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THESIS ABSTRACT

Nicholas A. Chaimov

Master of Science

Department of Computer & Information Science

June 

Title: A Framework for Automated Generation of Specialized Function Variants

Efficient large-scale scientific computing requires efficient code, yet optimizing code

to render it efficient simultaneously renders the code less readable, less maintainable, less

portable, and requires detailed knowledge of low-level computer architecture, which the

developers of scientific applications may lack. e necessary knowledge is subject to change

over time as new architectures, such as GPGPU architectures like CUDA, which require very

different optimizations than CPU-targeted code, becomemore prominent. e development

of scientific cloud computing means that developers may not even know what machine their

code will be running on when they are developing it.

is work takes steps towards automating the generation of code variants which are

automatically optimized for both execution environment and input dataset. We demonstrate

that augmenting an autotuning framework with a performance database which captures

metadata about environment and input and performing decision tree learning over that data

can help more fully automate the process of enhancing soware performance.
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CHAPTER I

INTRODUCTION

.. Empirical Autotuning and Specialization

is document discusses two major, interrelated topics: empirical autotuning and

specialization. Empirical autotuning is the process of selecting the best-performing of a set

of functions by executing the functions on representative datasets and in the computational

environment in which they will ultimately run. Specialization is the process of applying

optimizations which take into consideration properties of the datasets being processed;

for example, if a particular application involves many multiplications over matrices of a

particular size m × n, a specialized matrix multiplication function could be generated which

is optimized for matrices of that size.

Here, I discuss steps towards a fully-automated framework for performing empirical

autotuning and specialization on arbitrary code, and, in particular, the application ofmachine

learning to the selection of specialized code variants.

.. Motivation

Programs used in scientific computing are oen written by scientists who are experts

in their particular domain but who are not experts in programming or low-level computer

architecture. However, in order to attain good performance, optimizations must be made
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which take advantage of properties of the low-level computer architecture. Experts in

computer architecture can help make these optimizations, but the process is very time-

consuming and results in general code understandable by domain scientists being converted

into a form which is difficult to read and understand. e best-performing code may also

vary with properties of the input data, which may not be known in advance.

Moreover, the optimized version is no longer easily portable to other computer

architectures. Goumas et al. [] report that the TOP list of supercomputers includes

at least  different types of processors, at least  types of interconnection networks, and

numbers of cores per system ranging from , to ,. is diversity limits the

availability of experts on a particular system and increases the importance of not developing

code which will run well only on one system.

Heterogenous computing [], in which one system contains more than one type of

processing element, is becoming increasingly common, and will require that code be able

to execute with good performance across multiple architectures even within one system; for

example, many of the TOP systems now incorporate both CPUs and GPGPUs (general

purpose graphical processing units). Optimizations for CPUs and GPUs are very different

from one another, as can be optimizations for a family of GPUs from another family. With

the use of cloud computing [], developers may not even know in advance the properties of

the system their sowarewill eventually run on, and the physical nodes of the cloud computer

on which the soware is running may change over time.

Given these issues, a system capable of assisting developers in optimizing their code for

a wide variety of possible execution environments and input datasets would be very useful.
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.. Contributions

e work described in this thesis expands upon an existing autotuning framework [,

, , ] to automate phases which were previously donemanually and to gather and retain

performance data over the autotuning process. e specific contributions of this work are:

. Automatic gathering of parameterized performance profiles. We have extended the

TAU (Tuning and Analysis Utilities) Performance System [] to support gathering

parameterized profiles. ese profiles record the parameters to a function along

with performance properties of the function, allowing the user to determine whether

there are any particularly common classes of parameters for which the function might

be specialized and, if so, which loops inside the function might be most profitably

optimized.

. Automatic gathering of performance data andmetadata during autotuning. We have

used the PerfDMF performance database [–] to store the results of testing each

code variant generated during the autotuning process, along with metadata describing

the execution environment in which the tests were carried out and the input data used.

. Automatic selection of specialized code variants. We have developed a system to use

decision tree learning [, ] as implemented in Weka [] to generate classifiers

capable of selecting the best-performing code variant, taking into consideration

properties of the execution environment and input data which can be determined at

runtime. We generate a wrapper function from the decision tree which replaces the

original function in the autotuned code.





.. esis Organization

In Chapter II, we discuss previous work in developing automated systems for autotuning

and specialization and describe where there are opportunities for increasing automation,

and describe some cases studies showing that autotuning and specialization can be used

to improve the performance of scientific code. In Chapter III we discuss previous work in

applying machine learning techniques to compiler optimizations and review the properties

of decision tree classifiers. In Chapter IV, we discuss the design, implementation and use of

the autotuning and specialization framework developed as part of this work. In Chapter V

we show that this framework can be applied to some simple problems which have previously

been shown amenable to autotuning. Finally, in Chapter VI we present our final discussion

and conclusions and describe work yet to be done in this area.
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CHAPTER II

AUTOTUNING AND SPECIALIZATION

.. Adaptive Libraries

Early uses of empirical autotuning consist of adaptive libraries—libraries which perform

benchmarking at compile time in order to select an implementation best suited for the

environment in which the library was compiled.

... ATLAS

An early and widely-used such library is the linear algebra library ATLAS []

(Automatically Tuned Linear Algebra Soware), whose developers term the technique they

use Automated Empirical Optimization of Soware [].

Traditionally, hardware, operating system and compiler vendors have generated hand-

tuned linear algebra routines for developers using their products. ATLAS represents a

different approach, shipping a variety of parameterized function implementations which

are tested during compilation. e developers of ATLAS identify four requirements for the

application of empirical optimization []:

– Isolation of performance-critical routines.

– A method of adapting soware to differing environments.
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– Robust, context-sensitive timers.

– Appropriate search heuristics.

We will discuss in Section .. and in Chapter IV how the stages of the autotuning

process developed for this work map onto these four requirements.

ATLAS performs its tuning at compile time. is is beneficial in that it does not

introduce any delays at runtime due to the need to select an implementation then, but this

also limits the ability of ATLAS to adapt to a changing execution environment (for example,

if ATLAS is installed on a virtual machine running on a cloud node which is migrated to a

different cloud node with differing cache sizes) or to the input data, which is only known at

runtime (for example, to adapt to different sizes of input matrices, if a given program tends

to use matrices of one of a few fixed sizes.)

... FFTW

Another approach is that used in FFTW [], a Fast Fourier Transform library. In FFTW,

the user of the library invokes the library with a description of the problem to be solved (e.g.,

which discrete transform is to be calculated) and the sizes and memory layouts of the input

arrays. FFTW includes code, called the planner, which will then test many different functions

for calculating the desired transform on problems of the indicated size and layout, and select

and return the best-performing one.

is technique allows FFTW to adapt to changes to its execution environment (such as

in the case of migration) and to properties of the input data. However, if only a small number

of transforms of a particular type and for particular input types are performed, then the cost

of performing the tests will outweigh the increased performance from using tuned variants,

and overall program execution time will be slower.
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.. General-purpose Autotuning Frameworks

... Definitions

e libraries described above accomplish the goals of empirical autotuning, but only

within the confines of the library; they do not assist developers in optimizing their own

code, and are based on parameters, code generators and search heuristics which are specific

to the problem addressed by the library. However, the ideas behind Automated Empirical

Optimization of Soware [] can be generalized. For a general-purpose autotuning

framework, we require:

Isolation of performance-critical routines. In the context of a library, performance-critical

code can be separated out by the library designer. In the case of pre-existing application

code, performance-critical code may be embedded within other code; for example,

a routine might perform some setup of data structures, execute a loop many times

over those data structures, and then finally destroy data structures needed only during

the computation. In this case, the setup and tear-down stages are probably non-

performance-critical, while the loop is performance critical, sowe need away to extract

the performance-critical section of code into its own context, so that we can reason

about it in isolation and so that we can easily swap it out with alternate, optimized

implementations. By isolating the code, we can also execute it independently of the rest

of the program. If a program requires a very long time to execute, as many scientific

applications do, we may have to evaluate the performance of code in isolation in order

to evaluate a sufficient number of variants.





We will refer to a program capable of isolating a section of code as a code extractor.

e function of a code extractor is depicted diagrammatically in Figure ... Examples

of code extractors include Code Isolator [] and the ROSE outliner []¹.

A method of adapting soware to differing environments. Once the performance-critical routines

have been isolated, we need amechanism to create alternate versions whichmight have

better performance. Creating alternate versions can be as simple as compiling the same

code intomultiple object files using different compilers, different levels of optimization,

and/or different compiler flags. In this case, we will be primarily concerned with

creating alternate versions by modifying input source code to create optimized output

code, which can perform optimizations the compiler is not capable of making or

exposes opportunities for optimizations the compiler is capable of making, but could

not identify in the unmodified code.

We will refer to a program capable of creating alternate versions of extracted code

as a code variant generator. It takes source code as input, along with a description

of possible code transformations which are optionally parameterized. For example,

Performance-
Critical Code

Original Code
Code Extractor

Description of 
Performance-
Critical Code

Performance-
Critical Code

Figure .. Diagram of a code extractor, which isolates a section of code from its context,
pulling it into its own scope so that it can be easily replaced with alternate implementations.

¹So named because its operation can be considered the inverse of inlining.
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a transformation description could indicate that a loop should be unrolled; this can

be parameterized by the number of times unrolling is to be applied. e function of

a variant generator is depicted diagrammatically in Figure ... Examples of variant

generators include Orio [, , ], POET [] and CHiLL [, –, ].

Robust, context-sensitive timers. Having generated a set of proposed code variants, we must

execute them and measure their performance. In particular, we should measure their

performance in such a manner that we do not severely perturb performance by our act

of measurement.

We will refer to a program capable of timing code variants as a performance

measurement system. It takes code variants as input and runs them with a set of

representative input data, producing performance data tagged such that performance

data can be associated with the implementation whose measurement generated the

data. e function of a performancemeasurement system is depicted diagrammatically

in Figure ... Examples of performancemeasurement systems includeHPCToolkit []

and TAU [].

Appropriate search heuristics. It is oen not feasible to exhaustively search the entire space of

input parameters to the code variant generator, so some means of limiting the search

space while still producing good results is needed. is is especially important if search

is to be performed at runtime.

We will refer to a program capable of directing the search process as a search engine.

It interfaces with the code variant generator and performance measurement system,

selecting parameters to the code variant generator and then making a decision as to

the next set of parameters to check based upon the performance characteristics of

previously-tested variants. e function of the search engine within the context of





Transformation 
Descriptions

Transformation 
Parameters

Code Variant 
Generator

Proposed 
Implementations

Performance-
Critical Code

Proposed 
ImplementationsProposed 

ImplementationsProposed 
ImplementationsProposed 

ImplementationsProposed 
Implementations

Performance-
Critical CodePerformance-
Critical Code

Figure .. Diagram of a code variant generator, which applies transformations to
input code to generate a set of functionally-equivalent but differentially-performing output
implementations.

Proposed 
ImplementationsProposed 

ImplementationsProposed 
ImplementationsProposed 

ImplementationsProposed 
ImplementationsProposed 

Implementations

Representative 
Input Data

Performance 
Measurement 

System
Proposed 

ImplementationsProposed 
ImplementationsProposed 

ImplementationsProposed 
ImplementationsProposed 

ImplementationsProposed 
Implementations

Performance Data
Performance Data

Performance Data
Performance Data

Performance Data
Performance Data

Figure .. Diagram of a performance measurement system, which measures performance
properties of code variants, producing data which are tagged such that performance data can
be associated with variants.
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the whole autotuning system is depicted diagrammatically in Figure ... Examples of

search engines include Active Harmony [, , , ] and Orio [, , ], the latter

of which integrates a search engine and code variant generator into a single soware

package.

.. e ROSE/CHiLL/Active Harmony Stack

One general-purpose autotuning framework is proposed in [] and uses the ROSE

outliner [] as the code isolator, CHiLL [] as the code variant generator and Active

Harmony [] as the search engine. is framework does not specify a particular

performance measurement system; uses of this system in the past have used HPCToolkit

[] or have involved calls to the PAPI [] interface to directly access hardware performance

counters.

... e ROSE Outliner

e ROSE outliner [] is based on the ROSE compiler system [], a compiler

framework designed for source-to-source transformation. ROSE parses C, C++ and

FORTRAN code into a common AST (abstract syntax tree) representation which can be

traversed, analyzed, and modified. e modified AST can then be “unparsed” by ROSE,

yielding a new source file which can be used as input to other tools.

e ROSE outliner allows the user to specify a section of code to be extracted into

a separate function either using compiler pragmas or by “abstract handles” which allow

position-independent references to nodes in the AST. During outlining, side-effect and

liveness analyses are performed to determine whether it is possible to pass variables by value

rather than by reference. By avoiding repeated pointer dereferences inside the outlined

function wherever possible, the performance characteristics of the original block of code are





Performance-
Critical Code

Original Code

Code Extractor

Description of 
Performance-
Critical Code

Proposed 
ImplementationsProposed 

ImplementationsProposed 
ImplementationsProposed 

ImplementationsProposed 
ImplementationsProposed 

Implementations

Representative 
Input Data

Performance 
Measurement 

System
Proposed 

ImplementationsProposed 
ImplementationsProposed 

ImplementationsProposed 
ImplementationsProposed 

ImplementationsProposed 
Implementations

Performance Data
Performance Data

Performance Data
Performance Data

Performance Data
Performance Data

Transformation 
Descriptions

Transformation 
Parameters

Code Variant 
Generator

Performance-
Critical CodePerformance-

Critical CodePerformance-
Critical Code

Search Engine

Figure .. Diagram of a search-driven autotuning system, in which a search engine selects
parameters for the code variant generator based on past performance measurements.

maintained. Outlined kernels can be extracted to a separate source file which can then be

used as input to a code variant generator.

... CHiLL

CHiLL [] is a code variant generator which allows the user to specify a series of high-

level loop transformations to be applied together. CHiLL uses ROSE internally to parse code

and applies transformations by making modifications to the ROSE AST. It uses a polyhedral

model of loop transformations, in which the order of operations within nested loops are

viewed as points inside a polyhedron, from which semantically-equivalent loops evaluating

nests in different orders can be generated by applying geometric transformations to the

polyhedron [].
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CHiLL recipes can be parameterized, and autotuning can be performed by searching

the space of parameters to available recipes. An example of a CHiLL recipe with parameters

is shown in Figure ... In that recipe, three instances of loop tiling and two instances of

loop unrolling are specified, but the parameters are le to be determined at a later point. For

example, the variable Ui indicates the number of times loop  is to be unrolled. Table ..

lists some transformations CHiLL is capable of carrying out.

CHiLL recipes also allow for known loop bounds to be expressed. is can enable

optimizations which otherwise would not be available and is important for specialization.

For example, if it is known that when the function being optimized is called with particular

arguments that a loop will be executed a known number of times, a specialized variant could

be generated in which the loop is fully unrolled.

A related tool is CUDA-CHiLL [], which extends CHiLL with the ability to generate

CUDA kernels for execution on GPUs from standard C or FORTRAN code. It adds a

cudaize command which generates a CUDA kernel as well as commands for moving data

around the CUDA memory hierarchy.

... Active Harmony

Active Harmony [] is a search engine capable of rapidly exploring the parameter

search space by testing multiple hypotheses in parallel, using the Parallel Rank Ordering

algorithm to evaluate potential parameters. e user can specify parameters, ranges for

permute([1,2,3])

tile(0,2,Tj)
tile(0,2,Ti)

tile(0,5,Tk)

unroll (0,4,Ui)
unroll (0,5,Uj)

Figure .. An example of a parameterized CHiLL recipe
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Command Meaning
permute Change order of nested loops.
tile Apply loop tiling to change order of loop iterations.
split Split a loop with multiple statements in its body into multiple loops.
fuse Inverse of split; combine multiple loops with the same loop boundaries into one loop.
unroll Unroll loop (duplicate loop body and adjust loop boundaries) a specified number of times
datacopy Copy data accessed by the loop into a contiguous block of memory

TABLE .. CHiLL recipe commands

the parameters, and constraints restricting the values parameters can take on. Active

Harmony runs using a client-server architecture, in which a centralized Harmony server

communicates with, and provides parameters to, multiple clients running on different,

identically-configured nodes of a cluster. Additional servers can be configured as code

servers, which perform compilation of code variants and distribute compiled object files to

the execution nodes.

e architecture of Active Harmony is depicted diagrammatically in Figure ...

.. Case Studies

Several papers have been published documenting the use of the ROSE/CHiLL/Active

Harmony autotuning stack on production code.

... Dense Matrix Multiplication

In one case, autotuning and specialization were used to improve the performance of

a dense matrix multiplication routine used by Nek, a fluid dynamics solver []. Shin

et al. manually instrumented Nek using PAPI calls to determine that  of the total

execution time was spent on a particular matrix multiplication routine, mxm44_0. Having

discovered this, mxm44_0 was manually instrumented by inserting code to capture the
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Figure .. Diagram of the Active Harmony architecture.

number of calls to the routine for each matrix size; this produced a histogram indicating

the frequency with which different matrix sizes were encountered.

e frequency data showed that many multiplications over matrices of small sizes (10×

10 or smaller) were being performed, even though the BLAS libraries being used had been

hand-tuned for large matrices: the routines were optimized to manage the cache hierarchy,

but small matrices would fit into the L cache in their entirety. e researchers developed

CHiLL recipes to unroll loops in the routine, using autotuning to identify the level of unrolling

that would achieve peak performance (that is, the highest degree of unrolling that would not

exhaust the instruction cache and/or supply of general purpose registers).

e researchers generated specialized versions of the matrix multiplication routine for

the most frequently encountered matrix sizes, each having the empirically-determined ideal

degree of unrolling for matrices of that size. ey then wrote a script to generate a wrapper

function which evaluates the size of input matrices and selects the optimal variant. e
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evaluation is done in order from most-frequent to least-frequent size encountered over the

course of profiling, to minimize expected delay due to runtime variant selection. e use of

these specialized variants improved performance by . times on a single node and . times

when running in parallel on  nodes.

Note that the technique used in this study leaves room for further automation:

performance instrumentation, parameter-gathering instrumentation, creation of specialized

routines based on frequency of input parameters, and generation of an optimized wrapper

function were either not automated or only partly automated.

... Sparse Matrix Multiplication

A study by Shreyas et al. [] used CHiLL to create optimized, specialized variants

of sparse matrix multiplication routines from the PETSc library. As in the Nek study

described above, the first step involved manually instrumenting the code to identify routines

for optimization, then to instrument those routines specifically to capture parameter data.

To optimize sparse matrix multiplication routines, alternate versions were written by

hand which gathered data into a contiguous array of memory before the multiplication;

both unmodified and gathering versions of the routines were subsequently put through the

autotuning process. Recipes were written which performed loop unrolling, loop splitting

and loop fusion to expose opportunities for the compiler to introduce vector instructions.

Specializationwas based upon ameasure derived from the input data: the number of nonzero

elements per row in the matrices.

is particular study did not require the use of Active Harmony or any other search

engine, as the parameter spaces were sufficiently small that an exhaustive search could be

performed in a reasonable amount of time. Using the optimized, specialized sparse matrix
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multiplication routines in three applications (PFLOTRAN, Uintah, and UNIC) yielded

speedups ranging from . times to . times the original speeds.

.. Limitations

As exemplified by the studies described in Sections ... and ... above, autotuning

and specialization have great promise for improving the performance of soware, but the

process of using existing autotuning and specialization libraries is not sufficiently automated

for their use to become mainstream. We would like some way for users to generate

specialized function variants without the need for manual instrumentation, manual selection

of parameters over which to specialize, and manual generation of replacement wrapper

functions.

erefore, in the next chapter, we will examine some uses of machine learning in

selecting optimizations and discuss whether machine learning could be useful in selecting

variants for specialization.
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CHAPTER III

MACHINE LEARNING IN COMPILER OPTIMIZATION

.. Predicting Beneficial Optimizations

One approach to the problem of selecting a specialized code variant is to train a classifier

that maps from properties of the machine, code, or input data to a variant.

One of the earliest uses of this approach was that of Monsifrot et al. [], who studied

the use of decision trees in selecting optimal unroll factors for loops extracted from the

SPEC benchmarks. eir approach was to perform static analysis of the code to extract

various descriptors of the code: number of statements, number of operations, number of

array accesses, etc. Properties of the machine and input data were not considered. For each

loop, the space of possible unroll factors was enumerated exhaustively and the performance

of each was measured. By using decision tree learning over that dataset, a tree was produced

which could, given a loop from the overall dataset omitted from the training dataset, identify

the empirically-determined optimal unroll factor in . of cases tested.

Stephenson and Amarasinghe [] used a similar approach — static properties of the

code to predict unroll factors — with a larger number of code properties and with two

different machine learning techniques: nearest-neighbor classification and support vector

machines.





Nearest-neighbor classifiers are very simple: using a distance measure defined over the

features, the distance from the feature vector to be classified to existing feature vectors in the

dataset is calculated and the new feature vector is assumed tomap to the same classification as

the nearest existing feature vectors. It has the advantage of being extremely fast to train and

fast at classification. Nearest-neighbor classification was able to predict the optimal unroll

factor on  of test inputs.

Support vector machines are considerably more complicated classifiers; briefly, they

transform the input data into a higher-dimensional space and find hyperplanes in that space

which separate categories. Formore details, see []. SVMclassifiers trained on the samedata

as the nearest-neighbor classifiers were able to predict the optimal unroll factor on of test

inputs, but require more time to carry out the training algorithm. ey have the additional

limitation of being difficult to interpret by humans; general rules cannot be easily inferred by

inspecting a support vector machine.

While the two studies discusses above used static code properties as input, a study

by Cavazos et al. [] uses performance counter data collected at runtime, and is therefore

more directly applicable to the problem of autotuning. eir approach involves first testing

a large number (around ) of randomly selected combinations of compiler optimization

flags and recording execution time along with the values stored in various hardware counters

(e.g., numbers of adds, multiplies, subtractions, divisions; number of branches taken, not

taken, mispredicted; data and instruction cache hits and misses; etc.). Logistic regression

is then used to assign to each compiler optimization a probability indicating whether it

should be evaluated given the performance counter data. Future autotuning is then driven

by selecting and evaluating optimizations based upon the probabilities determined from the

logistic regression model. is method was highly successful, improving the performance

of the SPEC benchmarks by . However, this method does not take static properties of
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the code or the input dataset into consideration except indirectly though their effects on

performance counters.

Other approaches for using machine learning to generate optimized code variants

include generating algorithms by composing blocks of code together; for example, this

technique has been used with genetic algorithms to produce specialized sorting algorithms

[] and with XCS classifier learning systems to produce specialized matrix multiplication

algorithms [].

.. Collective Tuning

A very interesting approach is taken by Fursin and Temam [], which they name

collective optimization. eir approach differs from the standard autotuning approach

described inChapter II and from themachine learning techniques described in Section .. in

that it does not explicitly search a parameter space, but rather adjusts a centrally-maintained

set of probability distributions in response to input data submitted from clients running

instrumented applications across platforms and datasets.

e collective tuning approach uses a modified version of GCC which implements

function cloning. When a source file is compiled, functions of interest are cloned, one

of which is le in its original state, and the other of which is optimized according to an

optimization selected by an approach similar to that used by Cavazos et al. [] as described

in Section ... It is initially not known whether the original or the optimized code variant

will provide better performance on the dataset about to be used, so a uniform distribution is

used at runtime to select a variant to use each time the original function is called — that is,

there is initially a  chance that the original version will be called, and a  chance that

the optimized version will be called upon each invocation of the function.





Since the probability of each function being called is known, the proportion of time

spent in each function should match those probabilities assuming the the functions have

equal performance. If the proportion of time spent in a function is significantly lower than

the expectation assuming equality, then it can be inferred that that variant offers better

performance than its competitor. e result of the competition is then communicated to

a central server which updates probability distributions: one probability distribution for the

program, another which aggregates data for programswith similar reactions to optimizations,

and a third which aggregates data across all programs.

In this way, the collective tuning approach is able to adjust to data learned over time

across environments and datasets. It shows the importance of being able to aggregate

performance data from many sources in order to get the most benefit from machine learning

techniques.

.. Decision Tree Learning

A decision tree is a DAG (directed acyclic graph) in which interior nodes represent

“decisions”, fields in which the input feature vectors differ; the leaf nodes represent

classifications and edges represent particular values which can be taken on by the field

represented by the node from which the edge emanates. In autotuning, our feature vectors

include data about the programs being executed, the environment in which the programs

are being executed, and the input data to the programs. Classifications are code variants or

instructions for generating code variants (e.g., a parameterized recipe and its parameters).

An example of such a decision tree is shown in Figure ...

e most common decision tree learning algorithms are ID [] and C. [], both

due to Ross Quinlan. ese learn short trees in which the most informative nodes tend to

be located closer to the root. Both algorithms select nodes greedily, picking the node which
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Figure .. A decision tree for selecting code variants from input data and execution
environment data.

currently gives the highest information gain, defined as

Gain(S,A) ≡ Entropy(S) − ∑
v∈Values(A)

∣Sv∣
S

Entropy(Sv)

where

Entropy(S) ≡
c

∑
i=1
−pi log2 pi.

ID uses information gain directly, while C. adds the ability to substitute a leaf node

for an interior node if the loss in information is sufficiently small, thereby reducing the

amount of time needed for classification. Reducing the time needed for classification is useful

if we are using these trees to select optimized code variants, as we could potentially offset the

improved performance in using specialized variants if we take too much time picking which

variant to use. e Wekamachine learning library [] provides a customized variant of C.
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called J which we will use in Chapter IV in the development of a system for autotuning and

specialization.
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CHAPTER IV

DESIGN AND IMPLEMENTATIONOF ANAUTOTUNING

FRAMEWORK

.. Goals

Let us reiterate our goals in developing an autotuning framework:

– Automatically gather metadata describing properties of the input data to the program

being tuned, so that we can later specialize based on those properties.

– Automatically gather metadata describing the execution environment of the program

being tuned, so that we can later specialize based on those properties.

– Automatically learn a decision tree classifier which maps the gathered properties of

the input data and execution environment to a choice of code variant.

– Automatically generate executable code from the decision tree to perform the

classification at runtime.

Wewill use the ROSE/CHiLL/Active Harmony stack described in Section .., augment

it with parameterized profiling, metadata capture into a performance database, decision tree

learning and wrapper function generation and develop a driver program to automatically

configure ROSE, CHiLL and Active Harmony to work together with these augmentations.
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.. Parameterized Profiling with TAU

We extended TAU [], a performance measurement system, to support gathering

parameters to functions. For example, if we are autotuning and specializing a matrix

multiplication routine, TAU can be configured to gather data on the frequency with which

each size matrix was encountered, as well as separate performance statistics for the routine

when called on differently-sized matrices. An example of this is shown in Table ..

TAU automatically instruments C, C++ and FORTRAN source files, inserting calls to

timer routines at the start and end of functions, and, optionally, loops, taking advantage

of PDT (Program Database Toolkit) files [], which describe, among other properties,

functions and their arguments. Using this information routines can also be inserted at the

start and end of functions to run timer routines specific to the arguments with which the

function was called.

Because PDT does not capture data about local variables, and it is oen useful to

parameterize based upon a derived property of the actual function arguments stored in a

local variable, we also developed a ROSE-based tool which inserts parameterized timer code

based upon a ROSE abstract handle.

Initial performance measurements are stored in a performance database, namely

PerfDMF (or TauDB, a newer version of the same soware), which will be described in more

detail in section ...

To addparameterized profiling to the autotuning framework, it is inserted as a newphase

aer code extraction, as shown in Figure ..

.. Capturing Metadata in PerfDMF

PerfDMF [] is a performance measurement database designed to store performance

measurements of sequential and parallel applications over the course ofmultiple experiments.





Source Code

ROSE outliner

Outlined Function Selective Instrumentation 
File (specifying parameters 

to capture)

Instrumented 
Function

tau_instrumentor

Parameterized 
Performance Profile

execute

PerfDMF
TauDB

Figure .. Diagram of a portion of the autotuning workflow, showing parameterized
profiling.

 msec Calls Name
. ,  void matMult(size_t, float *, float *, float *) [ <size> = <> ]
.   void matMult(size_t, float *, float *, float *) [ <size> = <> ]
.   void matMult(size_t, float *, float *, float *) [ <size> = <> ]
.   void matMult(size_t, float *, float *, float *) [ <size> = <> ]
.   void matMult(size_t, float *, float *, float *) [ <size> = <> ]
.   void matMult(size_t, float *, float *, float *) [ <size> = <> ]
. .  void matMult(size_t, float *, float *, float *) [ <size> = <> ]
. .  void matMult(size_t, float *, float *, float *) [ <size> = <> ]

TABLE .. Performance data parameterized by input metadata
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It provides for multiple clients to submit performance data to a central repository, where it

can be analyzed in aggregate. Usefully for our current task, it also features robust support for

the storage of metadata — both standard metadata automatically gathered by TAU as well as

user-specified metadata.

By virtue of using TAU to gather performance data and storing those data in PerfDMF,

we automatically capture a large amount of information about the execution environment.

Table .. shows default metadata about the execution environment that the framework

captures on all systems. When we use parameterized profiling, as described in Section ..,

parameters are stored as part of the names of timers and are therefore also accessible. A

new version of PerfDMF currently under development, called TauDB, will provide additional

support for parameterized profiles, allowing, for example, efficient range-based queries over

function parameters.

We also capture metadata pertaining to the input data, namely, parameters to

instrumented functions, as well as provenance data, indicating where the code being tested

came from: is it the original, unoptimized code; a hand-tuned variant; or was it produced

by a code variant generator, and, if so, which code variant generator, using which script and

which parameters? Table .. shows default metadata about input data and provenance.

Performance measurements are stored in PerfDMF for both the initial runs to gather

parameter data, and for each CHiLL variant tested during the autotuning process, as driven

byActiveHarmony. Wedeveloped anActiveHarmony driverwhich interfaceswith PerfDMF

to store intermediate results in the database and use TAUmetrics as the value to be optimized

by the search process. e driver instruments each CHiLL-produced variant using PDT and

TAU. e overall workflow of this stage is depicted diagrammatically in Figure ...
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Metadata Type
Execution start time
Hostname Process ID (pid)
OS Name CPU Vendor
OS Version CPU Clock Speed
OS Release CPU Type
TAU Architecture CPU Cache Size
TAU Configuration CPU Number of Cores
TAU Makefile Host Memory Size
TAU Version Executable Name
Current working directory Command line arguments
Compiler name used Compiler version

TABLE .. Execution environment metadata captured by default

Metadata Type
Parameters to instrumented functions
Name of transformation recipe used, if any
Values of transformation parameters, if any
Transformation system used (e.g., CHiLL), if any
Transformation system version, if any

TABLE .. Other metadata captured by default
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.. Decision Tree Learning with PerfDMF andWeka

Now that performance data annotated with environmental and input-data-based

metadata are stored in a PerfDMF database, we can learn a decision tree taking the described

set of metadata as the feature vector and the provenancemetadata as the label. We use the J

algorithm provided by Weka [], a Java-based machine learning library. J is appropriate

because it supports pruning uninformative nodes from decision trees as well as range-based

decisions (e.g., an edge for cache size between  and  MB). Weka was used because it is

already in use inside the TAU project as part of PerfExplorer [], a program for performing

data mining on parallel performance data.

Once a decision tree has been generated, it is read by a ROSE-based tool which

constructs the AST of a wrapper function and unparses it to C or C++ code. e wrapper

function is then inserted into the original source code in place of the function which has been

specialized. ewrapper function represents the tree as a series of if-then-else statements (for

binary decision trees) or switch statements (for n-ary decision treeswhere n > 2). J is biased

towards short trees with the most informative nodes located near the root, meaning that the

wrapper functions generated should tend to evaluate the most likely cases first and should

not have to evaluate too many cases in order to determine which code variant to execute.

Code to evaluate each decision node is provided for each of the default types ofmetadata

generated by the framework. is code takes the form of an inlineable function annotated

with a compiler pragma indicating the name of the metadata node it decides. e wrapper

generator will replace calls to the decision function with the function body in the wrapper

function to avoid introducing overhead from function calls.

Not all data in the feature vector may be available on all systems. erefore, clients can

send a request to a decision tree server listingwhichmetadata are actually available andwhich
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application is being run. e server will then generate a custom decision tree including only

relevant nodes.

Figure .. depicts diagrammatically the workflow of this stage of the framework.

.. Conclusion

is chapter showed how we have implemented automated generation of specialized

function variants in the ROSE/CHiLL/Active Harmony-based autotuning framework by

integrating those tools with TAU, PerfDMF, Weka, and a custom-built wrapper generator.

Chapter V will show examples of this framework being used to generate such specialized

functions.
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CHAPTER V

EMPIRICAL EVALUATION

is chapter showshow the autotuning and specialization frameworkdescribed inChapter IV

can be applied to specializing based on input parameters, specializing based on architectural

features, and specializing based on both input parameters and architectural features.

.. Specializing Based on Input Data

is experiment analyzed the optimization of a basic matrix multiply routine shown

in Figure ..a. As noted in describing the specialization of the matrix multiplication in

Nek [] in Section ..., optimization of matrix multiply for large matrices involves

performing loop tiling to manage the memory hierarchy, whereas optimization of matrix

multiply for small matrices does not require loop tiling, and consists primarily of loop

unrolling.

for(j=0; j < n; j++) {
for(k=0; k < n; k++) {

for(i=0; i < n; i++) {
c[i][j] =c[i][j] + a[i][k]*b[k][j];

}
}

}

(a) Naïve implementation of
matrix multiply

permute([3,1,2])
tile(0,2,TJ)
tile(0,2,TI)
tile(0,5,TK)
datacopy(0,3,a,false,1)
datacopy(0,4,b)
unroll(0,4,UI)
unroll(0,5,UJ)

(b) CHiLL recipe for large
matrices

permute([1,2,3])
unroll(1,1,U1)
unroll(1,2,U2)
unroll(1,3,U3)

(c) CHiLL recipe
for small matrices

Figure .. Matrix multiplication and sample transformation recipes
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erefore, the autotuning framework was configured to use CHiLL recipes which

perform loop tiling and loop unrolling, expected to improve performance on large matrices,

and CHiLL recipes which perform loop unrolling but not loop tiling, expected to improve

performance on small matrices. Examples of these recipes are shown in Figures ..b and

..c. Other recipes used are similar but perform different permutations of the loop nests.

An example of a generated code variant is shown in Figure ...

A driver program was written which repeatedly calls the matrix multiply routine on

square matrices of differing sizes. e autotuning framework was configured to instrument

the matrix multiply routine to parameterize performance data based on matrix size.

Autotuning was performed on the ACISS cluster at the University of Oregon using CHiLL

and Active Harmony, and with performance measurements being saved into PerfDMF. Code

variants were compiled with the Intel C compiler. Four final code variants were generated:

the unchanged original version, the best variant found from among the tile-and-unroll tests,

the best variant found from among the unroll-only tests, and the automatically generated

wrapper based upon the learned decision tree (which split between the two generated variants

at size N = 1024).

e code variants were tested on three types of workloads: entirely small matrices

(n <= 32), entirely large matrices (n > 32), or a mixed workload consisting of half large

and half small matrices. Results are shown in Figure ... e wrapped version achieved the

best overall performance on a mixed workload, indicating that the autotuning system was

successful in specializing for the cases present in the input data.

.. Specializing a CUDA Kernel Based on Execution Environment

Another experiment was performed to determine whether the autotuning system could

specialize based upon differences in hardware. For this experiment, CUDA matrix multiply
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for (t2 = 0; t2 <= n - 1; t2 += 512) {
for (t4 = 0; t4 <= n - 1; t4 += 128) {
for (t6 = t4; t6 <= __rose_lt(n - 1,t4 + 127); t6 += 1) {

for (t8 = t2; t8 <= __rose_lt(t2 + 511,n - 1); t8 += 1) {
_P1[t6 - t4][t8 - t2] = a[t6][t8];

}
}
for (t6 = 0; t6 <= n - 1; t6 += 8) {

for (t8 = t2; t8 <= __rose_lt(n - 1,t2 + 511); t8 += 1) {
for (t10 = t6; t10 <= __rose_lt(n - 1,t6 + 7); t10 += 1) {

_P2[t8 - t2][t10 - t6] = b[t8][t10];
}

}
over1 = n % 2;
for (t8 = t4; t8 <= __rose_lt(-over1 + n - 1,t4 + 126); t8 += 2) {
over2 = n % 2;
for (t10 = t6; t10 <= __rose_lt(n - over2 - 1,t6 + 6); t10 += 2) {

for (t12 = t2; t12 <= __rose_lt(t2 + 511,n - 1); t12 += 1) {
(c[t8])[t10] = (((c[t8])[t10]) + (_P1[t8 - t4][t12 - t2] * _P2[t12 - t2][t10 - t6]));

(c[t8 + 1])[t10] = (((c[t8 + 1])[t10]) + (_P1[t8 + 1 - t4][t12 - t2] * _P2[t12 - t2][t10 - t6]));
(c[t8])[t10 + 1] = (((c[t8])[t10 + 1]) + (_P1[t8 - t4][t12 - t2] * _P2[t12 - t2][t10 + 1 - t6]));
(c[t8 + 1])[t10 + 1] = (((c[t8 + 1])[t10 + 1]) + (_P1[t8 + 1 - t4][t12 - t2] * _P2[t12 - t2][t10 + 1 - t6]));

}
}
if (n <= t6 + 8 && 1 <= over2)

for (t12 = t2; t12 <= __rose_lt(n - 1,t2 + 511); t12 += 1) {
(c[t8])[n - 1] = (((c[t8])[n - 1]) + (_P1[t8 - t4][t12 - t2] * _P2[t12 - t2][n - 1 - t6]));
(c[t8 + 1])[n - 1] = (((c[t8 + 1])[n - 1]) + (_P1[t8 + 1 - t4][t12 - t2] * _P2[t12 - t2][n - 1 - t6]));

}
}
if (1 <= over1 && n <= t4 + 128)
for (t10 = t6; t10 <= __rose_lt(t6 + 7,n - 1); t10 += 1) {

for (t12 = t2; t12 <= __rose_lt(t2 + 511,n - 1); t12 += 1) {
(c[n - 1])[t10] = (((c[n - 1])[t10]) + (_P1[n - 1 - t4][t12 - t2] * _P2[t12 - t2][t10 - t6]));

}
}

}
}

}

Figure .. A variant generated for the matrix multiply kernel from the tile-and-unroll script

/* VALID: user_PARAM<n> */
void gemm_WRAP_g1_out(size_t n, double * a, double * b, double * c) {

/* NODE: user_PARAM<n> LEFT: v106 RIGHT: v284 */
if(n*n > 1024) {

rose_gemm_VAR_t_v106i(n, a, b, c);
} else {

rose_gemm_VAR_l_v284i(n, a, b, c);
}

}

Figure .. A simple example of an auto-generated wrapper function.
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Figure .. Normalized performance of dense matrix multiply variants on small, large or
mixed workloads.
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kernels were generated using CUDA-CHiLL [] from the same initial code as in the

experiment of Section .., but using a different CHiLL script, shown in Figure ... e

script was provided by Suchit Maindola of the University of Utah [personal communication].

Note that CUDA-CHiLL uses a different script syntax than standard CHiLL; whereas CHiLL

uses a custom language, CUDA-CHiLL scripts are Lua scripts and allow references to loops

by the name of their index variable, instead of merely by nest level.

Active Harmony was used to direct the search of the space of TI, TJ, and TK parameters

to the CUDA-CHiLL script, which control the tile sizes used. CUDA-CHiLL generates

CUDA kernels from the serial C code, and generates a wrapper function which invokes

the CUDA kernel. An example of a matrix multiply kernel generated by CUDA-CHiLL is

presented in Appendix A. TAUcuda [] was used to profile the CUDA kernels over the

CUDA CUPTI interface. Autotuning was performed on an NVIDIA S, an NVIDIA

C, and an NVIDIA GTX . Data on which type of GPU was present on each system

was stored as metadata in PerfDMF so that this could be used in decision tree generation.

e autotuning system found that the best-performing variant for the NVIDIA C

and GTX  was TI=, TJ=, TK=, while the best-performing variant for the NVIDIA

S was TI=, TJ=, TK=. e autotuning system is capable of generating specialized

variants based upon differences in hardware between systems.

.. Specializing Based on Input Data and Execution Environment in a Virtualized

Environment

Finally, an experiment was performed to determine whether the autotuning system can

handle cases where a difference in performance is due to an interaction between properties

of the input data and properties of the execution environment. is test was carried out in

a virtualized environment to demonstrate the usefulness of the autotuning technique in the
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init(”cudamm.cu”, ”cudamm”, 0)
dofile(”cudaize.lua”)

N=1024
TI=@TI@
TJ=@TJ@
TK=@TK@

tile_by_index({”i”,”j”}, {TI,TJ}, {l1_control=”ii”, l2_control=”jj”}, {”ii”, ”jj”, ”i”, ”j”})
tile_by_index({”k”}, {TK}, {l1_control=”kk”}, {”ii”, ”jj”, ”kk”,”i”, ”j”,”k”}, strided)

tile_by_index({”i”}, {TJ}, {l1_control=”tt”,l1_tile=”t”}, {”ii”, ”jj”, ”kk”,”t”,”tt”,”j”,”k”})

cudaize(”cudamm_GPU”, {a=N*N, b=N*N, c=N*N}, {block={”ii”,”jj”}, thread={”t”,”tt”}})
copy_to_shared(”tx”, ”b”, -16)

copy_to_registers(”kk”,”c”)
unroll_to_depth(2)

Figure .. CUDA-CHiLL script used to generate CUDA matrix multiply kernels.

cloud, where an installation of the soware installed on a virtual disk image may find itself

running in different environments at different times.

For this experiment, CHiLL was not used. Rather, variants of a sorting function were

specified manually: specifically, one variant loaded the data to be sorted into memory and

used the standard C++ STL sort function, while the other used a disk-based external sort

from STXXL [], a C++ library intended for use on data too large to fit into memory. A

program was written to sort small ( MB) or large ( GB) files. Once this was set up, a disk

image was saved and virtual machine instances were launched with either  GB or  GB of

RAM. ese instances communicated with a central Active Harmony server which in turn

communicated with PerfDMF.

e system was able to learn a decision tree — and hence generate a wrapper function

— which selects the in-memory sort for small files regardless of whether the test occurred

on a small-RAM or large-RAM instance; the decision tree is shown in Figure ... Note,

however, that the decision tree shows a limitation of the learning algorithm: since only two

file sizes were present in the test input, only two file sizes are present in the test output. If

the classifier encounters a previously unknown filesize, it will receive a default classification,





which is not what is desired. e wrapper function can be modified to use ranges, but this

must be done manually. While the system recognizes that there is some relation between file

size and the amount of RAM available to the instance, it does not learn that there is a direct

causal relationship.





USER_vmInstanceTypeName

LARGE_RAMSMALL_RAM

USER_param<filesize>

>=4294967296 ?

ORIG_stxxl_sort ORIG_stl_sort

ORIG_stl_sort

Figure .. Decision tree learned for the virtualized environment experiment.
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CHAPTER VI

CONCLUSION

.. Contributions

We have shown that by using TAU to perform parameterized profiling, PerfDMF to

store performance data along with metadata about the execution environment and Weka to

learn decision trees to classify feature vectors composed of PerfDMF metadata onto labels

composed of code variant identifiers, we can augment the ROSE/CHiLL/Active Harmony

autotuning framework to further automate the process. We have shown that gathering data

for function specialization and generation of wrapper functions can be automated.

.. Future Work

Triage — selecting which functions are good candidates for specialization — is still a

manual process; the framework described in this document requires that the user specify

functions manually. A more difficult step which still lacks automation is the generation

of transformation recipes. Ideally a system could be designed which would perform static

analysis of the candidate functions and propose possible transformations.

When the decision tree learning server acquires new data, it throws out its existing

decision tree and calculates a new tree from scratch. is will not be scalable as the number

of experiments per application grows, but the ID, C. and J decision tree induction





algorithms do not support updating. e use of updatable decision tree learning algorithms

will be required for scaling. Additionally, ID, C. and J are greedy algorithms which

require a fixed amount of time to run. If the decision tree server is idle, it cannot improve the

trees through additional processing. e use of anytime decision tree algorithms [] could

enable the learning of more optimal trees.
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APPENDIX

EXAMPLE CUDA-CHILL-GENERATED KERNEL

is is an example of a CUDA-CHiLL-generated matrix multiply kernel, as described in

Section .., which was not included there due to its length.

 de f i n e _ _ r o s e _ l t ( x , y ) ( ( x ) <(y ) ? ( x ) : ( y ) )
 de f i n e __ ro s e _g t ( x , y ) ( ( x ) >(y ) ? ( x ) : ( y ) )

_ _g l oba l _ _ void mm_GPU( f l o a t ( * c ) [  ] , f l o a t ( * b ) [  ] , f l o a t ( * a ) [   ] )
{

i n t kk ;
i n t bx ;
bx = b lock Idx . x ;
i n t by ;
by = b lock Idx . y ;
i n t t x ;
t x = th r e ad Idx . x ;
i n t t y ;
t y = th r e ad Idx . y ;
__dev i c e__ __shared__ f l o a t _P [   ] [   ] ;
__dev i c e__ __shared__ f l o a t _P [   ] [   ] ;
f l o a t _P [   ] ;
i n t t  ;
i n t t  ;
i n t t  ;
i n t t  ;
i n t t  ;
_P [ * by −  * by ] = c [ * by ] [ t x +  * bx +  * t y ] ;
_P [ * by +  −  * by ] = c [ * by +  ] [ t x +  * bx +  * t y ] ;
_P [ * by +  −  * by ] = c [ * by +  ] [ t x +  * bx +  * t y ] ;
_P [ * by +  −  * by ] = c [ * by +  ] [ t x +  * bx +  * t y ] ;
_P [ * by +  −  * by ] = c [ * by +  ] [ t x +  * bx +  * t y ] ;
_P [ * by +  −  * by ] = c [ * by +  ] [ t x +  * bx +  * t y ] ;
_P [ * by +  −  * by ] = c [ * by +  ] [ t x +  * bx +  * t y ] ;
_P [ * by +  −  * by ] = c [ * by +  ] [ t x +  * bx +  * t y ] ;
_P [ * by +  −  * by ] = c [ * by +  ] [ t x +  * bx +  * t y ] ;
_P [ * by +  −  * by ] = c [ * by +  ] [ t x +  * bx +  * t y ] ;
_P [ * by +  −  * by ] = c [ * by +  ] [ t x +  * bx +  * t y ] ;
_P [ * by +  −  * by ] = c [ * by +  ] [ t x +  * bx +  * t y ] ;
_P [ * by +  −  * by ] = c [ * by +  ] [ t x +  * bx +  * t y ] ;
_P [ * by +  −  * by ] = c [ * by +  ] [ t x +  * bx +  * t y ] ;
_P [ * by +  −  * by ] = c [ * by +  ] [ t x +  * bx +  * t y ] ;
_P [ * by +  −  * by ] = c [ * by +  ] [ t x +  * bx +  * t y ] ;
f o r ( t  =  ; t  <=  ; t  += ) {

_P [ t x + t − t  ] [  * t y +  * by −  * by ] = b [ * t y +  * by ] [ t x + t ] ;
_P [ t x + t − t  ] [  * t y +  * by +  −  * by ] = b [ * t y +  * by +  ] [ t x + t ] ;
_P [ t x + t − t  ] [  * t y +  * by +  −  * by ] = b [ * t y +  * by +  ] [ t x + t ] ;
_P [ t x + t − t  ] [  * t y +  * by +  −  * by ] = b [ * t y +  * by +  ] [ t x + t ] ;
_ _ s ync th r e ad s ( ) ;
_P [ * bx + tx −  * bx ] [ t  − t  ] = a [ t  ] [  * bx + tx ] ;
_P [ * bx + tx −  * bx ] [ t  +  − t  ] = a [ t  +  ] [ * bx + tx ] ;
_P [ * bx + tx −  * bx ] [ t  +  − t  ] = a [ t  +  ] [ * bx + tx ] ;
_P [ * bx + tx −  * bx ] [ t  +  − t  ] = a [ t  +  ] [ * bx + tx ] ;
_P [ * bx + tx −  * bx ] [ t  +  − t  ] = a [ t  +  ] [ * bx + tx ] ;
_P [ * bx + tx −  * bx ] [ t  +  − t  ] = a [ t  +  ] [ * bx + tx ] ;
_P [ * bx + tx −  * bx ] [ t  +  − t  ] = a [ t  +  ] [ * bx + tx ] ;
_P [ * bx + tx −  * bx ] [ t  +  − t  ] = a [ t  +  ] [ * bx + tx ] ;
_P [ * bx + tx −  * bx ] [ t  +  − t  ] = a [ t  +  ] [ * bx + tx ] ;
_P [ * bx + tx −  * bx ] [ t  +  − t  ] = a [ t  +  ] [ * bx + tx ] ;
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_P [ * bx + tx −  * bx ] [ t  +  − t  ] = a [ t  +  ] [ * bx + tx ] ;
_P [ * bx + tx −  * bx ] [ t  +  − t  ] = a [ t  +  ] [ * bx + tx ] ;
_P [ * bx + tx −  * bx ] [ t  +  − t  ] = a [ t  +  ] [ * bx + tx ] ;
_P [ * bx + tx −  * bx ] [ t  +  − t  ] = a [ t  +  ] [ * bx + tx ] ;
_P [ * bx + tx −  * bx ] [ t  +  − t  ] = a [ t  +  ] [ * bx + tx ] ;
_P [ * bx + tx −  * bx ] [ t  +  − t  ] = a [ t  +  ] [ * bx + tx ] ;
_ _ s ync th r e ad s ( ) ;
_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  − t  ] * _P [ t −

t  ] [  * by +  −  * by ] ;
_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  − t  ] * _P [ t −

t  ] [  * by +  −  * by ] ;
_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  − t  ] * _P [ t −

t  ] [  * by +  −  * by ] ;
_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  − t  ] * _P [ t −

t  ] [  * by +  −  * by ] ;
_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  − t  ] * _P [ t −

t  ] [  * by +  −  * by ] ;
_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  − t  ] * _P [ t −

t  ] [  * by +  −  * by ] ;
_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  − t  ] * _P [ t −

t  ] [  * by +  −  * by ] ;
_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  − t  ] * _P [ t −

t  ] [  * by +  −  * by ] ;
_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  − t  ] * _P [ t −

t  ] [  * by +  −  * by ] ;
_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  − t  ] * _P [ t −

t  ] [  * by +  −  * by ] ;
_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  − t  ] * _P [ t −

t  ] [  * by +  −  * by ] ;
_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  − t  ] * _P [ t −

t  ] [  * by +  −  * by ] ;
_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  − t  ] * _P [ t −

t  ] [  * by +  −  * by ] ;
_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  − t  ] * _P [ t −

t  ] [  * by +  −  * by ] ;
_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  − t  ] * _P [ t −

t  ] [  * by +  −  * by ] ;
_P [ * by −  * by ] = _P [ * by −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  − t  ] * _P [ t − t  ] [  *

by −  * by ] ;
_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t

+  − t  ] [  * by +  −  * by ] ;
_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t

+  − t  ] [  * by +  −  * by ] ;
_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t

+  − t  ] [  * by +  −  * by ] ;
_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t

+  − t  ] [  * by +  −  * by ] ;
_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t

+  − t  ] [  * by +  −  * by ] ;
_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t

+  − t  ] [  * by +  −  * by ] ;
_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t

+  − t  ] [  * by +  −  * by ] ;
_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t

+  − t  ] [  * by +  −  * by ] ;
_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t

+  − t  ] [  * by +  −  * by ] ;
_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [

t +  − t  ] [  * by +  −  * by ] ;
_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [

t +  − t  ] [  * by +  −  * by ] ;
_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [

t +  − t  ] [  * by +  −  * by ] ;
_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [

t +  − t  ] [  * by +  −  * by ] ;
_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [

t +  − t  ] [  * by +  −  * by ] ;
_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [

t +  − t  ] [  * by +  −  * by ] ;
_P [ * by −  * by ] = _P [ * by −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t +  −

t  ] [  * by −  * by ] ;
_P [ * by −  * by ] = _P [ * by −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t +  −

t  ] [  * by −  * by ] ;
_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t

+  − t  ] [  * by +  −  * by ] ;
_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t

+  − t  ] [  * by +  −  * by ] ;
_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t

+  − t  ] [  * by +  −  * by ] ;
_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t

+  − t  ] [  * by +  −  * by ] ;
_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t

+  − t  ] [  * by +  −  * by ] ;
_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t

+  − t  ] [  * by +  −  * by ] ;
_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t

+  − t  ] [  * by +  −  * by ] ;





_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by −  * by ] = _P [ * by −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t +  −
t  ] [  * by −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by −  * by ] = _P [ * by −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t +  −
t  ] [  * by −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t  +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t  +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t  +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t  +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t  +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t  +  − t  ] [  * by +  −  * by ] ;

_P [ * by −  * by ] = _P [ * by −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t +  −
t  ] [  * by −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;





_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by −  * by ] = _P [ * by −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t +  −
t  ] [  * by −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t  +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t  +  − t  ] [  * by +  −  * by ] ;

_P [ * by −  * by ] = _P [ * by −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t +  −
t  ] [  * by −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t  +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t  +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t  +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t  +  − t  ] [  * by +  −  * by ] ;





_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by −  * by ] = _P [ * by −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t +  −
t  ] [  * by −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by −  * by ] = _P [ * by −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t +  −
t  ] [  * by −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t
+  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t  +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t  +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t  +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t  +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t  +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t  +  − t  ] [  * by +  −  * by ] ;

_P [ * by −  * by ] = _P [ * by −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t  +  −
t  ] [  * by −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t  +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t  +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t  +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t  +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t  +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t  +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t  +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t  +  − t  ] [  * by +  −  * by ] ;





_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P
[ t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P
[ t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P
[ t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P
[ t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P
[ t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P
[ t +  − t  ] [  * by +  −  * by ] ;

_P [ * by −  * by ] = _P [ * by −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t  +  −
t  ] [  * by −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P
[ t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P
[ t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P
[ t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P
[ t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P
[ t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P
[ t +  − t  ] [  * by +  −  * by ] ;

_P [ * by −  * by ] = _P [ * by −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t  +  −
t  ] [  * by −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P
[ t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P
[ t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P
[ t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P
[ t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P
[ t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P
[ t +  − t  ] [  * by +  −  * by ] ;

_P [ * by −  * by ] = _P [ * by −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t  +  −
t  ] [  * by −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;





_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P
[ t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P
[ t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P
[ t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P
[ t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P
[ t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P
[ t +  − t  ] [  * by +  −  * by ] ;

_P [ * by −  * by ] = _P [ * by −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t  +  −
t  ] [  * by −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P
[ t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P
[ t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P
[ t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P
[ t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P
[ t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P
[ t +  − t  ] [  * by +  −  * by ] ;

_P [ * by −  * by ] = _P [ * by −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [ t  +  −
t  ] [  * by −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P [
t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P
[ t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P
[ t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P
[ t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P
[ t +  − t  ] [  * by +  −  * by ] ;

_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P
[ t +  − t  ] [  * by +  −  * by ] ;





_P [ * by +  −  * by ] = _P [ * by +  −  * by ] + _P [ * t y +  * bx + tx −  * bx ] [ t  +  − t  ] * _P
[ t +  − t  ] [  * by +  −  * by ] ;

_ _ s ync th r e ad s ( ) ;
}
c [ * by ] [ t x +  * bx +  * t y ] = _P [ * by −  * by ] ;
c [ * by +  ] [ t x +  * bx +  * t y ] = _P [ * by +  −  * by ] ;
c [ * by +  ] [ t x +  * bx +  * t y ] = _P [ * by +  −  * by ] ;
c [ * by +  ] [ t x +  * bx +  * t y ] = _P [ * by +  −  * by ] ;
c [ * by +  ] [ t x +  * bx +  * t y ] = _P [ * by +  −  * by ] ;
c [ * by +  ] [ t x +  * bx +  * t y ] = _P [ * by +  −  * by ] ;
c [ * by +  ] [ t x +  * bx +  * t y ] = _P [ * by +  −  * by ] ;
c [ * by +  ] [ t x +  * bx +  * t y ] = _P [ * by +  −  * by ] ;
c [ * by +  ] [ t x +  * bx +  * t y ] = _P [ * by +  −  * by ] ;
c [ * by +  ] [ t x +  * bx +  * t y ] = _P [ * by +  −  * by ] ;
c [ * by +  ] [ t x +  * bx +  * t y ] = _P [ * by +  −  * by ] ;
c [ * by +  ] [ t x +  * bx +  * t y ] = _P [ * by +  −  * by ] ;
c [ * by +  ] [ t x +  * bx +  * t y ] = _P [ * by +  −  * by ] ;
c [ * by +  ] [ t x +  * bx +  * t y ] = _P [ * by +  −  * by ] ;
c [ * by +  ] [ t x +  * bx +  * t y ] = _P [ * by +  −  * by ] ;
c [ * by +  ] [ t x +  * bx +  * t y ] = _P [ * by +  −  * by ] ;

}


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