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The Java Virtual Machine (JVM) is used extensively in computing environments
in which security is a primary concemn. The proper formalization of the JVM provides a
basis for judgements about the security of JVM programs. Sequent calculi can provide a
formalization that allows a shallow encoding of JVM structures into the calculus. This
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base than the current proof-carrying code technology. This document shows an encoding
in Curien and Herbelin calculus, and presents an algorithm for establishing the type-
safety of translated programs. Our approach allows a more expressive verification

process than traditional methods.
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INTRODUCTION

Since its creation, the Java language has become an important language for mobile
code. In addition to the normal types of shared libraries that other languages have, Java
also provides the applet interface that allows compiled code to travel freely across the
Internet. This ability to load and execute pre-compiled code from distant, and often
murky sources provides a potential security hole in a host computer system. Because
Java code cannot be completely compiled, and still run on any platform, Java must be
compiled to an intermediate language which is then interpreted on the host system.
Fortunately, this process provides a hook into which the host system can attach security
checks.

The Java specification requires that all Java code be compiled into an intermediate
language called JVML, which is designed to run on an abstract machine called the Java
Virtual Machine (JVM). The JVM, then, is an interpreter from the intermediate code to
the host platform. This interposition of the JVM allows for dynamic runtime instrumen-
tation that can monitor security constraints. However, no dynamic instrumentation can
be assured of success without some guarantees about the type-safety of the object code.
In particular, JVML partially preserves the type system of Java in the intermediate code.
Thus, the JVM is capable of performing a static analysis of the JVML code before it is
allowed to run. The point of the analysis is to preclude code the subverts the dynamic
semantics of the JVM, and thereby bypasses the security instrumentation, or causes the
JVM to otherwise malfunction.

The static analysis for the JVM is specified control flow analytic terms, but ven-

dors are free 1o perform the analysis in any manner, provided it can guarantee the same



checks as the control flow algorithm. Since the programming languages community

is generally more at home with logical analysis, many algorithms have been proposed
based on logics of various kinds. Most of these have been logics designed specifically
for the JVM. In Stata and Abadi (1999), they develop a logic for JVMLO, a subset of
9 JVML instructions, that provides a proof of well-formedness of a program P given a
set of initial stack and variable assignments. Freund and Mitchell (1998) extend this to
a larger set of JVML instructions, including the instructions dealing with object initial-
ization, and show the soundness of the their logic in establishing the well-formedness of
programs that do not use uninitialized object references. In Stata and Abadi’s approach,
the local variables and local stack are assigned types at each program location, and a
program type-checks if the constraints can all be satisfied, where the constraints are
based on the effect of each instruction on the successor instruction(s).

Qian (1999) takes the approach of assigning to each instruction the least upper
bound in the type lattice needed to satisfy the instruction constraints. Again, the logic
is highly specific to JVML semantics. In Qian’s case, the logic is also highly detailed
in its ability to reason about specific instruction widths and branch targets as well as
model invoke and return semantics that are missing from Stata and Abadi’s work. In
contrast, Higuchi and Ohori (2002) assume rudimentary control flow analysis before ap-
plying their typing judgements to the JVML. Where the other works assign types to the
machine state at program points, Higuchi and Ohori use a sequent style system where
the type of a code block is defined in terms of the transformation that it performs to the
local state. This is most similar in character to our present work, although the resulting
logic is still very specific to the JVM.

In contrast to the work cited above, we hope to create a model for JVM execution

that is purely based on an existing calculus. That is, rather than create a calculus that



exactly matches the JVML dynamic semantics, we will show a shallow embedding of
the JVML instructions into an existing calculus using the Curry-Howard isomorphism.
In chapter 1, we formalize the behavior of the JVM in a calculus remeniscent of that
used by Stata and Abadi, and then show a translation into an intermediate calculus,
presented as an abstract machine semantics. In chapter II, we show the embedding of
the intermediate calculus into a derivative of the Apj: calculus of Curien and Herbelin

(2000).



CHAPTER 1
ABSTRACT MACHINES

I.1 Computing with the Java Virtual Machine

The Java Virtual Machine has been implemented by various vendors. Although the im-
plementations have changed over time, the JVM Specification itself is only in its second
edition [Lindholm and Yellin (1999)]. The specification defines most of the behaviors
of the JVM, with some notable exceptions. For example, although automatic garbage
collection is generally seen as an integral part of the JVM, the JVM specification leaves
the question of garbage collection algorithms up to the implementor, and does not even
specify whether the static method areas should be considered part of the garbage col-
lector’s pervue. Other algorithms, such as the bytecode verifier, are specified in some
detail, but the specification allows significant deviation from the stated algorithm pro-

vided the outcome is the same as the specification.

L1.1 JVM Structures

The JVM contains the following structures:

¢ The Method Area — The method area stores the static structures associated with
a class. This stores the code associated with the class methods and also the Run-

time Constant Pool consisting of the following entries:

— Primitive constants used in the program code.

~ Class or interface descriptor, defining the structure and accessibility of the

class or interface.



— Method descriptors, defining the structure and accessibility of the methods.

— Exception handler descriptors, defining the scope and applicability of the

exception handlers.

~ Exception handler table, a lockup table of tuples:
{ protected-code-start, protected-code-end, exception-class, handler-entry-

point ).

e The Heap — The heap stores all allocated arrays and objects. Each object record
contains the object’s fields. JVM instructions explicitly allocate space for ob-
jects and arrays in the heap. Deallocation is handled through automatic garbage

collection, the description of which is outside the JVM spec.

e The JVM stacks — A JVM stack is allocated for each thread. Each stack contains
its own g register that points to the currently executing instruction. A stack frame

is created for each method call. Each stack frame consists of the following items:

- A pointer to the object’s runtime constant pool

— The method’s operand stack — The stack size is listed in the method de-
scriptor. The stack is initially empty. The method must neither pop from an

empty stack nor push to a full stack.

-~ The method’s local variable array — The method descriptor gives the size of
the local variable array. For non-static methods, the first item is a pointer
to the object’s heap location. Any other method parameters are loaded into
consecutive elements. Any remaining elements are considered to hold the

value “undefined” and must not be accessed until they have received values.

The language of JVM instructions is JVML. JVML instructions can access the local

variable array, the stack, and the heap; however, all access to the heap is done indirectly



using an object reference and a method or field name. JVML instructions cannot ac-
cess an object’s fields or methods without a textual lookup through the class descriptor.
JVML instructions can also affect the m-register, which points into the current code. A

localized JVM state is given by the tuple

[rg, m, ¢, s] (L1)

where ¥ represents the code to be executed, z is the pc register, ¢ represents the con-
tents of the local variable array and s represents the local stack. The current method
area can be viewed as an array of instructions. The m-register is a pointer into that ar-
ray. Thus, the value of the p is a non-negative number, but that value of an instruction
address cannot be confused with a regular int value.

Each JVM stack can be seen as a stack of localized states. Each state holds the
current computation in the thread, but only the top-most state is being actively run. To
represent the state of the entire machine, we would have to represent the localized state
of each thread’s JVM stack and the state of the heap. We are not interested in multi-
threading, so we assume there is only one thread stack.

The heap can be seen as a map of maps. That is, an object reference is a pointer to

a map from method and field names to the code and values they represent.

1.1.2 The Bytecode Verifier

Although most JVML is compiled by a Java compiler, the JVM does not assume this
is true. Since the JVM was designed to acquire code from remote as well as local
sources, the code cannot be assumed to be type-safe. Before any code is allowed to
execute, the JVM’s bytecode verifier must certify that the code passes a minimal set

of well-formedness criteria. In particular, the verifier is aware of the required types



of various instructions. For example, the JVML instruction iadd requires two integer
operands from the stack. Since iadd is not defined in the presence of other stack types,
the verifier must determine that all control paths produce two integers on top of the
stack when the iadd is reached.

The bytecode verifier is responsible for establishing the following code properties:

The types of the top values in the stack must match the types expected by the

instructions.

No instruction ever attempts to remove an operand from an empty stack.

No instruction ever attempts to push a value to a full stack.

No instruction ever attempts to read or write a local variable outside of the local

variable array.

Each method returns a value of the proper type.

Each allocated object is initialized before it is used.

In the following section, we combine some of the actions of the verifier with the actions
of the bytecode interpreter, since both of these occur at run-time, although the verifier is

using a more static set of properties than the interpreter.



[.1.3 JVM Instruction Semantics

The following table lists some useful notation for representing JVM machine states.

a
g
§| — —

cl —

0%
1€]
£li)

€. )

la,b,c]

fl::fg

0.

stacks of values. We adopt the convention the § stands for any
number of elements. The first is the stack consisting of a, b
and ¢ where only a is accessible. The second is any stack of
unknown depth with a at the head. The third is the empty stack.
The fourth is any stack of unknown depth, including the empty
stack.

an array of values

the number of values in ¢

for i < j¢|, the i** value in ¢

for 0 < i < j <|¢, the new array consisting of ¢[i] through ¢[5]. In
particular, £[i..i] is a singleton array.

the new array consisting of all of the elements q, b and ¢, in that

order

the new array consisting of all of the elements of the array ¢,

followed by all the elements of the array ¢4,
the only value of the singleton type undefined.

a “hole” at the top of the stack waiting to be filled by a value of

type A.

a “hole” at the top of the stack that cannot be filled with any

value.



if G[i] = 1oad n then [% |S|] —VM [fg i+1, ¢ Eg‘] ]
if €[i] = store n then [‘6", i, £, ; ]
JVM [‘6’, i+1, ln—1zvd[n+1.0¢], |S |]
if ©}i] = push v then (¢ i ¢ |S|] A [w, i+1, ¢ g ]
if €[i] = pop then <, 1, t’, VM fe, i+1, ¢, |S|]
f v
if €[] = dup then %, 1, £, S ] €, i+1, ¢, |v
\ L § S
: , > i
(51 Ua
if €[i] = swap then €, i, 4, |vo| | M b, i1, £, |n
\ S J \ S
if €[i] = iadd ( ) r ot
and v; :int &, i, £, |vo S M ¢, i+1,¢ | S 2 ]
and vs : int then | S ) \
if €[] = £add then ( v ) ¢ S
and v, : float €, i, £, lvo| | LM | %, i+1, ¢, |11 2 ]
and wvs : float { S ) \
if €[i] = goto a then ["é’, i, £, | |] b [%, i+a, £, |S|]
if €{i] = ifeq a then ;
oipo | ita v=0 [‘f, i, ¢, s] —, (%, 7, ¢, 8]
T i+l v#0 L T
if ¥[i] = instanceof T then
1 w:T ¢, i, £, Y VM ¢, i+1, £, "
let r = P S S
0 vit'nd" L7 = il §
if Z]i] = jsr a then [%ﬂ, i e |s|] _vm | [ff, ita ¢, [”S'l”
if €[i] = ret n then . IVM
and £[n] : returnAddr [tg’ b il] [(g’ fn, £ —l]

Figure 1.1: Semantics of several JVML instructions

The localized semantics of a minimal fragment of JVML is given in Figure 1.1.
Each of those instructions deals only with the local structures, so the transitions just

show the change in the top-most JVM stack frame. In particular, the goto instruction
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if %[i) = invoke MM nh mix~XTmidand (py,...,p,) has type 7y x -+ - x T,
then
o if 7,41 # void

n—rm
n PR A
) (g.Ms 11 [ph"'apm:mr"'aml'r |]
tgﬂa iy Ey ’ IJVM T
Pm . a,
S [{gﬂa i+ ]-r e? TS-H
Ssvar Ssvar
o if 7,49 = void
n—-m
m s,
. [rgﬂh ]-y [plv"'!pmim!"'!gly | |]
%01 i: e! : JIVM T
Pm . =]
s [':gﬂa 7"!'11 e'r Sl ]
SJVIU SJV.M'

if %alio] = return then

[(gﬁs iﬂ: Eu, |SO|]
rﬁ ) D.L JVM [cgla ily cla M]
1, 11, glr
S1 Ssvar
Ssvm

if Gyliv] = Treturn and v has type = then

%01 iﬂ! eﬂ! Y
So . v
P JVM ‘gla 11, E]a S
. o, — 1
rgly 11, E].i -
51 Sivae
Ssvar

Figure 1.2: Semantics of JVML invoke and return instructions

uses an address offset, which is true to JVML code, rather than the usual representation
as a code label. The invoke and return instructions deal with the JVM stack itself,
so they must be specified in terms of the behavior of the whole stack. The semantics

of those instructions are given in Figure 1.2. Here, the notation M nh T} refers to
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a method, and %), is the corresponding method code. We assume that A is suitably
decorated to find the enclosing object, the details of which we do not model here. The
arity of M is indicated by a pair of numbers, {m, n) where m indicates the number

of parameters that must be passed, and » indicates the total size of the local variable
array, including additional space for local results. For any method Af¢= »» T} m <
n. Additionally, the signature of M is given as the Cartesian product 7 x - X T4,
indicating that values of types =, through 7, must appear consecutively on the stack
when M is invoked, and the invocation will return with a value of type 7,41 on the
stack. The uninhabited type void is used to indicate the return type of a method that
does not return a value.

The stated semantics for the invoke and return instructions have taken some liber-
ties with the JVM specification. The specification requires that the bytecode verifier
determine statically at load-time that a method returns a value of the correct type. Here,
we have replaced this with a run-time comparison on the type of rreturn and the type
of the hole in the calling stack. Indeed, the very notion of a hole in the calling stack
that persists until the return instruction is a device of our invention. However, since the
point of the current project is to create a system of static checks, the hypothetical dy-
namic operations really only exist to facilitate the static analysis called for in the JVM
specification. In particular, the return value must be double checked in the sense that
the type must be checked against the declared type 7 of rreturn and then checked again
against the type of the hole in the caller’s stack, which is consistent with the specifica-
tion.

From the rules in Figure 1.2, the JVM does not specify a transition out of the state

(gﬁa iﬂ, eﬂa
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when %lip] 18 return or rreturn. Whenever a return is executed on the bottom frame
in the JVM stack, the JVM thread of execution enters a finished state. However, to be
a valid finished state, if %p[ig] is Treturn, v must be of type 7. The JVM exits when
all threads have reached finished states. Of course, to anyone familiar with Java pro-
gramming, the more common method of terminating the JVM calling the System.exit()
method. To the JVM static semantics, however, this call appears as a normal ‘method
call with a signature int x void. The fact that the call never returns is not known to the

static semantics.

1.2 Constructing an Intermediate Abstract Machine

To represent the JVML instructions, we will first create an intermediate language that
uses only list operations. Since the intermediate language relies mostly on push and
pop instructions, we will call it PPL for “Push-Pop Language”. In addition to pushing
and popping values, PPL will contain all the instructions needed to simulate JVML.

Internally, the PPL machine uses an array and several lists. The list grammar is as
follows:

su=0C|ves

where » can be a primitive value, the value ® (undefined), an object reference, or a
return address. Lists also have a function that describes their length, defined inductively
as follows:

||£_'j|=0 |1}.S|=|S|+1

To distinguish the type returnAddr from numeric values, values of returnAddr are denoted
“@(n)” for some non-negative integer n. The function # translates between returnAddr

and integers where £(@(:)) = 1.
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The PPL machine contains three list registers, named «, v, §. An additional register
r holds a value, and the I register holds an instruction queue. An instruction queue is
denoted as a semicolon-separated list of instructions, terminated with “!”. The array
2 holds an array of instruction queues. As we will see below, each instruction queue
can be considered the microcode for a single JVML instruction. Additionally, the PPL
machine has a register ® that holds the “stored” state. That is, & has storage equivalent
to each of the structures in the PPL machine, including & itself. If & is empty, its value
is @.

The PPL instructions perform the following actions:
const places a primitive constant value into r.
isa if r contains a value of type 7, it is replaced by 1, otherwise it is replaced by 0.
push places the value of r in the front of a list.
pop removes the value at the front of a list and places it in r.
dump clears 4 and copies another list into it.

retrieve clears a list and copies 6 into it.

dig discards some elements from the front of a list, with the last discarded element
placed into r.

transfer removes elements from one list and adds them in reverse order to the front of
another list.

call Replaces 7 with new code and begins execution from the beginning. The new
computation begins with an empty « and uses § in place of ~.

restore Returns the machine to the state prior to the previous call, but executing the
instruction following the call.

do causes the numbered instruction queue to be fetched and executed. Optionally, this
can choose between instruction queues based on the value of r.

The state of the PPL machine is given in terms of the tuple

[I, T, o« v, 6,<9,¢>]
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The set of instructions and their reduction semantics are given in Figure 1.3. Addition-

ally, the PPL. machine has the macros

¢ , (n)
For n > 0, 1:1:'ans.:ferfl_"'c ;= {popk;pushk ;}

dig, = {pop‘s; }["}

for any lists £ and ¥’. Here and in succeeding figures for any sequence of symbols S,
we let {5} represent n consecutive copies of S.

Finally, PPL has one special instruction for type checking. From the description
above, PPL largely ignores the types of values in the lists. Specifically, it allows lists to

co-mingle elements of all types. The mustbe instruction has the following semantics:

PPL
[muStbef;c!? vo, S14 82, S3s<@0,‘1)0>] [C!s Vg, 51, Sa, 83,<§30,(I)0>]

if and only if v, has type 7.

= ranges over all the allowable JVM types (except the uninhabited type void). If r con-
tains a value of the correct type, the computation can continue, but if the check fails,
then the machine is stuck. Thus, the mustbe instruction is something of a super no-op
in the sense that either it performs no action and keeps going, or it stops the machine

entirely.
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[const vic!, vg, 81, S2, 33,(9,‘I)>] —FPPL [C!, v, §1, 92, 331<9”1‘I’>]
[isar;c!, vp:T, 81, S2, 83,<5”,!I’>] —FPPL , [C!, 1, s, s9, -‘33,<9’,‘I’>]
[isa,.;c!, vo: 7', 81, 89, 33,<9'f’,<1)>] —FPPL [C!, 0, 81, Sa, 33,(9’1‘I’>]
[push";c!, g, S1, 82, 33,<9’,¢I>>] L[cl, Vo, Vo ® 91, Sa, 83,<9’,‘I’>]
push”;c!, vy, 5, 82, 33,(9,1))] P, (01, vp, 51, Vo ® Sz, 83,<-97’,‘1’)]
push®; ¢!, wp, 81, 8o, .5'3,(9’,‘1’)] —FPL (cl, Vg, 81, 82, Uo‘-s‘s'(-g”,'I’)]
pop®; ¢!, vo, v1 @385, S2, 33,<.93,f1)>] —FPL [c!, v, 81, 89, 33,<.93,111>]
pop”;c!, ve, 81, U1 ® S, s;;,(?,(l))] —EfL, a, v, 81, 82, .-33,(.93,'1')]
pop®;cl, wo, 51, 82, v 033,(9’,(11)] PPL c!, 1, 81, sa, 331<9B,‘1'>]

¢, v, 51, 82, G,(?,tl»)]

T
dumpa;C!a Yo, 81, Sz, 83, '@!‘ )
2, (D)] PPL

dump?;c!, vg, s1, 32, 53,<

retrieve®;el, vy, 33, S2, 33,(.@,‘1’)

PPL

[
[
[
b)) —PPL (e w, s
[
[
[

retrieveT;c!, v, 51, Sz, s;,(.@,n

[
[
[
(
(
(du.mp@;c!, w, 51, 52, 53, (P p)] SREREES
[
[
[
[
[

r)
call($);cl, v, s1, 8o, sa,<.930,'1’>]

—PPL [do @), 0, @, sa, o,(%, (c!, 0, s1, s2,

[reStOIB!, vp, 51, 82, 33,<91, [C1!1 vy, 84, 35, -96,(:932,‘1’)])]

C!a Yo, 81,

, 83, 51, <93, tI'>]

C!v Yo, 81, 82, S2,

C!, vo, 83, 39,

—EP s (al w, 51, 55, ©,(P,2))

(40 71, @w0), 51, 2, 53,(2,2)) L (2l 0, 51, 52, 0,(2,2))

(0 @), w, 51, 52, 33, (2,2)) —ER (2D, 0, 51, 52, 0,(2,2))
for vg=0:

)

[do @(1)1@(va)!, v, 51, 52 33,(9, rp)] _PPL_, [5«}[”1], 0, 81, 83, O,

forvg £0:

[do @ (n)?7@ (1)), vo, 51, s, 53,<9, (I)>] SECELE [.@’[vg], 0, sq,

53, ©,(2,8))

Figure 1.3: PPL instruction set and reduction semantics
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Example 1.2.1 Starting with the state

[dO @(1)!, 198, 1e©, 27046070300, 1200, <dmnp"; digy;push®;do @(2)!, G> ]
we have the reduction sequence in PPL

do @(1)), 198, 160, 27edGeTe3e0, 1200,
(dump"’; dig,; push®;do @(2)!, @)

PPL dump”; dig,; push®;do @(2)!, 0, 1e G, 27ed6eTe3e0, O,
)

dump”; dig,; push®;do @(2)!,®
Bz

PPL dig,;push®;do @(2)!, 0, 180, 27e46e7e3e(, 27e46eTe3 e,
_—
| {dump”; digy; push®;do @(2)!,®)
)
PPL push®;do @(2)!, 46, 103, 27046070305, Te3 e,
(dump”; digy; push®;do @(2)!, )
PPL do @(2)!, 46, 460160, 27ed6e 7030, Te3e 0,
_—

(d“mP"; dig,; push®;do @(2)!, @)

This does not reduce further since 22| does not exist.

1.2.1 The translation from JVML to the Intermediate Language

Example 1.2.]1 shows how to use § to access a value from an arbitrary depth in v and
push it onto a. This suggests an encoding of JVML into PPL using « as the local stack
and « as the local variable array. This leaves & and r for scratch space. Since § does not
correspond to any JVM structure, we will require that it be cleared after each JVML
instruction. On the other hand, » must always hold something, so we must be cautious

about its use in JVML translations to prevent bleeding information from one instruc-
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tion to the next. Figure 1.4 shows the translation of the JVML instructions into PPL.
Here, the value x is not a dynamic reference to the g register of a running JVM, but
rather the location in % of that instruction, a value that is statically available. Thus, the
translation only applies to translating an entire code array, and is not well-defined for
an individual instruction if its location in its code array is unknown. Also, unlike the
uninhabited JVM type void in PPL, L is a singleton type with {§ as the only element. L
is used as the PPL return type of a JVML method that returns void.

The translations are faithful to the typing system of JVML, but not the dynamic
semantics. In particular, the iadd and fadd instructions check the stack typing and push
values of the proper type as results, but do not actually compute the addition, since the
PPL machine is not expressive enough to do this. For the remainder of this discussion,
we will pretend that int values are equal when required to be so, and similarly for float
values.

In order to define translations from JVM states to PPL states, we have to define the
translation ()® from arrays or stacks of values to lists of values. We do this inductively

in the natural way:

( )D
|
if |¢| =0 then (6)° =@ ;

=4
otherwise, (¢)” = £[1] » (¢[2..]¢])7 v = e ( S )
S —

The translation for the entire JVM stack translates each frame, and must also hold
the stack itself in the PPL state. Fortunately, the semantics of ¢ permit this. As men-

tioned above, ¢ can be viewed as a linked-list of states. With that in mind, if

= [‘6”, e, £, 3]



(Load )

(store i)

(push v)®
(pop)”
(dup)”
(swap)”

(iadd)®
(£add)®

(ifeq a)®
(instaceof 7)%
(goto a)”

(jsr )

(ret n)®

(invoke Af{{m. m). 1':><"-><1'-r-+1))l>

(invoke Af¢(m mh nx---xvoid))b

(return)”

(rreturn)”

dump”; dig;; push®; do@ (r + 1)!

transfer] }%; pop; pop®;
push?; transf erf_"l"; do@(mz + 1)!

const v; push®; do@ (zc + 1)!

pop®; do@(z + 1)!

pop®; push®; push®; do@(m + 1)!

dump®; pop®; pop”; transf erf,“"; do@ (e + 1)!

pop™; mustbaej,; pop®;
mustbej,; push®; do@(z + 1)!

Pop®; mustbeoar; POP®;
mustbeyga:; push®; do@( + 1 )

pop®; do(@(z + a))7do@(pz + 1)!
pop”; isa,; push®; do@(m + 1)!
do(@ iz + a))!

const @(mz + 1) ; push®; do(@(pz + a))!
dump?;dig,;do !

dump®; {pop®; mustbe,, }(m) transferi;
const [X; {PUSh‘s; }(n_m) transfer?—¢;

call (%)™ ;mustber,,,,; push®; do@(z + 1)!

dump®; {pop®; mustbe,, }{™ transferi?;

const X; {push?; } (n=m) s ranst era—%;

call (‘aﬂu)t> ;mustbey; do@(; + !
const (;restorel

pop¥;mustbe,;restore!

Figure 1.4: Translation from JVML instructions to PPL instructions
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then the translation for the JVM stack is

b

= (&), 0, (57, (O, ra-,<(<€)'>,(‘s) >] (1.2)

For technical reasons, the translation of the inactive stack frames must be somewhat
different, so we use the function ()*, which we define below.
The translation function () creates the following assignments:

I = (¥)”[x]] The instruction queue holds the translation of instruction to be executed.
This simulates the state when the instruction has been fetched, and is about to be
decoded and executed.

r =0 The value of r is irrelevant since it has no corresponding JVM structure, provided
we can show that the default value 0 is never used in the computation.

a = (s)® The local stack is simulated by o.
v = (£)> The local variable array is simulated by ~.
§ = © & must be empty since it has no corresponding JVM structure.

@ = (¢)° The JVML instructions are translated to the equivalent array of instruction
queues.

D

B = (|s|) The resulting linked list of PPL states is equivalent to the JVM stack of
TVM states.

For inactive stack frames, the sematics of call and restore do not allow the straight
forward representation of the instruction queue as (¥)"[x]. Also, we have not defined
a translation for O,. Since holes are only placed at the top of a local stack when the
frame becomes inactive and are removed when the frame is re-activated, holes can only
appear at the top of an inactive stack. Thus, we are not constrained to represent the

hole in the local stack, but rather can mark the entire JVM stack frame as somehow
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waiting for a value. The translation for holes and x values is given as

mustbe,;push® 7# L
@) =@ (3,)" =
mustbe, r=1

Once again, if

O,
h=}% ¢

So

then the translation for the JVM stack is

»>

2 "
_ [(u,)';(rr.)'!, 0, (so) L@, o,<(%)“>.(|s

i ) e

This creates the same assignments as the previous translation, except it uses the instruc-

tion queue to indicate both the nature of the hole in the local stack, and the value of

.

1.3 Proving the Correctness of the Translation

Lemma L3.1 The translations of all JVML instructions except invoke, return and

ireturn preserve the local variable array size.

Proof. The only instruction that alters « is store. The store instruction transfers i — 1
elements from ~ to & pops the i** element, pushes it back and transfers the other 1 -1

elements back. Thus, the number of elements in + is unchanged. _ n

Lemma 1.3.2 The translations of the JVML instructions return and ireturn restore the

local variable array to the value it held prior to the preceding invoke
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Proof. By inspection. No other instructions affect the state stored in &. Therefore, this

is immediate since both call and restore leave « intact. [ |

Lemma 1.3.3 No JVML instruction reads from r unless that instruction has first written

to it.

Proof. by inspection. dig and transfer expand to sequences beginning with pop. Thus,
all translations except load, swap, goto, invoke and ret begin with pop, const or save,
which write to r. load, swap, invoke and ret all perform dump, which neither reads nor
writes r, followed by pop. Thus, they write r before reading it. the translation for goto

never reads r. [ ]
Lemma 1.3.4 At the end of each JVML instruction, § = © and r = 0.

Proof. By inspection. All translations perform either do or restore before executing
the next instruction. do sets § = @ and r = 0. restore returns to the calling instruction
queue. Since invoke is the only instruction that uses call, and invoke ends with do,
restore ends by executing do. |

Before proving the main theorem, we must extend the notion of reduction to its

VM

reflexive, transitive closure in the usual way. We define * inductively as

S VM g

if § —* 5" and &' —*, 5", then § —YM _rg”

where “VM?” can be either “JVM” or “PPL". Additionally, we need another relation that

simulates a single step of the JVM inside PPL.
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Definition L3.1 We define —2=, inductively as follows where do is any single PPL
do 1, do @(v)! or do @(v))?@(v2)! instruction and c; is any arbitrary semicolon-

separated sequence of PPL instructions:

if [dO!, v, 0, 71, 51,<91,r1)1>] — ., [c!, vy, 2, T2, b3,

<‘@11(I)1>J

PPL! )

then [dO!! th, a1, M., 61!<91'(I’1>] e [C!1 U2, a2, 72, 625<91,(I)1>
if [restore!, vg, Gp, Yo, 60,<931,q)1> PP, cl, n, @, M, 51,<92,(I’2>
and [Cl!, 1, 1, M, 61!<92,‘I‘2> ﬂ’ Cz!! v2, @2, 7o, 521<92,‘I’2>
then [restore!, vo, O, Yo, 60,<gﬂl’q:l> —FR cal, v, as, Yo, 52,<932,.p2>

if 1 ) PPL! ( '
1 ci.y U1, &3, Y1, 6]1 .931,‘1'] Caly, U, ko, Yo, 6"1 @2,{[).-,
.

Y
th il 5 __FPL! | '
En Cps €1ty Vo, G0y Y0, 00, 91,(1)] Col, U, O3, 721
F

b 4
and co;c1ly Vo, o, Yo, b0, P, D —r, cl', v, o, Y1, 01,( 2,8
1, %] ) 1

.:"’1,(1’ >

Clearly, if § —FEL, g, then § —EPL, ', The intuition behind —EF™, is that

.

it takes the PPL machine through enough reductions to exhaust the instruction queue
once. Since each JVM instruction corresponds to an instruction queue, when applied to

JVM translations, this should correspond to a single step of the JVM machine.

Theorem L.3.5 For any valid JVM state S, if S —2Y ¢+ &' then (5)> —F5_» (51)°,

Here, the term “valid JVM state” means any final JVM thread state, or any state that

can be reached by a finite application of the JVM transition rules given in Figure 1.1

['ﬁnim 01 g! ‘ ‘]

and Figure 1.2 starting from an initial state for some program %gasn.
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Proof. The proof proceeds by cases on the JVML instructions. In each case, we show

the reductions in both machines and verify the equality of the translation. In all cases

except invoke and return, it is sufficient to show the top stack frame since the rest of

the JVM stack is unchanged in both machines. Thus unless otherwise shown, we let

o Case load:

JVM

(F)” =

PPL

“ 7

PPL .
—_—

.

PPL .
_—

.
’

PPL .
—_—

.

— (Fr)b

F= [%, £, ‘s

.

£n]
rg, T + 11 e!

s

7

dunmp”; {pop?; }
push?®; do@(mr + 1)!
{pop?; }™ pusne;

do@ (z: + 1)!

push®;do@ (i +1)!, ¢fn], (|s

+J))

0@ +1)!, €},

(o (e

o

+J))

(€) [ +1], 0,

{[n]

Sy

Fl
and 5 =
Ss

where €jx| = load n

=F

, 0, (\s) . (7, '3’<(‘€)°’,(SJ) >
o oo o)

S,

) , (07, (e[n+1.10])",

{[n] . 5
, (07, (eln+1.0e])",
S




Here, the PPL dig command fails if § is exhausted, but the JVML command is

not defined if n > |£| = ||, so this cannot get stuck due to dig failure.

v
Case store: F= |¥, m, ¢, where %] = store n
S

p_3vM [‘é’, m+1, fl.n—1)zval{n+1.)4], ‘g” =F

r By
{pop”; push?; }*"~" pop”; pop?; v
1 0? H
(F)® = push?; {pop®; push?; }("_1) do@(z + 1)! s
’ Ll
(0>, o, <('5) ( )
\ /
. B
pop”; pop®; push’;
y fln=1j, )
—PPL_. {pop®; push?; }( do@(p:+ 1)! s
=
)" dnie.eiieo (o fs.) )
; "N = :
pop”; push?; v
. . £[n], ,
__PPL__ {pop®; push™; }(ﬂ )do@(p:+ 1§
(£[n+ 1..|€i])b, {n-1le...af[ljeO, ('i;.”)r> S, ) >
: )
push?; b
_PPL_, | | {pop®;push’; }* ™V do@ (e + 1)!

(€[n+1.1€)]), tln—1]e...e£1] e, w),

k)

{pop’; pust”; } "V ao@(e + 1), v, (|s

_)'>,

u-(f[n+1..|£|])b, f[n—l]O...0€[1]09,<('€)'>,

(&)

N

PPL

\

’ =3
a0@(+ 1), €], (H) ,

PPL_,
——

S

flin—1)eve (E[n +1.. |£’|])t> , @ <(%”)D :
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L& (%’)D[}E-{-l], 0’ (‘

- (%),
S) ,f[l..n—l]ovo(E[n+1..|£|])b,@,<( )>>
11 s,

— (Fr)b

e Case push: F= [if m L, lg” where %] = push v
v

J-

S

F M ¢, x+1, ¢,

PPL

)
push®; do@ (s + 1)! (|S
\

r

SELE U do@(z + 1)), v, uo(

\

S

PPL

e (‘f)blj.l:+1], 0, u-(s

_ (FI)D

e Case pop: F= |¥, m ¢,

S

’ ] where %] = pop

FM [*’f, r+1, e, | |

(F)®” = [pop ;do@(ze + 1)1, 0 (

) fpr (o))

) oo ()]
j [(“f) e+ 11, 0, (i) Cer ,@,<(%) (_) >]

—PPL_ | [da@(p:+ 1, v,
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v
¢ CaSE dup: F= f’ I, 8, where ‘if[p:] = dup
S
!
v
FI e p+1, 4, |y|| =F
S
17
¢ > .
v
pop®; push®; push®; do@(r + 1)1, 0, (0, o,
(F)D = S

PPL
PPL
PPL

PPL

= (Ff)b

e Caseswap: F= |¥%, i, ¢, |y

F JVM

(F)* =

<(‘€’)D, (S

J

R
push; push®; do@(z + 1), (ﬁ) (0P, &((ff)” ( s ) >]
o) - oo (b)) )
W) oo ()

) - oo (s]) )

.

push®; do@(+ 1)}, v, ve (

J

do@(m + 1)}, v, vovo(

.

(%J)Dhn+1]ﬁ U] U'”'(

U

where %] = swap

5]

Ua

Cort+l 4 g =F

S
| N
dump®; pop®; pop®; pop’; v
»
push?; pop’; push?; V0 || 0 O, ®a<(?)ba(8ur) >
do@ (pz + 1) S




PPL

PPL
-

PPL

PPL
—_—

PPL

PPL
—_—

PPL

PPL

= (F)”

r

\

\(

£

[
(o
|
[
|
o

cg) LFE"'].] 0 U'J.UIO(

(%),

()"

#)°

pop®; pop®; pop’;
push®; pop®; push®;

do@(zz + 1)

(&)

pop®; pop®; push?;

pop®; push®;

do@(fr +1)!

(&)

pop®; push®; pop?;

push?®; do@ (pz + 1)!

(k')

push®; pop%;

push° do@(zz + 1)!

(&) )

)1”11

pop ; push®;

do@(px + 1)!

do@ (m+1)), o, vosu; @ (

] 01 1}2

vvlv(

s

’ (e)b ’

[ =]
vl.( ) 1 (E)D!

(%
PUSh&;do@(Fc‘i'l)!: vz, V1 @ (S) ' (E)Df (S

By
U
e '
S
7
A
1
2] !
S
/

27
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0
o Caseiadd: F= |¥, i, £, |y|| Where €[x] = iadd, v; : int and v, : int,
8
t + U2
FOM e wrr e, | =F
s
( =
pop®; mustbein; pop®; vy
»
(F)I> £ mustbej,,; push®; A s ’ (e)ba O} <('i€)b ) ( S ) >
\ do@ (1 4 1)! ) S
( mustbe;jne; pop™; =
>
— mustbenpush®; | v |1 || o+ (O, ET,<(‘6’)°,(SJ) >
s 1
\ k do@(x + 1) =
¢ ( ( =4 .
pop™; mustbey; Vg
EFL y U1, ’ (e)bv o, <(cg)'> ’ ( SJ ) >
\ push®; do@(z + 1)! \ S —
\ ( {H}
¢
mustbe;n; push®; = >
PPL y U, (‘S) ] (E)D <(Cg)£> (SJ) >
L\ do@ (e + 1)! — |
¢ =
—FPL , | push®; do@ (= + 1)!, va, (‘s) , (O, ®v<(‘f)r> (S;) >]
PP, | do@(m + 1)), va, v2e (s) (0", o, <(ff) ( ) >]
> S .
P @)+ 1, 0, ( . (0 < ( ) >]
= (F)®

Case goto: F = [%’, i, £, |

F JVM

[‘tg", wt+a, £

)
) -7

Case fadd: This case is similar to the case for iadd.

where €[] = goto a
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o (st (4 oo o] )

Sy
=g >
— [‘f)b[lr'i'a] 0, ( ) a(f)bv@-<(‘f)b,(SJ) >]
= (F)”
3
s Caseifeq: F= |¥, =, ¢, ° where €[] = goto a
S
o Case v=0: F 2, ’i€ E+a, € |]

r

v
) ] (e)br G’a

pop®; dof@(jx: + a)?do@ (= + 1)1, 0, (
S
o )
) — 8 ’ >
_ee [do@(;m+a)?do@(m+1)!, v, (]g') Nid o,<(f)°,( sJ) >]
PPL [(gf)b[p:+a], 0, (’S SJ) >]

) , (07, o ((‘é’)t’,(
=(Ff)l> T

[’ﬁ, w+a, £, S|] =F

(F)” =

e Casev£0: F

3

pop®;do@(zz + a)2do @+ 1)1, 0, || || . (07, @,
(F)® = s
o ()
[do@(;t:+a)'?do@(p:+1)' (l D <%’ ( ) >]
o (3 oo o (o)
= () -

e Case instanceof: F =

v
¢, m ¢, ] where €[] = instaceof T

23]
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o Case v has type r: F —"™ . | %, ;+1, ¢, ' =F
S
. e t> \
o
pop®; isa,; push®;do@(m + 1)!, 0, , (OF, &,
(F)® = ( 5/
. tI)
-
. - > ‘

4

—FEL isa,;push®;do@(x + 1)!, v, (‘SD ., (O, ®,<('€)D,(Sj) >]

) ofer (o) )
—FPPL do@(;n+1 1, 1-(
P—PL+ (©) " +1], 0, lo(s) ; (E)D"fl,((‘ﬁ)r’,(sdv) >]

i (FI)D

.
—FPPL push®; do(@ (= + 1)! (

JVM

» Case v does not have type r: F €, c+1l, L,

v
pop®; isa,; push®; do@(x + 1), 0,
(F)” =

o (&)

isa,;push®;do@(z + 1), v, (‘S

PPL

DY)
)
)
))

4

>3
—FPL | push®; do@(zz + 1)1, O, (s) , {07, <(?f) (

| ) oo (o)
bl o

S

J

s
—E o (0@ + 1), 0, O (

\

—LPPL L (@) +1], O, 0-(

— (F!)D
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s Case jsr: F = [‘a’, m ¢, S|] where €[] = jsr a
i+1

-

S

r JVM

¢, k+a, ¢,

[ 3
const @(z + 1) push®; do@(jx + a)!, 0, (|§ , (O, o,
(F)” = -

(o)) D J

Sy
PPL > [ g
—==— | push®; do@{zr -+ a)}, @ +1), (|S|) » {67, 6, <($ﬂp) ' ( Sy ) >]

& €)",
—FPL ., | 0@z + a)!, @(zr+1),@(;c+1)-(s) : (f)°.o,<( )'>
— S

o) oo () )

\

5 J

—F s () [ +d], O, @(ps+1)-(

\

— (Fr)b

e Caserel: F= [’ﬁ, m ‘S” where €[] = ret n

M [%, €n), ¢, |s’] =F

. D b
(F)* = [dumP‘r; {popé;}(");do rl, 0, (|S|) , (07, o, <(%)D’( ) >]

Sy
r = g
PPL {pop’; }(");do r, 0, (‘SD , (O, f1]e...e Il.’|,<((lf’)L> : ( S, ) >]

—eet oo g, (lSD , (E)D’f[n+1]-...-|£l,<(‘£)b,(SJ) >]

'S = >
Pl s | (o (el fin], (ISD P, e[n+11-.---|f|,<(fzf)°,(sj) >]
Y N o

In this case, #(£[n]) is only defined if ¢[n] = @(i) for some i, which is also re-

JVM

quired for the reduction.
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e Case jnvokc with void:

5
'i”poy 0, Er
S= Pm| | | Where %p[m] = invoke Af{{m: nlw 71X X7 Xvoid)
S
l ]
S,

[rgﬁh 11 [Pla : :Pma 17T |]

JVM o
s [(fo: ;E-*- 1, Et S|] =5
(‘gﬂf)b[]'}: 01 (Epla N :pmp I ,E]) N G),
51"
<(’5’M)D, >
Sy

e e,
(Ga)°[1], 0, ©, pro...opnele.. . e HeQ, O,

w4
<((é7ft')bi [(DJ.)’;(TC"'I).!! 0! (E)D! ( ) y O, <(%) (

S Ss
r n—m
((gﬂf)b{lly 0: O, ;1 ."'.pm.E."'.E.@' ©,
= mustbe ; = >
<(rng)l'> ] ) 0! (e)D ) (‘S ) ’ G)’ <((€0)D ’ ( SJ ) > >
\ do@(rz + 1)! — —
dump™; {pop";mustber.-}(m) [ \ =
h
transfer’®; dump®;
> E > (%),
(Y = const [; {push; }(" ™) , 0, » (67, G, < g ">
Pm |SJ
transfer®™%; call (‘b”mr)D i =
\[ 51/

\ mustbe, ;do@ (x + 1)! ),



dump®; {pop®; mustbe,, }:m}I transfer),"®; dump®; const [&; {push?;

= transfer?n"‘s; call ("ﬁM)D ;mustbe ; do@(p: + 1

4 >
~0, p;o...'pmo(ﬁ) ., (07, ®,<(%)°,(_) >

Ss

{pop“;mustbeﬂ}(m) transferd®; dump®; const &; {push‘s; }("

transferg;"s; call (‘f,nu)l> ;mustbe] ; do@(zx + 1)!

PPL
& 2 (cgﬂ)ba
0, pro...ep, e (SD , (07 pre...epye (S) <
\ L1
r h'
transfer’®;dump®; const &; {push?’; }(n ™)
_FPPL . transfer?~%; call ()" ;mustbe, ; do@(m + 1)!
> >
Pm, (S)b? (e)ba Pl'---‘pm'(‘S) !<((€0)ba(5.l) >
. — — I
dump®; const K {push6 }( transfer —3.
__PPL . call (¢ar)” ;mustbe; ; do@(z + 1)!

) o (o) (- (o)

transfer® ™% call (‘15’1\;)t> ;mustbe ; do@(m + 1)1,

B n=m
S) , (O, EI....-E.@,(%)" (

Pmy Pm®...e0 @ (‘S
\

’

)

PPL .
_—

8, pneome

|

call (%" ;mustbey ;do@( + 1),
FPL .

S
S i B s n—m
o e na,
&, (‘S) , (0 ,p1-...meoEo...OEo@,<(‘go) (SJ
Ss

call(%ar)" ;mustbe; ;do@(z + 1),

-] n—m
&, (is) s (E)D,p1o...omeE-...oIZIOG,<(‘€0)° (

( n—m

—
do @(v)!, 0, ®, prs...opmeBe . e Be0, @,

PPL .
]

)
)
I

PPL
mustbe;;
<('b”u)b, L0, (07, (ls

)D <(‘6’o)b,
t ®Y
do@(m: + 1)! — (‘SJ )

}(""m)

—m)

)

)
)

)]

)
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(€T, 0, ©, pre...opneWe...eReO, O,
= mustbe ; & (%)”,
<(%”M)b : , 0, (07, (’S ) , @,< >> >
do@(c + 1)! — ( S; )
ey (Sr)[:!- —

This only succeeds in either machine if p, : 7 for all 0 < i < m, In the JVM, the
result is undefined otherwise. In the PPL machine, the mustbe reductions won’t

occur, and the machine will get stuck.

Case jnvoke with nop-void:

Pi1
%0, m, ¢, where %] = invoke M (™ mls 71X X T X Toga)
§= P
and 1,4 # void
S
5y

This is similar to the previous case.

Case Treturn: .
v
%,0, Ira, EU:
So
\ 1 b7
f A
S= o,| | | where %lx] = rreturn and v: 7
(6’]1 1, B.’n
5;
\ J
Sy
v
(gla T, 811
g VM S, - g

Sy




¢ ’ & 3
( v
pop®;mustbe,;restore!, 0, , (0%, o,
=
»
($)” = o
%l, 1, Eli
<('€)", 1 >
Sy
’ ) &> !
v
pop®;mustbe,;restore!, 0, , (OF, &,
= So
N
<(‘€) t [( 'r) 1(?“1).!1 0: (Sl) 1 (81) <(‘£1) (
- , N —
restore!, v, (So) , (O, o,
PPL . 1

L <(%)b! [(Dr)’;(ml)bls 0, (|Sl

,
—E L @)™ i)™, v, (

\

Sl SJ

mustber;

B
= pUSha; y Uy (Sl) ’ (el)b, 'L",((Cg))b,(

do@(ﬂl)’
PPL ., [do@(p:])l v, ve (51) , (81)1"" G_:-,<(%’1

) oo )

» Case return: This is similar to the previous case.

o))

PPL . [(%1 [1331]' 0, ve

1.4 Incorporating Control Flow Analysis
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bl oo ()
b oo ()

The PPL machine does not have anything like the JVM’s z register; so, in PPL, the

flow of control from one instruction to the next must be made explicit. This provides
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an opportunity in translation to optimize the PPL instruction queues to eliminate many
of the do instructions by simply appending an instruction to the preceding one. For
example, the translation of

{...,push 2,store 3,...]}

if push 2 occurs in the i*# position in & is

const 2;push®; do@(i + 1)! e dump; transferg-"s; pop”’; pop“; push”; transferg-"y; do@(i + 2)!

but we could eliminate the internal control flow statement and just translate it as the

single entry in £:

const 2; push®; dump; tra.nsferg'“a; pop”; pop”; push”; transf erg_""; do@(i + 1)!

In the optimized code, the last instruction is do@(z + 1)! rather than the original
do@(i + 2)!, because one instruction queue has been lost. Thus, the transformed code
no longer has the property 2[i] = (¥}:])”. In performing the transformation, we must
be careful to maintain the same code entry points as the original translation. That is, if
the JVML program has an instruction gote + 2, then we must maintain the do instruction
after the following instruction queue so that the +2 branch target still exists.

The algorithm for optimizing the PPL code is simple:

1. Consider each instruction address i starting from |£?| down to 1.

2. If the only reference to @(i) is do @(i)! or do @(7)?@(i)! in the
instruction at 2[i — 1), then

3. replace do @(i)! with dump®;

4. for every j > i, replace every occurrence in & of @(;) with

@i -1).
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This algorithm works because the PPL machine marks returnAddr types in such
a way that even in the instruction const @(5), the address 5 can be easily discerned.
The semantics of a program that has undergone this transformation are unchanged. In
particular branching to labels that are beyond the size of & in the unmodified program
will cause the modified program to get stuck at the same point. Although the new PPL
program does not clear r as frequently, Lemma 1.3.3 says that this is unnecessary.

The algorithm, as stated, requires O(»?), but we can alter it to make one pass that
simply records all of the code label references. Then, in a second pass through the
code, it can compute the label offset at each point, replace the needed labels with their
offset labels, and remove the unnecessary labels. Applying this algorithm to the trans-
lation is equivalent to Higuchi and Ohori’s approach of reconstructing code labels by
identifying branch targets and then assigning labels. While their explaination is more
traditional in control flow analysis, neither approach seems to have an advantage in
complexity. We have adopted our strategy because its use is orthogonal to the question

of the typing system,
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CHAPTER 11
A CALCULUS FOR ABSTRACT MACHINES
I.1 Developing the Calculus

II.1.1 The Calculus of Computational Dualities

The Apji-calculus serves as a starting place for modeling the PPL machine since it has
successfully been shown to model other abstract machines (Bohannon (2004)). The
calculus was first discovered in Curien and Herbelin (2000). The syntax for the Auji-
calculus is given in Figure II.1. The symbol z stands for any regular variable, usually
written as lower case roman leiters, whereas, the symbol k stands for any context vari-
able, usually written as lowercase Greek letters,

The basic computational unit is the command, which associates a term with a con-
text. The most familiar form of a command is (v | #z.c). This brings together a context
on the right with a term on the left. The context contains holes, represented as free
occurrences of the variable z in ¢, which are filled by v.

For example, if ¢ = (v | iz.2 + =) and v reduces to 1, then (v | iz.c) should reduce to
2 + 1. Thus, the left side of the command produces a value or term, which is consumed
by the continuation on the right. Dually, the form {(uk.c | €) executes ¢ with all free
occurrences of the continuation variable k£ bound to e. Of course, the form {uk.c{ fiz.c)
can also occur, and the priority of the reductions in this case distinguishes a call-by-
name versus call-by-value strategy (Curien and Herbelin (2000)). Since the JVM uses
call-by-value strategy, we adopt the convention that priority be given to .

As in A-calculus, a lambda abstraction binds a regular variable to the first term in

the argument list. That is, the - {cons) operator constructs a list of terms terminated
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(v|e)
z | pke|dzv|e v
kljze|lv-el ke

<
]

Figure II.1: Mup-calculus grammar

by a context, and the A operator deconstructs it. Thus in a command, regular lambda
abstraction only operates on a term list. The form (Az.v |’ -e) reduces to (v [7\'] | e).
Here we use “v [;v']” to indicate that free occurrences of z are replaced by v’ in v. As
usual, the binding for z only extends to the body of the lambda abstraction and does not
occur on the other side of the command.

The dual to Az is kA, context lambda abstraction. Predictably, the form (¢’ v | k).e)
reduces to (v|e [1¢']). Thus, kX deconstructs lists of contexts that are terminated by
a term in exactly the same way that regular lambda abstraction deconstructs term lists
that are terminated by a context. This mixing of terms and contexts in lists can cause _

confusion in the exhibited list forms. For example, in a complicated list such as
ep=1-2-¢ ex=3-¢ U] =€) €€ 3 ez=1uy-4-¢
the proper nesting of lists in ez is given as
((L-2-€)-(3-€)-¢e3)-4-¢

which is not ambiguous if one has access to the parse tree. Therefore, the term Az.uk.c
must produce ¢ [\l 2-€-3-¢-e 3] [ €] rather than ¢ [\l] [A2-€-3-€ e 32-4-¢]. The
fact that this is not obvious from the form 1-2-¢-3-¢-¢ 5 -4-¢ should be viewed as typo-

graphical omission of parentheses that are actually inserted in the formal representation.
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(=) Gzv|v-e) — (v [20] |e)
B-) (e-vlkre) — (e [R€] |v)
()  (ukc|e) - ¢ [Ke]
@ (lize) - c |2

Figure 11.2: Auji-calculus reduction semantics

[1.1.2 Substitution at Bounded Depth

The semantics of the Auji-calculus involves the notion of binding through substitution.
For example, we read ¢ [7\v] as the command that results from replacing all free occur-
rences of z with ». However, finding all of the free occurrences of a variable involves
an unbounded search through the syntax tree of the c. Instead of this primitive notion
of substitution, we will extend the Agfi-calculus with immediate substitution. That is,
we will reify the bindings into the term calculus and resolve them when they reach the
top of the syntax tree. This new calculus is referred to as the Apjif-calculus. In order to
introduce the binding operator [z — v|, we must also introduce its dual, the weakening
operator 1. While the binding operator introduces a substitution, the weakening oper-
ator eliminates one. The weakening operator is necessary to avoid unbounded search
for possible redexes through lists of bindings, as can happen in explicit substitution cal-
culi. The syntax for the Aujit-calculus is given in Figure I1.3. In addition to support
for immediate substitution, we have two constant symbols, e and 5. ¢ stands for the null
context. That is, a context that cannot supply anything to a term. Similarly, 5 stands for
the “undefined” term.

As we encounter substitutions at the top of the syntax tree, we will move them
inward in the terms. Therefore, all of the productions of the M7 syntax must accom-

modate the new u production. For example, when a command undergoes substitution,
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z|pke|dzvle-v|a|vW]lvu
klpzec|v-e|kre|e|lellU|eun

u [k €] | [z «~ ]
w o ou= 1% |

Ww = w|Ww

c u= {v|e)|cW]|cu
v

e

Figure 11.3: Apjit-calculus grammar

() A{ukcle) — clk—¢

@ wlizd - el

(B=) (zw|v-e) = (|iz(v|el™)
(B=) (¢-vikre) — (pk.(v1* |e)|e)

Figure 11.4: Mujit-calculus reduction semantics

the substitution is simply distributed through both parts.

{(v|e)[r— 0} reduces to {v|r— 0] | efr — 0})

Wherever a substitution meets a variable, we require that either the substitution be made
immediately, or the variable be weakened sufficiently to prevent the substitution. Thus,
we have the rules z|r — v] — v and k {* [z — v] — &k but, for example, k [z — v] does not
reduce.

In our form of the calculus, we must be very careful about handling A abstractions
to maintain the priority of resolving the terms before contexts (call-by-value). In our
modified calculus, we follow Herbelin and Curien and simulate the Apiz lambda abstrac-
tions using the i construction with the appropriate weakenings. The modified semantics
is shown in Figure 11.4.

In addition to the modifications for call-by-value, we must also include enough rules
to deal effectively with substitutions and weakenings. The remaining reduction seman-

tics are given in Figure I1.5. Here, the notation ¥ represents a series of consecutive



Weakening Introduction
(M) (Azv)k—e] — Az.(vik~el%])
(TAe) (KAv)[K —€] — dz.(v[k —etl*])
(thv) (kAv)[z 2] — Az(v[z—v1*])
(1) (pzc)lk—e] — mclk—e 7))
(wre) (uho) W —e] — pk(c[¥ —etH])
(nrv) (phc)lz —v] — phiclz —vT¥])

Substitution Elimination
(z7) x|z« v —
(k1) k[k ¢ - k
(ro) Vi fze—v] — 1Y
(re) ¥ [k—e] — 1V
(sv) pk.(vt* |E) - v

(se) po.fzlel’) — e

Substitution Distributive Laws
() (ve)u — vu-eu
() (e-v)u — eu-vu
(er) {v|eyu — {vuleu)

Weakening Factorization Laws ]

(C T::) Cﬂ.VUz L —e .ﬂ,V’UJ: . Cﬂ‘v Ee—e .ﬂ.V' 1=
(T e) eV [ e ] - cp¥ [k —eV] ¥
Ik

(CTkU) c‘ﬂ'VUk z‘_eﬂ.v’uk = cﬂ.v m‘___‘e.ﬂ.v‘

Wi®) v gves 1 — e ﬂv'u; N ¢ :k — e ﬂv;' 1%
(vike) vgvur ikr —e ﬁv‘ué] - uq¥ ikl —e ﬂv:] Tk
(w1 v) v Yok m —2' ﬂv’ui:] - vV :1: —_ ﬂv‘] T+
(e1%) efVus A —e V] o eqV A —e 1-rv'] 1=

(eT*e) efVuk 1t — o ﬂ.V’uk] - etV [ ¢ ﬂV'] 1k

(e Tk 'U) e ﬂVUk -.'.L' - .ﬂ.V'Uk] - e ﬂV -IL‘ —7 .ﬂ.V'] Tk

Figure IL.5: Apjit-calculus weakening and substitution rules
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substitutions that include every variable in a set V of regular and context variables. In
fact, we use set notation to refer to a contiguous group of weakenings because the rules
do not distinguish the order of weakenings in such a case. Thus, the L/ production

is considered a single entity where the redex search is concerned. However, since the
number of weakenings in a single LU is limited to the number of variables in the for-
mula, having a defined set of variables will make this a constant search depth. The
important property is that redexes occur at bounded depth from the top of the tree.

The motivation behind a rule such as

(pk.c) [z = v] - phic[z —v Tk])

is to ensure that v, which was formed outside of the x abstraction, not be subject to
the binding for & created by the abstraction. That is, if v contains an occurrences of

k, then it must already be bound to something before the effect of the u abstraction.
This property allows us to have “immediate™ substitution, even though we only actually
make the replacement when the substitution is at the top of the syntax tree. Thus, for
each abstraction, we may have to move n substitutions through it, but n varies with the
number of substitution variables, not the parse tree of the term being reduced, and for
any given abstract machine, the number of substitution variables is constant. To assist

with working with weakenings in representing PPL constructs, we adopt the following

abbreviations:
T Y TgT-fTaTsTr*é
e & {rreteqrys e & eprperTyd f=r & (eprerers
7 & pererry = & reprerrye 175 & errrerr
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4 7

Also, we adopt the usage of an anonymous variable “_” to represent a variable that

is bound and then immediately weakened. For example, we have the reduction

(A_pk.c|v-e} —c[k — €}

Here, the anonymous variable construction can be seen as syntactic sugar for the con-

struction

(Ay- ((uk.c) T%) | v-¢)

where y is a variable not otherwise used in the computation. Since anonymous variable

bindings do not persist, they do not affect the complexity of the redex search.

II.2  Translating Intermediate Code into the Calculus

I1.2.1 Primitive Values and Contexts, Lists and Arrays

To work with the JVM, we hypothesize the existence of primitive values and their dual,
primitive contexts. The primitive values are the usual set of scalar integer and floating
point numbers. The primitive contexts have the form {],, and [],., A command such as
{0][]...) is finished. It is not necessarily stuck in the usual sense, because it may occur
in a side computation. That is, it may occur as a form in the syntax tree that will never
reach the top of the tree, so the dynamic semantics will never attempt to reduce it. In
fact, we intend to use primitive contexts in just that manner. They will be temporarily
bound in a way that the static type checker requires them to be well-typed without

realizing that they do not contribute to the computation of the program.
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For lists, we have the following formal translation from PPL list forms to Aujit

contexts:

(o) & v for primitive and reference types
(wel) = ()" @
The PPL machine also maintains some arrays, which A7 does not support. To handle

this situation, we will simply translate the array to a PPL list and then translate the list:

(0)° = (&))"

In PPL, we had direct access to array elements without processing the entire list, but in
Aufif, we seem to have lost that ability when we translated arrays into lists. Thus, if ¢
is the list of “instructions”, and the term A represents the current state of the compu-
tation. The instruction do @(:)! translates to a command with the following inductive

definition:
do @(i)! = {(€1* | A)

Ay

oA AM 1% | o %)

A = X {Ai-119)
This peels off i contexts, retaining only the last one in o, puts the remaining list in
the anonymous variable, and supplies M to the i** context. Assuming the environment
contains substitutions for all the PPL structures, but no current binding for ¢, then the
reduction sequence looks something like the following:

(@1 | oA orp (17 [0 1IN by — e 12 o= e 4
=@ | oA ({oA (Y P oxiae (M 17 [ o {190} 7D 17 [y — o2 117 o = 2 4717 )
. < po.(€[2..161)° 17 | (oA (P ora- (M 10 >

| o 1) 17 [y —ea 210 fa = e2 17F--)) | 441]
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. < (€[2-16))° | ox({oA GV oo 1° >
Lo 1) {191 1717 [y — en 12100 o = ea 171°) -+ for = £[1] 1))

. < (€[i-161])° | oA(AM 17 | o 1) {17370 >
by = ex 1) fo = e2 117+ [0 o= €t {1300 oo — i - 1) 1))
. < @i+ 10])° | B-AM 1 o 1) {7}070 >
[y — e 4217 o 2 117+ [ = 1] {19)970] o i - 1) 1) o = €]
= (M 17 | o T {17}
b e o1 o o 171+ [o o= €01} {19370 o = i - 1) 1) o — i)
— (M 17 |0 1) [y — e 42717 [a = ea 1] -

(170 o = ) {12)70] o = tli =1 17 o - ]
= (M1° o)y — e 1) [ — e2 4 17) - - - [0 — £][i]]

= My — e 1o — ea 717+ | £d))

While this command does have the intended effect, it also has some drawbacks. Ob-
viously, it does not take constant time to perform the reductions. In fact, it shows that
because the substitution elimination rules are only applied after all of the bindings have
been created, the complexity of applying the (re) rule is O(n®) where n is the number
of weakenings(bindings). Also, the term Af is bound deep inside the command. This
is not a problem with normal control flow instructions, instructions that use the form
do{@(i), because the state is available where the term is formed. However, this does
create a problem with instruction queues that end with do r! because the state of the
machine when the @(i) expression was formed does not necessarily represent the state
of the machine when the do is performed, and the bindings for v and a, for example
would already be made. We need to turn the command into a function that takes two

values and applies one argument to the other. This is easily accomplished by simply
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abstracting out £ and A{. This leads to the function

My (21 [ oA oxie 17 1o H {1710 1%) (IL1)

As before, “{ox.(}*V” and “{1°)}!""1 are replaced by i — 1 copies of “cA.(" and “{=
).” The function takes a list that contains at least two terms. The first term must be a
list of at least i contexts. The i** context is supplied to the second term. The calling
convention is (¢ * | ¢- A - e} where }* indicates that the expression should contain
enough weakenings to destroy any substitutions in effect.

It is convenient to imagine a family of functions, # that are created as needed, or
alternatively, an unbounded number of them are automatically bound as dynamic func-
tional continuations in the computation. They are dynamic in the sense that they are
passed around by name rather than using the immediate substitution syntax. This elim-
inates the need for explicit weakenings, which would be an unacceptable computa-
tional burden, especially if every term were required to contain an infinite number of
them. Henceforth, we will refer to the functional continuations &; such that (7; | £- M - ¢}
rewrites to (M | (¢i])°). Furthermore, although we will use the form of the functions
given above to obtain the proper type, we will consider that they in fact return in con-

stant time. That is, the selection operator &; is an oracle for context list decomposition.

1I.2.2 Extensions as Functional Continuations

In the last section, we developed the idea of dynamic functional continuations to model
a family of functions. In that case, this was merely a notational convenience to allow
us to bypass the bookkeeping on weakenings for all the bindings. However, it is also
possible to use families of dynamic function continuations to extend the expressiveness

of the calculus. For example, we might want to have a functional continuation + such
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(Gi€-M-€) — (M| £[i])

(@i lv-€-M-¢) - (M|{i) v=0
(Gijlv-€-M-¢) — (M|} v+#0

{Talv-e) —- (1]e) v:A

{Tafv-e) — {(0]e) v:B where A# B

Figure 11.6: Extension function reduction semantics

that {+ |v;-v2-e) — {i+j|e). Although calculi exist that can model fixed precision
arithmetic, it is much easier to add a family of arithmetic operators as functions that just
work. Rather than produce the expressions for the functions and derive the reduction
semantics and types, we simply give the reduction semantics and types and consider the
functions as extensions to the calculus.

We use this idea to include the branch functions. For our work on the PPL machine,
we need an oracle that will choose an appropriate address based on the status of r. We
use the form &;; to be the function of three arguments that behaves like &; if the first
argument is zero or g; otherwise. The formal semantics of this new oracle is given
in Figure IL.6 along with the normal selection operator, and the typing oracle. The
dynamic typing functions are a family of functions 7, parameterized by A that return a

value to the second parameter based on the dynamic type of the first parameter.

I1.2.3 Programs and Instructions

There are any number of approaches to code translation into the calculus. In represen-
tations of JVML, the jsr/ret pairs tend to be a stumbling block. In particular, when
the ret instruction is executed, control returns to the calling code, but the local stack
and environment do not return to the calling state, On the other hand, when a return
instruction executes, the current stack and local variables are discarded in favor of the

calling code’s bindings. This multi-tiered bindings property prevents a straight-forward
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representation of jsr as a jump with current continuation. Instead, we adopt a state
passing style. Thus, we expect each instruction to bind to the current values of the PPL
list registers, and then execute its internal commands. This suggests that each instruc-
tion queue have the form pA.vh.al.v where  is the Mpfif context equivalent of & and

v does the work of the instruction. This creates a correspondence between instruction
queues and contexts. Also, since £ corresponds to a list of instruction queues, it can
in turn be represented as a list of contexis s, which is a term in this calculus. Since
computational content in Augl generally corresponds to commands, for technical rea-
sons we require each encoded instruction queue have the form pA.vA.a).jis.c. Thus, the
do instruction will be required to feed ¢, v, « and s to the new instruction queue. Be-
cause we expect to package and unpackage the state object frequently, we will adopt the

following abbreviations:

M & TP T s

M) 2 (pryrerjs. (Orpdc| (0-¢) glomasty)

M & T (M) et

() & (rdspe{(s1" | (pryrerjs. (pbe|e ™)) 10))

The first form, M is the state constructor, whereas the second form, M () is an appara-
tus for deconstruction. In addition to assigning the variables from the state, A () also
assigns the default values to r and 4. Rather than constantly passing 0 and ¢ in the state,
we just leave them out and assume those values for » and § during a transition from
one instruction to the next. The expression (M | M (c)) packages the state into a term,
then unpacks it and executes the command ¢. While this exact form is unlikely in our

translations, the pattern is an important one. The form AT () is necessary to pass values
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back from restore. This only assigns the default value to 4, but takes the value for r as

a parameter. The form (MT (c) | M™) passes everything but § to c.

Example I1.2.1 The command (G ¢ | (s t~%) - M- (e ")) correctly selects the i*" en-
coded instruction queue, and continues the computation with the given state,

We let (2)° be a list of contexts, the it* entry of which is M (c) For this to properly
reduce, the command must be issued at a point in the computation with bindings for all

the PPL structures. The reduction sequence with the proper weakenings is as follows:
@G (st ety ™7 a ™ s 7 e )
[o = F 1111817 [y = 9 1°1°1%17) [ = a 1°1917] [s = (P)° 1917] [ = d 7] [r — 27

= (G| (@) f-g9-a-(P)-¢)
~ {f-g9-a-(P)° | pAydad.js. (Arpdc] (0-€) 17))
—* {g-a-(P) |vh(eXis. (Arpde| (0-€) 1) [p = 7 17])
— {a-(@)° |t (s (rpde | 0-O) 1) [0 — F 1712}y — g 1))
= (- (P) | Bs.((Arudc ] (0-€) ) [ — F 17121 [y — g 1°1°] [ — @ 17]))
= (b |- 1) o — S 1191 by — g 1977] @ = @ 17] [s = ()]
= clp =TI [y =g 11 P e = a P11 [s = (P 171%) [r = 01°] [§ = ¢]
Using the expanded, explicit form of the selection operator, the second step can be seen
as
(G| (@Y fg9-0-(P)€)
= (adppe (1 | oAV oA 17 1o ) (1N 17) [ (P) - f g0 (@) -¢)
> < (@) | BeQyasz 1V | {oA (00 orjify 10 >

Lo N | (g e (2)° -9 19)
B ( Ml ¥ | {on (P ey 10 >

o ) R0 1) [z = (PP 1D | o900 (P) e
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Py < f-g9-a-(2Y >
| Ay (u= (2 1 [ A0 orie 1o 1o {12V 12) [ = (2)° 1] | e 1¥)
B < pefz 1 | {oh (P or it 10 >
o {1 12 e = (@) 1] [y = fr9-a- (PY] | e

- {(&r

{2 i w17 1o N [y — £ g-a- (2)°])
= Y1 e [y—f-g-a-(P)] [0 — (2[i})°]

~ (f-g-a- () | (ZI}))

= {(f-g-a-(P)° | pAvraljs. (Arube| (0-€) §7))

In the example, we performed the same action as the PPL do command:

[dO @), w, 51, s2, Sa,<.@,<1)>] o, [9’[1’], 0, s1, @, sa,<52!,<1)>]

Where the selection operator &, represents the expression @¢(i), and also computes 2|i|
from a given 2, represented here as s. v and o have retained their initial values, as
have ¢, which is the analog of @, and s, which is the analog of #. The current calcula-
tion has become the i** element of s, which is the equivalent of setting 7 = 2[i], and ¢
and r have been set to the empty list and zero, respectively. If we view the code store
as a list of continuations, then the behavior of the system is reminiscent of CPS, where
each instruction performs its transformation on the state and then passes it to the next
instruction. By providing us with the ability to create a context as a list of terms fol-
lowed by a context and vice versa, Apjif supports the inclusion of arbitrary information
into a term.

Since the action of each instruction can be seen as performing some transformation
on the state term, we see that the instruction form @A.vA.al.is.c is necessary to access

the term’s fields, bearing in mind, of course, that a PPL instruction queue may represent
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more than one JVML instruction if the control flow transformation from section 1.4 is
used. It is only necessary to unwrap the state once at the beginning of the instruction
queue, and repackage it once at the end of the quene. However, since I is consumed
in the process of computation, when we represent the state, we will want to show 7
as a simple command. Thus, if we have a function ()" that translates a PPL instruc-
tion queue into a A\uil expression, we extend it to an array of instruction queues by
prepending each queue in the array with the state accessor apparatus. Since the result-
ing expression is a context, we can form a term by using the - (cons) operator on the
individual contexts and terminating the whole list with 5. More formally, the extension

of the instruction queue translation function to instruction queue arrays is given as:

(@Y = (@)
(PIL4))°

(P1.i-1)° - M (L))

Here, we have delegated clearing r and 4 to the instruction queue initialization rather
than to the finalization of the previous instruction queue. This is simply a matter of
convenience, the validity of which is guaranteed by Lemma 1.3.4.

Although the translation is just the identity function for primitive values, there are a

few values that must be given assignment:

(®)° = 3
(@n)° = &

bearing in mind that 5; can be formally defined as the inlined function macro shown in
section I1.2.1, but we choose to think of it as a dynamically bound functional contin-

uation. Whichever way it is defined, we must be certain that we don’t pick up a stray
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redex that causes it to be evaluated rather than stored in r. In particular, we want the
selection function, not the particular code that it refers to, because storing the code at
this point will cause the JVM structures to be bound to their current values; whereas,
“loading” the instruction later allows us to use the JVM structures as they exist at that

time.

Example 11.2.2 The command
(Gi t* | (fre) 17)

correctly binds &; to r in c. We let
co = (3| (@25 17 |0} (1761

in the reduction sequence:
@ | (fre) 1)
[o = F171°1°1017) [y = 9 1°1°1°17] [@ = a 1°1%17] [s — (P)° 1817] [6 — d 1] [r +— 27]
— (G| Br.e[p — F1120°1017] [y — g 121°1%17] [a@ — a 1°1817] [s — (&)° 1%17} (6 — 2 17]))
_ < Az Ay.pacs;) | ir(ee — 1719121917 >
[y — 912111} [o = @ 1°1%17] [s = () 1°17] [6 = d 17])
This does not create a call-by-name/call-by-value conflict because the rule (8_.) cannot

be applied to this context. Thus, the redex goes as planned:
= el = ] [y = g 1°1°1917] [ = @ 121917 [5 = (2)° 1817 6 = d 17) [r — &3 4]

Example I1.2.3 The command

(A7 A7) M (e d™))
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correctly transforms a state with r bound to &, into a command of the form in Example

2.1
rt~" s~ @™y ™7 a ™ s 170 e 1)

o = £ 111101 fr = g 12110] o = @ 121917 [ = (2)° 1817) 16 = d 1] [r — )
= (B (P fg-a-(P) -e)

The rest of the reduction proceeds as in Example H.2.1.

Theoretically, ¢ holds a complete state, but we know that every state saved in &
has r = 0 and § = ®. Therefore, we can leave out the encoding of those values and
just substitute the constants whenever we restore the state. On the other hand, & does
contain an ¢, so we have the following inductive definition of the translation (®)* of @

into a Aujl context:

(@) eft”

([0 70 a0, 20 (P00} ) = (001" 00 (00" (200) - T () -

and the following definition for the translation of a PPL state into a Mgt command:

( [tp — (‘I’O). T‘TT&TsTrTJ] \
TR
: — (ag)® 121719
([ID’ Tor @0, 70, 50.<90,(I)0>]) = (I)" [a . ]
[S — (930)‘" TrTJ]
[ += (r0)° 19]
\ 6 (60)7] )

The translations for the PPL instructions are given in Figure I1.7. The PPL macros
transfer and dig are expanded before translation, so they are not listed in the transla-

tion.



55

(const v;cl)” = ((v)° | (Ar. ()} 1)
(isaq;el)” (Ta ﬂ’ | ‘(!-”'- () 17)
(mustbe 4;c!)” (,u ) Iﬁ 7 ] ﬂ‘))
(push’“;c!)* {(uk. ( C' DV E) k)
(pop*;c)” ((Argake. (e)") 1775 | £ 47F)
((uo. () 1% |ef™)

((ud. (e)") 1% {EF)

(s ) 1 542

o o
¥
=0
Qo
S St
It

(
(retrieve®; c!)*
{

call (&) ;cl)’

)’)
( - (M ( YY) et} S0 ettt (2)° 4
M ((d0 @(1)1)") 171772751718
(restore!)” = ((As-At.u-. L Irfr"T‘ STt 1)) 10 |0 179
(do rt)" (P s Mee )
(do @(n)!)" @t s Meet)
(do @(n)?@(m)!)" = (Fam " |74 8472 -M-ef*)

Figure I1.7: Translation from PPL to Apjt-calculus

const This encoding simply binds the new value to r
isa This encoding uses the typing function extension to place the proper value in r

mustbe This encoding uses two anonymous variables to construct a term that has no
computational side-effects, but will not be well-typed in a call-by-value system
unless r contains a value with the correct type. Here, we have to be careful about
specifying a call-by-value strategy because giving priority to u will cause the
command to reduce to ¢, the intended computation, rather than {(r | {],), a finished
computation. Of course, under a call-by-name strategy, we could have used the
command

(= 277 HIa) 1))

which discards the term binding. This makes use of the fact that the typing sys-
tem must type the anonymous variable, even though it does not contribute to the
computation.

push / pop This encoding uses the term list constructor and destructor to bind/unbind r
to/from the front of the given context.

dump / retrieve This encoding simply binds the context from one context variable to
another context variable.

call This encoding binds the state and remaining instruction queue to ¢, following the
semantics of ()°, then associates the new code array with s and executes the first
instruction. We store the code using AM7 () in anticipation of receiving a value for
+ from the restore command.
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restore This encoding performs the inverse of the call command, dropping the current
state and recovering the previous state from . This command uses the fresh
temporary variable ¢ to hold the restored command, but the binding for ¢ does not
persist into the computation. The outer command decomposes ¢ into s = M and
t = M7 (). The inner command constructs M” = r - M - ¢ and supplies it to A47 ().

do This encoding uses the selection operators to execute the given instruction queue.
The specific forms come from the examples.

I1.3 Proving the Correctness of the Translation

II.3.1 Weakened Normal Forms

Like the function ()* from JVM states to PPL states, the function ()° from PPL states to
Auji] expressions is not invertible. That is, there are many Aufit expressions that cannot
be generated from valid PPL states via the ()” function. However, unlike ()*, many Aujl
expressions are equivalent to the translation in the sense that they reduce to common
expressions in the same number of steps. Since a computation may reduce to any of
these equivalent expressions, we need a framework for recognizing two expressions that
differ only in unimportant ways.

In particular, the order of substitutions on the top of a redex will vary based on the
command sequence performed, but our translation function produces a strict canonical
order that does not take this into account. Thus, we must define an equivalence class of
Aufi? terms that correspond to the same PPL state modula ordering of the outer substi-
tutions. The idea is to allow the outer substitutions to occur in any order, but they still

have to carry the proper weakenings, which is a function of their order.
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Definition I1.3.1 Weakened Normal Form (WNF) is defined inductively as follows:

o [z —v] and |k — €| are in Weakened Normal Form (WNF) provided v and e contain

no outer weakenings.
o If u is in weakened normal form, then for all x ¢ dom(u) and k ¢ dom(u)
o (u “apr\ 1T "]) [z — v] and
o (u [-']"\ “I i* ]) [k — e
are also in weakened normal form.

Here, the [“t”\“S"] operator means textual substitution of “s” for “t”, and dom(u) repre-
sents the set of variables for which u contains a substitution.

This definition says that
o= AT [y = B) and [a = A171%] [y — B1¥] 5 —C]
are WNF, but
@ —Ally = Bl, [a~rlly—B], [« A1~ 4

and [a — A1%17] [y = C1%][6 — D]

are not. Obviously, WNF is a purely syntactic notion that is not intended to capture
anything as powerful as semantic well-formedness. In the remaining part of this section,
we will describe the equivalence classes of WNF formulae that have the same effect on
commands, and then extend the relation to form equivalence classes of commands.

The following two lemmas are needed to show that the equivalence classes of WNF

substitutions are well-defined.
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Lemma I1.3.1 If u is a list of substitutions in WNF and k is a continuation variable

with a substitution [k — e W) in u then k 4omENE 4 e,

Proof. Proof is by structural induction on «, maintaining the invariant that the expres-

sion has the form & f9emN\k 4 or e fdomiu} 4,

» Case u = [z — v] ut By the invariant, the context is either

o k pdom\k o 5 Since z # k, the weakening contains z. Thus, by rule (rv),
this reduces to k fdemENz o =  gdom(u’)\k

o ef?omu) 4 : Since z € dom(u'), by (v), e 9™ [z — v] u' — e fomNT 4 =

e.ﬂdom(u') o
e Case u = [k’ — ¢] u't This case is similar to the previous one.

e Case u=[k—e W] 't If v contains a substitution for &, then & must still be
on the left of the context (since u can contain at most one substitution for
k). By the definition of WNF LU must contain a weakening for each vari-
able in dom(u’). That is, L =qdem@)* By the invariant, we have the con-
text k fdomun\d [k ¢ fdom(uNk] o which factors to kf[k — e] gdemNF o =

k [k — e] fdomm) uf — g gdom(v’) o

s Case v = @: Since the only way to have eliminated [k — e W] from u would have
been using rule (k7), which would have placed ¢ on the left, we must be left with

just e, as required.

Lemma H.3.2 If v is a list of substitutions in WNF and =z is a regular variable with a

substitution |z — v W] in u then = f12°™06N= 4 — g,
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Proof. The same as for Lemma II.3.1, mutatis mutandis [ |
We can now define the equivalence relation ~, over substitutions in WNF as u ~ «'

provided the following hold:
e both » and «’ are WNF
e dom(u) = dom(u')

e for any continuation variable ¥ € dom(u), k %™V 4 —* 4 if and only if

k.ﬂdom(n)\k W =y

o for any regular variable z € dom(u), = f9™®N\= 4 —* p if and only if

mﬂdom(u)\x w =Ty
For example, [a — a 17| [y «— b] ~ [y = b T°] [ «— a] since
al"la—eal"fy—bl=a=ai?[y+ b1%|a —d
and
Y1 la—al?[y=b=b=71% [y~ b1%]a ~— q]

Next, we extend ~4 to an equivalence class over commands by letting ¢ u ~¢ ¢’ if and
only if ¢ = ¢ and u ~; v’. That is, two commands are equivalent if the only difference
is the order of outer substitutions, which must be WNF. Obviously, ~» is an equivalence

relation that defines the equivalence classes

(g = | ¢ g <}
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Intuitively, [c].. is the set of commands that are the same modulo the order of substitu-
tions. Lemmas I1.3.1 and II.3.2 guarantee that the order of substitutions does not matter.

To show that reduction preserves equivalence, we need the following lemma.

Lemma I1.3.3 If u; ~y ug, then for every z € dom(uy) and k € dom(uy), ¢ 1= ug ~ ¢ 1® ua

andchulfuﬂchug

Proof. We show the result for ¢ 1% u; ~4 ¢ 1% ua2, with the conjunct involving context
variables having a similar proof. We need to show that ' 1* u; = 2’ 1% w; If z €

uy, then u; has the form u} [z — v]u} where either «| or «] may be empty, but every
substitute value and context in codom(u}) contains a weakening for z, and no substitute
value or context in codom{u{) contains a weakening for z. Thus, 1= factors out of «] and
eliminates [z — v]. Therefore, 1* u; reduces to a set of substitutions u; that are WNF
and contain all the substitutions in u; except z. The same argument holds for 1= uy —*u,.
Thus, u3 and u, perform the same action on 7/, 50 uz =z'vys and 2’ 12 u) =2’ [Tu;. B

We are now ready for the main result that reduction preserves WNF equivalence.

Theorem 1L.3.4 For cu; ~y cus, if cuy =" then there exists a command c'v such that

cuy —'c'uby and du) ~y il

Proof. If cu; ~y cua, then u; ~y us. The proof proceeds by structural induction on

(v] e). The following case is illustrative:

e Case v=2z 1V, e=(jiz'.co) 1°': By Lemma 11.3.2, x — v, for some vy under both
sets of substitutions, or = t¥ u; does not have sufficient weakenings to reduce fur-
ther. If = ¥ w; is not a proper redex, then the existence of ¢’ is contradicted.
Thus, (v]eju; —* (uo | (jiz'.co) 1% u1> and (v|e)uy —* <vo l (iz’.co) 1% u;;). If

= ¢ dom(u;), then (fiz'.co) 1 u; is not a redex, and again the existence of ¢’ is
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contradicted. By an argument similar to Lemma I1.3.3, 1% u; —*«} and 1% up —"u)
where u} is just »} without the substitution for 2/, and similarly for 4. Thus,
<v0 | (i’ .co) 1% u1> —*cou [z’ + vp) and <'U0 | (fiz'.co) = ur_>> —"cpuh [z — vp). Since
co = cg, it remains only to be shown that u} [z’ — vp] ~y uh [z’ — vg). Clearly,
o dom(sNe ! [2f = vg] = 2’ oM@yl 27 1] = vy, and for all other variables,

the substitutions are unchanged. thus, ¢’ = .

The other cases are similar, [ ]

II.3.2 Confluence of Translated Instructions

In this section, we would like to show that translation followed by reduction is the same
as reduction followed by translation. Unfortunately, for technical reasons, that is not the

case. However, the previous section leads us to believe that the process is nonetheless

PPL!

confluent. To show this, we must appeal to the notation we adopted to prove

Theorem 1.3.5 That is, we would like to show the validity of the diagram

S PPL! _Sf PPL! I~ PPL! g PPL!

Lol

(8)° ——(8")" —— (8" —met (8")— -

where the — arrows represent translation from PPL states to Apjit commands. The next

theorem almost gives us the diagram.

Theorem IL.3.5 For any PPL state S, if S —2:—, &, then there exists a command cg

such that (8)° —co and (8')° ~4 co.
For the use of ~; in the theorem to make sense, we need the next lemma.

Lemma IL.3.6 For any valid PPL state S, (S)° is WNE.



Proof. By inspection on the output of (5)°.

Since we must produce ¢ WNF, we can now prove 11.3.5.
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Proof. The proof proceeds by structural induction on the PPL instruction queues. In

each case, we demonstrate the appropriate choice of ¢;.

o Case const v;clt

§= [const vel, vg, 81, 8o, 83,<530,(]}0>]

(8 = ()"

[v = (s2)° 1o7°171°]
[@ = (s1)° 1°1719]
[s — (20)° 1719

[r — (@)° 19]

\[8 = (s3)’]

/

PPL | -l
- |cl, v, $1, S2, 83, Py, By =

(['P — (%o)" T"’T"T’T’T"]\

~p ()

[y < (s2)° 121°171°]
[ = (51)° 721777
[s — (20)° 171%]

[8 = (s3)" 1]

\[r — (v)°]

[ « (®o)® 17101217 19]

(8)7 = (@ 4 | (&r-(e)) 17) | [y  (32)° 191°171°] [ = (s0)° 1°1717)

- <(v)" ;ﬁr. (e
— ()"

= Cg

o (00 P191918] = 5 11157
o= (00" PPV s = (90" 1917] [5 = (00" 7))
o (@) 1121 1917] o= (s2)” 191°1917] [ = (s0)" 17977])

[s = (L) 117] [6 = (53)° 1] [r — (0)°] )

[s — (20)° 171%] {r — (v0)° 1°] [6 « (53)°]

\

(o= @) o))




¢ Case isa,:

o Case vg: 72
5= [isa«r;c!, w, 51, Sz, Sa,<.%,:p0>]

S I [c!, 0, s1, 89, 33,<530,(I)0>] =5

([w — (®0)* T"’T“T’T'T“]\ ([fp ~ (20)" T"T“T’T'T“]\
[v = (s2)” 197°171%) [v = (s2)° 1271°171°]
T L PO el
[s = (&) 171°] [s = (&) 171°]
[r —071%] [6 < 83 1"]
\[6 s3] / \[r 0] )

[ — (1) 171°1°171°]
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(8) =T ™ | r 77 (@ (D)) 1) | [y = (32)° 191°1719] [a = (s1)° 1°1719]

[s = (21)° 171%]) [r = vo 19] [6 « (s3)°]

| e @) 1R8] [y = () 10101 >
vy - | jir. (cf)
[@ — (s1)° 121%] [s — (21)° TG] [‘5 — (ss)ol

< (- . [‘P — (‘I’l). T'rTchsTJ] [,7 - (32)0 TaTsTJ] >
= (0] | &r.(c)
\ [@ = (51)° 1°19] [s = (£1)° 1%] [6 — (sa)°]
([90 — (®1)° 171°7°1%17] [7 = (52)° 127°1917]
\[ﬂ = (51)° 1°1817] [s = (20)° 1217 {6 — (93)° 17] I < O]

« Case v : 7 where 7' # r: This case is similar to the previous one.

= ()

So

¢ Case mustbe,:

S = [mustber;cl, vg, 51, 32, 33v<9m‘1’0>]

PPL ' =g
S | ¢!, Vo, 51, S2, 83, 54,85 -



(5)° = (et
= (- ()’
(

—>'<p_. (c)*
\

= (P} atatred -
—»‘(c!)*([[p (Po)* 17121217 1¢] [7 « (

[ — (®0)” 171°1°171%] [y &= (s2)° 121°17 1]
[oe = () 12171%] [s = (F0)° 171°] [ = (20)° 1%} [6  (53)°] }
([so — (Bo)" 171°721714]

[v — (s2)° 11°1717)

[ = (51)° 1°171%] [s = (20)° 1719)
\ [+ (20)° 19} [ = (s3)°] )

Y A e [ 84

([w — (&g)" mﬂr’m"]\

[v = (52)° 12121714
[ — (s1)° T°171¢]
[s = (Z0)° 171°]

[r — (vo)o T's]

16— eo)°]

S—
S—

)

for "
| [ )

s2)° 121°1719]

\

\

(o= @0 171001779

[v — (52)° 121217 19)
& (3)" 111719
5 —(P)° 1719]

[
[
[r = (v0)° 1]
(0

N I

= Cg
[ = (50)° 12171 5 = (Po)° 1719 [r = (o0)” 1] [5 = (Sa)°])

o Case push®;cl: let k =a.
5= [push";c!, vo, S1, 52, 53,<90,(I)0>]

PPL

[c!, Yo, Vp ® 81, 82, 53’<93o,f1’0>] =5

[l = oy 11719 ) (o — @y Tro171719)
by = o2)" 121°171%) [y = (s2)° 1o7°171°]
sy =y | & OO | B @
[ = (£0)° 171%) [r — (w0)° 1%71°]
[r — (w)° 1°] [6 — (s3)° 1]
\[6 = (s3)°] J \[o = ()" )]
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([w . (‘I)D T-yTuTaTrTJ] \
[

TaTaTr 6]
[ TaTrTﬁ] [S — 90) Tr 6]
\br =

)° 15] [6 — (s3)°] )
— (Bg)® TYrstridra — (§0)° T87rTé10
. <pa' - [io — (®0)°* 1T712171512] [ ~— (s2)° 1517 181°] (u°)°-(s1)°>
[8 = (P0)° 171°1°] [r + (v0)° 1%1°] [ — (s3)° 1°]
[s — (20)° 171%19] [r — (v0)° 181°] [0 — (3)° 1%] [@ — (v0)" - (51)°]

N (80

(8)° = {{ua. ()} 1 | (r1=") - (@ ™)

o+ (51)°

| o= @) 17 [y = (s2)° 1171919
— ()

= CO

The cases for k =~ and k = § are similar.

Case pop*;cl: let k=a.

5= [pOP"‘;c!, ug, V1 @51, S2, s:;,<gao,q,u>]

—E, [c!, v, s1, 52, sa,<%,%>] iy
([ @ o) (o @0 Pr1epor77e]
br = te2)” 1o7777%] [y = (s2)° 1278171
el | Aol GO B R DR Ao CO R i R
[s — (£0)° 1717] [6 — (s3)° 171°]
[r < (v1)° 19] [r e (2)° 1°]
8= (ea’) / \[& = (1)°] )
o = (B0)" T121°171] [y — (s2)° 121°1717)
(8)° = ((rpe ()) 777% [ 472) | [ o= (00)° - (50)° 191719 [s o= (F0)° 1719]

[r — (w)° 1°] [6 — (s3)°]

{(01)° - (51)°>

< . [fp — ((I)D)' T'yTsT&Tr] [7 — (32)0 TsTJTr]
= {Ar | pa. ()
o (20)° 1917 (6 = (52 7]



. | o @) 171°15171°] [y = (s2)° 11917 1] .
— ( pa. | () (1)
(8 — (L0)° 18171°] [6 « (s3)° 171°] [r — (1)° 1°]

) [ = (Bo)” 17711712 [v — (s2)° 1°1%171°]
s = (@0 191717 [5 = (59 71°] [r o= (o) 19] o= (a2)),

-+"'(

The cases for k =+ and k = § are similar.

Case dump*;c!: let k = a.

8= [dump“;c!, vp, S1, S2, 33,<.%,<I)0>]

_PPL | [c!, Yo, 81, 2, sl,<5aﬂ,<1)o>] =5

y o (@0)° 171°7°171%] [y = (s2)° 1212177 ) p
[o = (2)° 14171%] 5 += (£0)° 171%) [ = (0)° 1] [6 — (s1)°]

(5° = (¢!

[ — (®a)” TTT°171%] [y = (52)° To1°1719)
(8)" = ((p6. (") 1 |a ™) [ @ = (52)° 1°171%) [s — (20)° 1719]

[r — (v0)° 1] [6 « (s3)°]
+_¢I)"IBST6 (_52041.91'6
_,-<#5_ () [0« (@o)" 1T71o121719] [v < (s2)° 1o1°1719] (s,)°>
[ — (31)° 12171°] [s — (20)° 171%] [r = (w0)° 19]
"y [0 — (Do) 177°1°171%] [ = (52)° 1=1°171¢]
[or = (51)° 1°171%] [s — () 171%] [r «— (0)° 15] [6 « (51)"] )

—_ (C

= CD

The case for & =+ is similar.

Case retrieve®;cl: let k = a.

9= [retrieve";c!, vg, S1, So, 33,<90‘:1)0>]

—PPL__ | =5
cy Yoy 83, 2, 53, 90,‘1)0



(

[v = (s2)° 121°171°]
[oc = (s2)” 1171%]
[s — (20)° 1777

[r — {vo)° 1]

\[8 = (sa)°]

(8)° = ()"

[o — (20)* T"’T“T’T"T"]\

/

~ )

[y += (s2)° 1217151°]
[s = (20)° 171°%1°]
[r = (v0)® 1519}

[6 « (sa)° 1°]

\[o = ()]

(o= oy 1117177917

= CO

/

[0« (0)° T7121°171%] [y = (52)° 1°1°1777]
(81 = (e @) 1% [6479) | [a o (22)° 121719] [s = (20)° 1719]
[ — ()" 19] [§ — (50)7]

< o [ o= (@) 171017191 [y = (s2)° 1217707
—* (pe. | ()
[S — (90)0 TrTGTu] [T‘ - (UO)G TJTQ] [(5 . (33)0 Tn]
[0 = (20)° T71°171%1%] [y = (s2)° 1°17157°]
[5 = (20)° T191°] [r = (0)° 191°] [6 = (50)° 1°] [ = (5)°] |

= (el)*

The case for k =+ is similar.

+ Case do r!:

S = [do !, @(Uo), &1, 82, S13, <90,¢I)0>]

L [90[1?0], 0, s, sa, ®,<530’(I)0>] =59

(5)° = (Polwo])*

[(p — (dg)* T'rTnTaTrTJ] ['7 - (2)° TaTsTrTJ]

fr = (51)° 1°171%] [s = (P0)° 171%) [r = 0 1] [6 +— ]

(33)ﬂ>

—Cﬂ

[ = (®0)" 17121°1719] [y — (s2)° 1°1°1717]
(S ={r ™" [s 47 M et} | [a e (51)° 1°171%] [s = (P0)° 171

[r = G 1°) {6 (s3)°]
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— (Fu | (P0)°+ (Bo)" - (52)° - (51)° - (F0)" - )

— (Dg)* atstred — (5)° tOt187T18 — (51)° 187716

— (Polu))” [ = (@) 712171718 [v «— (52)° 1°7°1719] [a@ « (s1)° 1°171°]
[s — (P0)° 171%] [r — 0 1%] [6 «— ¢]

=Cn

Case do @(v)!:
S= [do @(v)!, vp, s1, 82, 53,<.9?0,(I)0>]

—PPL | [90[11], 0, 51, 52, O’<901(I)D>] =5

(S = (P [0 (®0)* 177121°171] [ &= (s2)° 1°1°1719] [ax = (52)° T’T’"T“:) .
[s = (P0)" 11°] [r = 0 1°] [§ = ¢]

[ — (Bo)® TY12121719] [y = (s2)° 1o1°1719]
Sy =@t [s47* -M-e ) | [a = (s1)° 1°171%] [s = (P0)° 1719]

[r = (w0)° 1] [§ = (53)"]

— (Tua | (P0)° - (B0)" - (52)° - (51)° - (P0)° - €)
= {(®o)* - {52)° - (51)° - (Z0)° | (Po[wa])®)
= ((o)* - (52)° - (51)° - (P0)° | pAvhads. (Arppb. (Polwo])” | (0-€) 7))
e (Faln]) ([cp — (B0)" TTT11719) [y 4= (52)° 121°1719] [or = (s1)° T’T’T“])

[s = (o) 171] [r = 01°] [ ¢]

= Cu

Case do @(n)?@(m)!: This case follows the same lines as do @(m) n

Case call (2));c!:
S= [call(.?l);c!, Yo, S1, Sz, 53,<90,(I’u>]

—_— [91[1], 0, @ s3, @, <917 [C!1 0, s1, s, 3;(@01‘1’0)] >] =5



[r,o - [c!, 0, 1, 2, O, <9"’u, «1»0>] T‘)’TQTJT:—TJ]
() = (P | [y (s2)° 121°1719] [ = € 19779] e
[s = (21)° 1719 [r =0 16] [6 = ¢]

([0 = @0y o]
[v — (s2)° 121°171%]
[ = (51)° 151719
[s — (Po)* 1719]

T} A) e ) 600 et >

or-{ U@
1 1 ¥ ((¢0 @))") 12171211773

(2)°

\[r = (00)° 1] [6 = (53)°] }
_},( ((B0)" - (52)° - (81)° - (P0)° - AT (1)) - €} - (33)° - € - (1)° >

| pAyrads. (Arus. (do @(1)Y)" | (0-€) 19171°7°)
= (Mrub.(do @)Y | (0- ) 1¥171°1°)

[ = ((P0)* - (52)° - (1)° - (P0)° - M (()") - €) T71°7°]

[y = (53)° 121*] [ — € 1°] [s — (24)°]

[p = ((Pa)® - (s2)° - (51)° - (F0)° - M ((c))") - €) T71214171%]

(2o @M | [y = (s2)° 191°171%) [a o= € 1°171°]

[s = (2)°171%] [r — 0 19] [6 — ¢]
By the sequence shown in the case for do @(a)!, this reduces to ¢

o Case restore!:

let ¢, = [cll, U1, 84, S5, Sﬁ,<§2,([)0>] .
Sm= [res’core!, vo, S1, S9, 33,<91,qyl>]

PPL | [Cl!, Vg, 84, 395, G),<gag’(1,0>] =5
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(o = @or P17 A EEp——
[y = €so)® 121°171°] [o — (®0)" 171°1°1%]
S =y | ETETTTTT | T
lo = (22" 1'7] o= (52 1°17]
fre=va ] [s = (22)° 1°]
\[§ el ) \ 64 )

[ — (@0)°* 1712171719
> [v = (52)° 1°7°171%) [ = (52)° 121719]
[s = (21)° 1718] [r — v 19] [6 — (s3)°]
AsAbp (A | P 77T s 70Tt e 1011 [0 — (®1)° TYT017 19701
o < [y = (s2)° 12171%1°1] [a — (51)° T71%1°1%] [r w0 157°1%] [6 = (s3)° 1°1*])
| (B0)* - (s5)° - (54)° - (P2)° - MT ((er)")

(As Mt {t* | r ™71t
(8)° = <

SATT e TN Lo f?

( [p — (®1)° T71°§7157°1¢]
[y = (s2)° 1217181°14] [ = (1)° 17 1%1°1Y)
=D eI S AT 1) | [ wo 19101 [6 = (s0)° 1°1Y]
[s — (0)" - (s5)° - (s4)° - (P2)° 1]
\ [t =M ((e2)")] ),
= (M7 (1)) | v~ ((20)° - (55)° - (s0)° - (P2)°) -¢)
_ < Ardsp. (s 7 | (@Avdaris (ud. ()™ | e %)) %) >
| w0~ (Do) - (55)° - (54)° - (Pa)°) - ¢

= (s 1" | {(pAyrarjs. (ub. ()" |e %)) 1) Irew 1)
[s < (P0)" - (85)° - (54)° - (F2)°]

= ((P0)" - (55)° - (54)" - (F2)° | @Aydadjis. ({ud. ()" | e 47%) [r = vo TP171°1°]))
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Tl

[r o 19171°7%] [ = (20)" 171°17]

[y = (s)° 11°] far = (80)° 1] [s = (22)"]
fr = w 19171°1°1°) [ = (20)" 171°1°17]
[7 = (s5)° T51°1%] [ = (50)° 1°1%] [s = (P2)° 1°] [6 —

—* <y5 (e!)” I € ‘n‘_‘;)

- (C]!)*

=y
|
Taken with Lemma I1.3.6 and Theorem IL1.3.4, Theorem 11.3.5 shows the following

diagram:

PPL  or PPL i PPL #  PPL ...
S S + S S ,

NN NN
ENANAN
NG AN

.

By strategically ignoring some of the nodes, we can replace the —EFL, reductions

with —2£ . However, to obtain the result we want, we need to show in the modified

diagram that ¢; = (§)°. Although Theorem I1.3.4 is the best we can do for arbitrary
Apfit commands, we are not dealing with arbitrary commands. Since each PPL do com-
mand rebinds all of the variables, the translation of each do command will result in a

canonical ordering of the outer substitutions.
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Lemma I1.3.7 If s —FPL ., &' and

’

® 5= |do rl, vy, 81, 39, S3,<90,([)D>]

.

® orS= |do @(?::I!, tg, S1, 392, 33,<§0’(I)0>]

e or 8= {do @n)?@(m)!, v, 51, So, 53,<gao,q)0>]

then (S)° — (§)°
Proof. Each case is shown in the proof of Theorem I1.3.5.
Theorem I1.3.8 For any PPL state S, if S —YPY . &, then (S)° — (§")°

Proof. This is immediate from Lemma I1.3.7 and the observation from definition 1.3.1

that —EPL_, always ends by reducing a do instruction.
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CONCLUSION

This thesis has demonstrated the ability of sequent calculi to represent actual machines.
This extends the previous work of Bohannon (2004) in simulating the SECD and other
abstract machines. Although the JVM is formally abstract, in the sense that its instruc-
tions do not operate on any actual hardware, it is clearly a fully featured computing
environment. Our work, therefore, has shown the feasibility of developing a calculus
in sequent form that can model the low-level details of a functioning machine. The
calculus used here is based on the calculus of Curien and Herbelin (2000).

In creating an intermediate abstract machine, we maintained the constant time na-
ture of the instruction execution steps. These intermediate instructions can be seen as
microcode in some implementation of the JVM. The stack-based intermediate machine
allows us to translate its instructions into the list-based term and context expressions of
the Mt calculus. By using immediate substitution, we were again able to maintain the
constant time nature of each computational step.

Our approach was to combine the function of the JVM verifier and interpreter into
a single target semantics. This strategy produces a result in the calculus that at once
simulates the JVM interpreter reductions, and also produces terms that type-check ex-
actly when the verifier passes on the JVML instructions. However, to fully realize this
goal, our work would have to be extended to encompass a representation of the heap.
In particular, our work does not check the proper initialization of references. Therefore,
our system is not as powerful as Freund and Mitchell (1998).

This work shows the feasibility of developing a verifier based on the logic of an

off-the-shelf calculus. With such a verifier, neither the rules of the translation, nor the
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rules of the logic need be a part of the trusted code base. This allows a much more
secure verifier than one based on control flow. Our work has shown how to accomplish

this using a sequent calculus that is much closer to the machine execution than other

proposed calculi.
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