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THESIS ABSTRACT

Adam Bates

Master of Science

Department of Computer and Information Science

September 2012

Title: Detecting Compute Cloud Co-Residency with Network Flow Watermarking
Techniques

This paper presents co-resident watermarking, a traffic analysis attack for cloud

environments that allows a malicious co-resident virtual machine to inject a watermark

signature into the network flow of a target instance. This watermark can be used to exfiltrate

co-residency data, compromising isolation assurances. While previous work depends on

virtual hypervisor resource management, our approach is difficult to defend without costly

underutilization of the physical machine. We evaluate co-resident watermarking under

many configurations, from a local lab environment to production cloud environments.

We demonstrate the ability to initiate a covert channel of 4 bits per second, and we can

confirm co-residency with a target VM instance in less than 10 seconds. We also show that

passive load measurement of the target and behavior profiling is possible. Our investigation

demonstrates the need for the careful design of hardware to be used in the cloud.

This thesis includes unpublished co-authored material.
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CHAPTER I

INTRODUCTION

Cloud computing has paved the way for “the long-held dream of computing as a

utility” [3]. Commercial third-party clouds allow businesses to avoid over provisioning

their own resources and to pay for the precise amount of computing that they require.

Virtualization is key to this model. By placing many virtual hosts on a single physical

machine, cloud providers are able to profitably leverage economies of scale and statistical

multiplexing of computing resources. While many models of cloud computing exist,

the Infrastructure-as-a-Service (IaaS) model used by providers such as Amazon’s Elastic

Compute Cloud (EC2) service offers a set of virtualized hardware configurations for

customers [2].

The sharing of a common physical platform amongst multiple virtual hosts, however,

introduces new challenges to security, as a customer’s virtual machine (VM) may be

co-located with unknown and untrusted parties. Placement on a common platform

entails the sharing of physical resources, and leaves sensitive data processed in a cloud

potentially vulnerable to the actions of malicious co-residents sharing the physical machine.

Researchers have already demonstrated attacks against virtualization middleware that

exploit co-residency, particularly through the L2 cache [40, 48, 50]. Their results

confirm that hypervisors present a new attack surface through which privacy and isolation

guarantees can be compromised. However, many of these vulnerabilities are being resolved

through patches to the hypervisor [38].

In this paper, we consider alternatives to determining co-residency that may be

available even if current avenues for exploitation no longer exist. We focus on investigating

the network interface, a channel that is explicitly communicative and is a multiplexed
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resource in virtualized settings. We use concepts explored in the area of network flow

watermarking to develop an attack that uses a physical machine’s network interface to

create an outbound covert channel for data exfiltration. Our attack can be carried out with

a malicious CLIENT contacting a victim machine in the cloud (e.g., a web server or media

server, hereto referred to as the SERVER) and observing the throughput of traffic received.

In collaboration with a FLOODER deployed in the cloud, we examine inter-packet delays

and the corresponding distribution of packet delays from the server to determine whether

the FLOODER has become co-resident with the SERVER, using a Kolmogorov-Smirnov

distribution test to make this determination. In general there is limited visibility into the

cloud, but we correlate ground-truth measurements based on out-of-band communication

with production cloud providers to validate our results. We show that despite different

network packet scheduling strategies amongst hypervisors used in clouds, our attack is

implementation-independent. We can determine whether instances are co-resident in under

10 seconds and as few as 2.5 seconds for a given probe. We further describe how a covert

channel can be deployed that can transmit 4 bits per second, and describe how our attack

can be used to perform passive load measurement on the victim SERVER, allowing us to

profile its activity.

This paper makes the following contributions:

– Presents a new and highly applicable arena for network flow watermarking.

While watermarking has traditionally been of primary interest for subverting

anonymity, this usage can incur heavy performance costs and requires the collusion

of many compromised routers to break anonymity [21]. We use network flow

watermarking concepts and apply them to cloud computing to determine co-

residency in an easily deployable and low-cost manner: based on existing cloud
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cartography measures, we anticipate the cost of determining co-residency within EC2

to be just over a US dollar.

– Investigates virtualization side channels in physical hardware. Previous research

in cloud security has focused on the hypervisor software layer. Our work takes a

bottom-up approach by considering whether or not hardware designed for terrestrial

use is safe for cloud deployment. We make the surprising discovery that technologies

designed to aid virtualization such as SR-IOV and VMDq actually facilitate co-

resident watermarking.

– Assesses severity of threat through extensive evaluation. We determine the

practicality of our attack through an extensive series of tests. These tests

demonstrate co-resident watermarking’s robustness under Xen, VMWare ESXi, and

KVM hypervisors, with varying server loads, network conditions, and hardware

configurations, and in geographically disparate locations. In a final test, we employ

our scheme in a production science cloud to successfully watermark a target network

flow within 2.5 seconds.

– Introduces proof-of-concept attacks for network flow channel. We develop an

accurate load measurement attack that explicitly detects and filters out the activity

of other virtual machines, an issue left unaddressed in previous work [40]. We

also demonstrate the creation of a covert channel capable of transmitting 4 bps of

information.

The thesis of this work is that, as demonstrated by co-resident watermarking,

virtualized isolation in compute cloud environments cannot be assured without detracting

from the financial incentives of cloud use. The rest of this paper is organized as follows.

We provide a brief introduction to the issue of cloud co-residency in Chapter II, and present
3



the relevant concepts of network flow watermarking in Chapter III. Chapter IV presents a

threat model and our co-resident watermarking encoding and decoding steps 1. In Chapter

V we elaborate on the application of our scheme. Our attack is thoroughly evaluated in

Chapter VI under various conditions. Practical use scenarios are considered in Chapter

VII 2 and countermeasures discussed in Chapter VIII 3. Related work is considered in

Chapter IX before we conclude in Chapter X. Background materials on resource scheduling

in hypervisors and virtualization-aware hardware are included in Appendices A and B 4.

1Features contributions from Masoud Valafar
2Features contributions from Ben Mood
3Features contributions from Joe Pletcher
4Features contributions from Hannah Pruse
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CHAPTER II

CLOUD CO-RESIDENCY

In compute clouds, the co-resident threat considers a malicious and motivated

adversary that is not affiliated with the cloud provider. Victims are legitimate cloud

customers that are launching Internet-facing instances of virtual servers to do work for

their business. The adversary, who is perhaps a business competitor, wishes to use the novel

abilities granted to him by cloud co-residency to discover valuable information about his

target’s business. This may include reading private data or compromising a victim machine.

It could also include subtler attacks such as performing load measurements on the victim’s

server or launching a denial of service attack. Masquerading as another legitimate cloud

customer, the adversary is free to launch and control an arbitrary number of cloud instances.

As is necessary for the general use of any third party cloud, the cloud infrastructure is a

trusted component.

Co-residency detection though virtualization side channels is a danger that was first

exposed by Ristenpart et al. [40]. This work lays out strategies for exploiting the instance

placement routines of the Amazon EC2 cloud infrastructure in order to probabilistically

achieve co-location with a target instance. From there, co-residency can be detected using

a cross-VM covert channel as a ground truth. While more advanced methods of successful

placement are outlined, such as abusing temporal locality of instance launching, it is shown

that a brute force approach is also modestly successful. Masquerading as a legitimate

customer, an attacker is able to launch many instances, perform the co-residency check,

terminate and repeat until the desired placement is obtained. Several cross-VM information

leakage attacks are also outlined, such as the load profiling and keystroke timing attacks.

However, we independently confirmed that many of the approaches in this work are no
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longer applicable on the EC2, making co-residency detection significantly more difficult at

this time.
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CHAPTER III

NETWORK FLOW WATERMARKING

Our approach uses concepts previously explored in network flow watermarking.

Network flow watermarking is a type of network covert timing channel [9, 10], capable

of breaking anonymity by tracing the path of a network flow. Normally requiring the

cooperation of large autonomous systems or compromised routers in anonymity networks,

a target’s traffic is subjected to controlled and intentional packet delay at an institutional

boundary in order to give it a distinct and recognizable pattern [21, 22, 45, 49]. When

the traffic exits the institutional boundary, that pattern is still present and can be decoded.

Network flow watermarking can be employed to perform a variety of traffic analysis tasks.

They are of greatest interest recently because they are one method of detecting stepping

stone relays [6, 12, 31, 46], and can compromise network anonymity services (e.g. the

TOR network) [25, 32].

Previous work has considered a number of challenges in the design of a watermarking

scheme. The watermark must be robust to modifications from network traffic and jitter. If

the watermark is also resistant to intentional tampering or removal, it is said to be actively

robust. Watermarks are also ideally invisible so a target cannot test for its presence. If

detection mechanisms such as the multi-flow attack are viable, the target can recover

the secret parameters and remove the watermark [25]. However, recent work has shown

that even the most advanced schemes do not possess the invisibility property [9, 18, 32].

Schemes can be grouped into blind and non-blind approaches. In blind schemes, the

watermarking parties do not store any state information for their target. All of the necessary

information is contained within the watermark, which is itself a side channel. In a non-blind

scheme, state information about the target is stored for access by the exit gateways.

7



Watermarking schemes have many drawbacks. The first is that they can impose a

considerable amount of delay to a network flow, such that a watermark is potentially

detectable by the target. Existing interval-based watermarking schemes can impose

upwards of 350ms of delay per 500ms interval [45]. To varying degrees, watermarking

schemes are also affected by naturally occurring network transformations such as delay,

jitter, dropped packets, and repacketization. A variety of approaches have been proposed

to mitigate these problems, such as using non-blind techniques to reduce the required

delay [21, 22].
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CHAPTER IV

SYSTEM DESIGN

The statical analysis described in Section 4.4. was developed in part by Masoud

Valafar, who assisted in researching various methods of non-parametric distribution

testing. Adam Bates was the primary contributor to the final methodology and to all other

sections in this chapter.

We next present a simple scheme that can be applied from the co-resident position

to inject a target’s network traffic with a persistent watermark. Given a sufficiently

long network flow, it can break hypervisor isolation guarantees regardless of cloud or

network conditions. Due to the coarse-grained abilities of a co-located VM to inject

network delay, we employ an ON-OFF interval-based packet arrival scheme rather than

attempting to control the delay between individual packets. Our scheme leverages out-of-

band communication between the encoding and decoding points in order to overcome its

limited ability to inject packet delay through network activity. Because the decoding point

can access state about the watermark signature, this scheme is non-blind.

4.1. Threat Model

This work’s primary motivation is to investigate the existence of hardware-level side

channels in cloud infrastructures, calling into question the viability of isolation assurances

for virtual machines. We go beyond the traditional co-resident threat model and imagine

a cloud in which naive timing channels such as network probes are unavailable to the

adversary; cloud administrators have chosen to route all local traffic through a switch

to fuzz the results of these services and prevent co-residency detection. To their credit,

the administrators in this cloud have also proactively applied patches that have all but
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eliminated popular hypervisor side channels such as the L2 cache. Given the relatively

small attack surface that the virtual hypervisor represents, this is not too imaginative of

a leap. In fact, we observed that some of these security measures had been taken in our

own investigation of EC2. In spite of these obstacles, our adversary wishes to discretely

discover his victim in the cloud through innocuous use of his own instances.

We assume system administrators are not interfering with the activities of their

customers, and will not intervene with customer behavior unless it is a threat to Service

Level Agreements (SLAs) or to the general health of their business. We also assume that

our victim is trusting of the cloud infrastructure and expects modest delays imposed by

other cloud customers. From the isolation of their VMs, the victim will be unable to make

inferences about the cause of variances in system performance. As a result, the victim

is unable to differentiate between the activities of the adversary and the actions of other

legitimate cloud guests. Finally, we assume that the victim’s instances are available to the

adversary over an open network, and that the adversary is able to create network flows from

these instances on the order of several seconds.

4.2. Co-Resident Watermarking

Like previous work in cloud co-residency, the co-resident watermarking attack relies

on the pigeonhole principle to probabilistically achieve co-location with a victim virtual

machine, launching many virtual machines and then performing statistical side channel

tests from each [40]. To begin the search for his target, the attacker launches a large number

of instances on the cloud. We refer to these instances as FLOODERs. Each FLOODER

announces its presence to a master host, the CLIENT, which is a colluding agent situated

outside of the cloud. The attack begins when the CLIENT initiates a web session with

our target instance, the SERVER. Systematically, the CLIENT iterates through its list of

10



registered FLOODERs, sending a series of signals to each. Based on these signals, the

FLOODER injects network activity into the outbound interface of its physical host machine.

This activity is multiplexed with the outbound traffic of the server, creating delay in the

legitimate SERVER flow. This delay constitutes the building block of our watermark

scheme. In the event that a FLOODER is co-resident to the SERVER, the CLIENT-SERVER

flow can be imprinted with a watermark signature. This creates a beacon through which the

CLIENT can test for co-location. The CLIENT tests each FLOODER’s location for a portion

of its network flow. If no watermark signature is detected, the attacker can terminate all

instances and launch a new set until co-location is achieved. In the event that a signature is

detected, the attacker can use the co-resident FLOODER for a second phase of attack. This

could involve another known exploit or continued use of the network flow side channel.

Our co-resident watermarking attack is pictured in Figure 4.1.

Third Party Compute Cloud

Cloud Node

Server

NIC

* Adversary-controlled hosts

Client*

Flooder*

FIGURE 4.1. The attack model considered for co-resident watermarking. Two colluding
hosts, the CLIENT and FLOODER, attempt communicate through the legitimate network
flow of the SERVER.

4.3. Watermark Encoding

In this section we explain the watermark embedding process. An unwatermarked

network flow of length T between a cloud server instance and a remote client can be divided

11



into n intervals of length ti. Each interval ti will observe a certain number of packet arrivals

pi over its portion of the network flow. Traditionally, the encoding of a watermark requires

that two different levels of packet delay, +d and−d, be repeatedly and randomly introduced

to a network flow with equal probability. These two delay levels form the bits to be read

from the side channel. The watermark is therefore made up of components {wi}ni=1 where

wi =

+d with probability 1
2

−d with probability 1
2

From the co-resident position, we are limited in our ability to inject arbitrary amounts

of delay into the flow, nor can we inject a negative amount of delay. Therefore, our delay

values (+d,−d) represent the maximum and minimum total amount of network activity

we are able to introduce. Upon receiving a signal to mark the flow, +d is achieved through

a co-resident FLOODER host injecting a constant stream of UDP packets onto the network

interface. Conversely,−d is achieved through taking no action for the length of the interval.

In addition to the activities of co-resident instances, the variance in pi will reflect

hypervisor scheduling, network congestion, and virtualization-imposed artifacts. While

these factors will not remain constant for any meaningful length of time [41], their

effects can be filtered out by randomly selecting each wi in sequence. In Section VI, we

demonstrate that watermark signals can be decoded in spite of the presence of these factors.

4.4. Watermark Decoding

At the decoding point, packet arrivals per interval are recorded over the length of the

flow. After each measurement, the intervals are sorted into samples X+d and X−d based

on the pre-negotiated co-resident activity representing +d and −d. If co-residency has

been achieved, then these two interval groupings represent the flow during two distinct

12



network states. We can therefore expect that each of the interval grouping samples will

have different discrete distributions.

These two samples can be compared using statistical similarity tests. Because packet

arrivals can be modeled by a Poisson distribution [29], in this work we therefore chose to

employ the non-parametric Kolmogorov-Smirnov (KS) independence [37]. This statistical

measure has been employed previously in other analysis of covert timing channels [18, 35].

To test the null hypothesis that the two samples are from the same distribution, a statistic is

calculated and compared to a look-up value corresponding to 95% confidence. If the test

fails, then the decoder rejects the similarity of the distributions and declares the instances

to be co-residents.

For the Kolmogorov-Smirnov test, the decoder calculates the empirical cumulative

distributions F1,n+(X+d) and F1,n−(X−d). The KS statistic is then calculated as follows:

Dn+,n− = sup|F1,n+(X+)− F1,n−(X−)|

where sup is the supremum of the differences in the cumulative distributions. The null

hypothesis can be rejected with confidence α if√
n+n−
n++n−

Dn+,n− > Kα

where Kα is a critical value from the Kolmogorov distribution.

An alternate non-parametric test that is better known for use with discrete distributions

is the Pearson Chi Square (χ2) test. We chose not to use this metric because of the difficulty

of handling the trivial case in which samples are extremely dissimilar. χ2 struggles with

any cell frequencies that are less than 5, and quite often in our evaluation we found the

FLOODER’s impact was such that there was no overlap in the contingency tables of the

marked and clear intervals. Relying on the χ2 test would have also hindered our ability to

make swift determinations of co-residency.
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CHAPTER V

IMPLEMENTATION

Our target instance, the SERVER, was a virtual machine running Apache 2. The

CLIENT host initiated a TCP session with the SERVER, continuously re-requesting a 10MB

file. To create more realistic web traffic conditions, we wrote a PHP script that simulated

background noise on a server. Upon execution, the script would read a bounded amount of

non-cached data from a file, optionally perform a disk write, and finally do a CPU-bound

set of computations. This closely models applications on a production web server, where

for each request the server will fetch data from a database, perform some computation or

transformation on it, and return it to the user. Alternately, in the case of the disk write,

this models the other common case seen inside web applications where a user sends data,

computation is performed, and the data is written to disk. As read requests are more

common for many web servers, we weighted these probabilities accordingly. To simulate

the activity of additional cloud customer instances, a GUEST VM ran a script that behaved

similarly to the SERVER.

Our FLOODER used a raw socket injection binary, written in C, that responded to

prompts from a CLIENT host to create outbound multi-threaded UDP streams for specified

intervals. The packet streams were directed by MAC address to a neighboring cloud

instance that was not otherwise a participant in the trial. Alternately, the FLOODER could

set the time-to-live of packets to 0 and direct the flood to a host outside of the cloud. The

former is a more appealing option, as it decreases the cost of the attack on services such

as Amazon EC2 that have fees for data transferred into and out of the cloud. Under either

design, the FLOODER’s activity passes through the network interface and then immediately

leaves the path of the CLIENT-SERVER flow. In Section 6.6., we demonstrate that this

14



is sufficient to avoid secondary bottlenecks that might lead to false positives in our co-

residency check.

The CLIENT monitored the watermark impact by signaling the FLOODER and

performing synchronized reads on the network flow between the CLIENT and SERVER.

The flow was measured by monitoring the number of packet arrivals by interval.

Synchronization was established through estimating the round trip time between the

CLIENT and FLOODER. Various hypervisors introduce additional delays and artifacts

through their fair resource scheduling algorithms. In order to ensure the FLOODER’s effect

was captured, we limited the hypervisor’s ability to react to the FLOODER’s activity. We

measured in small bursts of 250ms and then waited 2 seconds before signaling the flooder

again. This was sufficient to ensure that our measurements were independent.
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CHAPTER VI

EVALUATION

We used a number of different testbeds to evaluate our approach. The first was a

local area network that contained a commodity switch, two Dell workstations and one

Dell PowerEdge R610 server with two 4-core Intel Xeon E5606 processors and 12 GB

RAM. Each machine had a network interface card that could transmit in 1000 BaseT.

In a subsequent trial we replaced the server’s NIC with an SR-IOV enabled Intel 82599

10 Gbps Ethernet controller and attached it to the LAN with a fiber-to-copper Ethernet

transceiver. The server was dual-booted with both VMWare ESXi 4.1 and a Xenified Linux

2.6.40 kernel. On both hypervisors we launched two or more similarly provisioned virtual

machine guest images that acted as our cloud instances. Each VM ran the Linux 2.6.34

kernel allocated with resources similar to those afford a Amazon EC2 Small instance,

approximately 1 vCPU compute unit and 1.7 GB memory.

Additionally, we used two science clouds for further analysis. The first was a private

university cloud running OpenStack KVM. Here, each guest image was provisioned with 1

vCPU and 2GB memory. The instances received network access through a bridged 10 GbE

network card. Each physical host was connected to a 1:1 provisioned Voltaire 8700 switch

with fiber channel. The switch had 2 10 GbE trunks to a Cisco router that connected to

the university network. The second cloud was Futuregrid’s Sierra at the San Diego Super

Computer center. Sierra ran the Nimbus service package with the Xen 3.0 hypervisor.

Instances on Sierra were also bridged onto a 10 GbE switch.

The CLIENT process requires little processing power and can be run from any

commodity PC or reasonably provisioned virtual machine. On our local testbed, it was

run primarily from a bare-metal workstation running a Linux 2.6.40 kernel with 4 GB
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memory and a Pentium dual-core 3 GHz CPU. The workstation had a NIC that was

supported to 1000BaseT full duplex. We used additional performance tools to confirm

that the CLIENT host was sufficiently provisioned to handle these tasks. To test our ability

to decode the watermark with longer paths and realistic network conditions, we launched

CLIENT instances that performed the watermark attack on our local testbed from a bare

metal machine at a geographically disparate university. This instance was running a Linux

2.6.38 kernel with 8GB memory, an Intel Xeon X3450 2.67 GHz processor, and a NIC set

to 1000BaseT full duplex.

6.1. Xen Hypervisor

We first attempted our co-resident watermarking scheme using the local Xen testbed.

This configuration is pictured in Figure 6.1. The default Xen bridged networking settings

were used for domU’s virtual interfaces, which were set to 100BaseT full duplex. As

we note in Appendix A, Xen’s dom0 bridge imposes major delays and represents the

transmission bottleneck of this first test. Although this does not exploit the physical

interface, we chose to examine this Xen configuration due to its popularity. Subsequent

trials demonstrate that our approach is not dependent on any particular hypervisor or

network interface.

Physical Machine
Server

Flooder

NIC ClientSwitch

Physical Machine
Packet Sync

FIGURE 6.1. Local testbed configuration.
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For this initial test, the CLIENT initiated a single TCP session with the SERVER’s

apache process. The CLIENT then generated a random binary signal that was transmitted

to a FLOODER, causing it to generate intermittent UDP traffic floods. The CLIENT

measured packet arrivals by interval and sorted these into marked (+d) and clear (−d)

samples. The probability density of these two samples is pictured in Figure 6.2. This figure

and all others are based on 3200 total measurements that correspond to 13 minutes and 20

seconds of observed network flow. Immediately after the trial, a second control test was

launched in which the FLOODER was not signaled and took no action.
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FIGURE 6.2. Probability distribution for Xen trial on local testbed.

Based on visual inspection alone, it can be observed that there is great similarity

between the packet arrival distributions for the clear intervals and the undisturbed control

flow. In contrast, there is great difference between the distributions of the clear intervals

and marked intervals. After just 2.5 seconds of observed network flow, the KS statistic

for the clear and marked distributions is 0.98. The p-value, which represents the likelihood

of obtaining such an extreme result under the null hypothesis, is 0.01. This is sufficient to

reject the null hypothesis, and confidence only increases throughout the remainder of the
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trial. In contrast, comparing the clear interval sample to the control flow yields a KS test

statistic of 0.38, which is insufficient to reject the null hypothesis with 95% confidence.

This is sufficient to declare that our instances are co-located.

6.2. VMWare ESXi Hypervisor

To determine whether differences in hypervisor scheduling affect our watermarking

results, we repeated the above trial on the same testbed, now using the VMWare ESXi

hypervisor. ESXi lacks Xen’s dom0 administrative domain and is therefore much more

efficient at packet transmission. The results, shown in Figure 6.3., show that that our

SERVER running on ESXi enjoys significantly higher throughput than Xen under similar

conditions. Once again, the unmarked sample is similar to the control flow, but dissimilar

to the marked sample. As there is no overlap between the clear and marked intervals, the

KS statistic is 1. We are once again able to reject the null hypothesis, confirming that our

FLOODER is co-resident to the SERVER. This demonstrates the feasibility of co-resident

watermarking on two of the major hypervisor families.
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FIGURE 6.3. Probability distribution for VMWare ESXi trial on local testbed.
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6.3. System Load

To demonstrate its applicability in real cloud environments, we assessed the ability

of the FLOODER to inject a watermark signature under increasingly adverse system

conditions. In addition to launching FLOODER and SERVER instances on our local Xen

testbed, we launched an increasing number of GUEST instances. These GUESTs represent

other communication-intensive customers in the cloud that are non-participants in our

attack. Each GUEST behaved identically to the SERVER, running Apache and serving up

files over prolonged HTTP sessions.

We repeated our standard trial with up to 3 GUESTs for a total of 5 instances on

the machine. This load approached the maximum capacity of our testbed. The results

of these trials are pictured in Figures 6.4.a-6.4.c. As the number of GUESTs on the

machine increase, we see distribution of the marked samples begin to approximate the

distribution of the clear samples. From this we suspect that extreme load can potentially

erase our watermark signature. However, the Kolmogorov-Smirnov test offers a more

precise measurement than visual observation. These results, shown in Table 6.1., show

that we are able to quickly confirm co-residency with up to 5 guests on our local testbed.
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(a) 1 additional GUEST.
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FIGURE 6.4. Density functions for co-resident watermarking with increasing numbers of
I/O bound web server guest instances.
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Trial Length KS+d,−d p-val Result
SERVER

& FLOODER 2.5 sec 0.99 0.01 Co-Res
Add 1 GUEST 3.75 sec 0.78 0.05 Co-Res
Add 2 GUESTs 3.75 sec 0.91 0.01 Co-Res
Add 3 GUESTs 10 sec 0.49 0.05 Co-Res

TABLE 6.1. Results of tests in Xen as system load increases. Minimum flow lengths
required to achieve 95% confidence are displayed.

6.4. Network Conditions

Our next experiment measured the resiliency of the encoded watermark when traveling

across longer network paths. To do this, we executed our CLIENT process from a bare-

metal host at a geographically disparate university. The CLIENT issued HTTP requests

to the SERVER that resided on our local Xen testbed. To smooth the observable network

flow in the presence of higher round-trip times, the CLIENT initiated 5 TCP sessions with

the SERVER. Results from this long-distance trial are pictured in Figure 6.5. Once again,

there is a no visible similarity between the clear and marked distributions. The watermark

signature is still identifiable after just 2.5 seconds and yields a KS statistic of 1 (p-value

0.01). We are once again able to reject the null hypothesis, confirming that our FLOODER

is co-resident to the SERVER. The persistent presence of the watermark means that the co-

resident watermarking attack is not distance bounded relative to the location of the cloud

provider.

6.5. Science Clouds

Having found success on our local area network, we set out to replicate our results

on industry-class hardware in a partially controlled environment. We used a private

university compute cloud service as well as Futuregrid’s Sierra cloud at the San Diego

Supercomputing Center. On the private science cloud, we were able to launch two instances
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FIGURE 6.5. Density function for co-resident watermarking over long network path.

that were confirmed to be co-resident by the cloud staff. On Sierra, we confirmed co-

residency by querying the Nimbus cloud client for the physical host of our instances.

We did not have any foreknowledge of the activity of other users in these clouds. Our

initial attempts to launch co-resident watermarking in this environment failed; we were

only able to generate approximately 3.2 Gbps of traffic from a single FLOODER instance,

falling well short of the 10 Gbps channels. This prevented us from injecting packet delay

into the CLIENT-SERVER flow. Because we were only off by a small constant factor, we

re-attempted the trial with multiple co-resident FLOODERs. This topology is pictured in

Figure 6.6.

Third Party Compute Cloud

Cloud Node
Server

Flooder
NIC

Flooder

Switch ... Client

Cloud Node
Packet Sync

Switch

FIGURE 6.6. Topology in science cloud for successful co-location
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While achieving “tri-residency” would not be a realistic attack scenario, this served as

a stand-in for a more sophisticated denial-of-service attack against the physical network

interface. Additionally, as many cloud applications are communication intensive [17],

we can expect some of the difference in bandwidth to be made up for by the activities

of other cloud customers. Recent work VM network performance enhancement, if

implemented, would also increase the instance throughput sufficiently to make tri-residents

unnecessary [17, 39].

The results of these trials are visible in Figures 6.7.a and 6.7.b. In spite of the unknown

and uncontrolled state of the cloud cluster, the watermark signature between the clear and

marked interval samples is still clearly visible. After 5 seconds of observed flow on the

university cloud, the result is a KS statistic of 0.98 with a p-value of 0.01. We are once

again able to reject the null hypothesis, confirming that our FLOODER is co-resident to

the SERVER. These results demonstrate the feasibility of co-resident watermarking for

the KVM hypervisor. Under similar conditions, we successfully launched co-resident

watermarking on a Futuregrid cloud. The KS test yielded a statistic of 0.97 with p-

value of 0.02 after 2.5 seconds of observed flow. These tests demonstrate that our aurrent

implementation is nearly practical for industrial compute clouds.
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6.6. Neighboring Instance False Positives

We have shown co-resident watermarking to be capable of detecting co-residency in

a variety of circumstances. However, for this attack to be practical, it must also avoid

false positives, reports that the FLOODER is co-located with the SERVER when it in fact is

not. This is of greatest concern for topologies in which the instances are not co-resident

but share a common network path. In order to be multiplexed at the network interface,

the FLOODER’s activity necessarily must reach the first switch; if packets are resultingly

delayed at this point, then the watermark signature would be injected on all network flows

that share the switch. Due to our design decision to inject layer 2 packets that are routed

by MAC address to another adversary-controlled instance, we know that the FLOODER and

SERVER flows’ paths share only a single hop.

To confirm that co-resident watermarking is not susceptible to false positives, we

configured a new topology on a private university science cloud in which the SERVER was

not co-resident to the FLOODERs, but shared a common upstream switch one hop away.

This topology is pictured in Figure 6.8. We confirmed this topology through ARP table

inspection and conferring with the cloud staff. We then repeated the trial. The results are

pictured in Figure 6.9. The activity of the FLOODERs does not appear to impact neighboring

instances. In fact, the clear intervals and marked intervals yield a KS statistic of 0.981 and

p-value of 0.01 after 2.5 seconds of observed network flow. They are statistically similar

enough to accept the null hypothesis that they were drawn from the same distribution.

6.7. Virtualization-Aware Hardware

As a preliminary investigation into the viability of hardware-level defenses against

co-resident watermarking, we repeated our original Xen trial on an SR-IOV-enabled NIC.

SR-IOV [28] is a specification that allows physical I/O devices to present themselves to the
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FIGURE 6.8. Topology in science cloud for failed co-location
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FIGURE 6.9. FLOODER activity does not significantly impact neighboring physical
machines.

host as multiple virtualized I/O devices, allowing for direct access to PCI interfaces. This

especially impacts network access in Xen, eliminating the need for dom0 to be involved in

copying packet buffers from the guest domain. Since each domU has access to its own PCI

virtual function, SR-IOV also provides individual queues for each VM. Arriving packets

are sorted into these queues based on their destination, then are copied directly to the guest

OS memory using DMA. We discuss virtualization pass-through technologies further in

Appendix B.
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We tested our watermarking technique using an Intel 82599 ES 10 Gbps Ethernet

controller that supports the SR-IOV specification using the ixgbe driver. We configured

the driver to present two virtual functions (VFs) on a single outgoing port, which appear

as separate PCI devices. We then connected SERVER and FLOODER to one VF each on

our Xen testbed. The outbound port was connected to our local workstation with a fiber-

to-copper Ethernet transceiver, reducing the bandwidth of the NIC while preserving the

driver’s behavior.

The results from this trial are shown in Figure 6.10. We observe that by eliminating

the middleware of the virtual hypervisor, co-resident watermarking has become even more

effective. When both the FLOODER and SERVER are actively filling their dedicated packet

queues, each receives roughly 50% of the available system throughput (∼ 0.17 Gbps).

When the FLOODER is inactive, the SERVER is able to transmit at the highest possible

rate (∼ 0.33 Gbps). The KS test trivially rejects the null hypothesis. The FLOODER’s

ability to have such an impact indicates that, unlike some hypervisor-managed network

sharing schemes, the ixgbe driver imposes no fairness measures based on anomalous virtual

machine behavior. As a result, the bandwidth of our side channel had increased due to

virtualization-optimized hardware. The security ramifications of future performance-driven

enhancements for virtualization need to carefully considered before their adoption.
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FIGURE 6.10. Packet arrivals per interval for our co-resident watermarking attempts
against an SR-IOV-enabled network device. The unmarked traffic transmitted data at 0.83
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CHAPTER VII

ANALYSIS

The proof-of-concept covert channel described in Section 7.1. was implemented with

help from Ben Mood. Adam Bates was the primary contributor to the design of the side

channel and to all other sections in this chapter.

We have demonstrated that co-resident watermarking is capable of bypassing VM

isolation and exploiting underlying hardware configurations. There are a variety of

circumstances in which an attacker could consider making use of the outbound traffic

side channel. Traditional co-resident threats such as covert communication and load

measurement are considered below.

Co-resident watermarking’s low cost makes it an appealing scouting mechanism to

precede the use of a more devastating exploit such as a zero day against the hypervisor.

The exact cost of launching this attack depends on the cloud being considered. However,

we can provide a rough estimate by using the results of Ristenpart et al.’s brute force

attack in which an 8.4% placement was obtained on 1684 targets with 1784 probes. At

the current rate of $0.08 per hour for small Amazon EC2 instances, our attack would cost

$1.01 and require 6 minutes 20 seconds per successful co-location. While Amazon’s cloud

services have expanded rapidly in the past several years, these numbers demonstrate that

the amortized cost per successful attack is low when a large enough net is cast.

7.1. Covert Communication

Up to now, the network flow side channel has been used to make a binary

determination of co-residency. Once co-residency has been determined, however, any

manner of communication can take place over the channel. We are able to transmit a secret
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such as a small key or message with only a small amount of redundancy. We demonstrated

this on our local ESXi testbed by creating a self-synchronizing CLIENT script that did not

rely on out-of-band signaling from the FLOODER. The CLIENT’s only prior knowledge is

the size of the flood interval. The CLIENT reconstructs the signal by taking extremely rapid

measurements and then searching for the local minima and maxima of the arrival patterns.

These represent the 1’s and 0’s of the channel. It would also be possible to build more

sophisticated communications protocols such as Cloak over this channel [30].

In the trial, the CLIENT initiated a TCP session with the SERVER and awaited a 2048

bit message from the FLOODER. The first 10 seconds of the ensuing message are pictured

in Figure 7.1. Our CLIENT was able to decode the message with 100% accuracy. As

discussed by Cabuk et al. [10], the efficacy of an IP-based covert channel can be affected

by contention noise in the channel and jitter in packet timings, which can lead to a loss of

synchronization. Error correcting codes, self-synchronizing codes, and phase-locked loops

can be used to mitigate these issues. In our investigation, we included a 16-bit checksum

for every 64-bit block transmitted by the FLOODER. This allows the CLIENT to detect and

recover from misreads in the watermark signal. This leads to a total transmission of 2560
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bits. This required 10 minutes and 40 seconds of observed network flow, leading to a 4.00

bps side channel throughput. This bit rate is compares favorably with other I/O based covert

channels [34]. If the participants possess outside knowledge about hardware and hypervisor

configurations, they could further increase the bandwidth of the channel by decreasing

the measurement size and reducing the wait time between sent bits. Additionally, more

advanced error-correcting mechanisms such as the use of Hamming codes can increase the

channel efficiency.

7.2. Load Measurement

Previous work has demonstrated that virtualization side channels can be used to

measure co-resident server load [40]. We build on this work with co-resident watermarking,

discovering more accurate traffic information about our target’s business. We accomplish

this by simply monitoring the throughput of the undisturbed CLIENT-SERVER TCP session.

The key insight that a co-resident instance provides is the ability to filter out additional

causes of performance variance that would otherwise lead to false inferences – namely

network congestion and changes in the load of co-resident instances. A co-resident TCP

flow serves as a second data point that allows for an accurate perspective of the target

instance’s load.

To perform load measurement, the FLOODER first uses co-resident watermarking to

confirm that it is co-resident to the target SERVER. It then becomes a regular web server,

and the CLIENT initiates a single TCP session with both the SERVER and FLOODER. The

CLIENT is able to observe the ratio between the throughputs of the two flows to generate

a traffic profile of the victim. Network congestion can be detected and ignored by the

fact that, since both flows will usually share a network path, both flows’ throughput will

decrease equally and the ratio will remain constant. Changes in the load of other customers’
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virtual machines also affect both the CLIENT and FLOODER equally, and therefore the ratio

will be maintained. The only scenario in which the ratio changes is when the SERVER’s

load changes.

To demonstrate this behavior, we executed proof-of-concept trials on our local Xen

testbed. The CLIENT initiated a single TCP session with the SERVER and FLOODER, then

performed rapid measurements on both flows. Next, different load events were introduced

and observed. For the first trial, pictured in 7.2.a, an increasing number of web requests

were issued from another host on the local network in ten-second intervals. The CLIENT

calculated exponentially weighted moving averages of the two flows’ packet arrivals, then

took the ratio of the two. It can be observed that the SERVER-to-FLOODER throughput

ratio decreases linearly, and basic system profiling techniques would allow the CLIENT to

estimate the number of visitors to the victim instance. In the second trial, pictured in 7.2.b,

web requests are instead issued to other co-resident virtual machines. Every 22.5 seconds,

10 TCP sessions were initiated with a previously inactive virtual machine. In this scenario,

the SERVER-to-FLOODER ratio remains roughly constant as both flows are adversely but

proportionately affected. The increasing instability of the TCP flow may also serve as a

second indicator of extreme load on the physical cloud node.
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FIGURE 7.2. Load measurement analysis under two different scenarios.
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CHAPTER VIII

DISCUSSION

The defensive measures explored in Section 8.2. were developed in collaboration with

Joe Pletcher. Adam Bates was the primary contributor to all other sections in this chapter.

Co-resident watermarking represents a versatile side channel inside the cloud. One

particularly useful application of this method could be embedding a message into a network

flow so as to bypass filtration mechanisms such as a national web filter. In such a case,

the message sender could co-locate to a known-allowed server, at which point they could

embed a message into the server’s network flows. There are two main benefits to this

approach. First, the message is effectively multicast to all visitors to the server, meaning

that even if the message were detected the intended target would not be revealed. Secondly,

an interested party, through entirely legitimate traffic, can retrieve the message while

retaining plausible deniability. Additionally, this method works with no cooperation of

the known-allowed host.

8.1. Invisibility

In this work we do not focus on creating an invisible watermarking scheme. Currently,

the FLOODER’s activity would arouse immediate suspicion from any administrator that was

expecting such an attack. While invisibility is a desirable property of a watermark, recent

work has demonstrated that it is extremely difficult to achieve [9, 18, 32]. However, in co-

resident watermarking the attacker has the built-in advantage of being expected to create

some reasonable amount of delay for his fellow customers. By creating a more realistic

traffic model for the FLOODER we believe it would be possible to perform co-resident

watermarking without announcing the presence of malicious activity. This would of course
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come at the cost of the system’s performance, as flooding intervals would need to occur

less frequently.

8.2. Defenses

There are several defenses against the attack we’ve proposed; however, all have serious

drawbacks associated with them:

1. The most obvious defense against co-resident watermarking is to provide each virtual

machine instance with a dedicated path out of its physical host. Our approach is

dependent on network flow multiplexing at the hypervisor and network interface

card. However, provisioning dedicated hardware is orthogonal to the purpose of

cloud computing, which depends on the sharing of devices to provide low cost

compute resources. If virtual machines were provisioned with a dedicated path,

there are two possibilities, both of which have negative consequences. First, if

each machine is given direct access to a network card, the cloud providers must

add the network card drivers to their attack surface. Most network cards exist

on the PCI bus, which provides direct memory access to the system. This adds

significant administrative overhead. While hypervisors have been reasonably well

vetted, certainly the multitude of network card drivers have not seen the same level

of scrutiny. Secondly, if traffic is routed through the hypervisor so as to avoid the

problems posed by direct access to network card, the hypervisor’s shared buffer

becomes a ripe target for attack.

2. We also saw that co-resident watermarking can be thwarted by net under provisioning

of instances relative to the network transmission speed of their physical host. This

made it difficult to launch our attack on third party clouds. Unfortunately, this

defense also depends on wasting resources, which impacts the bottom line of cloud
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providers. Additionally, studies point to a rapid increase in VM density that makes a

communications bottleneck more feasible [17].

3. Alternatively, cloud instance administrators may provision their networks to not take

advantage of the ”free” bandwidth that is available in a multiplexed environment.

Again, this will negatively impact the relative value of using cloud-based service

providers. While this could be seen as a defensive measure against malicious co-

residents, it’s worth noting that our attack doesn’t violate major SLA’s [1].

4. It may also be possible that new, virtualization-aware hardware can address and

close this side channel. However, our experience with the Intel 82599 ES

controller indicates that manufacturers are much more interested in addressing

virtualization’s performance challenges than those of security. SR-IOV and other

pass through technologies increase the exposure of underlying hardware and increase

the effectiveness of side channels.

5. Another possible avenue of defense would be to use the random scheduling

mechanism previously employed in cache measurements [23] to do random outbound

packet scheduling. While this would be effective on some level, it could trigger

TCP congestion control [43] and degrade performance across all virtual machines.

In this sense our attack is different from cache-based attacks in that the protocol

and expected behavior act as an enforcement mechanism to prevent excess non-

determinism from marring our data. Additionally, this would break certain network

related aspects of virtual machine scheduling by the hypervisor.

Generally speaking, even if the network and hypervisor level problems were all solved,

our exploitable shared buffer would just move more towards the interior of the machine, be

it the north bridge, the south bridge, CPU, or any other resource that is multiplexed between
34



instances. The problem we illustrate is inherent in resource sharing, and to completely

defend against it, systems administrators would need to provision their networks to not

share resources, which effectively defeats the entire purpose of cloud-based infrastructures.
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CHAPTER IX

RELATED WORK

9.1. Cloud Side Channels

Bowers et al. have proposed use of a different network timing side channel in order to

challenge fault tolerance guarantees in storage clouds [7]. This work measures the response

time of random data reads in order to confirm that a given file’s storage redundancy meets

expectations. This scheme can be used to detect drive-failure vulnerabilities and expose

cloud provider negligence. We intend to investigate the applicability of storage cloud co-

resident watermarking in future work.

Various types of side channels have been developed and studied that exploit hypervisor

resource management, such as power consumption [27], timing[26], and cache memory[5,

36]. Cache-based side channels exploit the timing difference in access latency’s between

the cache and main memory. In the context of cloud computing, cache-based side channel

attacks have attracted the most attention. Ristenpart et al. [40] showed that cache usage

can be examined as a means to measure the activity of other instances co-resident with

the attacker. Furthermore, they demonstrated that they can detect co-residency with a

victim’s instance if they have information about the instance’s computational load. In

contrast, Zhang et al. [50] utilized cache-based side channels as a defensive mechanism.

Their scheme works by keeping portions of cache silent and measuring whether it has

been accessed by other instances. Leveraging this scheme, they can challenge correct

functionality on the part of the cloud provider and discover other unanticipated instances

sharing the same host.
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9.2. Hypervisor Security

Raj et al. [38] proposed two other mechanisms for preventing cache-based

side channels, cache hierarchy aware core assignment and page-coloring-based cache

partitioning. The former mechanism works by grouping CPU cores based on last level

cache (LLC) organization and checking whether such organization has any conflict with the

SLA of the clients. The latter is a software method that monitors how the physical memory

used by each application maps to cache hardware, grouping applications accordingly,

which is used to isolate clients. Another effective defense against cache-based side

channels is changing how caches assign memory to applications, such as non-deterministic

caches [24]. Non-deterministic caches control the lifetime (decay interval) of cache items.

By assigning a random decay interval to cache items, the cache behavior becomes non-

deterministic and hence, side channels cannot exploit it. Work in performance isolation in

Xen can also lead to added security benefits [19].

Other work aims to combat virtualization vulnerabilities by reducing the role

and size of the hypervisor. Most drastically, Keller et al. eliminate a large attack

surface by proposing the near elimination of the hypervisor [23]. This is achieved

through pre-allocation of resources, limited virtualized I/O devices, and modified guest

operating systems. While this approach in arguably reduces the likelihood of exploitable

implementation flaws in the virtualization code base, it necessarily places VMs closer to

underlying hardware. Intuitively, this can only increase the bandwidth of the isolation-

compromising side channel that we explore in this work. Other proposals reduce

the hypervisor attack surface by considering only specific virtualization applications

such as rootkit detection or integrity assurance for critical portions of security-sensitive

code [33, 42]. We do not consider these systems in our work because they are not intended

for the third party compute cloud model.
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9.3. In-the-Wild Exploits

The Xen and VMWare communities have discovered only a handful of privilege

escalation exploits, but their application could be devastating to the cloud economy. The

presence of such attacks greatly incentivizes efficient co-resident detection schemes. An

early version of Xen 3 included a bug that caused domU grub files to be executed without

protection in domain 0 [13]. The exploit allowed users to craft malicious grub.conf files

that led to arbitrary code execution in the administrative domain. Earlier versions of Xen

included a buffer overflow error that allowed specially crafted disk images to execute code

in domain 0 [14]. This would have been immediately applicable to Amazon, where

customers are free to upload their own guest images. In 2008, a bug was discovered in

the folder-sharing feature of some VMWare product lines that allowed for unprivileged

user code to be executed by the vmx process [44]. More recently, a paging function

in Linux kernels 2.6.35.2 and earlier allowed for a guest domain to perform a memory

exhaustion attack on the system [15]. Lastly, in 2012 partial source code for VMWare’s

ESX hypervisor leaked [8], and while no exploits have been directly attributed to this leak

yet, such incidents increase the risk of compromise.
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CHAPTER X

CONCLUSION

In this work, we have leveraged network flow watermarking as a means of

determining co-residency of instances in cloud environments. We show that our co-resident

watermarking scheme can be used to make a determination of co-residency in under 10

seconds for a given probe in the cloud. We demonstrate the feasibility of this attack

by deploying it in multiple production cloud environments in geographically disparate

locations and running a diverse set of hypervisors. We are able to interpose a covert channel

on our target’s network flow, and show means of performing passive attacks such as load

measurement against the cloud-based target. These investigations further demonstrate the

ramifications of multiplexing hardware in virtualized environments, and is the beginning

of a line of inquiry into designing hardware for the cloud that is performant without

introducing undesired side effects.
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APPENDIX A

HYPERVISOR SCHEDULING

The hypervisor resource management details discussed in Appendix A were researched

in collaboration with Hannah Pruse under the direction of Adam Bates.

A.1. Xen

Xen is a type I virtual hypervisor that enjoys widespread use in compute clouds

such as Amazon EC2 and Futuregrid, allowing multiple operating systems to share

hardware through the use of abstracted paravirtualized interfaces. Xen separates policy

and mechanism by having its hypervisor’s device scheduler provide only the most basic

operations. Higher-level scheduling algorithms are the responsibility of the domain

0 (dom0) guest operating system, which acts as an administrator and has access to a

hypervisor control interface. In this way, Xen’s schedulers implement fair scheduling of

resources for guest domains (domU).

Xen schedules domain CPU utilization using the Borrowed Virtual Time (BVT)

algorithm [4]. BVT has a special low-latency wake-up mechanism that temporarily favors

domains that have just received an event. This allows for the effect of virtualization to be

minimized for services such as TCP that require accurate round-trip time measurements.

Xen provides real time, virtual time and wall-clock time to guest domains to ensure correct

sharing of time slices for their own applications.

For network access, Xen provides virtual network interfaces (VIFs) that attach to a

virtual firewall-router (VFR). Each VIF in dom0 corresponds to an interface that is visible

in a domU. The VFW performs services such as demultiplexing received packets based

on destination IP and port. VIFs emulate physical network interface cards by providing
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transmit and receive I/O rings. Guest domains transmit packets by enqueueing packets

onto the transmit ring, and efficiently receive packets by exchanging unused page frames

for each packet dequeued from the receive ring. Each packet transmitted or received by

a domU guest passes through dom0 on its way to or from the physical interface. Xen’s

packet scheduling algorithm is simple round robin.

Recent work has shown that the Xen hypervisor introduces considerable packet

transmission delays under heavy network usage, adding on the order of 100ms to round-

trip times [47], limiting network throughput to as little as 2.9 Gbps [39]. A great deal

of this delay is introduced through the packet needing to pass through dom0. The use of

paravirtualized interfaces and software network bridges also add delay when compared to

hardware virtualization. As our work seeks to inject as much delay into a network flow as

possible, we made use of these artifacts of the Xen hypervisor in addition to the limitations

of underlying physical devices. However, we demonstrate in Section VI that our scheme is

also effective on lightweight hypervisors.

A.2. VMWare ESXi

VMWare ESXi is another operating system-independent hypervisor that allows

multiple virtual machines to share physical hardware. Unlike Xen, ESXi eliminates the

privileged guest partition and runs all management and infrastructure services directly

from a micro-kernel (VMkernel). The reduced footprint of the ESXi hypervisor creates

a smaller surface for vulnerability. ESXi implements a proportional-share based algorithm

for domain CPU utilization scheduling. With this mechanism, scheduling decisions are

prioritized based on the ratio of the consumed CPU resources to the entitled resource limit

of each virtual CPU (vCPU). Lower ratios are given higher priority, thus giving vCPUs with

greater resource needs higher precedence. To increase performance, ESXi also implements
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relaxed co-scheduling with symmetric multi-processing, which allows multiple threads or

processes to be executed in parallel over multiple physical CPUs. Packet scheduling relies

on a simple round-robin method.

A.3. KVM

In this work, we make use of a university science cloud that utilizes Kernel-based

Virtual Machine (KVM). KVM is a type 2 hypervisor for Linux platforms, and is designed

to re-use as much of the underlying Linux infrastructure as possible. With KVM, each

VM is treated as a process and is scheduled using the default Linux scheduler, which is

the Completely Fair Scheduler (CFS)[20]. CFS tracks the virtual runtime of each process,

which is the time allocated to each task to access the CPU. Smaller virtual runtimes result

in higher priority. CFS also implements sleeper fairness, in which waiting processes are

treated as if they were on the run queue, so they receive a comparable share of CPU time

when they need it.

In contrast to many other schedulers, CFS uses a time-ordered red-black tree instead

of a queue to maintain waiting processes. Processes with higher priority (lower virtual

runtime) are placed on the left side of the tree, and processes with lower priority (higher

virtual runtime) are stored in the right side. The scheduler selects the leftmost node to run,

then to maintain fairness, the process’s execution time is added to the virtual runtime and

the process is reinserted into the tree. This tree is self-balancing, and tree operations run in

O(log n) time.
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APPENDIX B

VIRTUALIZATION-AWARE HARDWARE

The virtualization-aware hardware designs discussed in Appendix B were researched

in collaboration with Hannah Pruse under the direction of Adam Bates.

As the number of VMs operating on a system increases, network performance can

drastically decrease in hypervisors that mediate network access with an administrative

domain. The traditional single CPU core handling received packets is not sufficient to

service the number of incoming packets on a 10GB Ethernet connection. Virtualization-

aware hardware can be employed to mitigate these bottleneck risks and increase networking

efficiency. Two such hardware specifications are Virtual Machine Device Queues

(VMDq) [11] and Single Root I/O Virtualization (SR-IOV) [16].

VMDq is silicon-level technology that alleviates network traffic bottlenecks by

offloading packet-sorting responsibility from the hypervisor to the NIC. Within the NIC,

there exist unique queues for each VM to receive their assigned packets. Relieving the

VMM of network traffic sorting allows more CPU cycles to be granted to the VMs

themselves. Both Xen and ESXi support VMDq technology with baked-in software

provided for additional efficiency. Xen implements a new protocol for I/O channels, called

Netchannel2, which reduces I/O bottlenecks in dom0 by performing packet sorting within

the receiving domain instead of in dom0. ESXi’s VMDq support comes from NetQueue, a

similar software package.

SR-IOV is a specification that allows physical I/O devices to present themselves to

the host as multiple virtualized I/O devices, allowing for direct access to PCI interfaces.

This is especially impactful when considering network access in Xen, as it eliminates

the need for dom0 to be involved in copying packet buffers from the guest OS. Since
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each domU has access to its own PCI virtual function, SR-IOV also provides individual

queues for each VM. Arriving packets are sorted into these queues by the physical device

based on their destination, then are copied directly to the guest OS memory using direct

memory access (DMA). VMWare’s implementation of SR-IOV, called VMDirectPath,

permits direct-assignment technologies to achieve device sharing.
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