
COMPUTATIONAL THINKING AND WOMEN IN COMPUTER SCIENCE

by

CHRISTIE LEE LILI PROTTSMAN

A THESIS

Presented to the Department of Computer and Information Science
and the Graduate School of the University of Oregon

in partial fulfillment of the requirements
for the degree of

 Master of Science

 June 2011

THESIS APPROVAL PAGE

Student: Christie Lee Lili Prottsman

Title: Computational Thinking and Women in Computer Science

This thesis has been accepted and approved in partial fulfillment of the requirements for
the Master of Science degree in the Department of Computer and Information Science
by:

Michal Young Chairperson
Joanna Goode Member

and

Richard Linton Vice President for Research and Graduate Studies/Dean of
the Graduate School

Original approval signatures are on file with the University of Oregon Graduate School.

Degree awarded June 2011

ii

© 2011 Christie Lee Lili Prottsman

iii

THESIS ABSTRACT

Christie Lee Lili Prottsman

Master of Science

Department of Computer and Information Science

June 2011

Title: Computational Thinking and Women in Computer Science

Approved: ___
Michal Young

Though the first computer programmers were female, women currently make up

only a quarter of the computing industry. This lack of diversity jeopardizes technical

innovation, creativity and profitability. As demand for talented computing professionals

grows, both academia and industry are seeking ways to reach out to groups of individuals

who are underrepresented in computer science, the largest of which is women.

Women are most likely to succeed in computer science when they are introduced

to computing concepts as children and are exposed over a long period of time. In this

paper I show that computational thinking (the art of abstraction and automation) can be

introduced earlier than has been demonstrated before. Building on ideas being developed

for the state of California, I have created an entertaining and engaging educational

software prototype that makes primary concepts accessible down to the third grade level.

iv

CURRICULUM VITAE

NAME OF AUTHOR: Christie Lee Lili Prottsman

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon, Eugene

DEGREES AWARDED:

Master of Science, Computer and Information Science, 2011, University of Oregon
Bachelor of Science, Mathematics, 1999, University of Oregon

AREAS OF SPECIAL INTEREST:

Computational Thinking
Computer Theory
Computer Science Education

PROFESSIONAL EXPERIENCE:

Graduate Research Fellow, Department of Computer and Information
Science, University of Oregon, 2009 - 2011

Undergraduate Research Assistant, Department of Computer and
Information Science, University of Oregon, 2008 – 2009

Program and Design, Artistry& Programming
Portland, Oregon, 2003 - 2008

v

ACKNOWLEDGMENTS

I would like to acknowledge Michal Young and Joanna Goode for their help and

inspiration throughout the process of completing this thesis. Their motivation and

support has contributed greatly to the direction of my studies and for that I thank them

immensely.

I also would like to acknowledge the Department of Computer and Information Science

at the University of Oregon for providing the opportunities which have led to the research

and activities surrounding the work done in this paper.

vi

This thesis is dedicated first and foremost to my sons, James and Jackson Davis

who have been the catalysts for everything I have achieved in my life. Also, to my loving

family and friends who have believed in me and provided help and unconditional support.

vii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION.. 1

1.1. Contributions... 1

1.2. Organization of Thesis.. 2

II. A LOOK AT THE HISTORY OF PARTICIPATION IN COMPUTER
SCIENCE... 3

2.1. Rich History of Women in CS.. 4

III. SPECULATIONS AND ATTEMPTS AT SOLUTIONS....................................... 8

IV. WHAT CAN BE DONE?... 14

V. THINKING MYSELF... 18

5.1. Home: An Introduction... 19

5.2. Lesson 1: Decompose... 22

5.3. Lesson 2: Patterns... 23

5.4. Lesson 3: Abstraction.. 24

5.5. Lesson 4: Algorithms.. 26

5.6. The Game in Use.. 28

5.7. The Game in Analog... 29

5.8. Instructionless Offline... 29

5.9. Sorting Offline.. 30

5.10. Triangle Puzzle Offline... 30

5.11. Dual-Input Machine Offline.. 31

viii

Chapter Page

5.12. Island Game Offline.. 32

5.13. Summary... 32

VI. CONCLUSION.. 34

REFERENCES CITED.. 36

ix

LIST OF FIGURES

Figure Page

1. Bachelor degrees awarded by year.. 4

2. Bachelor’s degrees awarded to women vs. men.. 6

3. Number of workers in computer science professions.. 9

4. Screen shot from Thinking Myself, highlighting Kiki and the button structure.... 19

5. The Instruction-Free Machine.. 20

6. Machine and stage indicating incorrect move... 21

7. Machine and stage indicating progress.. 21

8. Bucket Sort game at the end of the “Decompose” lesson...................................... 22

9. The Triangle Game at the end of the “Patterns” section.. 24

10. Input/output relationship for abstracted sentence.. 25

11. Two input machine... 26

12. Algorithm treasure hunt... 27

x

1

CHAPTER I

INTRODUCTION

	 Research has shown that women who succeed in computer science are

likely to have been introduced to the field early in life (Camp and Gürer 1997).

By familiarizing girls with advanced concepts prior to middle school, advocates

hope that their interest in technology will continue to grow during grades six

through twelve — instead of showing a significant decrease during those years,

as is currently the case (Margolis and Fisher 2002). A strong representation of

women in computer science is becoming ever more important as the technology

field booms. Female team members not only provide diversity of knowledge and

experience, but at 51% of the American population (US Census 2009) and only

26% of the computer science work force (Department of Labor 2010), women

are a great resource for adding talent to an area that faces a shortage of qualified

applicants. Retaining the interest of girls through high school is the first step

toward strengthening their presence in undergraduate study and industry.

	 In order to more easily achieve that goal, there is a need for tools

aimed at presenting true computer science — not just computer literacy — to

elementary aged children. This paper focuses on the development of one such

tool.

	

1.1. Contributions

	 This thesis makes two major contributions to the fields of computer

science and computer science education. First, it introduces computational

thinking as a promising method for attracting women into computer science.

2 3

Second, it provides a tool for introducing computational thinking to an

elementary school audience. Computational thinking (thinking like a computer

scientist) is currently an extremely popular topic. Blending computational

thinking into other fields has already begun to transform the world, especially in

the areas of biology and economics (Astrachan 2009).

	 Previously, educational support in the area of computational thinking has

been aimed at advanced grade levels, namely college undergraduates and above.

Few methods have reached the K-12 age group and most of those are largely

hypothetical, giving scenarios for learning opportunities without providing

concrete instructional tools (such as Barr, Harrison, and Conery 2011). This

thesis introduces not only a self-contained online computational thinking tool

for grades three through five, but also provides printed examples of analogous

lessons for those without access to computers.

1.2. Organization of Thesis

	 The remainder of this thesis is organized as follows: Chapter II focuses

on the history of participation in computer science, highlighting the widening

gap between the number of men and women in the field. Chapter III reviews

existing research surrounding the reasons why technological degrees and careers

fail to appeal to women. Chapter IV discusses lack of early opportunity as the

root problem for women in the industry and introduces computational thinking

as a solution to that problem. Chapter V presents Thinking Myself, an online

game designed to cultivate confidence and resilience among girls in computer

science. To conclude, chapter VI summarizes the ideas presented in this paper

and suggests future areas of research.

2 3

CHAPTER II

 A Look at the History of Participation

in Computer Science

	 Many people think of computer science as a recent phenomenon,

beginning within the last generation or so and peaking in the 1990’s before the

“dot-com” bust. In reality, the word “computer” has been in use since before

the early seventeenth century when it referred to a person who calculated

computations (Oxford English Dictionary, Second Edition). Computer science

was an important skill for many mathematicians who relied on automation

and programming as far back as 100 B.C.(New York Times 2002). Even then,

computational theory and algorithms were critically important, providing

methods to solve difficult problems in the least amount of time with proper

preparation.

	 Computer science evolved from the discipline of math, but as electronic

computers became accessible to the public the topic started to be recognized as

a valid subject on its own. In the early 1960’s, computer science departments

began to split themselves out of mathematics departments, with the first actual

bachelor’s degree in computer science (CS) being awarded at Purdue in 1962

(Rice and Rosen 2004). Enrollment in CS grew steadily for the first decade

(National Science Foundation 2008), picking up speed in the late 1970’s with

the introduction of the 8-bit color, mass-produced Apple II. Between 1978

and 1985, enrollment for undergraduate programs grew almost exponentially,

dropping significantly between 1985 and 1991, then eventually stagnating until

the late 1990’s (see figure 1).

4 5

Figure 1. Bachelor degrees awarded by year

10,000

20,000

30,000

40,000

50,000

60,000

0

1966 1970 1975 1980 1985 1990 1995 2000 2006

Undergrad Degrees
top out at

57,405 in 2004

Steady increase
for nearly 40 yearsN

um
be

r o
f t

ot
al

 u
nd

er
gr

ad
ua

te
 d

eg
re

es
 a

w
ar

de
d

Year
Data aggregated from NSF Data Tables

url: http://www.nsf.gov/statistics/nsf08321

	 In 1996, online activity began to affect interest in computer science

as the number of Internet users jumped from 16 million to 36 million (Dreze

and Zufryden 1999). The numbers nearly doubled again in 1997 and 1998,

leading to a rush in e-commerce activities. This new and profitable model gave

birth to a phenomenon called the “dot-com bubble” as investors succumbed to

World Wide Web mania, throwing their money into any venture labeled with

the “.com” suffix (Goodnight and Green 2010). College enrollments grew with

equal fervor, topping out at 57,405 CS bachelor’s degrees awarded in 2004

(National Science Foundation 2008). After the dot-com bubble burst in the early

twenty-first century, undergraduate enrollments began to decline and have not

yet rebounded to previous levels.

2.1. Rich History of Women in CS

	 The number of women enrolled in undergraduate work in computer

science has always trailed the number of men, but that does not mean that

4 5

women are less capable of succeeding in the field. As a matter of fact, the first

computer programmers were women. As far back as 1843, Ada Lovelace was

the first woman to write an algorithm for execution on a machine when she

penned some notes for operation of Charles Babbage’s hypothetical Analytical

Engine (Fuegi and Francis 2003). If speculative instructions intended for an

imaginary machine aren’t sufficient evidence of a programmer, then the first

legitimate computer programmers actually emerged over a century later, and

again, they were women.

	 In 1946, the United States Army publicly introduced the world’s first

reprogrammable general purpose computer. The Electronic Numerical Integrator

And Computer (ENIAC) was capable of making nearly 5000 calculations

per second (Farrington 1996, Goldstine 1972). Up to that point, the Army had

relied on a group of specially recruited women to calculate trajectory tables

for ballistic missiles, a process that took weeks by hand. With the adoption

of the ENIAC, the female “computers” — Fran Bilas, Betty Jennings, Ruth

Lichterman, Kay McNulty, Betty Snyder, and Marlyn Wescoff — turned their

time and intelligence toward programming the thirty ton, 1800 square foot

behemoth.

	 Even with a long history as computational pioneers, women maintain a

turbulent relationship with computer science. According to the National Science

Foundation (2008), female undergraduates have never made up more than 37%

of the CS major (see figure 2). Despite the fact that colleges and universities

are running campaigns targeting women, their numbers continue to drop

(U.S. Department of Education 2009). The attrition rate among women in CS

departments is astounding. Only 40% of women who begin in the CS program

will graduate with that major, compared to 68% of men (Klawe and Levenson

6 7

1995). Women tend to perceive themselves as outsiders and “imposters”

(Schenkel 1984), making them far less likely to hang on through daily struggles

as they believe that they should never have started in the first place.

Figure 2. Bachelor’s degrees awarded to women vs. men

10,000

20,000

30,000

40,000

50,000

60,000

0

1966 1970 1975 1980 1985 1990 1995 2000 2006

N
um

be
r o

f u
nd

er
gr

ad
ua

te
 d

eg
re

es
 a

w
ar

de
d

Year

!

The number of women
has always trailed

the number of men.

Men

Women

The number gap
grows steadily

Data aggregated from NSF Data Tables
url: http://www.nsf.gov/statistics/nsf08321

	 With women making up nearly half of the overall workforce (U.S.

Department of Labor 2009), one might question why it is so important to

equalize the gender gap in computer science specifically. Women are responsible

for 58% of e-commerce spending (Abraham, Mörn, and Vollman 2010) and

account for 55% of social gamers (Information Solutions Group 2010). In many

respects, women make up as much or more of the end-user demographic than

men do, and yet 79% of those designing the services and 78% of those creating

them are male (Department of Labor 2010). Equalizing this imbalance, however,

would do far more than just enlighten corporations to the desires of their

customers. Diversified teams inspire more teamwork, creativity and productivity

than unisex teams (Ashcraft and Blithe 2009). Companies with the highest

6 7

percentage of women in upper management experience a return of equity that

is 35% higher than those corporations with the lowest percentage of women at

executive levels (Joy et al. 2007).

	 Knowing the success that women have previously achieved as pioneers

in computer science makes it that much more baffling to find that so few of them

are involved in the field today. The next section will summarize research that

gives insight into the problems, preferences and rumors that contribute to fewer

women pursuing and succeeding in technological careers.

8 9

CHAPTER III

Speculations and Attempts at Solutions

	 Much of the research on women in computer science focuses on their

absence. Some hypotheses on related factors include sexism, preference for

personal interaction, less access to resources as children, deficiency of female

role models, and distaste for the stereotypes of geek culture. Lack of draw tends

to be attributed to perception of the industry, while research on attrition points

more toward working conditions and environments which cause women to feel

like outsiders.		

	 Before taking a look at the idea of gender in computer science, it is

important in this day and age to recognize the sensitivity of categorizing

“women” into one generic group. In this paper, the term “women” will be

used as an abbreviation for “gender-schematic women” in accordance with

the precedence set in “Evaluating Electronic Information Resources for Young

Women: General Research Concepts” by D.E. Agosto (2000), which defines

gender-schematic individuals as people who “view the world largely from a

gendered point of view, bifurcating society into female and male components.”

Similarly, all other words which indicate generalizations on gender (such as

“female” and “girls”) will be used in the same vein.

	 Sexism is a topic which is frequently discussed in computer science,

due in large part to the disparity between the number of men and women who

pursue it. When analyzing an industry that is currently 75% male (see figure 3)

the existence of bias is a reasonable inference. Unconscious bias, which often

manifests itself without intentional ill-will by the offender, “may be exacerbated

8 9

in technical companies and departments”, claims a 2009 report by the National

Center for Women in Information Technology (Ashcraft and Blithe). The

same study claims that women are more likely to stay quiet in meetings and

not as likely to contribute their ideas when they feel unfavorably judged or

devalued. This often leads to a high turnover rate due to lack of confidence and

satisfaction.

Figure 3. Number of workers in computer science professions.

0

200

400

600

800

N
um

be
r o

f
W

or
ke

rs
 (i

n
Th

ou
sa

nd
s)

1000

1200

Men

Women

Total number of
women in CS

834,000 of
3,664,000

Computer Scientists &

Systems Analysts

Computer Programmers
Software Engineers
Computer Support Specialists

Database Administrators

Network and Systems Administrators

Network Systems &

Data Communications Analysts

24.8%

Data aggregated from BLS Data Tables
url: http://www.bls.gov/cps/#tables

	 More blatant forms of discrimination are on the decline (Cesi and

Williams 2011), but when perceived, they can play a large part in killing a

woman’s progress in computer science. Research performed on a group of

graduate students shows that even when prejudice is not officially cited as a the

main reason for leaving a CS program, a woman is 32 times more likely not

10 11

to complete her degree if she has previously thought of leaving due to sexism

(Cohoon, Wu and Chao 2009).

	 Beyond bias, there are also gender-specific preferences which are likely

to turn women away from technological professions; lack of collaboration is one

such issue. Denise E. Agosto (2000) claims that girls learn through collaboration

while boys learn through competition . This is especially intriguing at an

undergraduate level where many of the initial courses focus on solitary work

(Williams 2006). Such an introduction to the field reaffirms the belief that the

life of a programmer is spent working alone — an idea that is both unappealing

and frustrating to many women. In a 2010 study published by the Association

for Psychological Science, STEM careers (Science, Technology, Engineering

and Math) were statistically shown to be perceived as less communal in goals

— that is less likely to be seen as working with or for the good of others — than

alternative career choices.

	 A study by Jane Margolis and Allan Fisher (1997) found that many

women want to use computers as a way to make society better. Accordingly, a

survey done by ACM/WGBH in 2009 shows that the majority of girls prefer

descriptions of computer science that appeal to their sense of community and

ability to “do good” in the world, whereas boys prefer descriptions which

showcas CS as a tool to help them be in control of their own lives.

	 Even so, current research suggests it is not only important how

computers are presented to girls, but also when they are presented. In the

paper, “Investigating the Incredible Shrinking Pipeline for Women in Computer

Science” Camp and Gürer (1997) assert that access to computers and training

in the concepts of computer science should be provided at preschool levels in

order to give women the greatest chance to avoid developing insecurities about

10 11

their abilities. A survey conducted by Google in the Summer of 2010 confirms

the importance of introducing computers early in life, finding that 98% of CS

majors were exposed to CS before college, while only 48% of non-majors could

say the same (Stephenson 2011).

	 Introducing women to computers when they are young is helpful, but

not always quite enough. Unfortunately, in a mixed-gender education setting,

boys will often appropriate the resources for themselves, leaving the girls out

(Margolis and Fisher 2001). Similarly, teachers assume that boys are more

interested in exploring computers, so they tend to select the boys over the

girls when presenting computational opportunities (Kay 2007). In the book,

“Unlocking the Clubhouse: Women in Computing,” covering research done at

the Carnegie Mellon School of Computer Science, Margolis and Fischer show

that boys tend to have more access to computers at home. In fact, 40% of men

(compared to just 17% of women) had been given their own computer as a

child.

	 Very few girls are encouraged into computer science at home, and

with a lack of female role models in the industry there is little to entice them

from the inside. It is like the joke says, “Why aren’t there very many women

in computer science? Because there aren’t very many women in computer

science!” It sounds like a tautology, but really it’s a self-preserving cycle that

seems impossible to break. Fewer women in computer science means fewer role

models for young girls. Fewer role models means less of a chance that girls will

want to emulate the life of a computer scientist, which means there will continue

to be fewer women in computer science.

	 A 1996 study by Gloria Townsend shows that just watching a brief

video of female role models significantly improves female attitudes toward

12 13

computer science. Likewise, an article in The Journal of Personality and Social

Psychology (Stout et al. 2011) displays the results of research on the effects of

female role models among STEM students. The article indicates that exposure to

female role models can not only prevent girls from developing negative attitudes

toward the sciences, but also reverse negative perceptions that have already

formed. The role model study shows that having male teachers will decrease a

woman’s self-efficacy (perception of her own capability) in STEM sciences over

time and female teachers will increase a woman’s self-efficacy over time.

	 Positive female examples go a long way toward improving a woman’s

attitude toward computer science, yet many women still feel out of place in an

atmosphere of masculine geekery. Environmental cues alone (such as science

fiction posters, soda cans and comic books) are enough to separate the girls

from the boys when it comes to choosing a major. In an analysis of variance

performed in 2009, Sapna Cheryan of University of Washington determined that

a room adorned with items that were stereotypically associated with computer

science affected women much more negatively than it did men. When polled

about their interest in computer science, the women in a room with non-

stereotypical decor were more than twice as likely to say they were interested in

the major.

	 Environmental discomfort helps contribute to a woman’s overall sense

that she does not belong in a field where she has so little in common with the

majority of her peers. Constant microbombardments of this nature tax the

perseverance of an individual, causing one to lean heavily on her own belief

in her abilities. Unfortunately, females in the computers science major tend

to be less self-assured than male non-majors (Beyer, et al. 2003). This lack of

12 13

confidence in technical ability translates into stress and self-induced pressure

(Abouseriea 1994), which contributes to heightened dissatisfaction.

	 Retaining women through college is difficult enough, but attrition in the

workforce is considerable as well. Only 59% of women will stay in a technology

career past their 10 year mark, as opposed to 83% of men (Ashcraft and Blithe

2009). In many cases, these women are not just quitting one specific job; they

are quitting the field altogether. The most common factors contributing to the

decision for women to leave are the same factors which prevent them from

entering the workforce initially: sexism, isolation, and lack of female role

models (Hewlett 2008).

	 Several entities have made attempts at remedies for this epidemic.

Some countermeasures have proven more effective than others. Carnegie

Mellon raised their percentage of women in the program to 34% by holding

workshops for high school teachers and changing prerequisites to focus less

on prior programming experience and more on ingenuity. They also made

sure to provide multiple entry points into the major, so that students can be

comfortable no matter what level of programming experience they are equipped

with when they enter the department (Blum and Frieze 2005). Harvey Mudd

College experienced similar success with a 2010 incoming class that was 52%

female (Harvey Mudd College, 2011). Mudd attributes its increase in female

participation to a technique similar to that of Carnegie Mellon. They also

provide a plethora of research opportunities to students as young as sophomore

level. At Harvey Mudd, female freshmen are invited to a computer science

conference so they see the number of available role models from the beginning

of their college experience (Sahil Luthra 2011).

14 15

CHAPTER IV

What Can Be Done?

	 What can be done to fundamentally change the negative perception of

computer science for women? A segment of the issues that turn women off from

technological careers — including prevalent sexism and shortage of female

role models — can be diminished by successfully bringing more women to

the industry. Other matters, such as preference for personal interaction and

distaste for the stereotypes of geek culture are deeply ingrained propensities that

don’t need to be changed in and of themselves as much as the perception that

computer science is dissatisfying in those respects. Finally, the lack of access

and opportunity to develop knowledge and engage young girls in computer

science stands at the root of combating and preventing the barriers presented

earlier in this paper.

	 Practice builds confidence, and confidence is an amazing ally for women

in technology. When a woman is self-confident she is more able to stick up

for her ideals, take risks and experience success in what she tries (Lynn 2008).

Studies from as far back as 1979 (Lemkau) state that women who succeed in

male-dominated careers tend be more confident than “the norms for women,” a

sentiment that is still echoed today (Eagly 2002). This kind of power is what a

woman needs to fight the adversity described. The same 1979 study shows that

women in male-dominated careers tend to have similar backgrounds, in that they

were encouraged from a young age to explore both “masculine” and “feminine”

opportunities. Open exploration, along with encouragement from a young age,

14 15

is precisely how computational thinking can help build confidence in the women

of tomorrow.

	 Computational thinking combines abstraction and automation in problem

solving. No firm standards have yet been adopted to easily define computational

thinking, but the author has formulated a practical working definition by fusing

together concepts presented by other authoritative resources (Wing 2006,

Cooper et al. 2010, Google 2010) . One fundamental idea behind computational

thinking is to break a problem up into its parts, abstracting out details so that

patterns can be more easily seen. An algorithm is then constructed to automate

the task of solving the problem itself. The point of computational thinking is

not to give a precise number of steps to attempt in a particular sequence, but

rather to train one’s mind to recognize how a current issue might be similar

to a problem that already has a known solution (Shekhar 2008). Often times,

tweaking the solution to a similar problem can lead to a resolution for the

unknown.

	 The understanding of computational thinking used in this paper goes

one step past the descriptions from the resources mentioned above. As part

of an attempt to make the need for computational thinking more clear, it has

been further divided into two parts; the understanding of how to efficiently use

computation, and the ability to prepare a problem for that computation.

	 A sorting problem will allow a straightforward example of computational

thinking. Take, for instance, the need to pick the tallest item in a line-up. A

human could simply glance at the list as a whole and instantly pick out the

tallest specimen. A digital computer, on the other hand, does not have that

capability. Heights would be stored as numbers in the machine memory. To find

the largest height, each item would have to be compared to each other item in

16 17

order to be “sure” that the tallest is found. On the side of understanding efficient

computation, one must know what the computer “needs” in order to solve a

problem that may come naturally to a human mind. Computational thinking is

enhanced by the ability to anticipate such hurdles introduced by the entity which

will be performing the computation.

	 The second part of computational thinking is a directed form of

analytical thinking. Using specific analytical methods, a problem can be cut

into recognizable pieces, making it easier to work with. These pieces can often

be formatted for computation before sewing the problem back together into

a complete algorithm (list of instructions). Finally, the algorithm is translated

into the language of the computing machine. That translation acts as the bridge

between both halves of the computational thinking process. The bridge is often

some form of code when using digital computers or electronics to solve a

problem; but when the computing machine is a human brain, the bridge could

take nearly any form — including a diagram, audio recording or a literal “list of

instructions”.

	 Computational thinking is a tool that has been carefully developed as

an addition to any field, not just fields which pertain to technology (Denning

2003, Perkovic et.al. 2010). The idea behind computational thinking is not just

to prepare other disciplines for their inevitable blend with computer science, but

to introduce other minds to the problem solving tools which are often taken for

granted by computer scientists. Computational thinking can become a common

mechanism for intellectuals from all areas of interest when looking at problems

which are unsolved and unfamiliar.

	 Jeannette M. Wing, who has been referred to as the mother of

computational thinking, declares “If we wanted to ensure a common and solid

16 17

basis of understanding and applying computational thinking for all, then this

learning should best be done in the early years of childhood” (Wing 2008).

Indeed, the precedent has been set for bringing useful skills to elementary

school children in simplified forms. Counting and arithmetic are taught in

preparation for more complicated mathematics education in the future, finger

painting and color mixtures introduce art, and the alphabet is a precursor to

reading and writing. Similarly, computational thinking is a particularly elegant

way to introduce computer science at the K-5 grade level, due in large part to

the fact that computers are not actually required. In much the same way as math

is practiced with pencil and paper before a calculator is introduced, thinking

computationally can be practiced through stories and puzzles well before a

machine is necessary. By removing the technological requirement from the

youngest age bracket, computational thinking — and therefore computer science

— becomes more easily accessible to everyone.

	

18 19

CHAPTER V

Thinking Myself

	 Thinking Myself (http://games.thinkingmyself.com) is a website

created by the author to engage girls in computational thinking as a step toward

computer science. The environment is tailored to girls, using a colorful design

with simple elements and several graphical components. Much of the user

interface is based on intensive research surrounding the “rule/role” stage that

happens between the third and fifth grade, where children start to read for the

sake of learning and are more able to analyze longer, complicated sentences

(Markoplous and Bekker 2003). Decisions for the overall look a re based on a

study which finds that girls prefer simple layouts with a purple background and

playful fonts (Taslim et.al. 2009).

	 Beyond the overall look, the feedback style is also deliberate and

uplifting. Girls tend to respond very well to positive feedback. Negative

feedback deters them much more severely than it seems to deter boys (Corpus

and Lepper 2007) and is therefore avoided in almost every case. Whenever

possible, incorrect answers are indicated by lack of positive signals rather

than overt negative responses. To push the feedback scale even more into the

affirmative, an applause button is located in the lower left-hand corner for

affirmation on-demand.

	 Due to the female preference for eye contact and facial interaction

(Baron-Cohen and Benenson 2003), a friendly guide, “Kiki” (see figure 4) ,

is introduced to walk the users through the lessons. Kiki is the representation

of an amicable young girl who is dressed in feminine attire with bows in her

18 19

hair and a smile on her face. She is unintimidating, with proportions similar to

those of a third grader. Kiki walks the students through each step of the tutorial,

introducing them to new words, concepts and situations.

Figure 4. Screen shot from Thinking Myself, highlighting Kiki and the button structure.

	 Thinking Myself consists of five sections - an introduction and four

computational thinking lesson sections. The game advances automatically as

each segment is passed, but a user has the option of jumping between sections

using pictorial navigation buttons to the right of the main screen. Each lesson

has multiple levels and a final game. Numbered, glowing buttons at the bottom

of the game area give students a way to navigate between levels while playing.

5.1. Home: An Introduction

	 The first section, “Home”, provides an introduction to the techniques that

will be used to teach computational thinking. In the first level, Kiki introduces

20 21

herself and informs the users that she will be guiding them through lessons on

how to solve problems without being explicitly told what to do. The expectation

is set to allow third through fifth-graders the opportunity to understand that

they can figure out solutions on their own, a concept which is illustrated using a

game (see figure 5).

Figure 5. The Instruction-Free Machine

	 The “Home” game is a machine without directions. Knobs, handles and

switches adorn the gadget without a single instruction on what to do. Only one

small light provides feedback initially. In the beginning state, the light glows

a beautiful green. If the user guesses the first correct move by pushing the red

button on top, the light will stay green and a progress indicator will begin to

rise on the left-hand side of the main window (see figure 7). Any other move at

that time will either not elicit a response at all (such as clicking outside of the

machine) or will cause the light to go red, indicating that something has been

20 21

clicked out of order (see figure 6). The machine behaves in a similar manner

throughout the game; either displaying a green light and increasing the progress

indicator or presenting the red light and resetting the progress indicator. Once

each of the toggles have been clicked in the proper sequence, the progress bar

reaches the top and Kiki comes back to tell the user that they have succeeded in

winning the game. The user is then prompted to continue to the next lesson.

Figure 6. Machine and stage
indicating incorrect move.

Figure 7. Machine and stage
indicating progress.

	 Once the user has been put in the figure-it-out state of mind, the formal

computational thinking lessons begin. Thinking Myself does not hide complex

ideas behind amusing activities, it uses those activities to highlight the complex

ideas. The user is told definitively that they will be experiencing “computational

thinking”. Each section advertises the word for which it is themed, even though

those themes are technical and multi-syllabic. The idea is to introduce children

to formal concepts in a fun and engaging manner, taking the sting out of words

like “decomposition” and “algorithm”.

22 23

5.2. Lesson 1: Decompose

	 The first official lesson is under the button “Decompose”. Decomposition

is defined in this lesson as “taking large, difficult problems and breaking them

down into smaller, easier ones”. All of the concepts chosen for Thinking Myself

were modified to be easily understood while remaining true to the computer

scientist’s interpretation of the notion.

	 In “Decompose”, Kiki walks the user through an example of

decomposition that he or she may already be familiar with; showing how

multiplication can be broken down into addition. She then goes on to a more

complicated example which is most-likely entirely new to the student. After

Kiki shows how to count the faces on a cube made of smaller cubes by taking

it apart, she leads the user into another game. Here, the user is presented with

several numbers to sort. As pictured in figure 8, Kiki guides the student through

the sorting process by decomposing the task into three smaller ones using the

classic “bucket sort” method.

Figure 8. Bucket Sort game at the end of the “Decompose” lesson.

22 23

	 The game is made positive by choosing to not allow incorrect moves

rather than provide negative feedback such as buzzing noises or phrases like

“Wrong Move.” If a student tries to drop a number into an incorrect bucket,

the number will simply reset itself to the top of the screen, leading the user to

conclude that no progress can be made by continuing to attempt that action.

Once the sorting is completed, Kiki praises the user and reinforces the idea that

some problems are made easier by breaking them up into smaller pieces.

5.3. Lesson 2: Patterns

	 Once “Decompose” is completed, the student is guided into “Patterns”.

A pattern is defined as “repetition in design” or “similar qualities that are shared

by a number of different items.” This explanation is sufficient for the needs of

Thinking Myself, but should not present itself as contrary to what students have

already learned in previous grades. Kiki uses short games to walk the student

through different ways of looking at and thinking about patterns. Once she has

displayed both “repetition in design” and “similar qualities that are shared by a

number of different items,” it’s time for another end-of-lesson game. This game,

pictured in figure 9, is loosely modeled after tangrams, encouraging kids to look

for patterns in a sea of blank triangles. After successfully spotting and recreating

the patterns, the user is given accolades and encouraged on to the next lesson.

24 25

Figure 9. The Triangle Game at the end of the “Patterns” section.

5.4. Lesson 3: Abstraction

	 “Abstraction” is presented as the “art of taking the details out of a

problem so that you can make a solution work for many different things.” This

definition, while simple in concept, is actually more strict than the common

definition. By adding the purpose of abstraction to the definition, the user is

more easily guided to the object of the following example. In that example, the

student is shown three similar sentences and asked to determine which words

are identical and which words are different. By collapsing the sentences onto

one another, it becomes obvious that some words line up perfectly and others

become a jumble of letters. The words that jumble are then blacked out and

turned into a “blank”. The act of leaving the static words visible and creating a

blank for the changing word is reinforced as abstraction.

24 25

	 As a next step, the sentence is abstracted even further by identifying

other parts of the line that could change under different circumstances (see

figure 10). After repeating this idea, Kiki comes back to help the student

understand the use of abstraction. She defines the parts of the sentence that

can change as variables. Variables are then used to introduce inputs; where an

input is the piece of a sentence that determines how other abstracted blanks get

filled-in. Similarly, outputs are defined as the values that are appropriate for the

selected input.

Figure 10. Input/output relationship for abstracted sentence

	 Fresh from the tutorial on variables, inputs, and outputs, students are

led into another game. This game is a machine that combines two inputs into

one output. The user is given several variables to choose from and is asked to

select the two that will reproduce the output displayed in the bottom right-hand

corner (see figure 11). Again using the concept of positive-feedback only, the

machine disallows incorrect moves rather than recognizing them with buzzing

or negative responses. If an incorrect selection is made, the machine will not

receive the variable and it will be returned to the selection area. On the other

The input selection determines appropriate values for output.

26 27

hand, if a correct input is placed in the machine, signs of progress will begin

immediately.

Figure 11. Two input machine

	 Once the correct variables are dropped into the contraption, it begins to

shimmy and shake while the “input” fields populate with the selected variable

names. After the anticipation-building action phase, the machine stops and spits

out the output created by blending the two selected inputs. The output lines up

with the sample in the bottom right-hand corner and success is proclaimed in the

form of congratulatory affirmation.

5.5. Lesson 4: Algorithms

	 Finally, the user is presented with the lesson on “Algorithms”. The word

may sound intimidating, but Kiki simplifies the idea by defining an algorithm

as a set of instructions for completing a task. The first lesson compares an

algorithm to a recipe and uses that analogy to introduce loops. By following a

numbered list of steps, it becomes obvious when one step is repeated multiple

26 27

times. After that illustration, the second level takes a brief peek into algorithm

efficiency. Continuing with the recipe scenario, Thinking Myself uses an

interactive animation to show that the amount of time to complete two batches

of cookies can vary based on the algorithm used. It takes less time, for example,

to use each ingredient once and double the amount added, than it would to add

each ingredient in sequence two times.

	 The final game, displayed in figure 12, tests the student’s ability to

follow algorithms. Disguised as a treasure hunt, the user is given instructions to

follow one at a time, each step leading them closer to finding the treasure. If all

of the instructions are followed correctly, the user will land on a specific island,

which will play the animation of a growing treasure chest. If the user does not

end on the proper island, the game will go back to the first instruction and guide

them through another time. When the treasure is found, Kiki reappears to praise

the students and wrap up the lesson, giving them the chance to play again from

the beginning if they so desire.

Figure 12. Algorithm treasure hunt

28 29

5.6. The Game in Use

	 In practice, Thinking Myself has created some interesting observations.

Initial testing was done with nine adults, observed individually, each with some

background in STEM. Perhaps counter to intuition, it was the adults with the

most experience in their fields who took the longest to solve the Instruction-

Free Machine. The tool was also introduced to a six-year-old boy who solved

the Instruction-Free Machine quite quickly, but clicked through the majority of

the lessons without reading the text just to get from game to game. His brother,

a seven-year-old also mastered the end games, but he showed more patience for

the lessons and animations which tied the ideas together.

	 The program was presented at the end of a local girls’ science camp

as an additional activity for those who had completed their pair-programming

exercise. Every one of the sixteen girls made sure that they had time to

play Thinking Myself. Each of them was drawn into the lessons, discussing

what they saw with their partner and giggling as they initiated applause for

themselves time and again with the animated clapping button.

	 The experience appeared to be very different for the adults and the

children. Most notably, children appeared to be much quicker at completing

lessons and solving the games than adults were. Including the six-year

old, every child was faster than every adult at solving the machine without

instructions in the introductory session. The fastest time for solving the

Instruction-Free Machine belonged to a fourth-grade girl, followed closely by

several other fourth and fifth-graders. The longest time belongs to a sixty-year-

old engineer.

	 Other observations worth mentioning were the attitudes of the

participants. In every case, the users were not told what to expect and started

28 29

with some uncertainty. Inevitably, by the middle of the game, users were

smiling, giggling or cheering for themselves. Thinking Myself did not appear to

easily cause frustration in any of the participants observed. Since there are no

time limits, wrong answers or negative sounds, shame and embarrassment are

not anticipated to be common byproducts of the tool.

5.7. The Game in Analog

	 Thinking Myself is a proof of concept that computational thinking can be

made entertaining and accessible for grade school students. For those who have

access to the Internet, Thinking Myself provides a self-contained lesson plan,

which can be covered in one or two days worth of lab time. Without computers,

Thinking Myself can be replicated with active instruction and creative game

play in much the same manner as it is presented online. Fortunately, the lesson

portions of Thinking Myself are easy to replicate in a classroom environment

with a combination of verbal explanation and tactile versions of the examples

given online. The games are only slightly harder to simulate.

	 The most difficult of the games to reproduce is the Instruction-Free

Machine. Any number of creative games can replace the purpose of the machine

as long as the instructor gives no instructions, hints or demonstrations. The most

effective substitutes will embed automatic cues without negative-feedback.

5.8. Instructionless Offline

	 Teachers are invited to visit games.thinkingmyself.com/instructionless.pdf

to download the Instruction-Free Game. Inside the PDF is a page of cards

which can be printed out on full sheets of paper. The cards form a series of

math problems, with each card building on what has been done so far. Each

30 31

page is placed face-down in a 5x5 grid. Students will intuitively want to turn

them over. The printed side will guide the next move, though the pattern is

far from obvious. Each card will suggest the next when played correctly. The

purpose of the paper game is analogous to that of the online version. As long

as the children are allowed to fully explore the task with no “help”, they will

receive the priming necessary to open their minds to the exploratory nature of

computational thinking.

5.9. Sorting Offline

	 The sorting game at the end of “Decompose” is quite simple to replicate

without digital assistance. A teacher can start with numbers from 1-15 written on

individual sheets of paper, then mix them up in a big pile on the ground. Using

three buckets or boxes (which have been labeled with the intervals 1-5, 6-10 &

11-15) students can pick numbers one by one and put them in the appropriate

bin. Once all numbers have been placed in their correct locations, the buckets

can be unloaded, one at a time, and easily sorted by sight. Bucket Sort is a great

game to revisit after finishing the “Algorithms” section, in order to discuss

methods of efficiently sorting the contents of the individual bins. An array of

numbers is located at games.thinkingmyself.com/BucketSort.pdf for download.

5.10. Triangle Puzzle Offline

	 Next in the series is the Triangle Puzzle from the “Patterns” section.

A physical copy can be printed at games.thinkingmyself.com/TriangleFox.pdf

or games.thinkingmyself.com/TriangleBoat.pdf for classroom use. The pages

contain both the sample image and the grid of triangles for completing the

puzzle. An ambitious teacher could provide students with laminated triangles

30 31

to arrange on the printed template, but coloring triangles with crayons is also

effective. The purpose of this game is to spot a pattern in a field of apparent

chaos. Any method of highlighting that pattern is sufficient.

5.11. Dual-Input Machine Offline

	 Under the “Abstraction” heading is the Dual-Input Machine. The

intention behind this machine is to show that when the details of specific

variables are abstracted out, what’s left is a versatile solution that can be applied

to many types of inputs. A fun variation to play in the classroom includes

various objects and a large box or curtain for the instructor to hide behind. This

version, called “Guess What the Box Does”, allows children to plainly see the

results of a mystery algorithm on a set of inputs. The task is for the students

to guess what the machine is programmed to do based on what outputs are

produced by different combinations of inputs. An example of game play could

include a pile of paper animals on a table. Students would line up to introduce

inputs to the machine. Say, in this round, the machine required only one input.

A student would choose a paper animal and “drop it into the machine” by

handing it to the teacher behind the curtain. The teacher could make machine

noises and hand the output to the student on the other side, the output in this

case being three copies of the selected animal. It would not take long for

students to determine that the machine was tripling each of the input animals.

More complicated versions include: two-animal inputs where the output is

the head of one and the tail of the other, two color inputs where the output is

a blend of the colors, or three number inputs where the output becomes the

sum of the numbers. An instructor could certainly get even more abstract by

32 33

allowing colors, numbers and animals together, then using a solution which can

incorporate blends of the variables when necessary.

5.12. Island Game Offline

	 Finally, an offline version of the game at the end of the “Algorithms”

section is provided at games.thinkingmyself.com/IslandGame.pdf for printing.

This game consists of a blue island and several brown islands, one of which has

a treasure printed on the opposite side. The instructor can place the islands in a

grid or any other pattern which suits their needs. Starting at the blue island and

ending at the island with the treasure beneath, the instructor can create a hunt

using as many steps as desired to get from one to the other. Instructions can

be given orally or written down in advance and handed to the students. After

the game has been played successfully, a variation can be introduced where the

students are asked to come up with their own algorithm to get from the same

beginning point to the same ending point in a different way. Challenges can be

issued including “Find the Shortest Path” and “Find the Longest Path”. This is

an exciting, hands-on way to learn that not all algorithms are equal.

5.13. Summary

	 While the online version of Thinking Myself requires less paper and

planning, the offline methods are helpful when it comes to supplementing or

substituting for the digital version if teachers encounter a lack of Internet access.

Of course, one of the most important pieces to Thinking Myself is the use of

actual computational thinking terminology as a way to help students connect

intimidating words with fun ideas. For that reason - whatever the method - it

is important for instructors to pepper their lessons with words like abstraction,

32 33

algorithm, decomposition, variables, input and output in order to inspire

confidence.

	 Large companies, such as Google and Intel, are making an effort to

bring computational thinking to students. Almost all of their effort has been

focused on grades 6-16. For maximum effect on women in computer science,

that technological confidence and esteem must be built before girls reach middle

school and many are irreparably turned off from STEM subjects (Lanzer 2009).

Some helpful resources similar to the offline concepts of Thinking Myself

which are appropriate for elementary school exist, covering additional topics

in computer science that can be related back to the concepts in this thesis. One

such resource is Computer Science Unplugged. Teachers who are interested in

fortifying their computational thinking lessons by blending them with practical

application can find a wealth of activities on the Computer Science Unplugged

website (http://csunplugged.org).

34 35

CHAPTER VI

Conclusion

	 The retention of women in computer science among those who were

introduced to technology prior to college is superior to that of women who

were not. In an attempt to begin building a foundation for women as young as

possible, this thesis proposes computational thinking as a viable starting place.

Computational thinking has already been accepted as preliminary concept for

blending technology into seemingly unrelated professions and its potential

in developing minds is exciting. Before computers are ever introduced into a

classroom, computational thinking can begin to prepare girls for the skills that

they will need to acquire in order to be successful in a world that is increasingly

dependent on technology.

	 This thesis also presented Thinking Myself, a visually tailored, child-

friendly application which was designed to heighten the interest of girls in

computer science through fun and challenging examples of computational

thinking. Intentionally sparse on instructions, Thinking Myself encourages trial

and error, allowing students to figure out answers by themselves, then it rewards

them with praise when they succeed. Provided as a cost-free classroom tool,

Thinking Myself can be used online or pieced out as offline activities which can

be incorporated and easily understood by children with at least a third-grade

education.

	 As a growing program, Thinking Myself could benefit from several

additional areas of research. Longitudinal data is not yet available for the

effects of computational thinking on problem solving ability, but strengths

34 35

and weaknesses of a child trained to think computationally would certainly

be useful when selecting the level of detail to cover early in the elementary

grades. Additionally, a strong correlation between the age of introduction to

computational thinking, length of exposure to computational thinking lessons,

and self-assessed technological interest beyond middle-school is likely to inspire

the adoption of more advanced computer science curriculum prior to collegiate

education.

	 When analyzing the effectiveness of Thinking Myself as tool, research

can be done on all aspects of the program, from enjoyment of play at different

age-levels to analysis on a student’s ability to solve various problems before

and after exposure to the lessons. The project was constructed in a relatively

modular manner, allowing for an increased number of lessons in each section

or even additional topics. The framework was created to allow for a database

where a login feature can be included so that each student’s progress can be

securely tracked. The content can easily be enriched, at any point, with new

animations, interactive quizzes and video tutorials. Future collaboration toward

the growth of this program is welcomed in an effort to continue building

strength among young women in computer science.

36 37

REFERENCES CITED

Abouserie, Reda. 1994. Sources and levels of stress in relation to locus of control
and self esteem in university students. Educational Psychology. 14, no. 3:
323-30.

Abraham, L. B., M. P. Mörn, and A. Vollman. 2010. Women on the web: How
women are shaping the Internet. url: http://www.comscore.com/Press_
Events/Presentations_Whitepapers/2010/Women_on_the_Web_How_
Women_are_Shaping_the_Internet (accessed April 01, 2011)

ACM, WGBH. 2009. Interim report. New Image for Computing. url: www.acm.
org/membership/NIC.pdf (accessed April 15, 2011.)

Agosto, D. E. 2000 Evaluating electronic information resources for young
women: General research concepts. url: http://girlstech.douglass.rutgers.edu/
PDF/completereport%20.pdf (accessed April 01, 2011)

Ashcraft, C., and S. Blithe. 2009. Women in IT: The facts. Boulder, CO: National
Center for Women and Information Technology.

Astrachan, O., S. Hambrusch, J. Peckham, and A. Settle. 2009. The Present and
future of computational thinking. SIGCSE BULLETIN. 41, no. 1: 549-550.

Baron-Cohen, Simon, and Joyce F Benenson. 2003. Essential difference: Men,
women and the extreme male brain. Nature. 424, no. 6945: 132.

Barr, D., J. Harrison, and L. Conery, 2011. Computational thinking: A digital age
skill for everyone. Learning & Leading with Technology. 38, no. 6: 20-23.

Beyer, Sylvia, Kristina Rynes, Julie Perrault, Kelly Hay, Susan Haller, Gender
differences in computer science students. Proceedings of the 34th SIGCSE
Technical Symposium on Computer Science Education, February 19-23,
2003, Reno, Navada, USA [doi>10.1145/ 611892.611930]

Blum, L. and C Frieze. 2005. As the culture of computing evolves, Similarity can
be the difference. Frontiers. 26, no. 1.

Bureau of Labor Statistics, Current Population Survey. 2010. Table 11: Employed
persons by detailed occupation, sex, race, and Hispanic or Latino ethnicity -
Annual averages.

Camp, T., and D. Gürer. 1997. Investigating the Incredible Shrinking Pipeline for
Women in Computer Science. ACM Committee on Women in Computing.

36 37

Ceci S.J., and W.M. Williams. 2011. Understanding current causes of women’s
underrepresentation in science. Proceedings of the National Academy of
Sciences of the United States of America. 108, no. 8: 3157-3162.

Cheryan, S., V.C. Plaut, P.G. Davies, and C.M. Steele. 2009. Ambient belonging:
How stereotypical cues impact gender participation in computer science.
Journal of Personality and Social Psychology. 97, no. 6: 1045-1060.

Cohoon, J.M., Z. Wu, and J. Chao. 2009. Sexism: toxic to women’s persistence in
CSE doctoral programs. SIGCSE BULLETIN. 41, no. 1: 158-162.

Cooper, S., L.C. Perez, and D. Rainey. 2010. Education: K-12 computational
learning. Communications of the ACM. 53, no. 11: 27-29.

Corpus, Jennifer Henderlong, and Mark R. Lepper. 2007. The effects of person
versus performance praise on children’s motivation: Gender and age as
moderating factors. Educational Psychology. 27, no. 4: 487-508.

Denning, P.J. 2010. The great principles of computing. American Scientist. 98, no.
5: 369-372.

Diekman, A.B., E.R. Brown, A.M. Johnston, and E.K. Clark. 2010. Seeking
congruity between goals and roles: A new look at why women opt out of
science, technology, engineering, and mathematics careers. Psychological
Science. 21, no. 8: 1051-1057.

Dreze, X, and F. Zufryden. 1999. Is internet advertising ready for prime time?
Communication Abstracts. 22, no. 2.

Eagly, A.H., and S.J. Karau. 2002. Role congruity theory of prejudice toward
female leaders. Psychological Review. 109, no. 3: 573-98.

Farrington, Gregory. 1996. ENIAC: The birth of the information age. Popular
Science. Vol. 248, no. 3: 74-76.

Fuegi, John, and Jo Francis. 2003. Lovelace & Babbage and the creation of the
1843 ‘Notes’. IEEE Annals of the History of Computing. 25, no. 4: 16.

Goldstine, Herman H. 1972. The computer: from Pascal to von Neumann.
Princeton, New Jersey: Princeton University Press. ISBN 0-691-02367-0.

Goodnight G.T., and S. Green. 2010. Rhetoric, risk, and markets: The dot-com
bubble. Quarterly Journal of Speech. 96, no. 2: 115-140.

Google. 2011. Exploring computational thinking. url: http://www.google.com/
edu/computational-thinking/what-is-ct.html (accessed March 30, 2011.)

38 39

Harvey Mudd College. 2011. Incoming class of 2014 the most diverse yet. url:
http://www.hmc.edu/specialinterestfeatures/oncampus/class-of-2014-most-
diverse-yet.html (accessed May 02, 2011.)

Information Solutions Group. 2010. Social Gaming Research. url : http://www.
infosolutionsgroup.com/2010_PopCap_Social_Gaming_Research_Results.
pdf (accessed April 21, 2011).

Joy, L., N.M. Carter, H.M. Wagner and S. Narayanan. 2007. The bottom line:
Corporate performance and women’s representation on boards. New York:
Catalyst.

Hewlett, Sylvia, Buck Luce, Lisa Servon, Laura Sherbin, Eytan Sosnovich, Karen
Sumberg. 2008. The Athena factor: Reversing the brain drain in science,
engineering, and technology. Harvard Business Publishing.

Kay, R. H. 2007. Gender differences in computer attitudes, ability, and use in
the elementary classroom. Research into Practice, Ontario Ministry of
Education. Monograph #8, 1-4.

Klawe, M., and N. Levenson. 1995. Women in computing: Where are we now?
COMMUNICATIONS- ACM. 38, no. 1: 29.

Lanzer, F. 2009. Attracting girls to engineering & technology: Reach them before
they’re turned off. Proceedings of the 2009 Mid-Atlantic Section Conference
of the American Society for Engineering Education. Baltimore, MD.
url: http://ola3.aacc.edu/fplanzer/documents (accessed March 28, 2011.)

Lemkau, Jeanne Parr. 1980. Personality and background characteristics of women
in male-dominated occupations: A review. Psychology of Women Quarterly.
4, no. 2: 221-39.

Lynn, Adele B. The EQ interview finding employees with high emotional
intelligence. New York: AMACOM, 2008. <http://public.eblib.com/
EBLPublic/PublicView.do?ptiID=408794>.

Margolis, Jane and Allan Fisher. 1997. Geek mythology and attracting
undergraduate women to computer science. Impacting change through
collaboration. Proceedings of the Joint National Conference of the Women
in Engineering Program Advocates Network and the National Association of
Minority Engineering Program Administrators.

Margolis, Jane, Allan Fisher, and Faye Miller. 2000. INCLUSIONS AND
EXCLUSIONS: GENDER DIFFERENCES AND DIVERSITY AMONG
WOMEN - The anatomy of interest: Women in undergraduate computer
science. Women’s Studies Quarterly. 28, no. 1: 104.

38 39

Margolis, Jane, and Allan Fisher. 2002. Unlocking the clubhouse: Women in
computing. Cambridge, Mass: MIT Press.

Markopoulos, P., and M. Bekker. 2003. Interaction design and children.
Interacting with Computers. 15, no. 2: 141-149.

Moursund, David G. 2006. Computational thinking and math maturity improving
math education in K-8 schools. Eugene, OR. David Moursund.

National Science Foundation, Division of Science Resources Statistics. 2008.
Science and engineering degrees: 1966–2006. Detailed Statistical Tables
NSF 08-321. Arlington, VA. url: http://www.nsf.gov/statistics/nsf08321
(accessed March 13, 2011).

Perkovic, L., A. Settle, S. Hwang and J. Jones. 2010. A framework for
computational thinking across the curriculum. Proceedings of the 2010
Conference on Innovation and Technology in Computer Science Education.
123--127.

Rice, John R, and Saul Rosen. 2004. Computer sciences at Purdue University --
1962 to 2000. IEEE Annals of the History of Computing. 26, no. 2: 48.

Schenkel, Susan. 1984. Giving away success: Why women “get stuck” and what
to do about it. New York: McGraw-Hill.

Shekhar, Shashi, and Hui Xiong. 2008. Encyclopedia of GIS. New York: Springer,
url: http://dx.doi.org/10.1007/978-0-387-35973-1 (accessed April 24, 2011.)

Stephenson, Chris. 2011. No more excuses for lack of access. CSTA: The
Advocate. url:http://blog.acm.org/csta (accessed March 30, 2011.)

Stout, J.G., N. Dasgupta, M Hunsinger, and MA McManus. 2011. STEMing the
tide: Using ingroup experts to inoculate women’s self-concept in science,
technology, engineering, and mathematics (STEM). Journal of Personality
and Social Psychology. 100, no. 2: 255-70.

Taslim, J., Wan Adnan, and N.A. Abu Bakar. 2009. Investigating children
preferences of a user interface design. Lecture Notes in Computer Science.
5610 LNCS, no. PART 1: 510-513.

Luthra, Sahil. 2011. The Brown Daily Herald. url: http://www.browndailyherald.
com (accessed April 24, 2011.)

Towsend, G. C. 1996. Viewing video-taped role models improves female attitudes
toward computer science. SIGCSE BULLETIN. 28, no. 1: 42-46.

40

US Census Bureau: State and County Quick Facts. 2009. USA quick facts.
url: http://quickfacts.census.gov/qfd/states/00000.html (accessed May 07,
2011).

US Department of Education, National Center for Education Statistics. 2009.
Department of Education tables and figures. url:http://nces.ed.gov/programs/
digest/d09/tables/dt09_303.asp (accessed March 12, 2011).

U.S. Department of Labor, Bureau of Labor Statistics, 2009. Employment and
earnings, 2009 annual averages and the monthly labor review. url: http://
www.dol.gov/wb/stats/ (accessed April 14, 2011)

Wilford, John N. 2008. Discovering how Greeks computed in 100 B.C. The New
York Times [New York, New York] 31 July 2008. Print.

Williams, Laurie. 2006. SERIES - Broadening participation in computing -
Debunking the nerd stereotype with pair programming. Computer. 39, no. 5:
83.

Wing, Jeannette M. 2006. Viewpoint - Computational thinking. Communications
of the ACM. 49, no. 3: 33.

Wing, Jeannette M. 2008. Computational thinking and thinking about computing.
Philosophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences. 366, no. 1881: 3717-3725.

