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THESIS ABSTRACT

Benjamin Mood

Master of Science

Department of Computer and Information Science

September 2012

Title: Optimizing Secure Function Evaluation on Mobile Devices

Secure function evaluation (SFE) on mobile devices, such as smartphones, allows

for the creation of new privacy-preserving applications. Generating the circuits on

smartphones which allow for executing customized functions, however, is infeasible

for most problems due to memory constraints. In this thesis, we develop a new

methodology for generating circuits that is memory-efficient. Using the standard

SFDL language for describing secure functions as input, we design a new pseudo-

assembly language (PAL) and a template-driven compiler, generating circuits which

can be evaluated with the canonical Fairplay evaluation framework. We deploy this

compiler and demonstrate larger circuits can now be generated on smartphones. We

show our compiler’s ability to interface with other execution systems and perform

optimizations on that execution system. We show how runtime generation of circuits

can be used in practice. Our results demonstrate the feasibility of generating garbled

circuits on mobile devices.

This thesis includes previously published co-authored material.
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CHAPTER I

INTRODUCTION

This Chapter was previously published in Financial Cryptography and Data

Security 2012. The authors were Benjamin Mood, Lara Letaw, and Kevin Butler.

Lara and Kevin contributed to writing this Chapter.

Mobile phones are extraordinarily popular, with rates of adoption by consumers

that are unprecedented in history. Smartphones have been particularly embraced,

with over 296 million of these devices shipped in 2010 [6]. The increasing importance

of the mobile computing environment requires functionality tailored to the limited

available resources. Concerns of portability and battery life necessitate design

compromises for mobile devices compared to servers, desktops, and even laptops.

In short, mobile devices will always be resource-constrained compared to their larger

counterparts. However, through careful design and implementation, they can provide

equivalent functionality while retaining the advantages of ubiquitous access. They

have the ability to preform financial transactions like e-commerce on the move as

long as there is cell service.

Privacy-preserving computing is particularly well suited to deployment on mobile

devices. For example, two parties may be bartering in a marketplace but do not

want others finding out the nature of their transaction, and do not want to reveal

unnecessary information to each other. Such a transaction is ideally suited for secure

function evaluation, or SFE. Recent work, such as by Chapman et al. [8], demonstrates

the myriad applications that may be seen through deployment of SFE on smartphones.

These applications may preform computations between two smartphones or between

a smartphone and server. An example of an application would be a password vault
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which does encryption under SFE. This style of application has some advantages over

standard encryption techniques and is discussed in Chapter VI.

However, because of the computational and memory requirements, it is infeasible

to perform many of these operations in the mobile environment; often, the only hope

of performing these operations would be to outsource computation to a cloud or other

trusted third party, thus raising concerns about the privacy of the computation.

Our thesis statement is this: Secure Function Evaluation can be made a viable

application on smartphones through optimizations of current systems.

In this thesis, we describe a memory-efficient technique for generating the garbled

circuits needed to perform secure function evaluation on smartphones and also show

how optimized memory usage on smartphones can affect runtime. While numerous

research initiatives have considered how to evaluate these circuits more efficiently [20,

9], there has been little work in determining how to compile and generate the circuits

required for evaluation in a memory-efficient manner. Two parties are often interested

in customizing functions to be evaluated based on their particular requirements, but

having to outsource the circuit generation to a third party can reveal information

about the computation to be performed, which can be a privacy compromise; hence,

it is important to be able to perform this compilation on devices that will also evaluate

the functions. Our port of the canonical Fairplay [17] compiler for SFE to the Android

mobile operating system revealed that because of intensive memory requirements, the

majority of circuits could not be compiled in this environment. As a result, our main

contribution is a novel design to compile the high-level Secure Function Definition

Language (SFDL) used by Fairplay and other SFE environments into garbled circuits

with minimal memory usage. We created Pseudo Assembly Language (PAL), a mid-

level intermediate representation (IR) compiled from SFDL, where each instruction
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represents a pre-built circuit. We created a Pseudo Assembly Language Compiler

(PALC), which takes in a PAL file and outputs the corresponding circuit in Fairplay’s

syntax. We then created a compiler to compile SFDL files into PAL and then, using

PALC, to the Secure Hardware Definition Language (SHDL) used by Fairplay for

circuit evaluation.

Using these compilation techniques, we are able to generate circuits that were

previously infeasible to create in the mobile environment. For example, the set

intersection problem with sets of size two requires 469 KB of memory with our

techniques versus over 10667 KB using a direct port of Fairplay to Android, a

reduction of 95.6%. We are able to evaluate results for the set intersection problem

using four and eight sets, as well as other problems such as Levenshtein distance;

none of these circuits could previously be generated at all on mobile devices due

to their memory overhead. Consequently, these techniques provide a new arsenal

in conjunction with improved evaluation techniques to make privacy-preserving

computing on mobile devices a feasible proposition.

All Chapters, other than Chapter V, have been published in some form in

Financial Cryptography and Data Security 2012.

This thesis is structured in the following way: Chapter II provides background on

secure function evaluation, the garbled circuits used for this evaluation, as well as the

Fairplay SFE compiler and the other work related to our own. Chapter III describes

the design of PAL, our pseudo assembly language, and PALC, our compiler to convert

PAL into SHDL. We also describe FPPALC, which converts SFDL to PAL. We also

combined FPPALC and PAL for full translation form SFDL to SHDL. Chapter IV

describes our testing environment and methodology, and provides benchmarks on

3



memory and execution time. Chapter VI describes applications that demonstrate

circuit generation in use, and Chapter VII concludes.
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CHAPTER II

BACKGROUND

This Chapter was previously published in Financial Cryptography and Data

Security 2012. The authors were Benjamin Mood, Lara Letaw, and Kevin Butler.

There was some writing contribution but I was the contributor for the relevant testing

and understanding of Fairplay.

2.1. Secure Function Evaluation with Fairplay

The origins of SFE trace back to Yao’s pioneering work on garbled circuits [22].

While many approaches to performing SFE use Yao’s protocol, including the Fairplay

compiler (described below), alternative methods exist, such as Kruger et al.’s use of

ordered binary decisions diagrams [14]. SFE enables two parties to compute a function

without knowing each other’s input and without the presence of a trusted third party.

More formally, given participants Alice and Bob with input vectors ~a = a0, a1, · · · an−1

and ~b = b0, b1, · · · bm−1 respectively, they wish to compute a function f(~a,~b) without

revealing any information about the inputs that cannot be gleaned from observing the

function’s output. Fundamentally, SFE is predicated on two cryptographic primitives.

Garbled circuits allow for the evaluation of a function without any party gaining

additional information about the participants. This is possible since one party creates

a garbled circuit and the other party evaluates the circuit without knowing what the

wires represent. Secondly, an Oblivious Transfer (OT) allows the party executing the

garbled circuit to obtain the correct wires for setting inputs from the other party

without gaining additional information about the circuit; in particular, a 1-out-of-
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n OT protocol allows Bob to learn about one piece of data without gaining any

information on the remaining n− 1 pieces.

A garbled circuit is composed of many garbled gates, with inputs represented

by two random fixed-length strings. Like a normal boolean gate, the garbled gate

evaluates the inputs and gives a single output, but alterations are made to the garbled

gate’s truth table: aside from the randomly chosen input values, the output values are

uniquely encrypted by the input wires and an initialization vector. The order of the

entries in the table is then permuted to prevent the order from giving away the value.

Consequently, the only values saved for the truth table are the four encrypted output

values. A two-input gate is thus represented by the two inputs and four encrypted

output values.

The garbled circuit protocol requires both parties to be able to enter input into

the circuit. If Bob creates the circuit and Alice receives it, Bob can determine which

wires to set, and Alice performs an oblivious transfer to receive her input wires. Once

she knows her input wires she runs the circuit by evaluating each gate in order. To

evaluate a gate, she uses the input values as the key to decrypt the output value.

To find the correct entry in the table, Alice uses a decryption step using the input

wires as keys. To find her output, Alice acquires a translation table, a hash of the

wires, from Bob for her possible output values. She then can preform the hash on her

output wires to see which wires were set. Alice sends Bob’s output in garbled form

since she cannot interpret it.

Fairplay is the canonical tool for generating and evaluating garbled circuits for

secure function evaluation. It is notable for creating the abstraction of a high-level

language, known as SFDL, for describing secure evaluation functions, and compiling

them to SHDL, which is written in the style of a hardware description language such
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as VHDL and describes the garbled circuit. The circuit evaluation portion of Fairplay

provides for the execution of the garbled circuit protocol and uses oblivious transfer

(OT) to exchange information. Fairplay uses the 1-out-of-2 OT protocols of Bellare

et al. [1] and Naor et al. [18] which allows for Alice to pick one of two items that Bob

is offering and also prevents Bob from knowing which item she has picked.

Both protocols work under the Diffie-Hellman assumption in cryptography. They

are secure in the random oracle model. This model says that if a user is supposed to

choose a random number, they actually choose a random number. The protocol of

Bing et al. [3] takes into account other threat models, which include malicious and

covert users, but for our purposes we use the assumptions and protocols under which

Fairplay is used. Weakening these assumptions to include more robust adversarial

threat models is an extension for future work.

Briefly, we can describe the high-level operation of the Fairplay protocol as

follows:

1. Bob creates N garbled circuits.

2. Alice picks one of these garbled circuits to evaluate.

3. Bob reveals to Alice the secrets for all other circuits.

4. Alice checks the correctness of these other circuits.

5. Bob sends his input to Alice.

6. Alice uses an oblivious transfer with Bob to acquire the wires she needs to set

for her input.

7. Alice evaluates the circuit.
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8. Both parties attain their outputs.

Examining the compiler in more detail, Fairplay compiles each instruction

written in SFDL into a so-called multi-bit instruction. These multi-bit (e.g., integer)

instructions are transformed to single-bit instructions (e.g., the 32 separate bits to

represent that integer). From these single-bit instructions, Fairplay then unrolls

variables and then transforms the instructions into SHDL and outputs the file, either

immediately or after further circuit optimizations.

Fairplay’s circuit generation process is very memory-intensive. We performed

a port of Fairplay directly to the Android mobile platform (described further in

Chapter IV) and found that a large number of circuits were completely unable to

be compiled. We turned to examining the results of circuit compilation on a PC

to determine the scope of memory requirements. From tests that we performed on

a 64-bit Windows 7 machine, we noticed Fairplay needed at least 245 megabytes of

memory to run the compilation of the keyed database program, an example of an SFE

problem where a program matches keys with database lookups in a privacy-preserving

manner (described further in Chapter IV). Our first task was to analyze the memory

usage of Fairplay’s compiler.

From our analysis, Fairplay uses the most memory during the mapping operation

from multi-bit to single-bit instructions. During this phase, the memory requirements

increased by 7 times when the keyed database program ran. We concluded that it

would be easier to create a new system for generating the SHDL circuit file, rather

than making extensive modifications to the existing Fairplay implementation. To

accomplish this, we created an intermediate language that we called PAL, described

in detail in section 3.
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2.2. Threat Model

As with Fairplay, which is secure in the random oracle model implemented

using the SHA-1 hash function, our threat model accounts for an honest-but-curious

adversary. This means the participants will obey the given protocol but may look at

any data the protocol produces. Note that this assumption of the honest-but-curious

model is well-described by others considering secure function and secure multiparty

computation, such as Kruger et al.’s OBDD protocol [14], Pinkas et al.’s SFE

optimizations [20], the TASTY proposal for automating two-party communication [7],

Jha et al.’s privacy-preserving genomics [11], Brickell et al.’s privacy-preserving

classifiers [4] and Huang et al.’s pipelined circuit execution techniques [8]. Similarly,

we make the well-used assumption that parties enter correct input to the function.

The authors of Fairplay also note that if either party were to deviate from this protocol

and become malicious it would impact security and allow for one of the parties to

get information from the other. With some additional complexity, the garbled circuit

protocol may be modified to be more secure in the presence of malicious adversaries,

as shown by Lindell et al. [15]. Other protocols, such as those proposed by Bing et

al. [3], take other threat models into account. Our proof of concept tests adhere to

the threat model as defined by Fairplay, and we leave a stronger attacker model for

future work.

2.3. Related Work

Current research has primarily focused on optimizing the actual transaction or

generation of smaller circuits for SFE, while we focus on creating a memory efficient

compiler. Kolesnikov et al. [12] demonstrated a “free XOR” evaluation technique to

improve execution speed, while Pinkas et al. [20] implement techniques to reduce
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circuit size of the circuits and computation length. We plan to implement these

enhancements in the next version of the circuit evaluator.

Huang et al. [9] have similarly focused on optimizing secure function evaluation,

focusing on execution in resource-constrained environments. The approach differs

considerably from ours in that users build their own functions directly at the circuit

level rather than using high-level abstractions such as SFDL. While the resulting

circuit may execute more quickly, there is a burden on the user to correctly generate

these circuits, and because input files are generated at the circuit level in Java,

compiling on the phone would require a full-scale Java compiler rather than the

smaller-scale SFDL compiler that we use.

Another way to increase the speed of SFE has been to focus on leveraging the

hardware of devices. Pu et al. [21] have considered leveraging Nvidia’s CUDA-based

GPU architecture to increase the speed of SFE. We have conducted preliminary

investigations into leveraging vector processing capabilities on smartphones,

specifically single-instruction multiple-data units available on the ARM Cortex

processing cores found within many modern smartphones, as a means of providing

better service for certain cryptographic functionality.

Kruger et al. [14] described a way to use ordered binary decision diagrams

(OBDDs) to evaluate SFE, which can provide faster execution for certain problems.

Our future work may include determining whether the process of creating the OBDDs

can benefit from our memory-efficient techniques. TASTY [7] also uses different

methods of privacy-preserving computation, namely homomorphic encryption (HE)

as well as garbled circuits, based on user choices. This approach requires the user

to explicitly choose the computation style, but may also benefit from our generation

techniques for both circuits and the homomorphic constructions. FairplayMP [2]

10



showed a method of secure multiparty computation. We are examining how to extend

our compiler to become multiparty capable.
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CHAPTER III

DESIGN

This Chapter was previously published in Financial Cryptography and Data

Security 2012. The authors were Benjamin Mood, Lara Letaw, and Kevin Butler.

I created PAL, PALC, and FPPALC. I wrote this Chapter. Lara and Kevin helped

edit this Chapter.

To overcome the intensive memory requirements of generating garbled circuits

within Fairplay, we designed a pseudo assembly language, or PAL, and a pseudo

assembly language compiler called PALC. As noted in Figure 3.1., we change Fairplay’s

compilation model by first compiling SFDL files into PAL using our FPPALC

compiler, and generating the SHDL file which can then be run using Fairplay’s circuit

evaluator.

3.1. PAL

We first describe PAL, our memory-efficient language for garbled circuit creation.

PAL resembles an assembly language where each instruction corresponds to a pre-

optimized circuit. PAL is composed of at least two parts: variable declarations and

instructions. PAL files may also contain functions and procedures. The heading

syntax is defined in Table 3.1.. Variable declarations or assembly instructions come

after the headers.

Table 3.2. lists the set of operations that are available in PAL along with their

instruction signatures. Each operation consists of a destination, an operator, and

one to three operands. DEST, V1, V2, and COND are variables in our operation listing.

12



Fairplay SFDL Fairplay SHDL
Fairplay compiler

(a) Fairplay compiler process.

Fairplay SFDL Fairplay SHDL

PAL
FPPALC PALC

(b) PAL compiler process.

FIGURE 3.1.: Compilation with Fairplay versus PAL.

Possible Operations
Operation Syntax Comment about use

Variable Declarations Variables: Must be first
Procedure Declarations Procedure: NAME May be mixed with

function declarations
Function Declarations Function: NAME [takes May be mixed with

paramName1 paramName2 procedure declarations
... paramNameN] [returns
returnName1 returnName2
... returnNameN] end

Main Declaration: Instructions: Must be last

TABLE 3.1.: PAL headings

PAL also has operations not found in Fairplay, such as shift and rotate. These two

operations also take an N value, an integer, for the size of the shift or rotation.

The IF statement assigns either V1 or V2 to the destination based upon the

rightmost bit of the COND variable. All IF operations in a high level language can be

reduced to the IF conditional. Unlike in a program which jumps if the IF statement

is not needed, in a circuit all parts of the IF statement must be executed every

evaluation.

The first part of a PAL program is the set of variable declarations. These consist

of a variable name and bit length, and the section is marked by a Variables: label.

In this low-level language there are no structs or objects, only integer variables and

arrays. Each variable in a PAL file must be declared before it can be used. Array

13



Possible Operations
Operation Syntax
Addition DEST + V1 V2
Subtraction DEST - V1 V2
Less than DEST < V1 V2
Greater than DEST > V1 V2
Less than or Equal to DEST <= V1 V2
Greater than or Equal to DEST >= V1 V2
Equal to DEST == V1 V2
Not Equal to DEST != V1 V2
Bitwise AND DEST & V1 V2
Bitwise OR DEST | V1 V2
Bitwise XOR DEST ^ V1 V2
Bitwise NOT DEST ! V1
Shift Left DEST << N V1
Shift Right DEST >> N V1
Rotate Left DEST ROT N V1
Set Equal DEST = V1
If Conditional DEST IF COND V1 V2
Input line INPUT V1 a (or INPUT V1 b)
Output line INPUT V1 a (or INPUT V1 b)
For loop V1 FOR X (an integer) to Y (an integer)
Call a procedure V1 PROC
Call a function DEST,...,DEST = FunctionName(param, ... ,param)
Multiple Set Equals DEST,...,DEST=V,...,V

TABLE 3.2.: PAL Operations

indices may be declared at any point in the variable name. The IN and OUT operations,

when used with arrays, take in full arrays and not just a single variable so the user

does not have to write out all the input statements.

Figure 3.2. shows an example of variables declared in PAL. Alicekey and Bobkey

have a bit length of 6, Bobin and Aliceout have a bit length of 32, COND is a boolean

like variable and has a bit length of 1, and Array[7] is an array of seven elements

with a bit length of 5. All declared variables are initialized to 0. After variable

declarations, a PAL program can have function and procedure definitions preceding

14



Variables:
Alicekey 6
Bobin 32
Bobkey 6
Aliceout 32
COND 1
Array [7] 5

FIGURE 3.2.: Example of
variable declarations in PAL.

Instructions:
Bobin IN b
Bobkey IN b
Alicekey IN a
COND == Alicekey Bobkey
Aliceout IF COND Bobin Aliceout
Aliceout OUT a

FIGURE 3.3.: Example of number
comparison in PAL.

the instructions, which is the main function. After a heading, any PAL instructions

that follow it are part of that portion of the program: a function, procedure, or the

instructions.

Figure 3.3. shows the PAL instructions for comparing two keys as used in the

keyed database problem, described more fully below. The first two statements are

input retrieval for Bob, while the third retrieves input for Alice. A boolean like

variable COND is set based on a comparison and the output is set accordingly. Note

that constants are allowed in place of V1, V2, or COND in any instruction.

PAL supports loops, functions, and procedures. Like other programming

languages, a for loop only loops over the next statement. To loop over more than

one statement a procedure is needed. The for loop loops over the procedure which

contains multiple statements. We use for loops instead of goto since SFDL uses for

loops. Functions are like other language’s functions with the exception that they

can return any number of variables. A function may only be called on the right

side of a set equal statement. To deal with the equality of structures defined in the

higher level SFDL language and with multiple returns from a function, we added the

ability of set equal statements to have multiple left and right side variables where

the corresponding leftmost variable on the left side gets set to the variable on the

leftmost side of the right side of the set equal statement.
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Figure 3.4. shows the BNF grammar for PAL.

To illustrate a full program, Figure 3.5. shows the keyed database problem in

PAL, where a user selects data from another user’s database without any information

given about the item selected. In this program, Bob enters 16 keys and 16 data entries

and Alice enters her key. If Alice’s key matches one of Bob’s then Alice’s output of

the program is Bob’s data entry that held the corresponding key. The PAL program

shows how each key is checked against Alice’s key. If one of those keys matches, then

the output is set.

3.2. PALC

Circuits generated by our PALC compiler, which generates SHDL files from

PAL, are created using a database of pre-generated circuits matching instructions

to their circuit representations. These circuits, with the exception of equality, were

generated using simple Fairplay programs that represent an equivalent functionality.

We made our own optimized equality circuit. Variables hold integers signifying what

gate they currently point to, meaning no gates need to be generated to represent

them. Any operation that does not actually generate a gate is considered a free

operation. Assignments, shifts, and rotates are free.

Variables in PALC have two possible states: they are either specified by a list of

gate positions or they have a real numerical value. If an operation is performed on

real value variables, the result is stored in the real value of the destination. These

real value operations do not need a circuit to be created and are thus free.

When variables of two different sizes are used, the size of the operation is

determined by the destination. If the destination is 24 bits and the operands are
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<S> := <Var> <FP> <Main>
<Var> := <DeclareIdentifier> <Bitlength> <Var>|ε
<FP> := <Function> <FP>|<Procedure> <FP>|ε
<Function> := Function <Identifier> <Takes> <Returns> end <AsmblyLns>
<Procedure> := Procedure <Identifier>: <AsmblyLns>
<Main> := Instructions: <InputLines> <AsmblyLns> <OutputLines>
<AsmblyLns>:= <AsmblyLn> <AsmblyLns>|ε
<AsmblyLn> := <BinaryOp>|<MonoOp>|<If>|<For>|<FunctionCall>|<ProcedureCall>

<InputLines> := <InputLine> <InputLines>|ε
<InputLine> := <Identifier> IN a|<Identifier> IN b
<OutputLines> := <OutputLine> <OutputLine>|ε
<OutputLine> := <Identifier> OUT a|<Identifier> OUT b

<BinaryOp> := <Identifier> <BinaryOperator> <Identifier> <Identifier>
<MonoOp> := <Identifier> <MonoOperator> <Identifier>
<If> := <Identifier> IF <Identifier> <Identifier> <Identifier>
<For> := <Identifier> FOR <Number> <Number>
<FunctionCall>:= <IdentifierList> = <Identifier>(<Params>)
<ProcedureCall> := <Identifier> PROC
<BinaryOperator> := +|-|>|>=|<|<=|==|!=|&& |& |‘|’ ‘|’|‘|’|ˆ
<MonoOperator> := = |!|«|»|ROT

<DeclareIdentifier> := <Letter><DeclareName>
<DeclareName> := <DeclareArrayName>|<DeclareNotArray>|.<DeclareIdentifier>
<DeclareArrayName> := [<Number>]<DeclareName>
<DeclareNotArray> := <String><DeclareName>

<IdentifierList> := <Identifier>|<Identifier>,<IdentifierList>
<Takes> := takes <SymbolList>|ε
<Returns> := returns <SymbolList>|ε
<SymbolList> := <SymbolList> <StringStart>|<StringStart>
<Params> := <ParameterList>|ε
<ParameterList> := <Identifier>|<Identifier>,<ParameterList>
<Identifier>:= <Letter><Name>
<Name> := <ArrayName>|<NotArray>|.<Identifier>|ε
<ArrayName> := [<StringStart>]<Name>|[<Number>]<Name>
<NotArray> := <String><Name>
<StringStart> := <Letter><String>
<String> := <Letter><String>|<Digit><String>|ε
<Bitlength> := <Number>
<Number>:= <Digit><Number>|ε
<Digit> := 0|1|2|3|4|5|6|7|8|9
<Letter> := a|b|...|z|A|...|Y|Z

FIGURE 3.4.: BNF rules for PAL. For the | (or) symbol, literal uses are contained
in ’ ’.
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Variables:
i 6
in.a 6
in.b[16]. data 24
in.b[16]. key 6
out.a 24
$c0 1
$t0 1
DBsize 64

Procedure: $p0
$t0 == in.a in.b[i].key

$c0 = $t0
out.a IF $c0 in.b[i].data out.a

Instructions:
in.b[16]. data IN b
in.b[16]. key IN b
in.a IN a
DBsize = 16
i FOR 0 15
$p0 PROC
out.a OUT a

FIGURE 3.5.: Representation of keyed database program in PAL.

32 bits, the operation will be done assuming the operands are 24 bits. This will not

cause an error but may yield incorrect results if false assumptions are made.

Currently there are a number of known optimizations, such as removing static

gates, which are not implemented inside PALC; these optimization techniques are

a subject of future work. We did, however, add an optimization for dealing with

arrays. When accessing an array variable where the index is based on user input the

program must use equality statements to determine what value the index holds. This

means that an array of size 16 requires 16 equals statements and 16 IF statements to

determine which array index should be accessed. If the same variable is used twice

then, naively, it requires 32 equal statements and 32 IF statements. If one of the pairs

is the destination, then instead of 32 equal statements and 32 IF statements, each

instruction is instead performed on the single array, resulting in 16 equals statements,

16 IF statements, and 16 operation statements.

3.3. FPPALC

To demonstrate that it is feasible to compile non-trivial programs on a phone,

we modified Fairplay’s SFDL compiler to compile into PAL and then run PALC to
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Assembly; JV 1 V 2 +K ⇒ Assembly, ($ti + V 1 V 2); $ti
Assembly; JV 1 V 2 −K ⇒ Assembly, ($ti − V 1 V 2); $ti
Assembly; JV 1 V 2 &K ⇒ Assembly, ($ti & V 1 V 2); $ti
Assembly; JV 1 V 2 |K ⇒ Assembly, ($ti | V 1 V 2); $ti
Assembly; JV 1 V 2 ^K ⇒ Assembly, ($ti ^ V 1 V 2); $ti

Assembly; JV 1 V 2 ==K ⇒ Assembly, ($ti == V 1 V 2); $ti
Assembly; JV 1 V 2 ! =K ⇒ Assembly, ($ti ! = V 1 V 2); $ti
Assembly; JV 1 V 2 >=K ⇒ Assembly, ($ti >= V 1 V 2); $ti
Assembly; JV 1 V 2 <=K ⇒ Assembly, ($ti <= V 1 V 2); $ti

Assembly; JV 1 ∼K ⇒ Assembly, ($ti ! V 1); $ti
Assembly; JV 1 −K(unary minus) ⇒ Assembly, ($ti − 0 V 1); $ti

FIGURE 3.6.: Production rules transforming SFDL postfix expressions to PAL.

Assembly; JFor(i = x to y) StatementK⇒
(Procedure : $pi), JStatmentK, Assembly, (i FOR x to y), ($piPROC);

FIGURE 3.7.: Rules for transforming FOR Loops from SFDL to PAL.

compile to SHDL. This compiler is called FPPALC. Compiling in steps greatly reduces

the amount of memory that is required for circuit generation.

We now describe our circuit transformation protocol for expressions and other

operations. First, using the predefined order of operations in Fairplay, we represent

the expression in postfix notation. As we consume the expression, we find the first

operator and create the corresponding PAL based on the production rules shown in

Figure 3.6.. In the figure, Assembly represents the expression produced in PAL. We

concatenate the new PAL instruction onto the end of the existing expression denoted

by Assembly. We also note the transformations for the FOR and IF statements and

for functions in Figures 3.7., 3.8., and 3.9. respectively. To transform the PAL to

SHDL we use a case statements with prebuilt circuits. Parentheses () denote new

assembly statements while brackets JK denote statements yet to be translated.
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Assembly; Jif(expression) Statement [else StatementOfElse]K⇒
Assembly, ($ci = expression result), JStatement[X = Y := X IF $ci Y X]K;

[Else, if needed] Assembly, ($ci =! expression result), JStatementOfElse[X =
Y := X IF $ci Y X]K;

FIGURE 3.8.: Rules for transforming IF statements from SFDL to PAL.

Function Definitions:

Assembly; Jtype functionName(param1...paramn) StatementK⇒
(Function : functionName takes param1...paramn returns V ar1...

V arm), JStatementK, Assembly;

Function Calls:

Case 1: single equals statement:

Assembly; JstructV ar = function(param1...paramn)K⇒
Assembly, (funcV ar1...funcV arm = functionName(param1...paramm);

Case 2: in an expression:

Assembly; Jfunction(param1...paramn)K⇒
Assembly, ($ti = functionName(param1...paramm); $ti

FIGURE 3.9.: Rules for transformation of functions from SFDL to PAL: definition
and calls

We note our compiler will not yield the same functionality as Fairplay’s compiler

in two cases, which we believe demonstrate erroneous behavior in Fairplay. In these

instances, Fairplay’s circuit evaluator will crash or yield erroneous results. They

are as follow: (1) when a user leaves a constant in the SFDL file and not does not

optimize or tries to output a constant, which caused a crash of the evaluator, and (2)

when the complete program is a single IF statement with a single assignment inside

it. The spec called for all variables to be initialized to zero so the output of such a

program where the guard is false should be 0 for all variables modified inside of the

if. However, even if the guard is false they are modified inside of the if. It should be
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noted we implemented our compiler to ensure all variables are initialized to 0 as per

the specification. An example program of this error is found in the appendix.

Apart from these differences, the functionality of the two circuits are the same.

Both approaches of generating the circuits rely on an equivalent SFDL specification.

Since both approaches generate the circuit from the SFDL specification, FPPALC’s

corresponding output circuit has the same functionality as the Fairplay circuit.

For our implementation of the SFDL to PAL compiler we took the original

Fairplay compiler and modified it to produce the PAL output by removing all elements

other than the parser. From the parser we built our own type system, before building

support for basic expressions, assignment statements, and finally if statements and

for loops. All variables are represented as unsigned variables in the output but input

and other operations treat them as signed variables. Our implementation of FPPALC

and PALC, which compile SFDL to PAL and PAL to SHDL respectively, comprises

over 7500 lines of Java code.

3.4. Garbled Circuit Security

A major question posed about our work is the following: Does using an

intermediate metalanguage with precompiled circuit templates change the security

guarantees compared to circuits generated completely within Fairplay? The simple

answer to this question is no: we believe that the security guarantees offered by the

circuits that we compile with PAL are equivalent to those from Fairplay.

Because there are no preconditions about the design of the circuit in the

description of our garbled circuit protocol, any circuit that generates a given result will

work: there are often multiple ways of building a circuit with equivalent functionality.

Additionally, the circuit construction is a composition of existing circuit templates
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that were themselves generated through Fairplay-like constructions. Note that the

security of Fairplay does not rely on the way the circuits are created but on the way

garbled circuit constructs work. Therefore, our circuits will provide similar security

guarantees since our circuits also rely on using the garbled circuit protocol. We also

note that Huang et al. [9] considered circuit templates in the evaluator for further

composition, including adders, muxers, and other broad functions.

A second question which can be asked of our system is Can we guarantee the

same program will be executed with a different compiler? Given the transformation

rules shown previously in Figures 3.6., 3.7., 3.8., and 3.9., we know the circuits

generated will be semantically the same to the specification of SFDL. Thus we know

the circuits we generate will produce circuits which are correct.
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CHAPTER IV

EVALUATION

This Chapter was previously published in Financial Cryptography and Data

Security 2012. The authors were Benjamin Mood, Lara Letaw, and Kevin Butler.

I did all of the experiments. Lara and Kevin helped edit this Chapter. Kevin

contributed ideas for what experiments could be useful.

In this section, we demonstrate the performance of our circuit generator to

show its feasibility for use on mobile devices. We targeted the Android platform

for our implementation, with HTC Thunderbolts as a deployment platform. These

smartphones contain a 1 GHz Qualcomm Snapdragon processor and 768 MB of RAM,

with each Android application limited to a 24 MB heap.

4.1. Testing Methodology

We benchmarked compile-time resource usage with and without intermediate

compilation to the PAL language. We tested on the Thunderbolts; all results reported

are from these devices. Memory usage on the phones was measured by looking at

the PSS metric, which measures pages that have memory from multiple processes.

The PSS metric is an approximation of the number of pages used combined with how

many processes are using a specific page of memory.

Several SFDL programs, of varying complexity, were used for benchmarking.

Each program is described below. We use the SFDL programs representing the

Millionaires, Billionaires, and Keyed Database problems as presented in Fairplay [16].

The other SFDL files, written by us, are presented in the appendix. We describe these

below in more detail.
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The Millionaire’s problem describes two users who want to determine which has

more money without either revealing their inputs. We used a 4-bit integer input

for this problem. The Billionaire’s problem is identical in structure but uses 32-bit

inputs instead. The CoinFlip problem models a trusted coin flip where neither party

can determine the program’s outcome deterministically. It takes two inputs of 24-bit

inputs per party. In the Keyed database program, a user performs a lookup in another

user’s database and returns a value without the owner being aware of which part of

the database is looked up - we use a database of size 16. The keys are 6-bits and

the data members are 24-bits. The Set intersection problem determines elements two

users have in common, e.g., friends in a social network. We measured with sets of size

2, 4, and 8 where 24-bit input was used. Finally, we examined Levenshtein distance,

which measures edit distance between two strings. This program takes in 8-bit inputs.

4.2. Results

Below the results of the compile-time tests performed on the HTC Thunderbolts

are presented. We measured memory allocation and amount of time required to

compile, for both the Fairplay and PAL compilers. In the latter case, we have data

for compiling to and from the PAL language. Our complete compiler is referred to as

FPPALC in this section.

4.2.1. Memory Usage & Compilation Time

Table 4.1. provides memory and execution benchmarks for circuit generation,

taken over at least 10 trials per circuit. We measure the initial amount of memory

used by the application as an SFDL file is loaded, the amount of memory consumed
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Memory (KB) Time (ms)
Program Initial PAL SHDL PAL SHDL Total

Millionaires 4931 5200 5227 90 29 119
Billionaires 4924 5214 5365 152 54 206
CoinFlip 5042 5379 5426 139 122 261
KeyedDB 4971 5365 5659 142 220 362
SetInter 2 5064 5393 5533 161 305 466
SetInter 4 5078 5437 5600 135 1074 1209
SetInter 8 5122 5542 5739 170 6659 6829

Levenshtein Dist 2 5184 5431 5576 183 336 519
Levenshtein Dist 4 5233 5436 5638 190 622 802
Levenshtein Dist 8 5264 5473 5693 189 2987 3172

TABLE 4.1.: FPPALC on Android: total memory application was using at end of
stages and the time it took.

during the SFDL to PAL compilation, and memory consumed at the end of the PAL

to SHDL compilation.

As an example of the advantages of our approach, we successfully compiled a set

intersection of size 90 that had 33,000,000 gates on the phone. The output file was

greater than 2.5 GB. Android has a limit of 4 GB per file and if this was not the case

we believe we could have compiled a file of the size of the memory card (30 GB). This

is because the operations are serialized and the circuit never has to fully remain in

memory.

Although we did not focus on speed, Table 4.1. gives a clear indication of where

the most time is used per compilation: the SHDL phase, where the circuit is output.

The speed of this phase is directly related to the size of the program that is being

output, while the speed of the SFDL to PAL compilation is based on how many

individual instructions exist.
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Memory (KB)
Program Fairplay FPPALC

Millionaires 658 296
Billionaires 1188 441
CoinFlip 1488 384

KeyedDB 16 NA 688
SetInter 2 10667 469
SetInter 4 NA 522
SetInter 8 NA 617

Levenshtein Dist 2 NA 392
Levenshtein Dist 4 NA 405
Levenshtein Dist 8 NA 429

TABLE 4.2.: Comparison of memory increase by Fairplay and FPPALC during circuit
generation.

4.2.2. Comparison to Fairplay

Table 4.2. shows the comparison of the Fairplay compiler and FPPALC. Where

results are not present for Fairplay are situations where it was unable to compile these

programs on the phone. For the set intersection problem with set 2, FPPALC uses 469

KB of memory versus 10667 KB by Fairplay, a reduction of 95.6%. Testing showed

that the largest version of the keyed database problem that Fairplay could handle is

with a database of size 10, while we easily compiled the circuit with a database of

size 16 using FPPALC.

To determine just how large the programs we could compile were, we determined

the maximum program size that the Fairplay compiler can compile on a phone. We

used a program that adds single numbers together. We found we were able to have

342 addition operations when adding the constant 1. This compilation had about

20,000 gates. We should note this is the most generous possible program that could

be constructed for Fairplay. Programs with array accesses (which the above did not

have) require enormous amounts of memory, e.g. the keyed database, size 10 of which
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Memory (KB) Time (ms)
Program Initial Open File End Open File Fairplay Nipane

Millionaires 5466 5556 5952 197 533 406
Billionaires 5451 5894 6287 579 1291 981
CoinFlip 5461 5933 6426 789 1795 1320

KeyedDB 16 5315 6197 7667 1600 1678 1593
SetInter 2 5423 5993 6932 1511 2088 1719
SetInter 4 5414 7435 11711 8619 7714 7146

Levenshtein Dist 2 5617 6134 7162 1799 2220 2004
Levenshtein Dist 4 5615 7215 10787 7448 6538 6150
Levenshtein Dist 8 5537 12209 20162 29230 29373 27925

TABLE 4.3.: Evaluating FPPALC circuits on Fairplay’s evaluator with both Nipane
et al.’s OT and the suggested Fairplay OT.

was able to successfully compile on the phone had 571 gates. Fairplay could not

compile size 11 on the phone which had 629 gates.

4.2.3. Circuit Evaluation

Table 4.3. depicts the memory and time of the evaluator running the programs

compiled by FPPALC. Consider again the two parties Bob and Alice, who create

and receive the circuit respectively in the garbled circuit protocol. This table is from

Bob’s perspective, who has a slightly higher memory usage and a slightly lower run

time than Alice. We present the time required to open the circuit file for evaluation

and to perform the evaluation using two different oblivious transfer protocols. As we

describe in more detail below, we used both Fairplay’s evaluator and an improved

oblivious transfer (OT) protocol developed by Nipane et al. [19]. Note that Fairplay’s

evaluator was unable to evaluate programs with around 20,000 mixed two and three

input gates on the phone. We assume the mixes of gates will vary, and translates for

our compiler to 209 32-bit addition operations.
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Memory (KB) Time (ms)
Program Initial Open File End Open File Evaluating

Millionaires 5640 5733 5995 194 302
Billionaires 5536 5885 6303 631 958
+CoinFlip 5528 5796 6280 428 1062
KeyedDB 16 5551 6255 7848 2252 1955
SetInter 2 5439 6018 7047 1663 2131
SetInter 4 5553 7708 13507 10540 9555

+Levenshtein Dist 2 5568 5872 6316 529 781
+Levenshtein Dist 4 5577 6088 7178 1704 2213
Levenshtein Dist 8 5488 7670 13011 9745 8662

TABLE 4.4.: Results from programs compiled with Fairplay on a PC evaluated with
Nipane et al.’s OT.

While the circuits that we generate are not optimized in the same manner as

Fairplay’s circuits, we wanted to ensure that their execution time would still be

competitive against circuits generated by Fairplay. Because of the limits of generating

Fairplay circuits on the phone, we compiled them using Fairplay on a PC, then used

these circuits to compare evaluation times on the phone. Table 4.4. shows the results

of this evaluation. Programs denoted with a + required edits to the SHDL to run in

the evaluator to prevent their crashing due to the issues described in Chapter 3.3..

By comparing the results in the Fairplay column of Table 4.3. and the Evaluating

column of Table 4.4. we show the difference between the time Fairplay and FPPALC

circuits took to evaluate. In many cases, evaluating the circuit generated by FPPALC

resulted in faster evaluation. One anomaly to this trend was Levenshtein distance,

which ran about three times slower using FPPALC. We speculate this is due to the

optimization of constant addition operations. For instance, the optimizer knows if

it is not possible for a specific variable’s value will be over five then it does not

need a full addition circuit and it can optimize the operation into a smaller circuit.

Note, however, that these circuits are incapable of being generated on the phone and
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require pre-compilation. The size difference of the circuits can be extrapolated from

the Tables by looking at time difference between Fairplay and FPPALC - since the

amount of time a program takes is directly proportional to the circuit size.

4.3. Interoperability

To show that our circuit generation protocol can be easily used with other

improved approaches to SFE, we used the faster oblivious transfer protocol of Nipane

et al. [19], who replace the OT operation in Fairplay with 1-out-of-2 OT scheme

based on a two-lock RSA cryptosystem. Shown in Table 4.4., this provides a

speedup of over 24% for the Billionaire’s problem mechanisms and 26% for the Coin

Flip protocol. On average, there was a 13% speedup in evaluation time across all

problems. with larger programs having a 5% reduction in evaluation time. For the

Millionaires, Billionaires, and CoinFlip programs we disabled Nagle’s algorithm as

described by Nipane et al., leading to better performance on these problems. The

magnitude of improvement decreased as circuits increased in size, a situation we

continue to investigate. Our main findings, however, are that our memory-efficient

circuit generation is complementary to other approaches that focus on improving

execution time and can be easily integrated.

We speculate that the reason our findings for Nipane et al.’s oblivious transfer

were not the results they achieved is due to the fact the bottlenecks on a mobile

device are different from the bottlenecks on a desktop PC. In Chapter V we show

how memory allocation and deallocation is much slower in proportion to a standard

addition operation on a Phone as one example of different bottlenecks.
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4.4. Pipelined Execution

To further extend the ability of our circuit creation scheme we created an

interpreter to use the execution system of Huang et al. [9] with our language. Their

system uses a pipelined execution which does not need the complete circuit to be

stored in memory at the same time during the execution process. However they did

not provide a way to generate circuits dynamically from a generalized language. It

is possible to change the sizes of programs at runtime but once the program was

compiled, using Java’s compiler, it could not be structurally changed. We combined

our compiler with their execution system. We were able to execute larger circuits on

the phone which previously ran out of memory when executed with Fairplay.

One point in their paper we would disagree with is the notion that circuits

are created at runtime. Although the circuits are instantiated (read, allocated into

memory), the actual circuit structure is hand coded and optimized by hand into the

Java program. FPPALC is different; given a source file our interpreter does not need

the Java compiler to execute the program. On a mobile phone this would also take a

reinstallation of the application.

Our interpreter also allows a user to write a program and execute it without

examining the circuit level program. More recently a group working on the pipelined

execution from the same university has created a intermediate language that looks

remarkably similar to our own - though without some of our program control

structures and without a higher level language [5].
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CHAPTER V

MEMORYMANAGEMENT

5.1. PC vs Phone Instruction Speed

We studied the runtime performance incurred by Java on our test phones by

comparing the execution time instructions took to execute on a PC vs a phone.

We found that memory allocation and deallocation were several times slower on a

phone than it was on a PC. The pipelined execution system using BigIntegers to hold

the numerical values. Since the BigInteger class is immutable most operations must

allocate memory. We examined the time some memory allocation and deallocation

takes on the PC and phone.

Table 5.1. shows the amount of time a instruction took execute on a phone and

PC for an average of 100,000 instructions in a row. This table also shows how much

time the instructions took to execute compared with the most basic instruction.

The timing results also include the time it took for the loop to check as well.

The *s in the table represent the expected values since Java prevented us from

acquiring the correct values at 100,000 iterations. The values we listed are our

approximations based upon the values seen at lower iteration numbers. We do not

know what Java did, but it prevented those three operations from being correctly

timed.

5.2. Design

To take advantage of non-memory allocation instructions we implemented

our own buffer pool and big integer system to remove the need for the large
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Execution time (ns) Proportion increase
Program PC Phone PC Phone

Simple recursion of depth 200 462 36454 28.9 1719.6
1 addition 16* 21.2 1 1

1 multiplication 21* 21 1.1 1
1 string addition of two characters 406 14947 25.4 705.1

Allocation of 1024 bytes 270 55438 16.9 2615
Allocation of 10240 bytes 1180 524595 73.8 24745
Allocation of 8 bytes 100* 3487 6.3 164.5

Creation of an 80 bit BigInteger 389 10334 24.3 487.5

TABLE 5.1.: Compares the time memory operations take on the phone compared to
a PC and then compared with how many times slower that instruction is compared
with an addition on the corresponding device. The *’s are our approximations based
times at other iteration numbers.

number of allocation and deallocation steps for BigIntegers. We call our system

MemoryManagement. The variables used in programs to hook into the memory

are integers. The data in the memory itself we call MMints. We describe the

MemoryManagement system below.

The MemoryManagement system is primarily a large integer array for the actual

memory. There is also a circular queue to keep track of which spots in the memory

are free. If the queue is ever empty then the memory is full.

Each variable which was previously a BigInteger in the original execution system

is now an integer. These integers are the hooks into the MMints in the memory.

For any MMint operation, the operation takes in a set of integers and preforms the

operation on the set of corresponding MMints in memory.

For each insert in the program we also added a corresponding delete, or

deallocation. Although this may seem like the memory system of a language like

C, it is not since we do not deallocate the actual memory during each delete. This

allows us to reuse the memory without a need for another allocation. We created
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a set of functions for immutable operations and another for mutable operations for

when mutable operations were applicable.

The downside to this implementation is that the MMints are of a fixed length.

However, we have designed a method to take advantage of our system which would

allow for a dynamic increase in the length of digits. We would use a second pool of

memory as if it was a list of Inodes and then link multiple nodes together like they

were the Inodes for a file system.

We also applied a few other memory optimizations we observed were possible

during our conversion from BigIntegers to MMints. The primary change is the

MemoryManagement system. Using the MemoryManagement system we also had

a few ways to optimize the memory, such as primitive send and receive operations

for network transmissions, which are made possible by our optimal system. We only

applied our solution to the garbled circuit execution as opposed to oblivious transfers

as well.

5.3. Evaluation

Table 5.2. shows the results of our MemoryManagement system applied to the

Huang et al.’s system. The Table shows the results from our interpreter with the

corresponding execution system. We had a speed increase during the execution phase

by up to 4 times in the larger programs.

When we compared our interpreter to the custom circuits of Huang et al. we

found even our optimized execution system was still slower than the custom circuits

by a factor of 2 for the Levenstein distance. However, this does not diminish

the value of our optimizations since many users, if not most, will not write the

circuit level optimizations required for the improved efficiency. We could apply our
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Execution time (ms)
Program Huang et al. MMints Percent Reduction

Millionaires 70 40 57.7
Billionaires 314 83 26.5
CoinFlip 335 193 57.7

KeyedDB 16 2135 691 32.3
SetInter 2 1576 600 38.1
SetInter 4 10375 2907 28.0
SetInter 8 72058 18521 25.7
SetInter 16 536565 129050 24.1

Levenshtein Dist 2 898 360 40.1
Levenshtein Dist 4 7105 2340 33.9
Levenshtein Dist 8 43999 11774 26.8
Levenshtein Dist 16 194067 48152 24.8

TABLE 5.2.: Comparison of the Huang et al.’s original execution phase and our own
execution phase. Both execution systems use our interpreter.

MemoryManagement system to the hand created circuits and get a speedup since it

would benefit from a better memory management strategy.

One of the more revealing results we experienced was the execution performance

boost on a PC. The difference the MemoryManagement on a PC was negligibly

faster or even slightly slower depending upon the input size used. This shows the

optimizations which benefit the PC and phone are not the same.
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CHAPTER VI

DISCUSSION

This Chapter was previously published in Financial Cryptography and Data

Security 2012. The authors were Benjamin Mood, Lara Letaw, and Kevin Butler.

Lara and Kevin helped edit this Chapter. Kevin contributed ideas for what could be

useful to create and talk about in this Chapter.

To demonstrate how our memory-efficient compiler can be used in practice, we

developed Android apps capable of generating circuits at runtime. We describe these

below.

6.1. GUI Based Editor

To allow use of the compiler on a phone we have to address one large problem.

Our experience porting Fairplay to Android port showed the difficulty of writing a

program on the phone. Figure 6.1. (a) shows an example of a GUI front-end for

picking and compiling given programs based on parameters. A list of programs is

given to the user who can then pick and choose which program they wish to run. For

some of the programs there is a size variable that can also be changed.

6.2. Password Vault Application

We designed an Android application that introduces SFE as a mechanism to

provide secure digital deposit boxes for passwords. In brief, this “password vault” can

work in a decentralized fashion without reliance on the cloud or any third parties.

If Alice fears that her phone may go missing and wants Bob to have a copy of her

passwords, she and Bob can use their “master” passwords, as input to a pseudo random
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(a) (b)

FIGURE 6.1.: Screenshots of the GUI and password vault applications.

generator. These master inputs are not revealed to either party, nor is the output of

the generators, which is used to encrypt the password. If the passwords are ever lost,

Alice can call Bob and jointly recover the passwords; both must present their master

passwords to decrypt the password file, ensuring that neither can be individually

coerced to retrieve the contents. This application also allows us to not need the cloud

to store the information. Figure 6.1.(b) shows a screenshot of this application.

Our evaluation shows that compiling the password SFDL program requires 915

KB of memory and approximately 505 ms, with 60% of that time is the PAL to

SHDL conversion. Evaluating the circuit is more time intensive. Opening the file

takes 2 seconds, and performing the OTs and gate evaluation takes 6.5 seconds. We

are exploring efficiencies to reduce execution time.
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6.2.1. Security of the Password Vault

The security of the password vault application is dependent upon whether the

output of the pseudo random number generator can be guessed. The keys are

incremented for each password used to prevent same key attacks. The maximum

length for a password in our program is 24 characters.

6.3. Experiences with Garbled Circuit Generation

One of the most important lessons from our implementation efforts was observing

the large burden on mobile devices caused when complete circuits must be kept in

memory. Better solutions only use small amounts of memory to direct the actual

computation, for instance, one copy of each circuit instead of N for N of the same

type of statement.

The largest difficulty of the full circuit approach is the need for the full circuit

to be created. Circuits for O(n2) algorithms and beyond scale extremely poorly.

A different approach is needed for larger scalability. For instance, doubling the

Levenshtien distance n parameter increased the circuit size by a factor of about 4.5

(decreasing the larger n grows), when n is 8 there are 11,268 gates, 16 is 51,348 gates,

32 is 218,676 gates, and 64 is 902,004 gates.

The original PAL did not scale since it did not have loops, arrays, procedures,

or functions. Once those programming structures were added the length of the PAL

files were decreased dramatically. The resulting circuits generated from the new PAL

were very similar to the original circuits.

37



6.4. Malicious Model

In a recent paper [10], Huang et al. implemented a process to achieve near

malicious model security in SFE with only minimal changes. This is achieved by

preforming the execution twice and the preforming a secure equality. For the second

execution both parties switch their roles; the creator is now the evaluator and the

evaluator is now the creator. They showed this process incurs a minimal throughput

decrease when the execution is preformed on dual core machine. Most phone are not

currently dual core but it is expected to be more prevalent as technology is used more

for power constrained devices.

This enhancement to security was implemented in the pipelined system we have

already adapted. Since we already adapted this implementation to our compiler we

know it is possible to adapt their new execution system to work with our language.

The one downside to this approach is that this is "near" malicious model security

instead of complete malicious model security. A party may gain a single bit of

information they should not attain.

Kreuter et al. [13] implemented a system for preforming garbled circuits on cluster

machines in the malicious model. They take garbled circuits to the limit by using

state of the art execution systems and cluster machines.

6.5. Future Compiler Work

There are a number of optimizations that we would like to implement to create

better circuits. Most notably free NOT and other gates which will always yield the

same result. We are uncertain of the memory trade-off for these optimizations but

it could be large depending on the size and structure of the program. For instance,

using a NOT gate will then require inverting the table of a gate which used the NOT
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gate’s output. This will require keeping track of all gates which used a NOT gate,

which may lead to a larger memory requirement. We also would like to add a way

to keep track of the maximum value of a particular variable in the case, for instance,

the full addition circuit is not needed.

Another optimization we plan to add is a way to deal with optimizing each part

of the circuits. For instance, instead of having a static addition circuit we will add

the ability to optimize a given addition circuit if one of the variables is a constant or

if it is determined the maximum possible value of the variable will allow for a smaller

addition circuit.

Given the large amount of time that is used to save and open complete circuit

files we have speculated about combining our system with that of Huang et al.’s

methodology of generating circuits directly in Java [9]. This would allow for programs

to be compiled into PAL. Then a PAL interpreter could run the programs based on

pre-built pieces. This system would allow users to write their own programs in SFDL

and not have to worry about the memory limitations of SHDL.
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CHAPTER VII

CONCLUSION

This Chapter was previously published in Financial Cryptography and Data

Security 2012. The authors were Benjamin Mood, Lara Letaw, and Kevin Butler.

This conclusion was edited by Lara and Kevin.

We introduced a memory efficient means for creating garbled circuits for

making SFE tractable on the mobile platform. We created PAL, an intermediate

language, between SFDL and SHDL programs and showed by using pre-generated

circuit templates that we could make previously intractable circuits compile on a

smartphone, reducing memory requirements for the set intersection circuit by 95.6%.

We demonstrate the use of this compiler with a GUI editor and a password vault

application. We interfaced our compiler with another execution system and then

applied an optimization to that system specific to the mobile platform. Future work

includes incorporating further optimizations in the circuit evaluator and determining

whether the pre-generated templates may work with other approaches to both SFE

and other privacy-preserving computation primitives.

40



APPENDIX

PROGRAMS

Keyed Database program

program Keyed_DB_Search {

const DBsize = 16;

type Key = Int<6>;

type Data = Int<24>;

type Pair = struct {Key key, Data data};

type AliceInput = Key;

type BobInput = Pair[DBsize];

type AliceOutput = Data;

type Output = struct {AliceOutput alice};

type Input = struct {AliceInput alice, BobInput bob};

function Output output(Input input) {

var Key i ;

for (i = 0 to DBsize-1)

if (input.alice == input.bob[i].key)

output.alice = input.bob[i].data;

}

}

Coin Flip program

program Coin {
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const InputSize = 2;

type Data = Int<24>;

type AliceInput = Data[InputSize];

type BobInput = Data[InputSize];

type AliceOutput = Data;

type BobOutput = Data;

type Output = struct {AliceOutput alice, BobOutput bob};

type Input = struct {AliceInput alice, BobInput bob};

function Output output(Input input)

{

var Data temp;

temp = input.alice[0] ^ input.bob[0];

temp = temp ^ input.bob[1];

temp = temp&1;

if(temp== (input.alice[1] & 1))

{

output.alice = 1;

output.bob = 0;

}

else

{

output.alice = 0;

output.bob = 1;

}
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}

}

Set Intersection program

program SetIntersetion {

const Size = 8;

type Key = Int<10>;

type Data = Int<24>;

type AliceInput = Data[Size];

type BobInput = Data[Size];

type AliceOutput = Data[Size];

type Output = struct {AliceOutput alice};

type Input = struct {AliceInput alice, BobInput bob};

function Output output(Input input)

{

var Key i,k,j,index ; index=0;

for (i = 0 to Size-1)

{

for (k = 0 to Size-1)

{

if (input.bob[i] == input.alice[k] )

{

for (j = 0 to Size-1)

{

if (index == j )
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{

output.alice[j]= input.alice[k];

}

}

index= index+1;

}

}

}

}

}

Levenshtein Distance program

program LevenshteinDistance {

const bit = 1;

const size = 8;

const inputsize = 2;

const Asize = inputsize+1;

type Num = Int<size>;

type Bit = Int<bit>;

type AliceInput = Num[inputsize];

type BobInput = Num[inputsize];

type AliceOutput = Num;

type BobOutput = Num;

type Input = struct {AliceInput alice,BobInput bob};

type Output = struct {AliceOutput alice, BobOutput bob};
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function Output output(Input input)

{

var Num i,k,j;

var Num temp1,temp2,temp3, result;

var Bit answer;

var Num[Asize][Asize] D;

for (k=0 to Asize-1)

{

D[k][0] = k;

D[0][k] = k;

}

for (i=1 to Asize-1)

{

for (j=1 to Asize -1)

{

if(input.alice[j-1] == input.bob[i-1])

{

D[i][j] = D[i-1][j-1];

}

else

{

temp1 = D[i-1][j] + 1;

temp2 = D[i][j-1] + 1;

temp3 = D[i-1][j-1] + 1;

answer = temp2 < temp3;
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result = temp1;

if ((temp2 < temp1)&answer)

result = temp2;

if((temp3 < temp1)& (temp3<temp2))

result = temp3;

D[i][j] = result;

}

}

}

output.alice = D[Asize-1][Asize-1];

output.bob = D[Asize-1][Asize-1];

}

}

Fairplay error example program

program FairplayError {

const N=8;

type Byte = Int<N>;

type AliceInput = Byte;

type BobInput = Byte;

type AliceOutput = Byte;

type BobOutput = Byte;

type Input = struct {AliceInput alice, BobInput bob};

type Output = struct {AliceOutput alice, BobOutput bob};

function Output output(Input input)
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{

if(input.bob>input.alice)

{

output.alice = input.bob & input.alice;

output.bob = input.bob ^ input.alice;

}

}

}
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