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THESIS ABSTRACT

Christie Lee Lili Prottsman

Master of Science

Department of Computer and Information Science

June 2011

Title: Computational Thinking and Women in Computer Science

Approved:  _______________________________________________
Michal Young

Though the first computer programmers were female, women currently make up

only a quarter of the computing industry. This lack of diversity jeopardizes technical

innovation, creativity and profitability. As demand for talented computing professionals

grows, both academia and industry are seeking ways to reach out to groups of individuals

who are underrepresented in computer science, the largest of which is women.

Women are most likely to succeed in computer science when they are introduced

to computing concepts as children and are exposed over a long period of time. In this

paper I show that computational thinking (the art of abstraction and automation) can be

introduced earlier than has been demonstrated before. Building on ideas being developed

for the state of California, I have created an entertaining and engaging educational

software prototype that makes primary concepts accessible down to the third grade level.
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CHAPTER I 

INTRODUCTION 

	 Research has shown that women who succeed in computer science are 

likely to have been introduced to the field early in life (Camp and Gürer 1997). 

By familiarizing girls with advanced concepts prior to middle school, advocates 

hope that their interest in technology will continue to grow during grades six 

through twelve — instead of showing a significant decrease during those years, 

as is currently the case (Margolis and Fisher 2002). A strong representation of 

women in computer science is becoming ever more important as the technology 

field booms. Female team members not only provide diversity of knowledge and 

experience, but at 51% of the American population (US Census 2009) and only 

26% of the computer science work force (Department of Labor 2010), women 

are a great resource for adding talent to an area that faces a shortage of qualified 

applicants. Retaining the interest of girls through high school is the first step 

toward strengthening their presence in undergraduate study and industry.

	 In order to more easily achieve that goal, there is a need for tools 

aimed at presenting true computer science — not just computer literacy — to 

elementary aged children. This paper focuses on the development of one such 

tool.

	

1.1. Contributions

	 This thesis makes two major contributions to the fields of computer 

science and computer science education. First, it introduces computational 

thinking as a promising method for attracting women into computer science. 
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Second, it provides a tool for introducing computational thinking to an 

elementary school audience. Computational thinking (thinking like a computer 

scientist) is currently an extremely popular topic. Blending computational 

thinking into other fields has already begun to transform the world, especially in 

the areas of biology and economics (Astrachan 2009).

	 Previously, educational support in the area of computational thinking has 

been aimed at advanced grade levels, namely college undergraduates and above. 

Few methods have reached the K-12 age group and most of those are largely 

hypothetical, giving scenarios for learning opportunities without providing 

concrete instructional tools (such as Barr, Harrison, and Conery 2011). This 

thesis introduces not only a self-contained online computational thinking tool 

for grades three through five, but also provides printed examples of analogous 

lessons for those without access to computers.

1.2. Organization of Thesis

	 The remainder of this thesis is organized as follows: Chapter II focuses 

on the history of participation in computer science, highlighting the widening 

gap between the number of men and women in the field. Chapter III reviews 

existing research surrounding the reasons why technological degrees and careers 

fail to appeal to women.  Chapter IV discusses lack of early opportunity as the 

root problem for women in the industry and introduces computational thinking 

as a solution to that problem. Chapter V presents Thinking Myself, an online 

game designed to cultivate confidence and resilience among girls in computer 

science. To conclude, chapter VI summarizes the ideas presented in this paper 

and suggests future areas of research. 



2 3

CHAPTER II 

 A Look at the History of Participation 

in Computer Science

	 Many people think of computer science as a recent phenomenon, 

beginning within the last generation or so and peaking in the 1990’s before the 

“dot-com” bust. In reality, the word “computer” has been in use since before 

the early seventeenth century when it referred to a person who calculated 

computations (Oxford English Dictionary, Second Edition). Computer science 

was an important skill for many mathematicians who relied on automation 

and programming as far back as 100 B.C.(New York Times 2002). Even then, 

computational theory and algorithms were critically important, providing 

methods to solve difficult problems in the least amount of time with proper 

preparation. 

	 Computer science evolved from the discipline of math, but as electronic 

computers became accessible to the public the topic started to be recognized as 

a valid subject on its own. In the early 1960’s, computer science departments 

began to split themselves out of mathematics departments, with the first actual 

bachelor’s degree in computer science (CS) being awarded at Purdue in 1962 

(Rice and Rosen 2004). Enrollment in CS grew steadily for the first decade 

(National Science Foundation 2008), picking up speed in the late 1970’s with 

the introduction of the 8-bit color, mass-produced Apple II. Between 1978 

and 1985, enrollment for undergraduate programs grew almost exponentially, 

dropping significantly between 1985 and 1991, then eventually stagnating until 

the late 1990’s (see figure 1).



4 5

Figure 1.  Bachelor degrees awarded by year
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	 In 1996, online activity began to affect interest in computer science 

as the number of Internet users jumped from 16 million to 36 million (Dreze 

and Zufryden 1999). The numbers nearly doubled again in 1997 and 1998, 

leading to a rush in e-commerce activities. This new and profitable model gave 

birth to a phenomenon called the “dot-com bubble” as investors succumbed to 

World Wide Web mania, throwing their money into any venture labeled with 

the “.com” suffix (Goodnight and Green 2010). College enrollments grew with 

equal fervor, topping out at 57,405 CS bachelor’s degrees awarded in 2004 

(National Science Foundation 2008). After the dot-com bubble burst in the early 

twenty-first century, undergraduate enrollments began to decline and have not 

yet rebounded to previous levels.

2.1. Rich History of Women in CS

	 The number of women enrolled in undergraduate work in computer 

science has always trailed the number of men, but that does not mean that 
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women are less capable of succeeding in the field. As a matter of fact, the first 

computer programmers were women. As far back as 1843, Ada Lovelace was 

the first woman to write an algorithm for execution on a machine when she 

penned some notes for operation of Charles Babbage’s hypothetical Analytical 

Engine (Fuegi and Francis 2003). If speculative instructions intended for an 

imaginary machine aren’t sufficient evidence of a programmer, then the first 

legitimate computer programmers actually emerged over a century later, and 

again, they were women.

	 In 1946, the United States Army publicly introduced the world’s first 

reprogrammable general purpose computer. The Electronic Numerical Integrator 

And Computer (ENIAC) was capable of making nearly 5000 calculations 

per second (Farrington 1996, Goldstine 1972). Up to that point, the Army had 

relied on a group of specially recruited women to calculate trajectory tables 

for ballistic missiles, a process that took weeks by hand. With the adoption 

of the ENIAC, the female “computers” — Fran Bilas, Betty Jennings, Ruth 

Lichterman, Kay McNulty, Betty Snyder, and Marlyn Wescoff — turned their 

time and intelligence toward programming the thirty ton, 1800 square foot 

behemoth. 

	 Even with a long history as computational pioneers, women maintain a 

turbulent relationship with computer science. According to the National Science 

Foundation (2008), female undergraduates have never made up more than 37% 

of the CS major (see figure 2). Despite the fact that colleges and universities 

are running campaigns targeting women, their numbers continue to drop 

(U.S. Department of Education 2009). The attrition rate among women in CS 

departments is astounding. Only 40% of women who begin in the CS program 

will graduate with that major, compared to 68% of men (Klawe and Levenson 
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1995).  Women tend to perceive themselves as outsiders and “imposters” 

(Schenkel 1984), making them far less likely to hang on through daily struggles 

as they believe that they should never have started in the first place.

Figure 2. Bachelor’s degrees awarded to women vs. men 
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	 With women making up nearly half of the overall workforce (U.S. 

Department of Labor 2009), one might question why it is so important to 

equalize the gender gap in computer science specifically. Women are responsible 

for 58% of e-commerce spending (Abraham, Mörn, and Vollman 2010) and 

account for 55% of social gamers (Information Solutions Group 2010). In many 

respects, women make up as much or more of the end-user demographic than 

men do, and yet 79% of those designing the services and 78% of those creating 

them are male (Department of Labor 2010). Equalizing this imbalance, however, 

would do far more than just enlighten corporations to the desires of their 

customers. Diversified teams inspire more teamwork, creativity and productivity 

than unisex teams (Ashcraft and Blithe 2009). Companies with the highest 
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percentage of women in upper management experience a return of equity that 

is 35% higher than those corporations with the lowest percentage of women at 

executive levels (Joy et al. 2007).

	 Knowing the success that women have previously achieved as pioneers 

in computer science makes it that much more baffling to find that so few of them 

are involved in the field today. The next section will summarize research that 

gives insight into the problems, preferences and rumors that contribute to fewer 

women pursuing and succeeding in technological careers.
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CHAPTER III 

Speculations and Attempts at Solutions

	 Much of the research on women in computer science focuses on their 

absence. Some hypotheses on related factors include sexism, preference for 

personal interaction, less access to resources as children, deficiency of female 

role models, and distaste for the stereotypes of geek culture. Lack of draw tends 

to be attributed to perception of the industry, while research on attrition points 

more toward working conditions and environments which cause women to feel 

like outsiders.		

	 Before taking a look at the idea of gender in computer science, it is 

important in this day and age to recognize the sensitivity of categorizing 

“women” into one generic group.  In this paper, the term “women” will be 

used as an abbreviation for “gender-schematic women” in accordance with 

the precedence set in “Evaluating Electronic Information Resources for Young 

Women: General Research Concepts” by D.E. Agosto (2000), which defines 

gender-schematic individuals as people who “view the world largely from a 

gendered point of view, bifurcating society into female and male components.” 

Similarly, all other words which indicate generalizations on gender (such as 

“female” and “girls”) will be used in the same vein. 

	 Sexism is a topic which is frequently discussed in computer science, 

due in large part to the disparity between the number of men and women who 

pursue it. When analyzing an industry that is currently 75% male (see figure 3) 

the existence of bias is a reasonable inference. Unconscious bias, which often 

manifests itself without intentional ill-will by the offender, “may be exacerbated 
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in technical companies and departments”, claims a 2009 report by the National 

Center for Women in Information Technology (Ashcraft and Blithe). The 

same study claims that women are more likely to stay quiet in meetings and 

not as likely to contribute their ideas when they feel unfavorably judged or 

devalued. This often leads to a high turnover rate due to lack of confidence and 

satisfaction.

Figure 3. Number of workers in computer science professions.

0

200

400

600

800

N
um

be
r o

f  
W

or
ke

rs
 (i

n 
Th

ou
sa

nd
s)

1000

1200

Men

Women

Total number of 
women in CS

834,000 of
3,664,000

Computer Scientists &

Systems Analysts  

Computer Programmers 
Software Engineers  
Computer Support Specialists  

Database Administrators  

Network and Systems Administrators  

Network Systems & 

Data Communications Analysts  

24.8%

Data aggregated from BLS Data Tables 
url: http://www.bls.gov/cps/#tables

	 More blatant forms of discrimination are on the decline (Cesi and 

Williams 2011), but when perceived, they can play a large part in killing a 

woman’s progress in computer science. Research performed on a group of 

graduate students shows that even when prejudice is not officially cited as a the 

main reason for leaving a CS program, a woman is 32 times more likely not 
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to complete her degree if she has previously thought of leaving due to sexism 

(Cohoon, Wu and Chao 2009). 

	 Beyond bias, there are also gender-specific preferences which are likely 

to turn women away from technological professions; lack of collaboration is one 

such issue. Denise E. Agosto (2000) claims that girls learn through collaboration 

while boys learn through competition . This is especially intriguing at an 

undergraduate level where many of the initial courses focus on solitary work 

(Williams 2006). Such an introduction to the field reaffirms the belief that the 

life of a programmer is spent working alone — an idea that is both unappealing 

and frustrating to many women. In a 2010 study published by the Association 

for Psychological Science, STEM careers (Science, Technology, Engineering 

and Math) were statistically shown to be perceived as less communal in goals 

— that is less likely to be seen as working with or for the good of others — than 

alternative career choices. 

	 A study by Jane Margolis and Allan Fisher (1997) found that many 

women want to use computers as a way to make society better. Accordingly, a 

survey done by ACM/WGBH in 2009 shows that the majority of girls prefer 

descriptions of computer science that appeal to their sense of community and 

ability to “do good” in the world, whereas boys prefer descriptions which 

showcas CS as a tool to help them be in control of their own lives. 

	 Even so, current research suggests it is not only important how 

computers are presented to girls, but also when they are presented.  In the 

paper, “Investigating the Incredible Shrinking Pipeline for Women in Computer 

Science” Camp and Gürer (1997) assert that access to computers and training 

in the concepts of computer science should be provided at preschool levels in 

order to give women the greatest chance to avoid developing insecurities about 
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their abilities. A survey conducted by Google in the Summer of 2010 confirms 

the importance of introducing computers early in life, finding that 98% of CS 

majors were exposed to CS before college, while only 48% of non-majors could 

say the same (Stephenson 2011). 

	 Introducing women to computers when they are young is helpful, but 

not always quite enough. Unfortunately, in a mixed-gender education setting, 

boys will often appropriate the resources for themselves, leaving the girls out 

(Margolis and Fisher 2001). Similarly, teachers assume that boys are more 

interested in exploring computers, so they tend to select the boys over the 

girls when presenting computational opportunities (Kay 2007). In the book, 

“Unlocking the Clubhouse: Women in Computing,” covering research done at 

the Carnegie Mellon School of Computer Science, Margolis and Fischer show 

that boys tend to have more access to computers at home. In fact, 40% of men 

(compared to just 17% of women) had been given their own computer as a 

child.  

	 Very few girls are encouraged into computer science at home, and 

with a lack of female role models in the industry there is little to entice them 

from the inside. It is like the joke says, “Why aren’t there very many women 

in computer science? Because there aren’t very many women in computer 

science!” It sounds like a tautology, but really it’s a self-preserving cycle that 

seems impossible to break. Fewer women in computer science means fewer role 

models for young girls. Fewer role models means less of a chance that girls will 

want to emulate the life of a computer scientist, which means there will continue 

to be fewer women in computer science.

	 A 1996 study by Gloria Townsend shows that just watching a brief 

video of female role models significantly improves female attitudes toward 
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computer science. Likewise, an article in The Journal of Personality and Social 

Psychology (Stout et al. 2011) displays the results of research on the effects of 

female role models among STEM students. The article indicates that exposure to 

female role models can not only prevent girls from developing negative attitudes 

toward the sciences, but also reverse negative perceptions that have already 

formed. The role model study shows that having male teachers will decrease a 

woman’s self-efficacy (perception of her own capability) in STEM sciences over 

time and female teachers will increase a woman’s self-efficacy over time.  

	 Positive female examples go a long way toward improving a woman’s 

attitude toward computer science, yet many women still feel out of place in an 

atmosphere of masculine geekery. Environmental cues alone (such as science 

fiction posters, soda cans and comic books) are enough to separate the girls 

from the boys when it comes to choosing a major. In an analysis of variance 

performed in 2009, Sapna Cheryan of University of Washington determined that 

a room adorned with items that were stereotypically associated with computer 

science affected women much more negatively than it did men. When polled 

about their interest in computer science, the women in a room with non-

stereotypical decor were more than twice as likely to say they were interested in 

the major.  

	 Environmental discomfort helps contribute to a woman’s overall sense 

that she does not belong in a field where she has so little in common with the 

majority of her peers. Constant microbombardments of this nature tax the 

perseverance of an individual, causing one to lean heavily on her own belief 

in her abilities. Unfortunately, females in the computers science major tend 

to be less self-assured than male non-majors (Beyer, et al. 2003). This lack of 
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confidence in technical ability translates into stress and self-induced pressure 

(Abouseriea 1994), which contributes to heightened dissatisfaction.

	 Retaining women through college is difficult enough, but attrition in the 

workforce is considerable as well. Only 59% of women will stay in a technology 

career past their 10 year mark, as opposed to 83% of men (Ashcraft and Blithe 

2009). In many cases, these women are not just quitting one specific job; they 

are quitting the field altogether. The most common factors contributing to the 

decision for women to leave are the same factors which prevent them from 

entering the workforce initially: sexism, isolation, and lack of female role 

models (Hewlett 2008). 

	 Several entities have made attempts at remedies for this epidemic. 

Some countermeasures have proven more effective than others. Carnegie 

Mellon raised their percentage of women in the program to 34% by holding 

workshops for high school teachers and changing prerequisites to focus less 

on prior programming experience and more on ingenuity. They also made 

sure to provide multiple entry points into the major, so that students can be 

comfortable no matter what level of programming experience they are equipped 

with when they enter the department (Blum and Frieze 2005). Harvey Mudd 

College experienced similar success with a 2010 incoming class that was 52% 

female (Harvey Mudd College, 2011). Mudd attributes its increase in female 

participation to a technique similar to that of Carnegie Mellon. They also 

provide a plethora of research opportunities to students as young as sophomore 

level. At Harvey Mudd, female freshmen are invited to a computer science 

conference so they see the number of available role models from the beginning 

of their college experience (Sahil Luthra 2011).
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CHAPTER IV 

What Can Be Done?

	 What can be done to fundamentally change the negative perception of 

computer science for women? A segment of the issues that turn women off from 

technological careers — including prevalent sexism and shortage of female 

role models — can be diminished by successfully bringing more women to 

the industry. Other matters, such as preference for personal interaction and 

distaste for the stereotypes of geek culture are deeply ingrained propensities that 

don’t need to be changed in and of themselves as much as the perception that 

computer science is dissatisfying in those respects. Finally, the lack of access 

and opportunity to develop knowledge and engage young girls in computer 

science stands at the root of combating and preventing the barriers presented 

earlier in this paper. 

	 Practice builds confidence, and confidence is an amazing ally for women 

in technology. When a woman is self-confident she is more able to stick up 

for her ideals, take risks and experience success in what she tries (Lynn 2008). 

Studies from as far back as 1979 (Lemkau) state that women who succeed in 

male-dominated careers tend be more confident than “the norms for women,” a 

sentiment that is still echoed today (Eagly 2002). This kind of power is what a 

woman needs to fight the adversity described. The same 1979 study shows that 

women in male-dominated careers tend to have similar backgrounds, in that they 

were encouraged from a young age to explore both “masculine” and “feminine” 

opportunities. Open exploration, along with encouragement from a young age, 
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is precisely how computational thinking can help build confidence in the women 

of tomorrow.

	 Computational thinking combines abstraction and automation in problem 

solving. No firm standards have yet been adopted to easily define computational 

thinking, but the author has formulated a practical working definition by fusing 

together concepts presented by other authoritative resources (Wing 2006, 

Cooper et al. 2010, Google 2010) . One fundamental idea behind computational 

thinking is to break a problem up into its parts, abstracting out details so that 

patterns can be more easily seen. An algorithm is then constructed to automate 

the task of solving the problem itself. The point of computational thinking is 

not to give a precise number of steps to attempt in a particular sequence, but 

rather to train one’s mind to recognize how a current issue might be similar 

to a problem that already has a known solution (Shekhar 2008). Often times, 

tweaking the solution to a similar problem can lead to a resolution for the 

unknown.

	 The understanding of computational thinking used in this paper goes 

one step past the descriptions from the resources mentioned above. As part 

of an attempt to make the need for computational thinking more clear, it has 

been further divided into two parts; the understanding of how to efficiently use 

computation, and the ability to prepare a problem for that computation.  

	 A sorting problem will allow a straightforward example of computational 

thinking. Take, for instance, the need to pick the tallest item in a line-up. A 

human could simply glance at the list as a whole and instantly pick out the 

tallest specimen. A digital computer, on the other hand, does not have that 

capability. Heights would be stored as numbers in the machine memory. To find 

the largest height, each item would have to be compared to each other item in 
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order to be “sure” that the tallest is found. On the side of understanding efficient 

computation, one must know what the computer “needs” in order to solve a 

problem that may come naturally to a human mind. Computational thinking is 

enhanced by the ability to anticipate such hurdles introduced by the entity which 

will be performing the computation.

	 The second part of computational thinking is a directed form of 

analytical thinking. Using specific analytical methods, a problem can be cut 

into recognizable pieces, making it easier to work with. These pieces can often 

be formatted for computation before sewing the problem back together into 

a complete algorithm (list of instructions). Finally, the algorithm is translated 

into the language of the computing machine. That translation acts as the bridge 

between both halves of the computational thinking process. The bridge is often 

some form of code when using digital computers or electronics to solve a 

problem; but when the computing machine is a human brain, the bridge could 

take nearly any form — including a diagram, audio recording or a literal “list of 

instructions”.

	 Computational thinking is a tool that has been carefully developed as 

an addition to any field, not just fields which pertain to technology (Denning 

2003, Perkovic et.al. 2010).  The idea behind computational thinking is not just 

to prepare other disciplines for their inevitable blend with computer science, but 

to introduce other minds to the problem solving tools which are often taken for 

granted by computer scientists. Computational thinking can become a common 

mechanism for intellectuals from all areas of interest when looking at problems 

which are unsolved and unfamiliar.

	 Jeannette M. Wing, who has been referred to as the mother of 

computational thinking, declares “If we wanted to ensure a common and solid 
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basis of understanding and applying computational thinking for all, then this 

learning should best be done in the early years of childhood” (Wing 2008). 

Indeed, the precedent has been set for bringing useful skills to elementary 

school children in simplified forms. Counting and arithmetic are taught in 

preparation for more complicated mathematics education in the future, finger 

painting and color mixtures introduce art, and the alphabet is a precursor to 

reading and writing. Similarly, computational thinking is a particularly elegant 

way to introduce computer science at the K-5 grade level, due in large part to 

the fact that computers are not actually required. In much the same way as math 

is practiced with pencil and paper before a calculator is introduced, thinking 

computationally can be practiced through stories and puzzles well before a 

machine is necessary. By removing the technological requirement from the 

youngest age bracket, computational thinking — and therefore computer science 

— becomes more easily accessible to everyone. 

	



18 19

CHAPTER V 

Thinking Myself 

	 Thinking Myself (http://games.thinkingmyself.com) is a website 

created by the author to engage girls in computational thinking as a step toward 

computer science. The environment is tailored to girls, using a colorful design 

with simple elements and several graphical components. Much of the user 

interface is based on intensive research surrounding the “rule/role” stage that 

happens between the third and fifth grade, where children start to read for the 

sake of learning and are more able to analyze longer, complicated sentences 

(Markoplous and Bekker 2003). Decisions for the overall look a re based on a 

study which finds that girls prefer simple layouts with a purple background and 

playful fonts (Taslim et.al. 2009). 

	 Beyond the overall look, the feedback style is also deliberate and 

uplifting. Girls tend to respond very well to positive feedback. Negative 

feedback deters them much more severely than it seems to deter boys (Corpus 

and Lepper 2007) and is therefore avoided in almost every case. Whenever 

possible, incorrect answers are indicated by lack of positive signals rather 

than overt negative responses. To push the feedback scale even more into the 

affirmative, an applause button is located in the lower left-hand corner for 

affirmation on-demand.

	 Due to the female preference for eye contact and facial interaction 

(Baron-Cohen and Benenson 2003), a friendly guide, “Kiki” (see figure 4) , 

is introduced to walk the users through the lessons. Kiki is the representation 

of an amicable young girl who is dressed in feminine attire with bows in her 
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hair and a smile on her face. She is unintimidating, with proportions similar to 

those of a third grader. Kiki walks the students through each step of the tutorial, 

introducing them to new words, concepts and situations.

Figure 4. Screen shot from Thinking Myself, highlighting Kiki and the button structure.

	 Thinking Myself consists of five sections - an introduction and four 

computational thinking lesson sections. The game advances automatically as 

each segment is passed, but a user has the option of jumping between sections 

using pictorial navigation buttons to the right of the main screen. Each lesson 

has multiple levels and a final game. Numbered, glowing buttons at the bottom 

of the game area give students a way to navigate between levels while playing.

5.1. Home: An Introduction

	 The first section, “Home”, provides an introduction to the techniques that 

will be used to teach computational thinking. In the first level, Kiki introduces 
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herself and informs the users that she will be guiding them through lessons on 

how to solve problems without being explicitly told what to do. The expectation 

is set to allow third through fifth-graders the opportunity to understand that 

they can figure out solutions on their own, a concept which is illustrated using a 

game (see figure 5). 

Figure 5. The Instruction-Free Machine

	 The “Home” game is a machine without directions.  Knobs, handles and 

switches adorn the gadget without a single instruction on what to do. Only one 

small light provides feedback initially. In the beginning state, the light glows 

a beautiful green. If the user guesses the first correct move by pushing the red 

button on top, the light will stay green and a progress indicator will begin to 

rise on the left-hand side of the main window (see figure 7). Any other move at 

that time will either not elicit a response at all (such as clicking outside of the 

machine) or will cause the light to go red, indicating that something has been 
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clicked out of order (see figure 6). The machine behaves in a similar manner 

throughout the game; either displaying a green light and increasing the progress 

indicator or presenting the red light and resetting the progress indicator. Once 

each of the toggles have been clicked in the proper sequence, the progress bar 

reaches the top and Kiki comes back to tell the user that they have succeeded in 

winning the game. The user is then prompted to continue to the next lesson.

Figure 6. Machine and stage 
indicating incorrect move.

Figure 7. Machine and stage 
indicating progress.

	 Once the user has been put in the figure-it-out state of mind, the formal 

computational thinking lessons begin. Thinking Myself does not hide complex 

ideas behind amusing activities, it uses those activities to highlight the complex 

ideas. The user is told definitively that they will be experiencing “computational 

thinking”. Each section advertises the word for which it is themed, even though 

those themes are technical and multi-syllabic. The idea is to introduce children 

to formal concepts in a fun and engaging manner, taking the sting out of words 

like “decomposition” and “algorithm”. 
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5.2. Lesson 1: Decompose

	 The first official lesson is under the button “Decompose”. Decomposition 

is defined in this lesson as “taking large, difficult problems and breaking them 

down into smaller, easier ones”.  All of the concepts chosen for Thinking Myself 

were modified to be easily understood while remaining true to the computer 

scientist’s interpretation of the notion. 

	 In “Decompose”, Kiki walks the user through an example of 

decomposition that he or she may already be familiar with; showing how 

multiplication can be broken down into addition. She then goes on to a more 

complicated example which is most-likely entirely new to the student. After 

Kiki shows how to count the faces on a cube made of smaller cubes by taking 

it apart, she leads the user into another game. Here, the user is presented with 

several numbers to sort. As pictured in figure 8, Kiki guides the student through 

the sorting process by decomposing the task into three smaller ones using the 

classic “bucket sort” method. 

Figure 8. Bucket Sort game at the end of the “Decompose” lesson.
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	 The game is made positive by choosing to not allow incorrect moves 

rather than provide negative feedback such as buzzing noises or phrases like 

“Wrong Move.” If a student tries to drop a number into an incorrect bucket, 

the number will simply reset itself to the top of the screen, leading the user to 

conclude that no progress can be made by continuing to attempt that action. 

Once the sorting is completed, Kiki praises the user and reinforces the idea that 

some problems are made easier by breaking them up into smaller pieces.

5.3. Lesson 2: Patterns

	 Once “Decompose” is completed, the student is guided into “Patterns”. 

A pattern is defined as “repetition in design” or “similar qualities that are shared 

by a number of different items.” This explanation is sufficient for the needs of 

Thinking Myself, but should not present itself as contrary to what students have 

already learned in previous grades. Kiki uses short games to walk the student 

through different ways of looking at and thinking about patterns. Once she has 

displayed both “repetition in design” and “similar qualities that are shared by a 

number of different items,” it’s time for another end-of-lesson game. This game, 

pictured in figure 9, is loosely modeled after tangrams, encouraging kids to look 

for patterns in a sea of blank triangles. After successfully spotting and recreating 

the patterns, the user is given accolades and encouraged on to the next lesson.



24 25

Figure 9. The Triangle Game at the end of the “Patterns” section.

5.4. Lesson 3: Abstraction

	 “Abstraction” is presented as the “art of taking the details out of a 

problem so that you can make a solution work for many different things.” This 

definition, while simple in concept, is actually more strict than the common 

definition. By adding the purpose of abstraction to the definition, the user is 

more easily guided to the object of the following example. In that example, the 

student is shown three similar sentences and asked to determine which words 

are identical and which words are different. By collapsing the sentences onto 

one another, it becomes obvious that some words line up perfectly and others 

become a jumble of letters. The words that jumble are then blacked out and 

turned into a “blank”.  The act of leaving the static words visible and creating a 

blank for the changing word is reinforced as abstraction. 
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	 As a next step, the sentence is abstracted even further by identifying 

other parts of the line that could change under different circumstances (see 

figure 10). After repeating this idea, Kiki comes back to help the student 

understand the use of abstraction. She defines the parts of the sentence that 

can change as variables. Variables are then used to introduce inputs; where an 

input is the piece of a sentence that determines how other abstracted blanks get 

filled-in. Similarly, outputs are defined as the values that are appropriate for the 

selected input. 

Figure 10. Input/output relationship for abstracted sentence

	 Fresh from the tutorial on variables, inputs, and outputs, students are 

led into another game. This game is a machine that combines two inputs into 

one output. The user is given several variables to choose from and is asked to 

select the two that will reproduce the output displayed in the bottom right-hand 

corner (see figure 11). Again using the concept of positive-feedback only, the 

machine disallows incorrect moves rather than recognizing them with buzzing 

or negative responses. If an incorrect selection is made, the machine will not 

receive the variable and it will be returned to the selection area. On the other 

The input selection determines appropriate values for output.
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hand, if a correct input is placed in the machine, signs of progress will begin 

immediately. 

Figure 11. Two input machine

	 Once the correct variables are dropped into the contraption, it begins to 

shimmy and shake while the “input” fields populate with the selected variable 

names. After the anticipation-building action phase, the machine stops and spits 

out the output created by blending the two selected inputs. The output lines up 

with the sample in the bottom right-hand corner and success is proclaimed in the 

form of congratulatory affirmation. 

5.5. Lesson 4: Algorithms

	 Finally, the user is presented with the lesson on “Algorithms”. The word 

may sound intimidating, but Kiki simplifies the idea by defining an algorithm 

as a set of instructions for completing a task. The first lesson compares an 

algorithm to a recipe and uses that analogy to introduce loops. By following a 

numbered list of steps, it becomes obvious when one step is repeated multiple 
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times. After that illustration, the second level takes a brief peek into algorithm 

efficiency. Continuing with the recipe scenario, Thinking Myself uses an 

interactive animation to show that the amount of time to complete two batches 

of cookies can vary based on the algorithm used. It takes less time, for example, 

to use each ingredient once and double the amount added, than it would to add 

each ingredient in sequence two times. 

	 The final game, displayed in figure 12, tests the student’s ability to 

follow algorithms. Disguised as a treasure hunt, the user is given instructions to 

follow one at a time, each step leading them closer to finding the treasure. If all 

of the instructions are followed correctly, the user will land on a specific island, 

which will play the animation of a growing treasure chest. If the user does not 

end on the proper island, the game will go back to the first instruction and guide 

them through another time. When the treasure is found, Kiki reappears to praise 

the students and wrap up the lesson, giving them the chance to play again from 

the beginning if they so desire.

Figure 12. Algorithm treasure hunt
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5.6. The Game in Use

	 In practice, Thinking Myself has created some interesting observations. 

Initial testing was done with nine adults, observed individually, each with some 

background in STEM. Perhaps counter to intuition, it was the adults with the 

most experience in their fields who took the longest to solve the Instruction-

Free Machine. The tool was also introduced to a six-year-old boy who solved 

the Instruction-Free Machine quite quickly, but clicked through the majority of 

the lessons without reading the text just to get from game to game. His brother, 

a seven-year-old also mastered the end games, but he showed more patience for 

the lessons and animations which tied the ideas together.

	 The program was presented at the end of a local girls’ science camp 

as an additional activity for those who had completed their pair-programming 

exercise. Every one of the sixteen girls made sure that they had time to 

play Thinking Myself. Each of them was drawn into the lessons, discussing 

what they saw with their partner and giggling as they initiated applause for 

themselves time and again with the animated clapping button. 

	 The experience appeared to be very different for the adults and the 

children. Most notably, children appeared to be much quicker at completing 

lessons and solving the games than adults were. Including the six-year 

old, every child was faster than every adult at solving the machine without 

instructions in the introductory session. The fastest time for solving the 

Instruction-Free Machine belonged to a fourth-grade girl, followed closely by 

several other fourth and fifth-graders. The longest time belongs to a sixty-year-

old engineer.

	 Other observations worth mentioning were the attitudes of the 

participants. In every case, the users were not told what to expect and started 
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with some uncertainty. Inevitably, by the middle of the game, users were 

smiling, giggling or cheering for themselves. Thinking Myself did not appear to 

easily cause frustration in any of the participants observed. Since there are no 

time limits, wrong answers or negative sounds, shame and embarrassment are 

not anticipated to be common byproducts of the tool. 

5.7. The Game in Analog

	 Thinking Myself is a proof of concept that computational thinking can be 

made entertaining and accessible for grade school students. For those who have 

access to the Internet, Thinking Myself provides a self-contained lesson plan, 

which can be covered in one or two days worth of lab time. Without computers, 

Thinking Myself can be replicated with active instruction and creative game 

play in much the same manner as it is presented online. Fortunately, the lesson 

portions of Thinking Myself are easy to replicate in a classroom environment 

with a combination of verbal explanation and tactile versions of the examples 

given online. The games are only slightly harder to simulate.  

	 The most difficult of the games to reproduce is the Instruction-Free 

Machine. Any number of creative games can replace the purpose of the machine 

as long as the instructor gives no instructions, hints or demonstrations. The most 

effective substitutes will embed automatic cues without negative-feedback.

5.8. Instructionless Offline

	 Teachers are invited to visit games.thinkingmyself.com/instructionless.pdf 

to download the Instruction-Free Game. Inside the PDF is a page of cards 

which can be printed out on full sheets of paper. The cards form a series of 

math problems, with each card building on what has been done so far. Each 
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page is placed face-down in a 5x5 grid. Students will intuitively want to turn 

them over. The printed side will guide the next move, though the pattern is 

far from obvious.  Each card will suggest the next when played correctly. The 

purpose of the paper game is analogous to that of the online version. As long 

as the children are allowed to fully explore the task with no “help”, they will 

receive the priming necessary to open their minds to the exploratory nature of 

computational thinking.

5.9. Sorting Offline

	 The sorting game at the end of “Decompose” is quite simple to replicate 

without digital assistance. A teacher can start with numbers from 1-15 written on 

individual sheets of paper, then mix them up in a big pile on the ground. Using 

three buckets or boxes (which have been labeled with the intervals 1-5, 6-10 & 

11-15) students can pick numbers one by one and put them in the appropriate 

bin. Once all numbers have been placed in their correct locations, the buckets 

can be unloaded, one at a time, and easily sorted by sight. Bucket Sort is a great 

game to revisit after finishing the “Algorithms” section, in order to discuss 

methods of efficiently sorting the contents of the individual bins. An array of 

numbers is located at games.thinkingmyself.com/BucketSort.pdf for download. 

5.10. Triangle Puzzle Offline

	   Next in the series is the Triangle Puzzle from the “Patterns” section. 

A physical copy can be printed at games.thinkingmyself.com/TriangleFox.pdf 

or games.thinkingmyself.com/TriangleBoat.pdf for classroom use. The pages 

contain both the sample image and the grid of triangles for completing the 

puzzle. An ambitious teacher could provide students with laminated triangles 
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to arrange on the printed template, but coloring triangles with crayons is also 

effective. The purpose of this game is to spot a pattern in a field of apparent 

chaos. Any method of highlighting that pattern is sufficient.

5.11. Dual-Input Machine Offline

	 Under the “Abstraction” heading is the Dual-Input Machine. The 

intention behind this machine is to show that when the details of specific 

variables are abstracted out, what’s left is a versatile solution that can be applied 

to many types of inputs. A fun variation to play in the classroom includes 

various objects and a large box or curtain for the instructor to hide behind. This 

version, called “Guess What the Box Does”, allows children to plainly see the 

results of a mystery algorithm on a set of inputs. The task is for the students 

to guess what the machine is programmed to do based on what outputs are 

produced by different combinations of inputs. An example of game play could 

include a pile of paper animals on a table. Students would line up to introduce 

inputs to the machine. Say, in this round, the machine required only one input. 

A student would choose a paper animal and “drop it into the machine” by 

handing it to the teacher behind the curtain. The teacher could make machine 

noises and hand the output to the student on the other side, the output in this 

case being three copies of the selected animal. It would not take long for 

students to determine that the machine was tripling each of the input animals. 

More complicated versions include: two-animal inputs where the output is 

the head of one and the tail of the other, two color inputs where the output is 

a blend of the colors, or three number inputs where the output becomes the 

sum of the numbers. An instructor could certainly get even more abstract by 
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allowing colors, numbers and animals together, then using a solution which can 

incorporate blends of the variables when necessary. 

5.12. Island Game Offline

	 Finally, an offline version of the game at the end of the “Algorithms” 

section is provided at games.thinkingmyself.com/IslandGame.pdf for printing. 

This game consists of a blue island and several brown islands, one of which has 

a treasure printed on the opposite side. The instructor can place the islands in a 

grid or any other pattern which suits their needs. Starting at the blue island and 

ending at the island with the treasure beneath, the instructor can create a hunt 

using as many steps as desired to get from one to the other.  Instructions can 

be given orally or written down in advance and handed to the students. After 

the game has been played successfully, a variation can be introduced where the 

students are asked to come up with their own algorithm to get from the same 

beginning point to the same ending point in a different way. Challenges can be 

issued including “Find the Shortest Path” and “Find the Longest Path”. This is 

an exciting, hands-on way to learn that not all algorithms are equal.

5.13. Summary

	 While the online version of Thinking Myself requires less paper and 

planning, the offline methods are helpful when it comes to supplementing or 

substituting for the digital version if teachers encounter a lack of Internet access. 

Of course, one of the most important pieces to Thinking Myself is the use of 

actual computational thinking terminology as a way to help students connect 

intimidating words with fun ideas.  For that reason - whatever the method - it 

is important for instructors to pepper their lessons with words like abstraction, 
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algorithm, decomposition, variables, input and output in order to inspire 

confidence. 

	 Large companies, such as Google and Intel, are making an effort to 

bring computational thinking to students. Almost all of their effort has been 

focused on grades 6-16. For maximum effect on women in computer science, 

that technological confidence and esteem must be built before girls reach middle 

school and many are irreparably turned off from STEM subjects (Lanzer 2009). 

Some helpful resources similar to the offline concepts of Thinking Myself 

which are appropriate for elementary school exist, covering additional topics 

in computer science that can be related back to the concepts in this thesis. One 

such resource is Computer Science Unplugged.  Teachers who are interested in 

fortifying their computational thinking lessons by blending them with practical 

application can find a wealth of activities on the Computer Science Unplugged 

website (http://csunplugged.org).
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CHAPTER VI 

Conclusion

	 The retention of women in computer science among those who were 

introduced to technology prior to college is superior to that of women who 

were not. In an attempt to begin building a foundation for women as young as 

possible, this thesis proposes computational thinking as a viable starting place. 

Computational thinking has already been accepted as preliminary concept for 

blending technology into seemingly unrelated professions and its potential 

in developing minds is exciting. Before computers are ever introduced into a 

classroom, computational thinking can begin to prepare girls for the skills that 

they will need to acquire in order to be successful in a world that is increasingly 

dependent on technology. 

	 This thesis also presented Thinking Myself, a visually tailored, child-

friendly application which was designed to heighten the interest of girls in 

computer science through fun and challenging examples of computational 

thinking. Intentionally sparse on instructions, Thinking Myself encourages trial 

and error, allowing students to figure out answers by themselves, then it rewards 

them with praise when they succeed. Provided as a cost-free classroom tool, 

Thinking Myself can be used online or pieced out as offline activities which can 

be incorporated and easily understood by children with at least a third-grade 

education. 

	 As a growing program, Thinking Myself could benefit from several 

additional areas of research. Longitudinal data is not yet available for the 

effects of computational thinking on problem solving ability, but strengths 
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and weaknesses of a child trained to think computationally would certainly 

be useful when selecting the level of detail to cover early in the elementary 

grades. Additionally, a strong correlation between the age of introduction to 

computational thinking, length of exposure to computational thinking lessons, 

and self-assessed technological interest beyond middle-school is likely to inspire 

the adoption of more advanced computer science curriculum prior to collegiate 

education.

	 When analyzing the effectiveness of Thinking Myself as tool, research 

can be done on all aspects of the program, from enjoyment of play at different 

age-levels to analysis on a student’s ability to solve various problems before 

and after exposure to the lessons. The project was constructed in a relatively 

modular manner, allowing for an increased number of lessons in each section 

or even additional topics. The framework was created to allow for a database 

where a login feature can be included so that each student’s progress can be 

securely tracked. The content can easily be enriched, at any point, with new 

animations, interactive quizzes and video tutorials. Future collaboration toward 

the growth of this program is welcomed in an effort to continue building 

strength among young women in computer science.
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