THE APECS PORTAL: A COLLABORATIVE NEUROSCIENCE REPOSITORY

by

VICTOR HANSON-SMITH

A THESIS

Presented to the Department of Computer
and Information Science
and the Graduate School of the University of Oregon
in partial fulfillment of the requirements
for the degree of

Master of Science U of O
December 2007

NOV 2 6 2007
X .
@ 1 Graduate School

-1

THE APECS PORTAL: A COLLABORATIVE NEUROSCIENCE REPOSITORY

by

VICTOR HANSON-SMITH

A THESIS

Presented to the Department of Computer
and Information Science
and the Graduate School of the University of Oregon
in partial fulfillment of the requirements
for the degree of
Master of Science

December 2007

i1

“The APECS Portal: A Collaborative Neuroscience Repository,” a thesis prepared
by Victor Hanson-Smith in partial fulfillment of the requirements for the Master of
Science degree in the Department of Computer and Information Science. This thesis

has been approved and accepted by:

W D7V)adlyn,

Dr. Allen D. Malony, Chair of the gxamining Committee

Oct 15, 2007

Date

Committee in charge: Dr. Allen D. Malony, Chair
Dr. John Conery
Dr. Dejing Dou

Accepted by:

Dean of the Graduate School

Copyright 2007 Victor Hanson-Smith

iii

iv

An Abstract of the Thesis of
Victor Hanson-Smith for the degree of Master of Science
in the Department of Computer and Information Science

to be taken December 2007

Title: THE APECS PORTAL: A COLLABORATIVE NEUROSCIENCE
REPOSITORY

Approved: mﬂ D 7?/[CLHG‘W

Dr. Allen D. Malony, C‘gair

Electroencephalography (EEG) is a non-invasive method for measuring
neural activity across a wide range of clinical and basic research contexts, including
the detecting of seizures, studies of sleep patterns, and research on the cognitive and
neural bases of language recognition. EEG research faces a number of computational
challenges, relating to the abundance of experimental data and a paucity of
organizational tools. To address these issues, we create a data storage and
management system. This system includes a collaborative neuroscience repository
called the APECS Portal. This thesis responds to the question: how do we design a

collaborative repository for the digital artifacts required for EEG/ERP analysis?

CURRICULUM VITAE

NAME OF AUTHOR: Victor Hanson-Smith

PLACE OF BIRTH: Long Beach, CA

DATE OF BIRTH: June 8, 1981

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon
Seattle University

DEGREES AWARDED:

Master of Science in Computer and Information Science,
2007, University of Oregon

Bachelor of Science in Computer Science,
2003, Seattle University

AREAS OF SPECIAL INTEREST:

Collaborative Software Web Portals Computational Science

PROFESSIONAL EXPERIENCE:

Graduate Research Fellow, Department of Computer and Information
Science, University of Oregon, 2007 - present

Teaching Assistant, Department of Computer and Information
Science, University of Oregon, 2007 - present

Graduate Research Fellow, Neuroinformatics Centers, University
of Oregon, 2005 - 2007

Software Engineer, Authora Inc, Seattle, WA, 2003 - 2005

Web Designer, Seattle University, Seattle, WA, 2002 - 2003

PUBLICATIONS:

Victor Hanson-Smith, Daya Wimalasuriya, and Andrew Fortier. Nutri-
Stat: Tracking Young Child Nutrition. In CHI 2006 Extended Abstracts
on Human Factors in Computing Systems. Conference on Human Fac-
tors in Computing Systems, ACM, 2006.

vil

ACKNOWLEDGMENTS

This project was made possible with advising and mentorship from Allen Malony,
who challenged me to explore an exciting and foreign field of study. I am also
grateful to Gwen Frishkoff, for patiently teaching me about the neuroscience
analysis pipeline. Additional thanks goes to Robert Frank, Robert Bell, and other
researchers at the Neuroinformatics Center for support with countless engineering

and design concerns.

viii

TABLE OF CONTENTS

Chapter Page
I. NEUROSCIENCE BACKGROUND 1
1.1 Claims about Current Practice 3

II. METHODOLOGY e e e s e i 7
2.1 Collaboratories, 7

2.2 Scenario-Based Design 8

III. DESIGNING THE PORTAL 10
3.1 Requirements Analysis 10

3.2 Activity Designo 21

3.3 Information Design 26

3.4 Interaction Design 31

IV. DESIGNING INTERFACESFORTHEWEB 39
41 Tools Lo E e s e S S s 39

4.2 Design Strategies 41

V. THE APECS PORTAL AND BEYOND 49
5.1 The Next Step for APECS 54

5.2 Future Work in Portlet Design 55
APPENDIX: DATABASE SCHEMA 57

BIBLIOGRAPHY e 61

ix

LIST OF FIGURES

Figure Page
1.1 The EEG analysis pipeline begins with captured data 5
1.2 The EEG analysis pipeline continues with statistical averaging 6
2.1 An overview of the scenario-based design methodology 9
3.1 An HTA for account creation 13
32 AnHTAforaddingfiles 14
3.3 An HTA for searching the repository 15
3.4 An HTA for cleaning waveforms 16
3.5 An HTA for organizingobjects 17
3.6 An HTA for sharingdata 18
3.7 An early sketch of the upload interaction 31
3.8 An early sketch of the search interaction 32
3.9 An early sketch of the APECS eyeblink cleaning interaction 34
3.10 An early sketch of the file-sharing interaction 36
3.11 An early sketch of the file-group interaction 37
4.1 An example lifecycle of a dynamic hypertext document 44
4.2 An HTA for the task of cleaning waveformdata 45
4.3 A representation of data dependencies among tasks 47
5.1 The APECS Portal system design 50
5.2 A screenshot from the APECS Portal, showing file import 51
5.3 A screenshot from the APECS Portal, showing job composition tools . . 52

5.4 A screenshot from the APECS Portal, showing search tools 53

CHAPTER 1

NEUROSCIENCE BACKGROUND

Electroencephalography (EEG) is a measurement of electrical brain activity. Non-
invasive EEG electrodes are attached to the scalp to measure the electro-neural re-
sponse to visual, auditory, olfactory, or other sensory stimulus. EEG is experimentally

useful for a wide-range of clinical and research applications (for reviews see [18] [22]
and [28]).

When EEG is used to measure the neural response to stimuli, scientists are looking
for event-related potentials (ERPs). An ERP is the electrophysiological response
to experimental stimulus, measured as a difference in electrical potential between
electrodes. However, before ERPs can be detected in EEGs, the source data must

undergo a multi-stage transformation.

An EEG headnet contains a mesh of electrodes. The head-net captures “raw con-
tinuous” EEGs, which are typically contaminated with electrical activity from eye
blinks and other biological artifacts. In the first step of the transformation pipeline,
independent component analysis (ICA) algorithms can be used to “clean” biological
artifacts from EEG waveforms. The Automated Protocol for Evaluation of Electro-
magnetic Component Separation (APECS) [20] is a Matlab toolbox which implements
several ICA algorithms, including Infomax, FastICA, and SOBI. APECS is based on
Joe Dien'’s ICA Toolbox [5].

In the second step of the analysis pipeline, “cleaned continuous” data is segmented
into smaller pieces. The segments which correspond to possible ERPs can be kept,

while the uninteresting segments can be discarded.

[Sv]

Up to this point in the pipeline, the signal-to-noise ratio is too low to typically
detect ERPs. In other words, concurrent brain activity usually conceals the desired
ERP. This problem is solved in the third step of the pipeline. Tens or hundreds of
cleaned-segmented EEGs are averaged together to elicit a better signal-to-noise ratio.
When many EEGs are averaged together, ERPs stand-out clearly.

After ERPs are collected, correctly labeling the results is a challenge. ERPs can
be described by several attributes, including polarity and onset delay. For example,
the P100 is a type of ERP with a positive potential-difference which appears approx-
imately 100 milliseconds after the onset of the experimental stimulus. The N400 is
another ERP type with a negative potential-difference which appears about 400 mil-
liseconds after the stimulus. ERP labeling is problematic because classification rules
vary among research groups. Recent work presents techniques for automatically label
some types of ERP data [17, 29].

In some cases, ERPs might be passed through a final processing stage to remove
bad channels, to perform a baseline correction, or to perform a re-referencing montage.
"The product of this pipeline is a collection of segments, each containing experimentally
useful ERPs. Figure 1.1 and 1.2 illustrate the analysis pipeline.

EEG data is difficult to work with for three reasons. First, there does not exist
a universal EEG analysis pipeline. In some cases, the APECS cleaning might be
ignored, or an alternative processing algorithm might be applied. In other cases, the
continuous EEG might not be segmented at all. The specific steps for transforming
raw data into experimentally useful ERPs depends on the precision of the recording
equipment, the timing of the experimental stimuli, and many other factors. The
flexibility of the EEG analysis pipeline has ramifications for information modeling,
which is discussed in Chapter Three.

Second, the physical storage requirements for an EEG-based study can be sig-
nificant. A brief example illustrates why EEG files are large. Suppose each EEG
electrode records time samples as four-byte floating-point values. If we employ 256
electrodes, then our electrode mesh generates 1,024 bytes per sample (which equals
one megabyte). If we record at 60 Hertz (which is 60 samples-per-second), then we

generate 60 MB of EEG content per second. At these rates, a five-minute recording

session generates 17.58 gigabytes of data. However, this estimate is conservative.
We can explore the upper-bound of storage requirements if we use higher-resolution
recording equipment. Specifically, the Geodesic Sensor Net [3] is capable of record-
ing at 1,000 Hz. 256 electrodes recording at 1,000 Hz generates 292.97 gigabytes in
five minutes. Our conservative example generates hundreds of gigabytes of data with
a dozen human subjects. However, in our upper-bound example, a dozen human

subjects generate several terabytes of raw data.

The third challenge is the complex inter-relationship between EEG data. As
researchers modify and transform EEGs, they generate cleaned data, filtered data,
and segmented data. Researchers also need supplementary digital artifacts, such as
blink templates, sphering matrices, and job logs. This panoplay of content can be
logically arranged into a hierarchical “provenance tree.” By tracking provenance,
scientists can determine the history of transformation applied to an artifacts, and

which from which source the artifact originated.

Although EEG-studies generate a complex abundance of experimental data, there
exists a paucity of neuroscience-specific organizational tools. In response to these

challenges, this work aims to create a data storage and management system.

1.1 Claims about Current Practice

Our investigation reveals shortcomings with current EEG/ERP practice. Here we

enumerate these claims.

File Storage

The researchers in our study store EEG/ERP files on local workstations. Unfor-
tunately, distributed local storage systems make it difficult to track the provenance

of a file throughout the EEG analysis pipeline.

Interface Limitations

Users currently interface with the APECS tools through Matlab. Although Matlab
provides a robust analysis environment, it does not natively support job-batching and

job-queueing.

Job Definitions

APECS job definitions are stored as Matlab files. These job files collude the algo-
rithmic parameters with the input-file specifications. Simply put, a job “definition”

and a job “instance” are not clearly separated.

Waveform Meta-data

EEG/ERP files contain waveforms, which can be described by their sampling-
rate, channel count, segment count, and many other parameters. The meta-data
about a waveform is stored in its file header. Searching for a specific waveform can

be laborious because several files typically must be opened and inspected.

Ad-hoc Sharing

Under current practice, researchers share EEG/ERP-related files in an ad-hoc
fashion. The team of researchers in our study shared files without using version-
control software or a centralized repository. Although ad-hoc sharing can be conve-

nient, it leads to consistency problems across workstations.

EEG capture

{using N electrodes)

N channels

APECS cleaning

(cleaned continuous EEG data) the eye-blink is removed

Segmentation

(cleaned segmented EEG data)

These segments correspond to This segment is not
experimental stimulus., experimentally relevant.

(To additional stages of analysis, including ERP generation)

FIGURE 1.1. The EEG analysis pipeline begins with captured data. In this illustra-
tion, N electrodes capture N individual channels of EEG data. The raw continuous
data is “cleaned,” using the APECS algorithms and then segmented for downstream

assay.

timetl timetl+A timet2 timet2+A timetn time tn+A
e S e ey R T P L A RS At At L
Rt L e N) P P AL e AN seee R R P L L LR N
L W B o B e e LY Deonni s B
CRLaP ot T ¥ o P v V) Nl LLa S & dietedindina Sl b A
segment 1 segment 2 segment n
S— e
—————
n
* e e A W
— — v N N R
(Z) - n — - \4“\-\ STt
1 - P N

an averaged
segment
The ERP stands-out

FIGURE 1.2. The EEG analysis pipeline continues with statistical averaging. EEG
segments can be averaged to isolate experimentally useful event-related potentials
(ERPs). In this figure, segments 1 through n were recorded while a single human
subject was presented the same stimuli n times. ERPs can also be generated by
averaging EEG data from several human subjects reacting to the same stimuli

=1

CHAPTER II

METHODOLOGY

How do we design a storage and management system for the digital artifacts
required in EEG/ERP analysis? This chapter discusses the concept of a collaboratory,

and a methodology for designing collaboratories.

2.1 Collaboratories

The word “collaboratory” is used in many contexts, ranging from simple web
applications to sophisticated virtual meeting rooms. For our discussion, we are con-
cerned with collaboratories as a means to provide cooperative access to a large and
dynamic dataset. This type of collaboratory has been successfully employed in re-
lated domains. For example, The Biomedical Informatics Research Network (BIRN)
includes a collaboratory for studies of magnetic resonance imaging (MRI), electron
microscopy, and other bioimaging technology [13][23). The Zebrafish Information
Network (ZFIN) is another example of a collaboratory [31]. ZFIN is built around
the zebrafish model organism and provides tools for searching and analyzing genetic
sequences. The Collaboratory for Multi-Scale Chemical Science (CMCS) is a collabo-
ratory for chemistry research [11][24]. The CMCS supports several scales of analysis,

from nano-scale quantum chemistry to deci-scale flow simulations.

2.2 Scenario-Based Design

The scenario-based design (SBD) methodology is a useful tool for articulating
specific requirements for many instances of user-centric software, including a collab-
orative repository. SDB is a design framework which emphasizes the documentation
of user activities. In this way, SBD is a means to accurately abstract, categorize,
and capture technical knowledge about unfamiliar domains. This chapter briefly de-
scribes the SBD paradigm, and chapter three applies the methodology to the problem
of EEG/ERP analysis.

In the SBD parlance, a system is composed of artifacts and human stakeholders.
“Scenarios” are stories about users and their activities within a system. SBD suggests
three design steps: activity design, information design, and interaction design. Figure
2.1 illustrates the relationship between these steps and the larger design process.

In the first step, we enumerate the tasks which should be supported by our system.
At this step, the system is considered without concern for any implementation details.
By postponing a discussion about implementation, the designer is free to abstractly
generalize the system.

During activity design, we consider the tradeoff between the flexibility of a general-
purpose system versus the specificity of a specialized system. At this step, we also
bound the problem space by defining activity-based relationships between actors and
artifacts. At the end of the activity design, we articulate “activity scenarios” which
define the tasks to be supported by the emergent system.

In the second step, we elaborate upon the earlier activity scenarios by articulating
which pieces of information are needed to accomplish each task. Whereas activity
design is concerned with defining the activities in the system, information design is
concerned with defining the information within those activities. The result of the
information design step is a coherent set of “mock-up” prototypes. During this stage,
we considered many design tradeoffs and aesthetic principles. For example, Gestalt
principles of visual organization present guidelines for the proximity, similarity, and
symmetry of objects in a visual field. The coherent use of colors, position, shape, and

size establishes expectations which gives each user an intuitive ease [30].

Analyze

Analysis of A Claims about
stakeholders, Problem scenarios current practice
field studies l

Design

Activity
Metaphors, scenarios
information
technology,
HCI theory,
guidelines

Iterative
analysis of
usability
claims and
redesign

Information scenarios

Interaction scenarios

\

Prototype & Evaluate

Summative
4—{ Usability specifications

Formative
evaluation

FIGURE 2.1. An overview of the scenario-based methodology, reproduced from
Rosson and Carrol [30]

In the third design step, interaction design, we define the mechanisms for retriev-
ing and manipulating information. Simply put, interaction design is about ensuring
that users can perform appropriate actions at appropriate times. At this step, we
decompose the earlier activity scenarios into action sequences. Transforming action
sequences into a functional web-based prototype raises interesting design challenges.
In chapter four, we address these challenges. In chapter five, we discuss the current

version of the APECS portal.

10

CHAPTER III

DESIGNING THE PORTAL

This chapter explains the design process behind the APECS Portal. Impatient

readers can skip to chapter four, in which we discuss our design result.

3.1 Requirements Analysis

I began my investigation by answering the following questions: Who will use the
system? What objects (virtually) exist in the system? How do the users and objects

interact?

3.1.1 Stakeholder Profile

Many different types of users employ the EEG/ERP analysis pipeline. Although
no archetypical user exists, we can describe the actors in our system according to
a continuum of scientific needs. At one end of the spectrum, users experimentally
capture raw EEG. These users need a storage system for large volumes of digital
content. At the other end of the spectrum, users analyze pre-recorded EEG/ERP
content and need a management system. Depending on the research environment, a
user might focus on one aspect of the analysis pipeline, or operate at both ends of

the spectrum.

11

3.1.2 Relationships Among Stakeholders

The relationships among stakeholders can be defined with respect to the EEG
analysis pipeline.

Inter-stage collaboration occurs between actors focused on separate analysis
stages. For example, User A might focus on capturing waveform content and User B
might focus on cleaning and processing the content generated by User A.

Intra-stage collaboration occurs between actors focused on the the same step
in the analysis pipeline. For example, User A and User B might cooperatively analyze
the results of cleaned data. Or, User A and User B might collaboratively capture and
store waveforms.

Despite these classifications, the user relationships are typically blurred. For ex-
ample, User A and User B might collaborate between stages in one context, but

collaborate on the same stage in another context.

3.1.3 Artifacts

My investigation into the EEG/ERP domain reveals several artifacts which are
necessary for waveform analysis. The following section enumerates these artifacts and
describes their role within the portal.

EEG/ERP files contain electrical waveform content. An EEG file is recorded
outside the system, using NetStation (or other EEG capturing technology). Once
a waveform is committed to the repository, it can be processed, segmented, and/or
averaged. EEGs which have been averaged can contain experimentally useful ERPs.
EEG/ERP files exist in a diversity of forms, but generally can be described according
to three factors: processing status, segmentation status, and averaging state. The
types of processing which can be applied to waveform data include ICA separation,
bad-channel removal, and baseline correction. Unprocessed waveform data is consid-
ered "raw.” The segmentation process divides a waveform into smaller units. The
number and length of the resultant segments can vary. Individual segments can be
discarded, which means that segmented EEG/ERPs might not contain all the original

waveform content as the original unsegmented file.

12
All EEG/ERP files share the following set of attributes: file size, number of
segments, number of channels, number of samples, number of events, last modified
date, upload date, and a timestamp indicating when the file was committed to the
repository.
Blink templates contain a single-column matrix of electrical potential values.
Blink templates correspond to the apex of a blink event, and can be used to “clean”
eye-blinks from EEG data. Although blink templates are derived from waveform

data, blink templates lack a temporal component.

All blink templates share the following set of attributes: file size, number of
samples, last modified date, upload date, and a timestamp indicating when the file

was committed to the repository.

Sphering matrices are used to produce whitened data. Sphering matrices are
produced by decomposing the covariance matrix into eigenvectors and eigenvalues.
A sphering matrix is multiplied by “centered” waveform data to generate whitened
data. APECS output logs are brief text files with relevant messages produced
during the APECS execution. Excel spreadsheets are used to store information

about human subjects and EEG analysis results.

3.1.4 Hierarchical Task Analysis

My preliminary investigation of the EEG/ERP domain revealed six high-level
tasks which should be supported by the repository. These tasks include: creating a
system account, adding content to the repository, searching the repository, cleaning
EEG/ERP with APECS, organizing/grouping files, and sharing content with other
users. Figures 3.1, 3.2, 3.3, 3.4, 3.5, and 3.6 illustrate a hierarchical task analysis for
the six high-level tasks. Each analysis diagram describes a task and its dependent
subtasks. It is important to notice that the hierarchical task analysis decouples the
task description from the task implementation. By separating the description from
the implementation, we can gather system requirements without being constrained

by the technology limitations.

13

Join the Collaboratory

1. Enter personal 2. Recieve verification 3. Enter the collabora-
information in personal email tory with new account

FIGURE 3.1. An HTA for account creation: Creating an account is the simplest
task in our system. Users create an account by entering the APECS portal, submit-
ting information about themselves, and then checking their personal mail system for
instructions about their new account.

3.1.5 Summary of Themes

This section discusses several themes which were revealed during our investigation
of EEG/ERP analysis.

APECS Parameter Reuse / Job-Batching

An APECS operation is defined by multiple parameters which control ICA pro-
tocol, blink activity, data whitening, and other algorithmic behavior. Users invest
large amounts of time configuring these parameters. Therefore, it is critical to reuse

APECS definitions in support of job-batching.

Storage Constraints

EEG/ERP files can be very large and impose significant physical storage demands.
Depositing files in a shared location can overcome these storage constraints. However,
centralized storage systems can lead to alternative limitations relating to network

latency.

14

Add files to the repaository
1. Upload files to 2. Verify/maodify the 3. Commit the files into
drop box “best-guess” meta-data the repository

FIGURE 3.2. An HTA for adding files: Users add files to the repository by using our
drop-box model. Each user has a personal drop-box, and files can be uploaded into
that box. New files are not officially part of the repository until they are “commit-
ted.” Users commit files by first navigating to their personal drop-box. Second, the
user verifies and/or modifies the system’s “best-guess” about the meta-data in each
uploaded file. Finally, the user commits the file to the repository.

Provenance
Each step in the EEG/ERP analysis pipeline generates intermediate files. Captur-
ing these artifacts can be beneficial for analyzing results and repeating experiments.

The challenge is to hierarchically organize these artifacts with regard to provenance.

Organizational Context
The requirements for file organization are diverse. Objects need to be clustered as
“projects,” but also need to be organized hierarchically. The need exists for a flexible

organizational infrastructure.

Data Sharing

Allowing multiple users to read and/or modify an object is critical to the collab-
orative nature of our system. Shared artifacts require an information model which

constrains object ownership.

15

Search the repository
Iterate steps 1-3 until the desired results
are produced
1. Define/refine 2. Submit the search 3. View the results
search parameters
N

1. Select a desired 2. Specify desired
chject type object parameters

FIGURE 3.3. An HTA for searching the repository: Users search the repository by
first defining search parameters. Specifically, users specify the desired types of objects
over which the search will occur and specify the properties of those desired objects.
Second, the user submits the search parameters. The system processes the query, and
finally the user can view the results.

3.1.6 Problem Scenarios

In the following section, we describe the current practice for five primary tasks
in our system. In the descriptions, we introduce two hypothetical users: Fred and
Susan. Fred is mostly concerned with the development of EEG analysis methods,

whereas Susan is primarily concerned with the application of EEG analysis.

Susan stores an EEG file

Susan wants to store a new waveform file. The file was exported from NetStation,
and contains experimentally useful EEG content. Susan wants to store the file so that
she can later process the file and analyze its contents. Susan does not use a shared
storage system with her colleagues, so she imports the EEG file onto her laptop.
The operating system on Susan’s laptop organizes files according to a hierarchical

directory-based structure. This means that Susan can store the EEG file in only one

16

[Clean wavelorm data with APECS]

, 1 L
1. Define an 2. Compoye an 3. Start the 4, Retnava the
APECS operation APECS job job job results

1 I 1 I 1 1
1.1 Name tha 1.2 Describe ™ 2.2 Dexcribe 3.7 Select an APECS 4.1 Select an

operation the operation Z-1 Nama tha job the job job torun APECS Job which is

l I complete.
T I I | 3.2 Add the selected I
job to the run queus
P 2.2.1 Select an 2.2.3 Select an

b c L ke b APECS aparation | | | outous destnation
wiviening, ICA d: P

2.2.2 Sefect Input fila(s)
appropriate for the chosen
APELS operation

FIGURE 3.4. An HTA for cleaning waveforms: Users process waveform data with
APECS by first defining an APECS operation. Each operation is defined by a unique
name and a set of algorithmic parameters. Next, users compose an APECS job. Each
job combines specific input files with an abstract APECS operation. Finally, users
start the jobs and retrieve the processed results.

directory (unless she make copies or soft links). She must choose the file location
carefully.

Susan considers the many different ways to categorize her new EEG file. On one
hand, she wants to organize it with respect to provenance. On the other hand, she
wants to store the file in a directory with EEGs from the same project. A third
approach is to keep EEGs in a folder separate from ERPs. Ultimately, she decides to

group the EEG with files from the same project and not worry about provenance.

17

Organize objects

Iterate (1) and {2) until the desired objects
belong to the appropriate group

1. Select (an) .
[object(s)] 2. Select a group

I (If necessary, do 2.1)

[2.1 Create a new group

2.1.1 Name the group 2.1.2. Describe the group

FIGURE 3.5. An HTA for organizing objects: Users organize objects in the repository
by first selecting a set of objects to be grouped. Users add the selected files to an
existing group, or create a new group.

Susan searches for a waveform file

Several weeks ago, Susan stored a particular EEG file on her laptop and now
she wants to retrieve the waveform. Susan remembers that the EEG was “raw” and
contained 128 data channels. Susan also knows that she stores her files in directories
according to projects. Unfortunately, Susan cannot remember in which project she

grouped her desired file.

Susan opens the search tool in her laptop's operating system. The search tool
is not aware of waveform meta-data in EEG files. Susan’s search capabilities are
limited. She sets the “last-modified” parameter to search for files modified within
the last month. Susan submits the query and receives dozen of results. Susan scrolls
through the results. Some of the files have descriptive extensions, of Susan’s own

invention. For example, “.bl” means the file was processed for baseline correction.

18

Share objects with other users

Ikerate {1}, (2}, and {3} until the desired objects
have the desired shared properties
I | |

1. Select {an) 2. Select a/an user(s) 3. Select a permission
object(s) level

FIGURE 3.6. An HTA for sharing data: Data-sharing is almost a trivial task. Users
share objects with other users by first selecting object(s) to share, then selecting a
target user and permission levels.

As Susan parses the results, she finds a few files which might be candidates for
her search. To determine which file is correct, Susan needs to perform a linear search
over the waveform meta-data embedded in the candidates’s header. Susan opens each

file and reads the meta-data. Eventually, she finds her desired file.

Fred removes eye-blinks from an EEG file

Fred has a raw EEG file and he wants to remove eye-blink artifacts from the
embedded waveform. Fred also has a blink template, which corresponds to the apex

of the blink event.

Fred opens Matlab on his workstation. He loads the APECS driver file, which
initiates a multi-part questionnaire. Fred follows the instructions and specifies infor-
mation about data pre-processing, blink activity, data whitening, and data output.
He also specifies the input file (the target EEG) and selects an independent component
analysis (ICA) protocol.

19

When Fred finishes the questionnaire, the APECS job begins and useful output
streams down his workstation’s terminal. Fred waits several minutes for the job to

complete and then retrieves the results.

Fred shares files with Susan: Version One

Fred has an ERP file he wants to share with Susan. The file is small, so he sends
it to Susan as an email attachment. In the email body, Fred reminds Susan which
project this ERP belongs to.

Later, Susan receives Fred's email. She downloads the attachment and saves it
with other files which are related to this project. Susan has her own file-naming
scheme, so she renames the ERP file. Susan and Fred now share a file with two

different names.

Fred shares files with Susan: Version Two

Fred has a set of EEG files he wants to share with Susan. The entire package
of files is three gigabytes large. Fred gives Susan access to his file-server, and Susan
begins downloading the files to her local workstation. The download progress bar
indicates that the download will take over two days, so Fred and Susan consider
other options. Ultimately, Fred writes the files to a DVD and mails the disc to Susan

via express mail.

Susan organizes a set of waveform files

Susan recently received a large set of files from Fred. Now, she wants to incorporate
these files onto her local workstation. As mentioned in a previous problem scenario,
Susan’s operating system organizes files according to a hierarchical directory-based
structure. Susan wants to organize the new files according to several topologies, in-
cluding provenance and file-type. To represent this additional information, Susan
creates short text files which she strategically sprinkles throughout the new directo-

ries.

3.1.7 Claims Analysis

Our system requirements can be distilled into a set of claims about the current
practice of EEG/ERP analysis. Each claim describes a system feature which has

notable effects on each user’s experience.

Files are stored on local workstations.
e + each user can build organizational system that makes sense to him or her
® - but provenance is difficult (or impossible) to track
e - and data sharing is difficult to automate
Users interface with APECS directly through Matlab.
e + APECS is easy to deploy
e - but the interface is limited to a command-line

APECS job definitions are stored in Matlab files. The definitions mix the algorithmic

parameters with the specifications for input files.
¢ + provides a quick way to define APECS jobs
e - but thwarts job-batching
Meta-data about a waveform is stored in its file header.
e 4 is convenient for analyzing a small set of waveforms
e - but searching for files is laborious
Files are shared in an ad-hoc fasion.
e -+ is convenient

e - but leads to consistency problems

3.2 Activity Design

During the requirement analysis step, we identified five primary tasks which should
be supported by our system. In this section, we redefine those scenarios by presuppos-
ing the existence of a collaborative repository. Our result is five “activity scenarios,”

which are stories about people interacting with a system.

3.2.1 Useful Analogies

Precisely describing the tasks in our system is paramount, but selecting the ap-
propriate language can require an intuitive leap. One approach is to use analogies
to articulate important aspects of our system’s activities. In this section, we explore
analogies.

Adding content to the repository like . . .

shelving books (content needs to be archivally stored in some organized fashion)

passing a doorman (all objects are inspected before they enter the repository)

bringing an elephant home (the repository can store a large amount of volume,
but maybe not ALL content belongs in the repository. This is a question of

self-editing and self-censorship).

hanging an ornament on a tree (all the content is organized in context of prove-

nance)
Searching the repository is like. . .

e finding your car keys (sometimes the search is intended to find a single important

object)
e collecting rocks (sometimes the search is intended find many similar objects)
e staring at clouds (sometimes search is performed so as to detect patterns)

e following a creek (all the data can be searched in context of the “upstream”

and “downstream” content in the provenance chain)

22

Processing waveform data is like. .

¢ editing digital photographs (the final product is produced through a combina-

tion of several smaller steps)

o polishing precious stones (the desired part of the waveform can be surrounding

by non-useful waveform data. “Carving” and “polishing” is required).
e slicing carrot sticks (a waveform can be sliced into even-length segments)

¢ auditioning musicians in an orchestra (some channels might need to be removed

or corrected)
Sharing objects with other users is like. . .

» sharing a secret with all your friends (users place trust in the system and other

users)
e releasing open-source software (someone else might work on your project)

o working on a crossword puzzle with a friend (objects are typically shared in the

context solving some larger scientific problem).
Grouping objects is like. . .
o taking a poll (the group might reveal surprising aspects of the data)

e labeling test tubes (most data needs to be labeled in the context of a larger

experiment)

3.2.2 Activity Scenarios

In the following section, we improve upon our previous problem scenarios by pre-
supposing the existence of a file storage and management system. Here we articulate

new activity scenarios:

Susan stores an EEG file

Susan wants to store a waveform file which was exported from NetStation. Susan
plans to process the file, then analyze its contents. She starts by uploading the file
to the shared repository. Next, Susan opens the repository’s interface and finds the
new file in her “dropbox.” The repository system automatically determined that the
file contained EEG content. Furthermore, the system extracted waveform meta-data
from the EEG file header, including the number of channels, the number of samples,
and the number of segments. Susan views the automatically-extracted meta-data and

verifies its correctness. Finally, Susan “commits” the EEG file into the repository.

Susan searches for a waveform file

Several weeks ago, Susan stored a particular EEG file in the collaborative reposi-
tory. Now, she wants to retrieve this waveform file. Susan remembers that the EEG
was “raw” and contained 128-chanels. Susan opens the repository search engine,
which is aware of all the repository files and their associated meta-data. She defines
parameters to search for all EEG files which are “raw,” which contain 128-channels,
and were committed to the repository within the last month. The search returns a
short list of files. Susan is able to search through the meta-data about all these files

in a continuous and intuitive fashion.

Fred removes eye-blinks from an EEG files

Fred has a raw EEG file and he wants to remove eye-blink artifacts from the
embedded waveform. Fred also has a blink template, which corresponds to the apex
of the blink event.

Fred opens collaboratory interface. He looks at a list of existing APECS operations
and decides to create a new APECS operation instead of re-using previous operations.

Fred provides works through a multi-part questionnaire, specifying information about

24

data pre-processing, blink activity, data whitening, and data output behavior. Fred
saves this configuration of parameters. Next, Fred composes an APECS job around
his new APECS operation. He specifies the input files to be his EEG file and blink
template. He indicates that the APECS output should be automatically placed in a
new group.

Fred starts the job, and the system puts the job into an execution queue. Fred
leaves the collaboratory, but his job remains in the persistent queue. Later, he returns
to the collaboratory and finds that his job is completed. Furthermore, the results were

bundled into a new group and automatically archived.

Fred shares a waveform file with Susan

Fred has a file in the repository, which he wants to share with Susan. Fred opens
the repository interface and searches for the file. He opens the sharing tool, and selects
Susan as the share-recipient. Fred gives Susan “full-access” to the file, which allows
her to both read the file and modify its meta-data. However, Fred could instead give
Susan “restricted” access where she could only read the file.

Later, Susan enters the repository. Her history log reports that Fred shared a file
with her. Susan searches and finds the file. The file is already inside the repository,

so Susan does not need to re-label or re-commit the file.

Susan organizes a set of waveform files

Susan recently committed a large set of files to the repository. When the files
were previously in her “dropbox,” Susan labeled the files according to their source
and subject. At the same time, the repository automatically ascertained meta-data
about any waveform content. Now that the files are inside the repository, Susan wants
to group the files by projects.

Susan enters the repository and searches for the new files. She iteratively selects
sets of files and adds group labels to those sets. In many cases, a file belongs to

several sets.

3.2.3 Claims Analysis

Qur activity scenarios point to a set of claims about a system for EEG/ERP

collaboratiion. Here, we enumerate and analyze these claims:

The search engine is aware of waveform meta-data.

e < users can search for EEG/ERP files without needing to open individual file

headers.
Files must be committed from the dropbox into the repository.
» + forces users to inspect and verify waveform meta-data.
e + ensures that provenancial information is specified early in the analysis

o - but could be frustrating if a user does not want to inspect many files, and if

that user is certain the waveform meta-data is correct.
Users can arbitrarily group objects.
e + Users can create very personalized organizational systems

e + The concept of a “group” can be used in many contexts: projects, job results,

groups of groups, and future situations not yet forseen.

s - but can be confusing if the user interface is not extensible
APECS operations are defined separately from APECS jobs.

e + APECS operations can be reused

¢ + APECS operations can be shared

e -+ batches of jobs can be constructed from a single operation
APECS jobs are executed within a job queue.

e + naturally supports job-batching

e - but might be frustrating if users want to prioritize jobs

26

3.3 Information Design

In the first part of the SBD process, we articulated the shortcomings of current
practices for EEG/ERP analysis. In the second part, we began to describe improved
practices. In this section, we elaborate on our proposed activity scenarios and enu-

merate the specific information which is needed to accomplish each task.

3.3.1 Useful Analogies

The biggest challenge at this step is to describe how information looks within
the system. In the second part of the SBD process, we used analogies to describe
activities. In the section, we use analogies again, but as means to understand the
possibilities of information design.

Content in the repository looks like. . .
o tracks/timelines (waveform content has a temporal aspect)
e hair comb (blink templates are used to filter eye-blinks)

A search interface is like. .

e a clerk (the search interface will take requests and retrieve objects)

e a census (the search engine can be used to determine how many objects share

a set of attributes.)
Shared content is like. . .
e a library book (requires a pattern for judiciously sharing data)
o family-style meals (simultaneous access, which sometimes causes collisions)
e warmth from a fireplace (simultaneous access, without collisions)
Groups of objects are like. . .
¢ a family (everyone is different, but related)

e a folder of documents (the group is a container)

3.3.2 Information Design Scenarios

Susan stores an EEG file

Susan wants to store a waveform file which was exported from NetStation. Susan
plans to process the file, then analyze its contents. She starts by uploading the file to
the shared repository. Next, Susan opens the repository’s interface and navigates to
her dropbox. She finds a list of recently uploaded files, along with her new file. The
list contains file names, file types, and timestamp when the file was uploaded.

The repository system automatically determined that the file contained EEG con-
tent. Furthermore, the system extracted waveform meta-data from the EEG file
header, including the number of channels, the number of samples, and the number
of segments. Susan wants to verify this meta-data. She selects the file and watches
the meta-data appears within context of the original file list. Susan can view the
meta-data without navigating to a separate page.

Susan thinks the meta-data is correct, so she “commits” the EEG file into the
repository. When she does this, the file disappears from her dropbox and reappears
in a list of “recently committed files.” The files in the “recently committed files” are
displayed in a similar fashion to the dropbox files, except each file has an additional

parameter “committed on.”

Susan searches for a waveform file

Several weeks ago, Susan stored a particular EEG file in the repository. Now,
she wants to retrieve this waveform file. Susan remembers that the EEG was “raw”
and contained 128-chanels. Susan enters the repository and navigates to the search
engine. On one side of the display are the tools for constructing a search query. On
the other side of the display is a list of search results. When she first enters the
repository search engine, the results list is empty.

Susan begins constructing her search query. First, she selects that she wants to
search for waveform files. Next, she limits the search. The search tools allow for an
unlimited number of search parameters to be specified. Susan adds a parameter to
limit the search to waveform files with 128 channels, and another parameter to limit

the search whose “committed on” date is within the last month.

28

Susan submits the search query, and results soon appear on the other side of the
display. The list is short enough so that Susan quickly finds the file for which she was

looking.

Fred removes eye-blinks from a file

Fred has a raw EEG file and he wants to remove eye-blink artifacts from the
embedded waveform. Fred also has a blink template, which corresponds to the apex
of the blink event. The blink template was generated in an application outside the
collaboratory, by taking the single EEG sample corresponding to the apex of the blink
spike.

In order to clean the EEG file, Fred needs to compose an APECS job. He creates
a new job, names the job, and describes the job. Before Fred can connect input files
to the job, he must select an APECS operation. On the opposite side of the screen,
Fred sees a browser for APECS operations. He suspects that one of the previous
operations can be reused for this job, so he begins browsing through the list. Fred
can select each operation and view the parameters about data whitening, bad-channel

removal, and other specifications.

Although Fred does not find any operation that can be wholly reused, he does find
a close candidate. Fred would prefer not to entirely rebuild an APECS operation, so
he clones the candidate operation and sets about making adjustments to the clone.
The cloned operation appears in the operation browser. Fred selects the newly cloned
version and modifies a small number of parameters in the operation questionnaire.
Fred saves this configuration of parameters.

Fred returns to the APECS job editor, and his incomplete job definition. He
selects his newly cloned operation as the job’s operation. He then specifies his blink
template file and his EEG file as inputs for the job. Finally, Fred specifies that the
APECS output should be automatically placed in a new group.

Fred saves the job definition and starts the job. The system puts the job into an
execution queue. In the job browser, the queue number appears beside the new job.
Fred sees that his job will not be performed immediately, so he leaves the collabora-

tory, (but his job remains in the queue). Later, Fred returns to the collaboratory and

finds that his job is completed. In the job browser, the status field says, ”completed”
along with the date of completion. Fred uses the search engine to browse objects by

group, and finds the results from the job bundled and archived into a new group.

Fred shares a waveform file with Susan

Fred has a file in the repository which he wants to share with Susan. Fred enters
the repository and searches for his file. Once he finds the file, he selects the sharing
tool.

In the sharing tool, Fred needs to specify sharing behavior for his file. He gives
Susan “full-access” to the file, which allows her to both read the file and modify its
meta-data. However, Fred could instead give Susan “restricted” access where she
could only read the file. After Fred closes the sharing tool, the shared file appears
with a "4” next to its name in the file browser.

Later, Susan enters the repository. Her history log reports that Fred shared a file
with her. The log indicates the filename, the filetype, and the timestamp when Fred

shared the file. Susan uses the repository’s search engine to finds the file.

Susan organizes a set of waveform files

Susan recently committed a large set of files to the repository. When the files
were previously in her “dropbox,” Susan labeled the files according to their source
and subject. At the same time, the repository automatically ascertained meta-data
about any waveform content. Now that the files are inside the repository, Susan wants
to group the files by projects.

Susan enters the repository and searches for the new files. She iteratively selects
sets of opens the grouping tool. The grouping tool looks like a paperclip. The tool
prompts Susan to select a destination group, or specify the name and description of

a new group.

30

3.3.3 Claims Analysis

Our information design scenarios point to a set of claims about the information
required to accomplish tasks within the EEG/ERP repository. Here, we enumerate
and analyze these claims:

Objects in the repository are displayed in lists.
e + Users are familiar with visually parsing lists
e - but displaying objects in a tree hierarchy might be more appropriate

The search engine allows for an unlimited number of search queries to be specified
e + Users can construct very-specific searches

APECS operations can be cloned and reused.

e - is useful when a user wants to create a new operation which is similar to an

existing operation
o - but might lead to an explosion of forked operation variants
APECS job results are antomatically bundled into groups.
e + is useful for automatically retrieving results

s - but might not provide enough flexibility if the results need to be automatically

split into several groups
Users see “history logs” of actions.
e - is useful for giving context to actions

¢ - but might be more useful if the system includes a means to “undo” actions.

31

3.4 Interaction Design

3.4.1 Interaction Scenarios

In the interaction scenarios, we begin to consider how our original scenarios can be
turned into state-machines. An exhaustive explanation of each interaction scenario
would make this thesis of ungainly length. Instead, we include preliminary sketches

which illustrate user interactions.

Susan stores an EEG file

P

u
ey g'od?!ﬁa |
} ,,--'—'-..._‘___*-;E_.E. 5 r |
gcintt] '

PRO? BOX i1 mTED conTeNT x - i

O FLe A | QFILE D (paTe commeed) “SEE SHARING
» |
= FILE &= |
(815 gt 1

1

CIFLE C THIS IS LiEE

Mey oTHER *OBIEGT st
N OUR system, BUT "I'H-E
peTECIS AEE. RRRANGED N
NeweST —FRST CHRONOLOGICAL
ORDER -

TOER L
pITioHAL FILE
ARe ioion IN-LINE

e e
4
S p— Mm - BE—ST— veEss"
= cmcef“’gﬁ, o
+1NFE RETUR,,? b
4 - INITya0 ,_;;D
aeLec M

FIGURE 3.7. An early sketch of the upload interaction

Susan wants to store a waveform file which was exported from NetStation. Susan
plans to process the file, then analyze its contents. She starts by uploading the file
to the shared repository. Next, Susan opens the repository’s interface and navigates
to her “dropbox.” She finds a list of recently uploaded files, along with her new file.
The list contains file names, file types, and the date and time of when the file was

uploaded.

32

The repository system automatically determined that the file contained EEG con-
tent. Furthermore, the system extracted waveform meta-data from the EEG file
header, including the number of channels, the number of samples, and the number of
segments. Susan wants to verify this meta-data. She selects the file and watches the
meta-data appear in view. The meta-data appears within context of the original file

list, without forcing her to navigate to a separate page.

Susan thinks the meta-data is correct, so she “commits” the EEG file into the
repository. When she does this, the file disappears from her dropbox and reappears
in a list of “recently committed files.” The files in the “recently committed files” are
displayed in a similar fashion to the dropbox files, except each file has an additional

parameter “committed on.”

Susan searches for a waveform file

— S
\mm‘*\m.___ BOCUMENT

SE Rz [eLes
| SERLCH FO SEEMENTS
WAV FoRM S

_pESyLTE THE pBTECTS

M HERE LooF
LigE AR .m,"a'a
OUE SYSTEAL.

LEASE. SELECT A SBAROH
| (P THPE ABOVE.)

s

FILES]
ERTS [
SE-P&C“ FOE FNaNETTT .

@ maTEH BY THE Foulowing RUEEST

== [—& 8=

omm gesuers TP

[) fTems GELHS

ADDS ANGTHER. LW |
| FULE MUDIFEE, ?0?, |
: _.-"’\..p-‘ﬂkj'\‘_'_ﬂ; FS f 2ND 1‘,\;5‘"‘.{5- |
| Y-, . |
‘ S e m e % |

o =13 |
ANANNS Y

FIGURE 3.8. An early sketch of the search interaction

33

Several weeks ago, Susan stored a particular EEG file in the repository. Now,
she wants to retrieve this waveform file. Susan remembers that the EEG was “raw”
and contained 128-chanels. Susan enters the repository and navigates to the search
engine. She selects “search for waveforms,” upon which additional tools appear. The
first appended tool allows Susan to find waveforms which match a set of rules. For
example, she can search exclusively for waveforms whose recorded-date is before last
week. The tool includes three fields: the parameter, the predicate, and the value. In
this example, the parameter is recorded-date, the predicate is is before, and the value
is a timestamp seven days ago. The tool also includes buttons to add and subtract
rules. An arbitrary number of rules can be specified. The second appended tool
allows Susan to limit the result count. Susan uses all these tools to construct a search
query.

Susan presses the “search” button, waits for the network to communicate and the
server to think, and the sees a list of results appear on the right-side of the portal. We
intentionally leave ambiguous the order in which the results should be listed. Options
include: ascending/descending by date, in alphabetical order, or grouped by parent
file.

If Susan’s desired waveform appears on the right, then Susan’s task is complete.

If the file does not appear, then Susan returns to the left-side of the portal interface

and modifies her search criteria.

Fred removes eye-blinks from a file

Fred has a raw EEG file and he wants to remove eye-blink artifacts from the
embedded waveform. Fred also has a blink template, which corresponds to the apex
of the blink evenf. The blink template was generated in an application outside the
collaboratory, by taking the single EEG sample corresponding to the apex of the blink
spike.

Fred enters the collaboratory and navigates to the APECS tools. The initial
page has two large columns, labeled “Operations” and “Jobs.” The operations side
contains tools for constructing APECS operations, while the jobs side contains tools

to compose and manage APECS jobs. In the parlance of the APECS portal, an

FIGURE 3.9. An early sketch of the APECS eyeblink cleaning interaction

operation is a set of algorithmic parameters which define how a particular waveform
file should be processed with respect to data-whitening, bad channel removal, and
ICA protocol. A “job” is a user-specified relationship between a set of input files, an
APECS operation, and an output locations. Jobs can be added to the job queue and

executed.

In order to clean the EEG file, Fred needs to compose an APECS job. He presses
the NEW button on the jobs side, and composition tools appear in-line. The new job
appears as a new row, above previous jobs. Later, after it is saved, it can be resorted
with the rest of the jobs. The composition tool includes fields for the job’s name,
description, APECS operation, input files, and output group. The name, description,
and output group can be specified immediately, but the input files field cannot be

35

specified until an APECS operation is selected. The type and quantity of input files is
determined by the operation selection. If the portal does not contain any save APECS
operations, then Fred cannot clean his file until he first creates a new operation.

He presses the NEW button on the operations side, and a five-part questionnaire
appears above the job list. Each part of the questionnaire can be collapsed or ex-
panded. After Fred fills values into the form, he presses the save button and the
questionnaire disappears. His new job operation appears in the list of operations.

Fred returns to the APECS job editor, and his completes his job definition. He
selects his new operation as the job’s operation. He then specifies his blink template
file and his EEG file as inputs for the job. Finally, Fred specifies that the APECS
output should be automatically placed in a new group.

Fred presses the save button, which collapses the expanded information. Fred
starts the job. The system puts the job into an execution queue. In the job browser,
the queue number appears beside the new job. Fred sees that his job will not be
performed immediately, so he leaves the collaboratory, (but his job remains in the
queue). Later, Fred returns to the collaboratory and finds that his job is completed. In
the job browser, the status field says, "completed” along with the date of completion.
Fred uses the search engine to browse objects by group, and finds the results from

the job bundled and archived into a new group.

Fred shares a waveform file with Susan

Fred has a file in the repository which he wants to share with Susan. Fred enters
the repository and searches for his file. In the list of search results, he checks the box
next to the file he wants to share with Susan. Fred presses the share button at the
top of the display. A tool for sharing data appears as an overlay. The tool includes
a drop-down list to select a user for sharing. The overlay tool also includes a button
to share the file with another user, or remove the current sharer from the list.

In the sharing tool, Fred needs to specify sharing behavior for his file. He gives
Susan “full-access” to the file, which allows her to both read the file and modify its
meta-data. In the sharing tool, next to Susan’s name, another drop-down box contains

these permission parameters. (This feature is not pictured in the preliminary sketch).

Bowl, UNLESS

| Nl
IS am 5 FHE POPUP IS /
\ USER NAMES MOPIFED,; A Hew /'
APPEAT 1IN A ROU] IS pDDED /
N, SELECTON LIST W TH DUPU'CH‘TE’D J'l
& NamE [+ - :
e, S WIDgers. /
Chie Q"%V'“H y
5 B8, A %
B0 2 B SortR '

FIGURE 3.10. An early sketch of the file-sharing interaction

Fred could instead give Susan “restricted” access where she could only read the file.
After Fred closes the sharing tool, the shared file appears with a ”+" next to its name

in the file browser.

Later, Susan enters the repository. Her history log reports that Fred shared a file
with her. The log indicates the filename, the filetype, and the timestamp when Fred

shared the file. Susan uses the repository’s search engine to finds the file.

Susan organizes a set of waveform files

Susan recently committed a large set of files to the repository. When the files
were previously in her “dropbox,” Susan labeled the files according to their source

and subject. At the same time, the repository automatically ascertained meta-data

37

N AL VB

THE Q) RRUPING
5 “'ﬂ}'ﬂ,é (o1l
are. 9reY
_OBTECTS l fr grKan
o): ROUP THESE g
. smp NaME -
_j PP BESCRIPTION | A SUBMT

A Foror APPERRS; W TH

TooL: FOR
{
L g ROUP (NG
<,
""ﬂ-\.___.
"--..__ e “r._‘_l____'_,_,.,--

mfﬂm. QONCEPT SuBMNIT AND
FOR. GRouP (NS CANCGL BUTH
TooL RETURN THE USCR
01]iof200% Tv THE oRIGINAL

STRHE

FIGURE 3.11. An early sketch of the file-group interaction

about any waveform content. Now that the files are inside the repository, Susan wants

to group the files by projects.

Susan enters the repository and searches for the new files. Her results appear in a
list. Susan checks the box next the files which she wants to group. Susan presses the
group button, and an overlay appears with a tool for grouping. The overlay is titled
“Group these objects.” The tool contains a field for the group name, and a field for
the group description. (Not pictured) The tool also contains a drop-down list of other
group names. If Susan wanted to add these files to a group, then she could selected

a pre-existing group name instead of entering a new group name.

Susan names her group, describes her group, and then presses the select button.
The overlay disappears. The group name appears in small text next to each of the

grouped files.

33

3.4.2 Claims Analysis

The grouping and sharing tools appear in several interfaces, as “overlay” tools.

¢ + adds convenience to grouping and sharing

e - but will be confusing if object lists are not consistent throughout the portal
Before a search query can be constructed, an object type must be selected.

e + allows for query fields specific to that object type

¢ - but can lead to inconsistent states if the user changes their original object-type

selection
An arbitrary number of query parameters can be added.
o + the search tool is flexible and specific
Each section of the APECS operation can be expanded and collapsed.
e + is a logical way to fit a linear list of questions into a small space

e - but can be difficult to find a specific question when several sections are col-

lapsed.

39

CHAPTER IV

DESIGNING INTERFACES FOR THE WEB

Although SBD provides a solid methodology for eliciting requirements, there are
some engineering challenges which SBD does not directly answer. For example, how
do we engineer a state-based prototype from a collection of scenario-based require-
ments? This question is an active source of research. In 2006, Liang, et. al. surveyed
twenty-two approaches for synthesizing state-based models from scenarios [25]. Re-
lated work addresses the problem of implied scenarios incorrectly appearing in resul-
tant state machines [26]. Although previous research takes important steps towards
automating software design, most of it focuses on standalone software applications.
New challenges arise from the limitations of web-based applications. Before we can
discuss these limitations, we need to define a few important tools for building web

applications.

4.1 Tools

4.1.1 JSRI168 Portlets

Portlets are user interface components which can be collected into a web portal.
Portlets extend Java servlets, which means portlets respond to HTTP requests and
produce markup fragments. A portlet “container” delivers a cohesive web application
by aggregating the hypertext fragments from several individual portlets. The Java
Portlet Specification (JSR168) defines common interoperability between a portlet

and its parent container. Specifically, JSR168 articulates the render parameters for a

40

portlet and the persistent data for the portlet session. In theory, a JSR168-compliant
portlet can be hosted by any JSR168-compliant container.

Other popular technologies for serving markup fragments include Ruby on Rails
[9] and Django {2]. Although these options have unique advantages, we ultimately
adopted JSR168 portlet technology for three reasons. First, portlet containers provide
useful out-of-the-box features, including tools for managing user accounts, modifying
the container layout, and monitoring live sessions. Second, portlet-based systems can
be highly componentized. Extending a system of portlets can be a straightforward
procedure because the portlets are separated from the portlet container, which is
separated from the underlying services. Finally, each of our scenario-based tasks
naturally maps to an individual portlet. Later sections of this paper will discuss the
bridge between scenario-based requirements and state-based portlets.

A recent survey evaluated seven portlet containers against fourteen criteria [12].
The criteria included JSR168 compliance, ease of installation, security, and other fac-
tors. According to this study, the top-rated containers are Liferay [8], Exo [4], and the
GridSphere Portal Framework [ref]. We adopted GridSphere due to its large support-
base and long-standing stability. Gridsphere is the container for many collaboratory

projects, including [23] [ref] [ref].

4.1.2 Asynchronous Java and XML (AJAX)

Portlets produce hypertext markup fragments. Until recently, web-based hyper-
text interfaces rarely provided the interactivity and level of dynamism which users
expect from conventional standalone applications. Historically, the common approach
for providing web-based interactivity was to embed non-hypertext objects inside
HTML markup. Applets [6], Java WebStart [7], and Flash [1] use this approach.
Early attempts at hypertext interactivity include the iFRAME element in Internet
Explorer 3, the LAYER element in Netscape 4, and Microsoft Remote Scripting. Al-
though these technologies innovated HTML dynamics, their widespread adoption was
limited. In 2000, Microsoft’s Outlook Web Access introduced the XMLHttpRequest
object as a replacement to Java Applets. The XMLHttpRequest is a scripting object

41

which makes possible asynchronous communication between a web-browser and a re-
mote web-server. In 2002, the XMLHttpRequest was adopted by Moxzilla, Safari, and
other browsers. In 2006, the World Wide Web Consortium released a working draft
of the XmlHttpRequest API [10]. The use of the XMLHttpRequest is commonly
referred to as “asynchronous Java and XML,” or AJAX.

Today, AJAX applications are nearly ubiquitous on the world wide web. However,
the underlying design patterns are less clearly defined. This section discusses the
hypertext design space and provides a methodology for automatically transforming

scenario-based requirements into functional AJAX prototypes.

4.2 Design Strategies

The relationship between a human user, a hypertext portal interface, and a web-
server is similar to the relationship between a surgeon, a nurse, and a tray of surgical
tools. After a patient is prepped, the surgeon will likely begin the operation with a
scalpel. As the operation proceeds, the surgeon might use many other tools, including
clamps, retractors, speculums, and suction tubes. The surgeon can hold only a few
instruments at once. Consequently, the nurse assists by delivering the remaining tools

to the surgeon as needed.

We can also use an automotive analogy to understand the hypertext portal design
space. Imagine an auto-mechanic in a garage well-equipped with tools. The mechanic
has a car which needs repair, so she slides on a backboard underneath the chassis.
The mechanic starts the repair task with a flashlight and a wrench, but soon needs a

screwdriver, pliers, and more wrenches of different size.

These analogies share a common theme of a user (or a surgeon, or a mechanic)
using a set of tools to accomplish a task. These tools are a subset of a much larger
collection. For example, a surgeon might not use every surgical instrument on the tray
and the mechanic will not likely use every tool in the garage. In both these examples,

unforseen task constraints determine the specific set of tools which is actually needed.

4.2.1 Defining ¢ and §

During the SBD process, we identified a set of primary tasks which should be
supported by our system. Now we will reconsider these tasks in terms of daete and
tools. Let us consider any one of these tasks, ¢. In order to accomplish ¢, a user must
employ a particular set of tools, 8, to access a particular set of data, §. Unfortunately,
the branching nature of many tasks makes it difficult to know a priori which specific
tools and data will be needed. In other words, # and § are determined at runtime.
At best, a designer can identify a larger set of tools and data which might possibly be
needed to accomplish a task. For our discussion, we will refer to three sets of § and
é:

(1) do and 6y are the initial sets of data and tools, given to the user at the start
of the task.

(2) dq and 8, are the actual sets of data and tools which are needed to accomplish
a task. 4, and 8, are determined at runtime.

(3) 6, and @, are the possible sets of data and tools which might be needed to

accomplish a task.

These sets are related in the following way:
6o C 8, C G
0o C 6, C 0,

In conventional standalone applications, we can employ a “brute force” approach
and make 6y := 0, and dy := d,. However, in web-based hypertext interfaces, the
brute force approach can be impractical because the size of a hypertext document
is constrained by user expectations about response-time and browser performance.
Consequently, software engineers must employ a more subtle strategy and provide 6,
and &y as true subsets of 6, and 4,

In the “subset-strategy”, the user begins a task with a document Dy, containing
fo and dp. As the user works towards a goal, tools and data are appended to the
page. For the simplicity of our discussion, we will consider § and # contained within
a hypertext document D. In other words:

{0, 00} € Dy

43

{6.,8.} € D,
{65,0:} € Dy

Figure 4.1 illustrates the lifecyle of a dynamic hypertext document, couched in
terms of initial, actual, and possible sets. This subset-strategy introduces two design

challenges: how do we identify Dy? And, how should additional content be served?

4.2.2 Identifying 6; and &g

In this section, we discuss an approach for revealing the initial sets of data and
tools needed to accomplish a particular task. Our approach uses the hierarchical
task analysis (HTA) diagrams, which are produced in the early stages of SBD. If we
transform the HTAs into data-flow graphs, we can discover dependencies between
subtasks. These dependencies can be used to identify # and ;. Our approach is as

follows:

In the first step, identify the “terminal” tasks in the hierarchical task diagram. The
terminal tasks are the secondary and tertiary subtasks which appear as leaf nodes. We
will refer to #’s terminal tasks as g, 1), ..., t,. Figure 4.2 illustrates the HTA for the
task of cleaning waveform data with APECS. In our example, the terminal subtasks
are: naming the operation, specifying operation parameters, naming the job, selecting
an APECS operation, selecting input files, selecting an output destination, selecting

an APECS job to run, adding a job to the run queue, and selecting a completed job.

In the second step, enumerate the tools needed to accomplish each task. In our

input files. For another example, look at task 1.2.1 (“specify operation parameters”),
which requires a five-part questionnaire. A third example is task 3.2, which requires
a control mechanism to “start” and “stop” jobs. After the tools have been identified
for n terminal subtasks, we will have n subsets of tools: 8., ..., 6. 6, corresponds
to the tools for task 7. It is possible that some tools will belong to multiple tool

subsets. For example, a tool for browsing files might appear in several subtasks.

44

The lifecyle of a dynamic hypertext document during a task

begin task

&
&

FIGURE 4.1. An example lifecycle of a dynamic hypertext document: The user
begins a task with Dy, which contains an initial subset of the tools and data needed
to accomplish the task. D, is an imaginary document which contains every possible
tool and data which might be needed to accomplish the task. D, is the actual state
of the document, containing only the tools and data which have been needed thus
far. As the user works towards a goal, additional tools and data are appended to the
document. Due to the branching nature of the task, D, can take many forms. In
some cases, document states converge. In other cases, the task can fail. {For example,
the goal cannot be completed if required information does not exist).

[Ciean waveform data with APECS]

I

I T
1, Define an 2. Compose an "3.Startthe 4. Retrieve the
APECS operation APECS fob Job ob results
| — ! :
1.1 Name the 1.2 Describe 2.2 Describe 3.1 Select an APECS 4.1 Select an
operation the operation 2.1 Name the job the job job to run APECS job which is
—_— - | complete.
T I T I 3 g Addhtehe selected
r jolx to the run queue
2.2.1 Select an 2.2.3 Select an i
1.2.1 Specify operation parameters for: APECS operation output destination

data pre-processing, blink activity, data
whitening, ICA protocot, and data output.
.

2.2.2 Selectinput file(s)
appropriate for the chosen
APECS operation

D = “terminal subtasks”
@ = not terminal subtasks

45

FIGURE 4.2. An HTA for the task of cleaning waveform data with APECS

46

In the third step, enumerate the data needed to operate each tool. Each 6, points
towards d,,, the set of data required to accomplish ¢;. Returning to our example, the
file browser in task 2.2.2 will require a list of all the files in the system, along with
basic meta-data about those files. Similarly, the control mechanism in task 3.2 will
require information about the current state of the selected APECS job.

In the fourth step, arrange the subtasks according to their data dependencies. In
general, a dependency exists between subtasks t; and ty, if the specific elements of &;,
cannot be determined until ¢; is complete. In our example, there exist several data
dependencies, one of which is between tasks 2.2.1 and 2.2.2. Each APECS operation
can accept different types of input files. Therefore, the list of needed input files for
task 2.2.2 will not be known until the user completes task 2.2.1. Figure 4.3 illustrates
the dependency graph for the task of APECS cleaning.

In the final step, define 8y and d; as the tools and data associated with the first-
degree children in our dependency graph. In other words, Dy should contain all 4,,
and ¢, for independent tasks. In our example, figure 4.3 shows that Dy should contain

everything needed to accomplish tasks 1.1, 1.2.1, 2.1, and 2.2.3.

4.2.3 Serving 6, and 4,

Once we define the initial state of the hypertext interface, we need a strategy for
appending additional data and tools to the document. AJAX provides technology for
loading dynamic content, but it might not be obvious how to incorporate this content.

We suggest two patterns for AJAX interfaces: In-situ displays and on-the-fly tools.

In-Situ Displays

In-situ displays are a design technique for appending information “in place.” In-
situ displays dynamically add detail to an interface without destroying the context of
the current page. This design strategy is easiest to understand by example. Suppose
a hypertext document contains a list of EEG files. The user can select a file to view
more information about that file. The selection gesture triggers an AJAX request,

which loads new content into an XMLHttpRequest ‘responseText’ buffer. The new

47

Inter-subtask data dependencies for the task of cleaning
waveform data with APECS tools.

1.1 Name the

)

'

. . .

ration 1.2.1 Specify operation parameters i
[

2.2.1 Selectan

’ 2.1 Name the job APECS operation

2.2.2 Select input file{s)
appropriate for the chosen 2.2.3 Selectan
APECS cperalicn output destination

L

1. Stort the 3.1 Select an APECS 3.2 Add the selected |
Job job toun job to the run queue [}

(]

’

L)

e 4,1 Select an '
"Tob mg;h" APECS job which is '
complate. ‘.

s

FIGURE 4.3. A representation of data dependencies among tasks. In this illustration,
the subtasks from 4.2 are rearranged. Terminal subtasks are grouped by their parent
subtask. Arrows mark the data dependencies. For instance, the data required to
accomplish task 2.2.1 cannot be determined until task 1 is complete. Similarly, task
3.2 is dependent on information produced by task 3.1. This dataflow diagram reveals
the independent tasks which can be assigned to Dy: 1.1, 1.2.1, 2.1, and 2.2.3.

48

dynamic content might be displayed as a collapsable “div” beneath the filename. In
other situations, the extra content might be displayed as a pop-up or a sidebar. The
important idea is that additional information should be appended within the context

of the user’s current interface.

On-the-Fly Tools

On-the-fly tools are dynamically rendered widgets. Whereas in-situ displays ad-
dress static data, on-the-fly tools deal with interactive elements. On-the-fly tools add
interactivity to a page without destroying the current context. On-the-fly tools are
appended to a page, instead of being separate from a page. In our collaboratory, we
demonstrate this technique with a tool for composing APECS cleaning jobs. Each
job connects a set of input files to a set of algorithmic parameters, also known as
an APECS operation. When a user composes an APECS job, the types and quan-
tity of required input files are not known until a specific operation is selected. Each
operation has unique requirements for input files. For example, not all APECS oper-
ations use blink templates. The point of this example is that the input fields in the

job-composing tool must be dynamic.

49

CHAPTER V

THE APECS PORTAL AND BEYOND

We applied our design strategies to engineer The APECS Portal, a collaborative
neuroscience repository. Our collaboratory supports six primary tasks: creating an
account, adding files, cleaning eye-blinks from waveforms, searching for data, orga-

nizing/grouping files, and sharing content with other users.

The APECS Portal stores files in a fifteen-terabyte Network Appliance (NetApp).
However, the NetApp’s conventional file structure cannot be used to represent al-
ternative organizational topologies, such as provenance. Consequently, the APECS
Portal implements a database containing waveform meta-data, file permissions, user
histories, descriptions of experiments, and APECS cleaning logs. The database pro-
vides a flexible model for grouping files into arbitrary collections. The NetApp and

the database together provide the foundation for our repository.

A collection of persistent services brokers communication between the database,
NetApp, JSR168 portlets, and computational resources for APECS jobs. The File
Watcher Service scans the repository and automatically extracts meta-data about
newly uploaded files. Users can verify this “best-guess” meta-data inside the por-
tal interface. The Job Management Service places APECS cleaning jobs in a queue,
and dispatches cleaning tasks to a thirty-two node Intel Xeon cluster. Finally, the
Database Gateway Service provides a unified point-of-access to marshall and unmar-
shall logical objects into and out of the database. In Section five of this paper, we

discuss how an API for persistent services can play a role in future work.

The portal interface is constructed from several JSR168 portlets. In the “up-

load” portlet, users add files to the repository and inspect waveform meta-data. The

a0

“browse” portlet provides a search engine for EEG/ERPs and related files. The “or-
ganize” portlet includes tools for managing arbitrary data collections. In the “share”
portlet, users can control policy for cooperative file access. Figures 5.2, 5.3, and 5.4
show screenshots from the portal interface. Figure 5.1 illustrates the overall system

design.

System Components

=it ? e R e Mg.—-:.-:h:.r.'-_'-“:-ﬂ
~ ApacheTomcat

7 e

A

GridSphere Portal Container | Dynamically generaled JSPs

L

S — Requesis for U |. data Interactivity |
. Portal Daemon I

The portal's wab Interface

-

Repasitory

Interface

DB
Interface

Java Portlets

GridSphere DB
{usermnatmas, passwords)

A

GridSphere mainiains
a separala DB of user
aceount information

M
e

The dasmon faiches Tne ool
scans the repository
dalabase content, which for newly uptoad Mes, I::r?c: °::aﬂrr'ﬁe'rm u:‘egw
can ba rendered by the and then extracts el
Java portlets veaful meta-data about p Physical files:
thosa files. } 9 wa;alfgnm “(’;EVEGC:I'EHI.'RP }
¢ Flle Repository (blink tempiates, etc)

1:----.--* (15+teraby‘tes)
Specs Rortal DB The APECS DB ;
{waveform mata-data} l:orere!ates wavelom ?‘ ?.a' ?.f_. ;,,d

mw:r:‘:;f:' t;lob Eathuser has a unique ‘drop’ | The FTP server provides a
poini vefom tolder in tha repository. gateway 1o the repository.

files
A J

FIGURE 5.1. The APECS Portal system design.

L-1-1: 5= : s CoicSphers Portal i i = 1=1
e = e o /l‘-‘ % htta: /] muon. . uoregon. edu: 8080/ pridsahere fgrdapheretoidw ERP+ Data v h_‘,,- Cooxrghe Qo
_mmhwl ngﬂm o w dellrlans my dedlehons MCCHI SV 2007 The Apecs Portal NETCLAR Rawwr WerdPrase.com » Cote Flichr Phows from v Talking by srysed »

=

[wrcare | [arecs 7esis |

OreAPECSPortal: e

Commtted Content: =0
[|
You have newly uploaded files: ' Recently Commitied Files:
| These flas cannat be used Lntl you ComMIL tham 1o the repasitory: |7 5 - T
e oo &
n i
» da Igm alt}, (select none)
{salecs ali), (seiect rone) | -
i T ospabke Bl o
L3 llphl'flﬂ.mq ;; &} g
I~ soa.raw'd,
I~ atphacorrew S, 52 (¥
r llphlm:.rauq ; &
r benlw.qugm
|
I beta3os.raw St :: &, L

L arar e

FIGURE 5.2. A screenshot from the APECS Portal, showing file import. The
APECS Portal includes tools for uploading files, inspecting waveform meta-data, and
then committing files to the repository.

KoY) - PR & T [Cridtahiere foriall e il S 2
ol ' @ ? 0 heto 1 eson. nic.uoregon. edur APECSX200» A20Compaserdau acoon ¥ b | i Cooge N -
Welihrd 10 Criail Craigalist woM 0 delbtbaus mry debiciouns SICOHI SV 2007 The Apacs Forthl NETGLAR Router

WridPradtem = et Flthr Photes from v

@roARECSPortdis: sl et

r [arecs vaats’]

| Upinsd Broves Trimstermasems APICS Rrawly e S : : e e
Cparstions oo o Tombmatos. . __-=0],
1. Basic Iniormation _ssow | _te | | Creale a New Job .
L s ' mml i
2. Data Pre-Processing _thew | Hce | | & & |
Ik S W g0 = sive Crunges | .
| 3. Blink A it 8 Saow I oy I {select all), {select none)
== r Namejoba —=—]
|| 4.1CA Promocol_teen | _sese | - :
I Namejob @

Select an 1CA detomposition protacol @

 FastICA (MATLABY 1
" Infomax (MATLAB)

| Which APECS Operation? Which Input! ‘Which group (for resuls}
F HIPRrSAT - FRSUCA (C++) [i = wavetorm: | __wieat e
" HIPRrSAT - Infomax {C++} aloha pperatian_=] e rmpier etect | My results | Browse |
C S081 (MATLAR) e e — — e
Status: This job has not besn saved yet. L
Numbaer of processors: p— ——— — ~—r = —

FIGURE 5.3. A screenshot from the APECS Portal, showing job compeosition tools.

The collaboratory includes tools for composing APECS jobs, which clean eyeblinks
from waveform data.

DDO) — GridSphere Portal) - = = p=
v - @ Y % hmirimoon. i soregon.edu:8080 g grctspherelode, * v b T cooge Q)
Welcoma w Cmall I:nl!olut -nuukl-uu_mvwdc._u: SICCHI SV 1007 Tha Apacs Poril NETCEAR Rewwr WordPresecom = Get.. Hukn?husslm v »
|- : Fan Y S
OP~ARECS
" (2]
: -theA - POﬂGlo - =Ty = = N
[iome | arecs Toms | M2 =
- . - = . -
Sanrch the Rapository
files BEe T s _'_'
l:cfonﬂs | | % é
Saarch for segments
e] | (seinct all), (vatect none)
B
Fiename Size Last modificd File type
EiMacch by the follawing rieft): " Sbabic 198 bytes 2007-05-07 23:42:0L0 biink tempiate LY,
[naema =] cantains ke =+ ||~ sba. AISSBAKB 2007-08-07 23:41:50.0
[cate ~|iv befoes ~[2007-05-10 - s S : A= __.HE
[7] Umit results to 10 ehjacty,
Search I
May 26, 2007
Par

FIGURE 5.4. A screenshot from the APECS Portal, showing search tools. The
APECS Portal includes an EEG/ERP search engine.

94

5.1 The Next Step for APECS

Iterative Evaluation

The most important next step is to perform an iterative evaluation of the APECS
portal, with real users. Towards this goal, the APECS Portal is undergoing an infor-
mal evaluation with data from an actual EEG study [21]. Preliminary results suggest

the portal needs additional tools for managing information related to human subjects.

5.1.1 Provenance Visualization

The current APECS database tracks provenance, but very little of this infor-
mation is distilled to the user. Future work remains to visualize provenance. The
VisTrails project, from the SCI Institute, demonstrates a novel solution to visualizing
hierarchically organized data with multi-user access [16]. It is easy to imagine this

visualization strategy applied to EEG/ERP provenance data.

5.1.2 Distributed File Storage

Although the current APECS repository provides global access to a shared EEG/ERP
database, it does not overcome limitations due to upload delays. For example, trans-
mitting a bundle of EEGs from Pittsburgh, PA to Eugene, OR can take one full
day (and sometimes longer). A more optimal approach would federate two separate
repositories: one in Eugene and another in Pittsburgh. This proposed system makes
the assumption that a distributed research team primarily wants to share meta-data
about files, and not necessarily the files themselves. In a federated storage system,
files can be physically stored on one of several repositories. A middleware package,

such as [14], manages a global namespace over the collection of storage systems.

95

5.2 Future Work in Portlet Design

5.2.1 Improved AJAX Prefetch Strategies

Despite the design strategies we discussed in chapters three and four, web inter-
activity lags behind conventional interactivity. We can narrow this gap with solvent
design patterns and better technology. The portlet paradigm presents one solution,
and it can be improved with AJAX. An even more sophisticated approach would
request content from the server before it is actually needed, otherwise known as

prefetching.

A strong body of research explores web prefetching. In previous work, a web-server
embedded prefetch directives into an HTML document [18]. The client’s web-browser
scheduled the fetch based on its own heuristics of network latency. Another study used
a variation of the prediction by partial-matching algorithm to intelligently predict
which content to request [15]. These previous techniques focus on fetching objects
which are tagged and known. However, AJAX documents pose a new challenge. In
an asynchronous environment, we need to prefetch objects which do not yet exist in
the page. To support branching tasks, we also need to prefetch objects whose identity

is determined at runtime.

As far as we know, the challenge of prefetching asynchronous web content is
sparsely addressed in literature. Easy solutions are obstructed by the AJAX en-
vironment. In Javascript, AJAX requires developers to use continuation-passing and
callback functions. However, recent work proposes a Javascript language extension

(named MapJAX) to encapsulate the AJAX paradigm into objects and threads [27).

We can take steps towards automating the web-application engineering process
by continuing to explore improvements in web browsers and scripting languages. For
example, the XMLHttpRequest API desperately needs an automatic way to bundle
concurrent requests into a single request. The decision about when to send a bundle
of requests versus a single request should be based on the interactive context and the
realtime performance of the network. Another area of future exploration is HTML

“branching hints.” Developers could use these “hints” to tag the sections of their

o6

markup whose specific content cannot be determined until runtime. Upon parsing
these tags, the web browser could predictively (and asynchronously) fetch one or more

alternatives.

5.2.2 User-Created Tools

The APECS Portal is essentially a container of portlets, and each portlet is a
collection of lesser widgets. Every widget uses the same API to access underlying
services. In a more sophisticated portal, the API would be public and users could
design their own portlets and widgets. It is possible that user-created tools could
aggregate neuroscience content in surprising and novel ways. We can extend the
idea of user-created tools by imagining a web-based widget IDE. Future work might

explore portlet-based development environments.

[]
=l

APPENDIX
DATABASE SCHEMA

create table files(file_id INT NOT NULL PRIMARY KEY,
file_content BLOB NOT NULL,

filename TINYTEXT NOT NULL,

size BIGINT NOT NULL,

modified_date TIMESTAMP,

upload_date TIMESTAMP,

comm_date TIMESTAMP,

format VARCHAR(20) NOT NULL,

committed BOOLEAN NOT NULL);

create table subjects(subject_id INT NOT NULL,
file_id INT NOT NULL);

create table waveform_references(ref_id INT NOT NULL PRIMARY KEY,
file_id INT NOT NULL,
version_num INT,

segmented BOOLEAN,
recorded_date TIMESTAMP,
rate INT,

pum_channels INT,

board_gain INT,
conversion_bits INT,
amp_range INT,

num_events INT,

num_samples INT,
num_samples_per_segment INT,
num_categories INT,
num_segments INT);

create table events(event_id INT NOT NULL PRIMARY KEY,
ref_id INT,

event_code INT,

label VARCHAR(20),

type VARCHAR(20),

track VARCHAR(10),

o8

onset VARCHAR(16),
duration INT);

create table segments(seg_id INT NOT NULL PRIMARY KEY,
ref_id INT NOT NULL,
seg_number INT NOT NULL);

create table categories(cat_id INT NOT NULL PRIMARY KEY,
cat_name VARCHAR(15),
ref_id INT);

create table averaged_waveforms(ref_id INT NOT NULL PRIMARY KEY,
num_trials INT,
num_segments INT);

create table operation_types(typeid INT NOT NULL,
name TINYTEXT);

create table operation_descriptions(op_id INT NOT NULL PRIMARY KEY,
typeid INT NOT NULL,

name TINYTEXT,

description TINYTEXT,

lastmodified TIMESTAMP);

create table operation_contents(op_id INT NOT NULL,
field VARCHAR(40),

val TINYTEXT,

PRIMARY KEY(op_id, field));

create table apecs_job_status({ transid INT NOT NULL PRIMARY KEY,
lastupdated DATE,
status VARCHAR(30));

create table apecs_run_history (run_id INT NOT NULL PRIMARY KEY,
owner_id VARCHAR(32) NOT NULL,

transid INT NOT NULL,

rundate TIMESTAMP,

result_group_id INT);

create table operation_inhooks(op_id INT NOT NULL,
hook_id INT NOT NULL,
input_type VARCHAR(20),

quantity INT,
PRIMARY KEY(hook_id));

create table operation_outhooks{ op_id INT NOT NULL,
hook_id INT NOT NULL,

output_type VARCHAR(20),

quantity INT,
PRIMARY KEY(hook_id));

create table transformation_input(trans_id INT NOT NULL,
input_id INT NOT NULL,

hook_id INT NOT NULL,

PRIMARY KEY(trans_id, input_id, hook_id));

create table transformation_output(trans_id INT NOT NULL,
output_id INT NOT NULL,

hook_id INT NOT NULL,

PRIMARY KEY(trans_id, output_id, hook_id));

create table transformation_descriptions(trans_id INT
NOT NULL PRIMARY KEY,

opid INT NOT NULL,

description TINYTEXT,

name TINYTEXT,

lastmodified TIMESTAMP,

type VARCHAR(20),

savetogroup TINYTEXT);

create table transformation_save_history(trans_id INT
NOT NULL PRIMARY KEY,
lastsaved TIMESTAMP);

create table cleaning_jobs(job_id INT NOT NULL PRIMARY KEY,

trans_id INT NOT NULL,
job_name TINYTEXT,
description TEXT,
segment BOOLEAN,
number_of_seg INT,
elim_lowvar BOOLEAN,
lowvar_thresh FLOAT,
use_veog BOOLEAN,

o9

use_blinktemplate BOOLEAN,
use_range BOOLEAN,
min_correlation FLOAT,
min_threshold FLOAT,
max_threshold FLOAT,
inc_threshold FLOAT,
whiten BOOLEAN,
validate_whiten BOOLEAN,
store_white BOOLEAN,
use_sphering BOOLEAN,
output_weight_mat BOOLEAN,
output_sphering BOOLEAN,
output_mixing BOOLEAN,
output_unmixing BOOLEAN,
output_ind BOOLEAN);

create table object_groups{ group_id INT NOT NULL PRIMARY KEY,

group_name TINYTEXT,
description TEXT);

create table group_contents(group_id INT NOT NULL,
object_id INT NOT NULL);

create table owners(userid VARCHAR(32) NOT NULL,
objectid INT NOT NULL);

create table user_permissions(userid VARCHAR(32) NOT NULL,
objectid INT NOT NULL,

visible BOOLEAN NOT NULL,

modifiable BOOLEAN NOT NULL);

create table group_permissions(userid VARCHAR(32) NOT NULL,
groupid INT NOT NULL,

visible BOOLEAN NOT NULL,

modifiable BOOLEAN NOT NULL);

create table trash(objectid INT NOT NULL);

60

[1]
2]
[3]
[4]
[5]

[6]
[7]
8]
[9]
[10]

[11]

[14]

61

BIBLIOGRAPHY

Adobe flash. http://www.adobe.com/products/flash/about/.
The django project. http://www.djangoproject.org.

Electro geodesics, inc. http://www.egi.com.

Exo platform. http://www.exoplatform.com.

Icablink toolbox [computer software] (version 1.21). Available from
http://www.people.ku.edu/ jdien/downloads.html.

Java applets. http://java.sun.com/applets/.

Java web start. http://java.sun.com/products/javawebstart/.
Liferay portal. http://www.liferay.com.

Ruby on rails. http://www.rubyonrails.org.

The world wide web consortium’s working draft of the xmlhttprequest api.
http://www.w3.org/TR/XMLHttpRequest/.

A collaborative informatics infrastructure for multi-scale science. Proceedings
of the Challenges of Large Applications in Distributed Environments (CLADE)
Workshop, pages 24-33, June 2004. Honolulu, HI.

R. Allan, D. Chohan, and X. Yang. A Service oriented architecture for portals
using portlets. In A. Akram, editor, UK e-Science All Hands Conference 2005,
September 2005.

V. Astakhov, A. Gupta, S. Santini, and J. S. Grethe. Data integration in the
biomedical informatics research network (birn). In B. Ludéischer and L. Raschid,
editors, DILS, volume 3615 of Lecture Notes in Computer Science, pages 317-
320. Springer, 2005.

C. Baru, R. Moore, A. Rajasekar, and M. Wan. The sdsc storage resource broker.
In CASCON ’98: Proceedings of the 1998 conference of the Centre for Advanced
Studies on Collaborative research, page 5. IBM Press, 1998.

[15]

[16]

[17]

it
(19
[20]

[21]

[22]

[23]

[24]

(25]

62

C. Bouras, A. Konidaris, and D. Kostoulas. Predictive prefetching on the web
and its potential impact in the wide area, 2004.

S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva, and H. T. Vo.
Vistrails: visualization meets data management. In SIGMOD '06: Proceedings
of the 2006 ACM SIGMOD international conference on Management of data,
pages 745-747, New York, NY, USA, 2006. ACM Press.

D. Dou, G. Frishkoff, J. Rong, R. Frank, A. Malony, and D. Tucker. Develop-
ment of NeuroElectroMagnetic Ontologies (NEMO): A Framework for Mining
Brain Wave Ontologies. In (To appear) Proceedings of the 2007 ACM SIGKDD
conference (SIGKDDO7), 2007.

M. Fabiani, G. Gratton, and M. Coles. Handbook of Psychophsiology, chapter 3.
Cambridge University Press, 2000.

D. Fisher and G. Saksena. Link prefetching in mozilla: a server-driven approach.
pages 283-291, 2004.

R. Frank and G. Frishkoff. Automated protocol for evaluation of electromagnetic
component separation (apecs). Clinical Neurophysiology, 118(1):80-97, 2007.

G. A. Frishkoff. Hemispheric differences in strong versus weak semantic priming:
Evidence from event-related brain potentials. Brain and Language, 100:23-43,
January 2007.

G. A. Frishkoff, D. Tucker, C. Davey, and M. Scherg. Frontal and posterior
sources of event-related potentials in semantic comprehension. Brain Research:
Cognitive Brain Research, 20(3):329-354, 2004.

J. Grethe, C. Baru, and e. a. A. Gupta. Biomedical informatics research network:
Building a national collaboratory to hasten the derivation of new understand-
ing and treatment of disease. In Proceedings of Healthgrid 2005, from Grid to
Healthgrid, pages 100-109, April 2005.

R. T. Kouzes, J. D. Myers, and W. A. Wulf. Collaboratories: Doing science on
the internet. Computer, 29(8):40-46, 1996.

H. Liang, J. Dingel, and Z. Diskin. A comparative survey of scenario-based to
state-based model synthesis approaches. In SCESM '06: Proceedings of the 2006
international workshop on Scenarios and state machines: models, algorithms,
and tools, pages 5-12, New York, NY, USA, 2006. ACM Press.

63

[26] H. Muccini. Detecting implied scenarios analyzing non-local branching choices.
In M. Pezze, editor, FASE, volume 2621 of Lecture Notes in Computer Science,
pages 372-386. Springer, 2003.

[27} D. Myers, J. Carlisle, J. Cowling, and B. Liskov. Mapjax: Data structure ab-
stractions for asynchronous web applications. In Proceedings of the 2007 USENIX
Annual Technical Conference, Santa Clara, CA, June 2007.

[28] A. Proverbio and A. Zani. The cognitive electrophysiology of mind and brain,
chapter 2. New York: Academic Press, 2002.

[29] J. Rong, D. Dou, G. Frishkoff, R. Frank, A. Malony, and D. Tucker. A Semi-
automatic Framework for Mining ERP Patterns. In (To appear) Proceedings
of The 2007 IEEE International Symposium on Data Mining and Information
Retrieval (IEEE DMIR-07) , 2007.

[30] M. B. Rosson and J. M. Carroll. Usability engineering: scenario-based develop-

ment of human-computer interaction. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2002.

[31] J. Sprague, E. Doerry, S. A. Douglas, and M. Westerfield. The zebrafish informa-
tion network (zfin): a resource for genetic, genomic and developmental research.
Nucleic Acids Research, 29(1):87-90, 2001.

