.
Thus, with respect to the original machine, the accumulator simply represents what

would have been the top item on the stack.



FIGURE V.2: Assignment of types to Afio,-terms
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T,A|.:A F {e}:B
Fl.:Ak .{0}:A ALV ofe}:B

'-t:A Tj|j.:BtF {e}:C LLAF {:B
'f{.:A—-B F .{t-e}:C ' AXM:A—B

T|.:Ct+ .{e}:A T|.:AF {¢}:B
T].:C F {e@¢}:B

r-t:A T|.:AF {e:B
't t{e}:B

T, A

t: B
r|.:A i

i) : B

-
-

s:('=A) T|.:AF {e}:B s:(T'=A) T Fit:4
A|.:A+ {e[s]}:B AF t[s]: A

id: (C'=T)

T:('=TA)

s:{C’'=A) AFt:A
t-s:([LA= A)

s:(T=4) §:(A=71)
sos :(I'=X)




FIGURE V.3: Reduction rules of the Aio,-calculus
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(M) [s]{0} = (A)[s]

(BetaNil)

(BetaCons) (M) [s1{t' - €}
(MuTilde) t{(at")s]}
(MuTildeConcat) t{(jit')[s] @ e}
(AppApp) t{e} {€}
(ConcatNil) QQ@e
(ConcatCons) (t-e)@ce
(ConcatAssoc) (e@e)@€"
(SubVarNil) o {0} [t s]
(SubVarCons) o{e}[t-s]
(SubApp) t{e}[s]
(SubSubTerm) t[s][s]
(SubNil) 0 s]
(SubCons) (t-e)[s]
(SubSubContext) e[s][s']
(SubConcat) (e@e')[s]
(CompNil) idos
(CompCons) (t-s)os
(CompShift) To(t-s)
{CompAssoc) (sosyos”

—

1

I

Ll Ll

11

l

t[t-s]{e}
t'[t-s]
¢[ts]{e)
t{e@e'}
t-(e@e)
e@(e' @e")
t

t{e[t-s]}
t[s]{e{s]}
t[sos']

0
t[s]-els]
ef{sod]
e[s]@e'[s]
t[s'] - (s o s)

SO(SIOSH)
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These changes have a two-fold purpose. First, they allow a simpler presenta-
tion of the decompilation to the Afig,-calculus. Second, these changes highlight the
underlying similarity between the SECD and the ZINC machines.

Definition

The machine code comprises five instructions, divided here into two syntactic

categories:

C, == Acc(n); C.

| Closure(C,); C.
C., = Push; C,

| Apply; C.

| Return

Using the syntactic categories is useful when working with an accumulator. The
instructions in the first category (C;) are operations that expect no value in the
accumulator. The instructions in the second category (C.) operate on the value in
the accumulator. The transition rules are designed so that the accumulator always
has a value when it should. Such an approach also eliminates a class of stuck states.
The compilation function will respect this syntactic structure for the code.

The other machine components include the machine values (V'), environments (£),
the working stack (S), and the return stack (or dump) (D). The definitions of these
are given in Figure V.4 and should be reminiscent of those for the Krivine machine.
However, instead of the Krivine machine’s single stack, we now have a stack for values
and one for continuations. These must be distinct in a call-by-value machine, but
they can be one and the same in the call-by-name case.

The transitions of the SECD machine are given in Figure V.5. The set of final
states are those in which the next instruction is Return, but the return stack is empty.

The other two cases in which the machine cannot progress are when the instruction
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FIGURE V.4: Components of the SECD abstract machine

(Machine Values) V u= (C/E)

(Environment Stacks}) E == e |V.E

(Working Stacks) S = e|VS

(Return Stacks) D == ¢|(C,S E):D

(Machine States) M = (-/C/S/E/D)
| (V/C./S/E]D)

is Acc(n), but the environment does not have n values, or when the instruction is
Apply, but the working stack is empty. Both of these can be shown to be impossible
if compiling closed terms with the compilation function that will be presented.

We must note that the SECD machine does not take steps of strictly bounded
size. The reason is that the Acc(n) instruction is executed in a single step for any
value n. This, in turn, is a result of the fact that the structure of the SECD machine
does not naturally allow destructive use of the current environment, as was possible
in the Krivine machine. We could add a new component to the SECD machine state
for holding a temporary environment that could be walked through one item at a
time if we felt it were necessary to do so. However, in practice, it is often possible
to execute this step in constant time by means of pointer arithmetic; so the level of
abstractness of this machine is somewhat a matter of perspective, and we will work

with the machine as it is.
Compiling and Loading

As for the Krivine machine, we will use Apg-terms as the source language for

simplicity. Compiling Apg-terms to SECD machine code is done as follows:
[z] = Acc(n)
[r] = Closure([t]; Return)
[t w)] = [ul; Push; [t]; Apply
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FIGURE V.5: Transition rules for the SECD abstract machine

(= / Acc(n); Ce / S / Vo.Vy.E | D)
(Va/Ce/ S [ Vo.Vo.E [ D)
(— / Closure(C,); C./ S/ E [/ D)
(C/E)/C./ S| E/ D)
(V/Push; C./S/E/D)—
(-/C/V.S/E/D)
((Ci/E) / Apply; C. [ V.S [ E' [ D)
(-/C./e/V.E](C,S,E) D)
(V/Return / S'/ E' [ (C.,S,E) :: D) —
(V/C./S/E/D)

Abstractions are compiled into a Closure instruction. In the SECD machine, we will
be dealing with proper call-by-value closures, which pair an environment with an

abstraction. The function L is the compile-and-load function:

L) = (—/[t]; Retun /e /e [ €)

The extra Return instruction is necessary, as it is the only way to end a block of code
according to the grammar. Our use of Return is identical to the use of an empty code

sequence in the original machine.

Decompilation to the Ajio,-calculus

We now present the decompilation from SECD machine states to Afio,,-terms. The
idea behind this translation is that we will use the top of the current environment
(and explicit substitution in the calculus) to store the values on the working stack.
So, the decompilation will be parameterized by an integer p, which will represent the
size of the working stack. Unfortunately, this means that the translation is not purely

compositional, as was the one for the Krivine machine. Decompilation of code is as
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follows:

{Acc(n); Ce), = n+p {(Ce},,}
(Closure(C); Ca), = (MCo) [TP{(C), }

(Push; C), = i{C,.,
{Apply; Ce), = (e {O})-{C:},_,[T]
(Return)p = {

The rest of the components of the machine can be decompiled without a parameter.

Here is the decompilation of machine values (i.e. closures):
(C/E) = (MCo) [E]

Next we define the translation for sequences of values (such as the working stack or

the environment) and also a notation for describing their size:

€ = id
VS = V.3
el = 0
V.S = 1+1S|

We will use the notation 5;,5, for representing the concatenation of these two se-
quences of values.

The return stack has the following decompilation:

E = 0
(Ce,S,E) =D = {Cedsy [S,E]@D
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And the decompilation of the machine states puts these components together:

(-/C./S/E/D) = {C)s[S E]{D}
V/C./S/E/D) = V{{Ce)m [s.,—E]@E}

The SECD Strategy in the AfZoy-calculus

Our correspondence between the SECD machine and the Ajio,-calculus is unfor-
tunately not quite as direct as was that for the Krivine machine. The first issue is
that, after the machine reaches a final state, the corresponding Afio,-term will be
able to make one additional reduction step. This could actually be remedied by the
addition a new type of machine state, to which the current final machine states would
progress. Then we would translate this new machine state to the corresponding final
Mio,-term. However, instead of doing this, we will simply restate the proposition
about final states.

The second issue is that our method of managing the working stack prevents us
from strictly bounding the number of A jio,-reduction steps that will be taken for any
given machine state. However, we can put a static bound on this number because we
can statically determine that maximum value of p, the parameter used to decompile

code. In light of these considerations, here is this proposition about the translation:

Proposition V.2.1. There exists ¢ deterministic strategy S in the Ajioy-calculus

such that

a. the reduction steps performed by S are confined fo a fired distance from the top

of the syntaz tree

b. if M is a final state in the Krivine machine, then M reduces in one step to a

S-value

c. if M — M’ in the SECD machine, then M —=" 1, for some value n that is

dependent upon the machine’s original starting state
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FIGURE V.6: The U strategy

e[To(t-s)] = e[s]

e[s][s'] — elsos']

FIGURE V.7: The V strategy

t[To(t-s)] = t[s]

t[s][s'] L t{sos’]  t{e}[s] > t[s]{els]}

o {0} [t-5] -t

As was done for the K strategy, we decompose the strategy S into sub-strategies
to make the presentation easier, but the strategy still specifies reductions only in a
fixed part of the term tree. The sub-strategies must have a priority assigned to the
rules that overlap, and similarly, we present the rules so that those rules that are
visually higher on the page have precedence over the ones below them.

The V strategy is unchanged. We now have a U strategy (Figure V.6), which

FIGURE V.8: The @ strategy

0ls] -0 (t-e)[s] > t[s]-e[s]

toe-2ut.¢




FIGURE V.9: The J' strategy

Q

e — ¢

J"
e@e" — e @e"

0@e-Lse (t-e)@e’i)t-(e@e') t-(O@e)Lt-e

FIGURE V.10: The S strategy

t{e} {¢} == t{e@¢'}

t —

t{e} == t' {e}

() [s){t e} S t[t'-s]{e} ¢ {(At)[s)@e} s t[t' 5] {e}

I
e— ¢

t{e} = t{e}
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performs a similar function on contexts. The ¢ strategy (Figure V.8) is a modified
version of the P strategy in the last chapter. The strategy J' (Figure V.9) is identical
to the previous J strategy, except that is makes use of the @ instead of P. Finally,
the § strategy is shown in Figure V.10. In comparison with the K strategy, it changes

the priorities of the rules and adds a rule for the i operator.

Simulation

To confirm Proposition V.2.1, we will check the translation of final states. If
M= (V /Retun /S [/ E [ £)
then
M=V{0@0}

which reduces to

v {0}

in one step. Now we may confirm the rest of the proposition by tracing the simula-
tion of the SECD machine steps. Again, we consider cases according to the current

machine instruction.

e Assume the next instruction is Acc, and let
M=(-/Acc(n); C./ S/ Vo.Vo.E [/ D)

and

M'=(V,/C./S/V.Vo.E ] D)

Then we have

M- M
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and

=]

o o 1~= :

n+15) {{Cq} [SVi-VaE] {D}

n+15| [5ViVaE] {{Chg [SViVaE] } {D}
n+18| [5VVaE] {{C [5ViVaE] @D}
V. {(Co)ys [S Vi Vo E] @D}

o

¢ Assume the next instruction is Closure, and let
(— / Closure(Cy); C. /S / E [/ D)

and
((C/E)/C./ S/ E /D)

Then we have

Me— M

and

S

Lo Lo o

(MCo) (11 {(Cody } [5.E) {D)
(MG (117 [ E] {(Cah [SE) } (D}
(MCo) (11 [5,B] {(Ca) g [5E] @ D)
= (MCo) [B) {(Cq [SE] @

-

i
*

S E
o}

o Assume the next instruction is Push, and let
M=V /[/Puh; C./S/E /D)

and

M =(-/C./V.S|E]D)
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Then we have

and

M= M

7 = (N (5B} 0D)

= {Chsi [V-SE] (D}
= 7

e Assume the next instruction is Apply, and let

and

M = ((C,/E) / Apply; C. / V.S [ E' [/ D)

M =(-/C)e/VE](C.SE): D)

Then we have

and

=]

o fo o fo Jo Lo o

M- M

(MCo) [E]{((¢ 10D - 4Cq (11} [V-TE] @D

(MCdo) [B] { {(+10D) [‘17 _E] (Cy[11[V-5E]) @D
(M) [E] { (= 10D [V BB - (Cadyg [roV-E'E]) @D}
(MCo) [E1{((« {01 [V -5 E] - (C.) [S,E]) @D}
(MC,) [E]{(v (C.)s [SE] )@D}

(MG [B {7V - ((C.) [SE] @ D)}

(C) [V E]{(C)q [SE] @ T}

M

e Assume the next instruction is Return, and let

=(V /Return /S [ E' / (C,,S,E) = D)



and
M=WV/C/S/E/D)
Then we have

Mo M

and

M = V{o[5 Fle({C)[SE]eD)}
= 7{oe ()4 [SE)eD)}

=+ V{{c)q [SE) @D}
= M

In several cases, the number of steps taken is dependent upon the size of the
working stack, §. A maximum value for this can be statically determined. As in the
case of the Krivine machine, this simulation supports the complimentary one that

has to be qualified to take into account the issue with the final states.

Proposition V.2.2. If M S, t, then there exists an SECD machine state N such
that, either

o N is a final state and N == ¢, or

e M—"N andt —+*N.

V.3. ZINC Abstract Machine

Leroy [19] described the ZINC abstract machine as “Krivine’s machine with marks
specialized to call-by-value only, and extended to handle constants as well.” We will
be ignoring the features of the ZINC machine that handle constants, and instead work

with a portion that manipulates closures as its only values. However, after examining
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the modified version of the SECD machine in the last section, it is perhaps easier to
describe the ZINC machine as a version of the SECD machine that has been extended
for handling multiple applications. This extension also allows an optimization on the
environments.

The ZINC machine's use of multiple application is one of its distinguishing fea-
tures, and we will see how this can be nicely translated to the argument lists derived
from the A-calculus. Unfortunately, the optimization on environments does not have
special significance in the calculus and will, in fact, complicate both the compilation
and decompilation. In the ZINC machine, there is a near environment and a far
environment. The near environment keeps the bindings of the arguments to formal
parameters that result from the most recent {multiple) application. When necessary,
these are moved to the far environment. There is a machine instruction for accessing
the near environment {Acc) and one for accessing the far environment (EnvAce). Dur-
ing the decompilation to Aig,-terms, the distinction between the near environment

and far environment will be lost.
Definition

The machine instructions are essentially a superset of those of the SECD machine:

Cy == Acc(n); C.
| EnvAcc(n); C.
|  Closure(Cy); C.
| Grab; C,

C. == Push; C,
| Apply(n); C.

| Return

The instruction Apply now takes a parameter. Apply(l) corresponds to the Apply
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FIGURE V.11: Components of the ZINC abstract machine

(Machine Values) VW u= (G/E/F)

(Environment Stacks) E,F 1= ¢|V.E

(Working Stacks) S = e|V.§

(Argument Stacks) A = ¢|VS

(Return Stacks) D = ¢|(C,S,E,F,A) =D

(Machine States) M = (-/C/S/E/F]A/D)
| V/C/S/E]F]A]D)

instruction of the SECD machine.’

The components of the ZINC machine are similar to those of the SECD machine
and are shown in Figure V.11. In general, we will use E for the current near envi-
ronment and F for the current far environment. The closures will now have to keep
both parts of the environment. The argument stack (A) is new with respect to the
simpler SECD machine. Since a function can be applied to more arguments than it
takes, the argument stack acts as a buffer to hold the arguments that have already
been “applied” but not yet “grabbed.” It has a strong relationship to the stack used
by the Krivine machine.

The transition rules for the ZINC machine are given in Figure V.12. The final
states are almost the same as those of the SECD machine: A state is final if there is a
Return instruction but the return stack is empty and the argument stack is empty. In
this machine there are now two types of steps whose size cannot be strictly bounded:

the environment access steps (as before) and the application step, which operates

'The original machine presented by Leroy in [19] had an Apply instruction that took no argument.
It simply applied a function to all the arguments that were pushed since the previous Pushmark
instruction. The actual implementation of the ZINC machine as the bytecode interpreter of Objective
Caml uses both forms of Apply. We chose to work with the Apply(n) form because it makes our
decompilation much simpler. Similarly, the actual machine uses a Return instruction that takes an
argument, and we could have simplified our decompilation even further by using this. However, we
decided to leave the Return alone to highlight the similarity between the ZINC and SECD machines.



FIGURE V.12: Transition rules for the ZINC abstract machine
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(—/Acc(n); Cc/ S/ WV,E/F/A/D)—
(V. /C./S/V.V,.E/F/A]D)

(- /EwAcc(n); C./ S/ E[/W,.W,.F ] A/ D)—
(Wn/cc/S/E/Wl--Wﬂ-F/A/D)

(— / Closure(Cy); C. /S/E/F/{A/ D)~
((C/-/E,F)|C. /T /e |/ EF]A]D)

(—/Grab; C, /e /E' | F' /e ] (C.,S EF,A):D)—
(C/EIF)/C/S|E/F[A]D)

(—/Grab; C, fe/EJF/VA/D)—
(-/C/e/VE/F/A/]D)

(V/Push, C./S/E/F/A/D)—
(-/C/VS[/E]F[A]D)

(C/E'/F") ] Apply(n); C. | ViVoS [E/F | A D)
(-/C/e]ViE | F | VoV [(C..S E,F A) = D)

(V/Retuen /S JE [ F [e[(C.,S EF,A):D)—
V/C/S/E/F[/A/D)

((Ci/E'JF") /[Return /S /E /F /| V.A/ D)
(-/C/e/VE[F [A]D)

upon multiple arguments.

Compiling and Loading

The compilation of Apg-terms is more difficult now that we must manage two
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environments. Thus, it is parameterized by the length of the near environment gq.

[zl, = Acc(n) ifn<g
[z), = EnvAcc(n—gq) ifn>gq
[A*t], = Closure(Grab™?; [t],)

[(tuy ...ux)ly = [unly; Push;...; [ui]g; Push; [t]y; Apply(n)

The compile-and-load function is similar to the previous ones.
L) = (—/[t]; Return /e /e /e /e [¢€)
Decompilation to the Afig,,-calculus

The decompilation follows that of the SECD machine, except that now we must
add an extra parameter to keep track of the size of the near environment so that we
can properly decompile the EnvAcc instructions. Notice the use of the argument lists

in the decompilation of the Apply instruction.

(Accn); Coyy = ntp {(C))
{EnvAcc(n); Ce); = n+p+g {&CJ?.}
(Closure(CL); C.Y5 = (MC3) (171 {4C23)

(Grab; C)2 = MCHTH

{Push; C}} = a(Ci);y,
{Apply(n); Ce); = (L---n-0)@({Ce)y_,[17]
{Return)! = ¢

Decompilation of closures joins the two parts of the environment together:

C/EF) = (MCH™) [EF]
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There is no change in the decompilation of sequences of values:

|
I

= id
V8 = V.8

Decompilation of the extra argument stack is the same as the decompilation of the

Krivine machine stack:

ol
I
<

VA = V.A

<!

The return stack must now account for the argument stack component:

g = 0
(C.S.E,F,A) =D = (C)¢ [SEF)e(4aD)

Finally, machine states are decompiled as follows:

(-/C/STEJF]A]D) = (C)s [SEF){AeD}
(V/C.JSTETFATD) = V{{CJ)§[SEF)e(AeD)}

The ZINC Strategy in the Ajio,-calculus

When trying to describe the correspondence between the machine and calculus,
we encounter the same issues that arise in the SECD machine. However, there is a
more significant issue, too. Because of the need to propagate substitutions through a
list of arguments in the step corresponding to the Apply instruction, we can no longer
claim that our strategy will only make changes to a fixed part of the term. Thus, our
strategy can no longer be a machine with steps of strictly-bounded size. There must
be one recursive rule added to the strategy to propagate substitutions. Here is our

proposition for the ZINC machine:
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FIGURE V.13: The U strategy

e[To(t-s)] — e[s]

e[s][s'] — e[sos]

FIGURE V.14: The V strategy

t[To(t'-s)] = t[s]

t[s][s') — t[sos']  t{e}[s] - t[s]{e[s]}

o {O}[t-s] —t

Proposition V.3.1. There exists o deterministic strategy Z in the Ajio,-calculus

such that

a. if M is a final state in the Krivine machine, then M reduces in two steps to a

Z-value

b. if M — M’ in the ZINC machine, then M Zn R}, for some value n that is

dependent upon the machine’s original starting state

The components of the strategy are presented in Figures V.13, V.14, V.15, V.16,
and V.17. The recursively defined part of the transition relation is the R strategy in
Figure V.15.

Simulation
The first part of Proposition V.3.1 concerns the final states. We can check that if

M=(V/Retun /S/E/F/A/€)



FIGURE V.15: The R strategy
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0ls] 0 (t-e)[s] - tfs] els]

FIGURE V.16: The Y strategy

(e@e)[s]@¢" X (e[s]@e'[s])@e" (e@e)@c€" Le@(e'@e”)

0@e-re (t-e)@e¢ -1 (e@¢) £ (0@e) == t-e
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FIGURE V.17: The Z strategy

t{e} {¢'} 2 t{e@¢'}

1L

t{e} 2t {e}

(M) [s){t e} Dot[t-s]{e} ¢ {(t)[s]@e} S t[¢-s]{e}

Y
(e (=

t{e} 5 t{e}

then
M=V {0@(0aog)}

and

M 22V {0}

The rest of the proposition can be confirmed by considering each possible machine

step.
e Assume the next instruction is Acc, and let
M=(-/Ac(n); C./ S/ W.VoE | F A/ D)

and

M=(V,/C./8]VV.E]|F]A/D)

Then
M= M



and

=]

I l:“ s |~
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n+15) {(Ci§"™} [SVi-VoE.F] {A@ D)

n+18| [SVA-VaE.F] {{C.Y® [SVi-VaE,F| } {A@ D}
n+l8| [SViVa B Pl {(CHg™ [SViVa EF| e (AeD)}
V. {{CHs" [SVV.EF|e(AeD)}

oL

e Assume the next instruction is EnvAcc, and let

and

=

[ 1:“ lw lN Il

M=(-/EwAce(n); C./ S/ E [ W,..W,.F |/ A/ D)

M=W,/C./8)E]W.WaF/A/D)

n+|S| +|E| {(c;)}gg} [SEW,. W, F|{AeD)

n+|S|+|E| [SE, W, WaF) {(ce){;‘ [5.E, W, W,.F } {ZaD}
n+1S1+18| [SE Wi WaF] {(CHE [SE Wi W, Flae (AeD)}
W, {{C5 [SEW. W, Fle(AeD)}

7

e Assume the next instruction is Closure, and let

and

Then

M= (-] Closure(C;); C. /S/E/F/A/D)

M!=((Ct/_/E$F)/CE/T/E/E’F/A/D)

M M
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M = (Mo 117{(C)y} [SEF] {46 D}

L (MCa) (11 [SEF] {(CYq [SEF]} {Ae D}
Z (M) 11 [T E F) {(c;)fs, [SEFle (E@ﬁ)}
(

MCio) [E.F] {@Ce)?ﬂ [S.EF]@ (E@E)}

i

Z .
—

N

o Assume the next instruction is Grab and no arguments are left in the argument

stack. If we let

M=(—/Grab; C,/e/ E | F [e](CS,E,F, A) :: D)

and
M =(C/EIF)]C./S/EJF/[A/[D)
Then
M- M
and

M = (Mc)™) [ F]{(cal§ [SEF)e(@eD)}

= M

o Assume the next instruction is Grab, and the argument stack is not empty. If

we let
M=(—/Grab; C, /e /E/F /V.A/ D)
and
M =(-/C./e/VE|F/A/D)
Then

Mw— M



and

Assume the next instruction is Push, and let

=(V /Push; C,/S/E/F]A/D)

and
M=(-/C/VS/E|F]A/D)
Then
M- M
and
M = V{(#c)s.) [SEF]e(AeD);
= (cHel, [V-SEF]{AeD)

M

Assume the next instruction is Apply, and let
M = ((C./E'/F") | Apply(n); C. / N..V.S | E [ F | A[ D)

and
M=(-/C/e/VWE [F [V, V, [ (C.S E,F A): D)

Then
M- M

70
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and

M o= (Me) [EF]
{(@-n-0@ @ 11") (AV-BEF] @ (@0D)}
L (Mea™) [BF)
{(@2-0) (WS EF]eCH 1T [M-VaS EF]) @ (AaD)}
2 (Mea™) (BT ]
{@n-0) [iVaS EF @ ((CHG 1T [V S EF] @ (A@D)) |
2 (Mo (BT
[0 n-0) MW EF)e((CHi [SEF]e(AeD))}
L (Mea™) [FF)
{(V;---Vn-o)@(((?g)):g'[S,E,F]@(’fl@m)}
5 (Me™) [T F)
(% (% %-0) e ((cH§ [SEF|e(#e D))}
2 () [V
(% a-0)e((call [SEF]e (AeD))}
=

o Assume the next instruction is Return and no arguments are left on the argument

stack. If we let
M=V /Retun /S /E [F [e](C.,S E,F,A): D)

and

M=({V/C/S/E/F[]A/D)

Then
M= M
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and

M

ft

v{o[SE.Fle({c)§ [SEF)e@eD))}
£ v{oe((c)s [SEF)e(@eD))}
2 {m}ﬁ,‘ [SEFle(4eD)}

¢ Assume the next instruction is Return, and the argument stack is not empty. If

we let

M= ((C/E/F)/Retun /S /E|F]V.A/ D)
and

M=(-/C/e/VE[F [A]D)
Then
Me M
and
M o= (MeaS™) [FF1{0o[SEF|e((V-A)eD))

2 (MeF™) [T F) {o@((V-A) @D)}

2 (Mo [ F']{F 7@13}

= (A«C»‘E"*’)[ D)}

= (G [V-E ]{A@D}

- T

Finally, we can make the corresponding complimentary proposition:

Proposition V.3.2. If M L t, then there exists an ZINC machine state N such
that, either

o N is a final state and N 2%t, or

o M—"N andt—z-—r‘ﬁ.
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Conclusion

This thesis has demonstrated that the level of detail found in abstract machines
designed for weak f-reduction can be simulated within a term reduction system based
upon sequent calculus cut elimination. The idea that a calculus can function at the
level of an abstract machine is incipient in the work of Curien and Herbelin [7] but
could not be fully realized without a version of the A-calculus supporting simultaneous
explicit substitutions and closures for weak reduction. We believe that that Ao,- and
the Afio,-calculi demonstrate the accessibility of this goal.

It is typical to think of abstract machines as a means by which one can break down
large tasks into small steps; however, the simulations in this thesis demonstrate how
each machine step is further broken down into smaller steps in the Ao,,-calculus. If we
see the deterministic strategy for the rewriting of Ag,-terms as an abstract machine
(which it literally is), then the operation of the Krivine, SECD, and ZINC abstract
machines can be seen as the result of optimizing a lower-level machine by joining
smaller instructions into larger macro-instructions. Our translations show that using
these macro-instructions often does not result in more than a constant-time speed
increase over the execution of steps according to the smaller instructions.

We believe that all weak reduction strategies for the A-calculus can be encoded into
strategies with constant-sized reduction steps in the Mio,-calculus. However, strong
reduction is an entirely different issue—one that we have not considered. There may
be a version of the A-calculus analogous to the Aoy-calculus, but it is unclear what
could be said about the step sizes of strong reduction strategies in such a calculus.

Another direction for future research would be to use the type system of the A-
calculus to assign types to machine code or to machine states. Potentially, a type
system based on LJT could be ideal for typing low-level code. This proposal is

supported by the fact that some machine instructions in the call-by-value machines
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were naturally translated into A-terms while others were naturally translated into
A-contexts. Additionally, we have yet to investigate the classical sequent calculus,
which would likely offer a useful correspondence with machines that implement control
operators.

In this work, we have thus demonstrated that an important connection exists
between the LJT sequent calculus and some abstract machines. The research of
Herbelin [13], Curien and Herbelin {7], and Hardin, Maranget, and Pagano {12] has
been the central foundation for this. We believe that our research has elucidated
some important new points and has demonstrated that this is a fruitful direction for

further study.
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