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THESIS ABSTRACT

Joshua Burkhart

Master of Science

Department of Computer and Information Science

June 2013

Title: A Method for Reference-Free Genome Assembly Quality Assessment

How to assess the quality of a genome assembly without the help of a reference

sequence is an open question. Only a few techniques are currently used in the literature

and each has obvious bias. An additional method, using restriction enzyme associated

DNA (RAD) marker alignment, is proposed here. With high enough density, this method 

should be able to assess the quality of de novo assemblies without the biases of current 

methods.

With the growing ambition to sequence new genomes and the accelerating ability 

to  do  so  cost  effectively,  methods  to  assess  the  quality  of  reference-free  genome 

assemblies will become increasingly important. In addition to the existing methods of 

known sequence alignment, RAD marker alignment may contribute to this effort.
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CHAPTER I

BACKGROUND

Whole genome sequencing enumerates the nucleotides found in the chromosomal DNA of 

an  organism  and  provides  a  most  intimate  view  of  an  individual.  Today,  genome 

sequencing contributes to our understanding of biology in many ways including medical 

diagnoses, gene network discovery, and evolutionary adaptation.

Sequencing even a single organism can assist in medical diagnoses and understanding 

gene  networks  by  both  identifying  genetic  markers  known to  be  linked with  certain 

conditions and identifying expressed and unexpressed regions of DNA along with the 

areas that may contribute to those regions' promotion or repression.

 

Comparative genomics focuses on how different genome sequences relate to each other and 

necessarily involves sequencing more than one organism. It  can be used to find inter-

species  and  intra-species  differences.  Common  differences  among  genomes  include 

inversions,  repeats,  deletions,  and  transpositions.  It  can  be  especially  interesting  if 

genotypic differences can be well correlated with phenotypic variation.

The brief history of genome sequencing began when Watson, J. and Crick, F. published 

their seminal paper[1] on the structure of DNA in 1953. Early advancements in the field 

include Maxam-Gilbert sequencing[2] and Sanger Sequencing[3], both published in 1977. 

They provided methods by which DNA could be sequenced with high accuracy, though at a 
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cost  that  was  prohibitive  for  large projects.  A revolutionary  technique  termed  random 

sequencing  or  shotgun sequencing  was  used  as  early  as  1995[4]  to  sequence  the 

Haemophilus influenzae Rd. genome and was later used to sequence the human genome[5]. 

Shotgun sequencing was later parallelized[6] allowing for large amounts of DNA to be 

sequenced at low cost. This parallelization of DNA sequencing is sometimes called high 

throughput sequencing or  next-generation sequencing (NGS). A further extension of this 

technique  allowed  for  multiple  libraries  to  be  sequenced  simultaneously  using  unique 

identifying sequences  or  barcodes[37].  The state  of  the  art  is  exemplified  by industry 

leaders like Life Technologies SOLiD Next-Generation Sequencing, 454 Sequencing GS 

Systems, and Illumina HiSeq Systems.

NGS has many sequencing applications. One of these is genome sequencing. At a high 

level of abstraction, a typical NGS genome sequencing project is outlined below.

1. Cells from organism(s) of interest are collected.

2. DNA is separated from other cellular components.

3. DNA is amplified using a cloning process like the polymerase chain reaction[39] 

(PCR)

4. DNA is  fragmented  or  sheared randomly  either  by  chemical  or  mechanical 

processes

5. DNA fragments of a specific size are collected, forming a library

6. The library is loaded into a sequencing machine
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7. Each DNA fragment in the library has up to 100 base pairs of one or both of its 

ends sequenced, resulting in reads

8. The sequencing machine produces files containing reads to be used for  further 

analysis

Because the NGS process yields  only short  disconnected sequences,  several  additional 

stages must be completed before meaningful insights can be made.

Firstly, by removing or filtering some of the reads produced by the sequencing process, one 

may be able to detect and address several issues that may hinder the remainder of the 

genome sequencing process. Several features should be filtered out from a set of reads prior 

to further analysis.

1. Sequencing machines are prone to misidentifying base pairs due to one or more of 

several phenomena, described well by Ledergerber and Dessimoz[7], resulting in 

what is termed a miscall or mismatch.

2. Due to the nature of the algorithms used in the later stage of genome assembly, it is 

difficult  to  determine  the  length  and  correct  placement  of  highly  repetitive 

sequences like  AAAAAAAA... or  AGTAGTAGTAGT... These sequences should be 

discarded.
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3. Sequence contamination is the inclusion of 'unlikely' sequence in a genome. It has 

been reported that several published genomes have been found to contain sequence 

data probably describing another organism in the same experimental environment, 

such as that of human laboratory equipment operators[8].

Modern DNA sequencers record both the base pair and a quality score associated with each 

base pair and report it using the FASTQ file format[9]. Quality scores give a measure of 

assurance of each call and are typically generated using Phred[10].

Using filtering programs that average base pair quality scores along each read, portions of 

reads can be discarded or trimmed once predefined confidence thresholds are reached[11].

A k-mer is an ordered subset of necessarily adjacent base pairs with a length of some 

natural number, k, base pairs found to be in some larger sequence. By enumerating all the 

k-mers of length k, the amount of unique information in a genome can be measured using 

the distribution of resultant k-mers. By varying k, it is as if viewing a sequence through 

different  lenses,  each  providing a  slightly  altered  picture  of  the information contained 

therein (See APPENDIX: FIGURES: Fig. 1).

A k-mer frequency is the number of times a specific k-mer is seen in a larger sequence (See 

APPENDIX: FIGURES: Fig. 2).
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Filters can use k-mer distributions to keep only those k-mers with maximum or minimum 

frequencies. Highly frequent k-mers may indicate repetitive sequence, contamination, or 

other over-represented DNA due to errors during the cloning process and can be discarded. 

Additionally, rare k-mers may indicate sequencer error and can often be discarded.

Typically, k-mer frequency is plotted against the number of k-mers with each frequency, or 

k-mer  count in  graphs  (See  APPENDIX:  FIGURES:  Fig.  3,  4,  5).  Notice  how scale 

changes affect each view.

Genome assembly is the process by which short sequences are connected or assembled into 

longer contiguous sequences termed contigs. There are several algorithms that perform this 

task but most genome assembly software today uses algorithms based on one of either de 

Bruijn graphs or string graphs.

A popular algorithm used for genome assembly relies on de Bruijn graphs which consider 

(k-1)-mers as vertices and k-mers as edges in a directed graph and search for an Eulerian 

path in order to reconstruct a source sequence (See APPENDIX: FIGURES: Fig. 12). For 

a more complete description, see [12].

Alternatively,  algorithms  using  string  graphs  consider  reads  as  strings or  curves and 

attempt to find the best intersection between these curves. For a more complete description, 

see [13].
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The  goal  of  genome  assembly  is  to  accurately  reproduce  the  underlying  contiguous 

sequences present in a genome. Theoretically, each contig should represent a chromosome. 

When sequencing an organism for the first time, a reference genome is not available. This 

is called reference-free or de novo genome sequencing. The accuracy of such an assembly 

is  difficult  to  assess.  Several  methods  have  been  proposed  but  no  single  method 

consistently assures the highest accuracy[14].

An early method used to gauge assembly quality was to quantify connectivity. NG50 is the 

number of contigs into which the first 50% of the base pairs in the estimated genome 

assemble when ordered from largest to shortest. N50 is the number of contigs into which 

the first 50% of the base pairs in contigs assemble when ordered from largest to shortest 

(See APPENDIX: FIGURES: Fig. 6). N50 Length is the size of the middle contig (See 

APPENDIX: FIGURES: Fig. 7). Metrics like this can be taken with other percentages too: 

75%, 90%, etc. Together, these are termed "NX" statistics.

In addition to NX statistics, the mean contig length and longest contig length are simple 

ways to  determine how well  an assembly's  contigs  are connected,  though they do not 

address how well any of the sequence produced represents the actual genome.

One thought is to compare the quality of genome assemblies produced by different genome 

assembly software pipelines, select the best one, and trust its output. An advantage to this 
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method is that testing is theoretically easy. A synthetic genome can be created as was done 

in Assemblathon 1[15], whose sequence is known. It can then be artificially broken into 

reads, used as input to the pipelines, and aligned with the contigs produced by the pipelines 

to test for accuracy. Unfortunately, this method has not been shown to produce a clear 

winner and the most accurate genome assembly pipeline remains undecided[14, 15, 16]. 

Another thought is to align some known sequence to a genome assembly and call the 

assembly "accurate" based on whether or not a high percentage of the known sequence can 

be matched to corresponding sequence in the assembly.

Known sequence can be obtained using Expressed Sequence Tags[17] (EST's) and aligned 

to  a  genome  assembly  to  test  for  congruence.  These  are  produced  by  sequencing 

complementary  DNA (cDNA)  created  using  RNA expressed  from  genic  regions.  A 

drawback of EST alignment is representation bias. Genic regions are not evenly distributed 

around a genome; extragenetic factors introduce positional bias, such as epigenetic gene 

silencing[38] which forces EST's to cluster around less tightly packed euchromatic regions 

of  a  chromosome[18].  This  can leave  more  tightly  packed  heterochromatic regions  of 

chromosomes untested, thus whole-genome assembly quality uncertain.

Another method of using known sequence to assess genome assembly quality is to align 

sequences  believed to  be  conserved in  an organism to  its  genome assembly[14].  This 

requires both making a priori assumptions about the structure of an organism's genome and 
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suffers from the same uneven distribution bias as EST alignment.

A novel method to assess the quality of genome assemblies is to consider the alignment of 

RAD markers[19].  Because some restriction enzymes have been shown to digest DNA 

indiscriminately[40],  regardless  of  gene  density  or  epigenetic  structure,  resultant  RAD 

markers are theoretically more evenly distributed around a genome than either EST's or 

known conserved sequence.  Additionally,  several RAD treatments may be applied to a 

genome to increase marker density. Each restriction enzyme cut site should result in the 

creation of two RAD markers, so by aligning restriction enzyme cut sites to a genome 

assembly and comparing the ratio of cut site alignments to RAD marker alignments, the 

percent RAD marker alignment can be computed. 

t/2c = a

where:

t = number of RAD markers that align to genome assembly

c = number of restriction-enzyme cut sites that align to genome assembly

a = RAD marker alignment ratio

(A high ratio indicates a genome assembly expected to be of high quality.)
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CHAPTER II

PROJECT INTRODUCTION

An example of a project using genome assembly is the ongoing effort to sequence several 

Wyeomyia smithii populations found along the eastern seaboard of North America in order 

to  study the genetic  basis  for several  varying characters  including photoperiodism and 

propensity to feed on blood.
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CHAPTER III

PROCEDURE

Following DNA collection from groups of organisms representative of target  W. smithii 

populations, reads were obtained from an Illumina HiSeq 2000 in FASTQ format with 

Illumina descriptors[9].

The  FASTQ files  underwent  an  initial  assessment  so as  to  estimate  storage,  memory, 

processor, and bandwidth usage.

Initially, read filtering was performed using a custom perl script that counted quality scores 

until  a  predefined threshold  was reached.  Several  more  sophisticated  methods of  read 

filtering have been published and this method was ultimately abandoned.

The kmer_filter program, one of the components of the Stacks pipeline[20], filters reads 

using k-mer distributions with maximum and minimum frequency thresholds optimized 

using k-mer distribution visual representations (See APPENDIX: FIGURES: Fig. 3, 4, 5).

A project  called  Quake[21]  is  a  package  developed  for  use  especially  with  Illumina 

machine output and uses read quality values in addition to known error rates in order to 

estimate miscalls and correct them when possible.

A program called Diginorm[22] is a package that normalizes k-mer coverage, narrowing 
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the range of k-mer frequencies, and has the effect of greatly decreasing the amount of data 

in read files (over 50% reductions were seen during this project) without greatly reducing 

the amount of information.

The  effects  of  filtering  can  be  quantified  in  several  ways.  First,  the  number  of  reads 

retained can be counted and compared to the number of reads prior to filtering. If a high 

percentage of reads are left, the filter may not have been effective. Second, the resultant k-

mer distribution can be plotted and inspected for interesting features[23]. Third, executing a 

genome assembly using the filtered reads may indicate what filtering works well. In fact, 

much  time  was  spent  "bouncing"  between  read  filtering  and  genome  assembly  in  an 

attempt to optimize the results of both processes.

Using the results of several genome assembler competitions[14, 15, 16] as a guide, several 

attractive assemblers were selected at the outset of this project.

The  Broad  Institute's  ALLPATHS-LG  assembler[42]  was  considered  due  to  its  high 

ratings in Assemblathon 1[15], 2[14], and GAGE[16] but required DNA fragments of 

varying length and was thus unfit for the available dataset which consisted entirely of 

(common length) short reads.
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SOAPdenovo2[43] had shown good results in Assemblathon 1[15], 2[14], and GAGE[16] 

but  numerous  parameters  and  sparse  documentation  made  it  nebulous  and  a  poor 

candidate as a tool for unfamiliar users. 

MSR-CA, an early version of MaSuRCA[44]. It was shown to be a competitive candidate 

in GAGE[16], but, due to its early stage of development at the outset of this project, only 

registered  users  had  access  to  it.  Thus  it  was  not  available  for  installation  on  the 

ACISS[26] system.

The String Graph Assembler[24] is an assembler that relies on a string graph algorithm 

based  on  overlaps.  It  was  used  following  the  procedure  described  in  the  source 

repository[25].  The  reported  memory  usage  was  low,  even  for  large  genomes  in 

comparison to other assemblers and it was a high scorer in Assemblathon 1[15], 2[14], 

and GAGE[16].  Unfortunately, the longest available execution queue available on the 

ACISS cluster computer is 336 hours[27]. SGA was unable to complete an assembly in 

this amount of time. Additionally, SGA was found to be poorly documented and require 

unrealistic execution times for large genomes.

Velvet[28] was a mediocre scorer in Assemblathon 1[15] and GAGE[16] but was well 

documented, could finish executions within the time limits of ACISS queues, and could 

accept  a  single  length  DNA fragment  library  as  input.  Velvet  is  a  memory-intensive 

program and  only  special  "fat"  nodes  with  384  GB RAM[27]  could  complete  some 
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genome  assemblies.  Additionally,  not  all  Velvet  executions  finished  in  a  reasonable 

amount  of  time.  Velvet  tended  to  have  unpredictable  run  times  and parameter  value 

testing  and  optimization  was  necessary  to  produce  assemblies  (See  APPENDIX: 

FIGURES:  Fig.  13).  Initial  parameter  estimates  were  made  with  the  help  of  a  ruby 

script[47] that reported average nucleotide coverage and expected k-mer coverage for 

several values of k. To further assist in optimizing Velvet parameters, an R script was 

written[45]  that  displayed  node  coverage,  as  explained  in  the  Velvet  manual[46].  In 

summary, Velvet was a good choice for the ACISS computing environment as the high 

memory  resources  required  were  available  and  the  time  required  for  some  other 

assemblers was not. 

Several methods were used to compare genome assemblies. Connectivity statistics were 

computed  using  a  custom  ruby  script[29]  and  RAD  marker  alignment  scores  were 

computed  using  a  package  called  Radiqual[30].  Review  the  Radiqual  README.md 

document for a brief description and usage[31] (See APPENDIX: FIGURES: Fig. 8, 9, 10, 

11).
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CHAPTER IV

FUTURE DIRECTIONS

To fully validate the ability of RAD marker alignment to discern accurate assemblies 

from  inaccurate  ones  further  research  is  required.  Genome  assembly  alignment  to 

synthetic or finished reference genomes should be used as bases for quality and compared 

to EST, known conserved region, and RAD marker alignment for those assemblies. A 

relatively  strong  correlation  between  observed  accuracy  and  that  predicted  by  RAD 

alignment would confirm its usefulness. 

The variation of features found in k-mer distributions deserves further investigation. It is 

interesting that Fig. 5 shows 69-mers with an opposite concavity to that of 51-mers at low 

frequencies and that the k-mer distributions in Fig. 3 have similar inflection points.

As we seek to  better  understand the  origin and nature  of  life  on  this  planet,  projects 

conducting de novo genome sequencing are becoming more numerous. A few examples are 

below.

1. The 1000 Genomes Project[32] has a goal of sequencing 1000 human genomes in 

order to discover low-frequency genetic variation.

2. The Genome 10K[33] is a project whose goal is to assemble 10,000 vertebrate 

species in order to make discoveries about genetic diversity.
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3. The 1000 plant genomes initiative[34] attempts to generate sequence for 1000 plant 

species.

With the assemblies of multiple organisms, many interesting discoveries can be made. 

Software like MUMmer[48] can be used to align genomes to one another to search for 

large-scale  differences(See  APPENDIX:  FIGURES:  Fig.  14,  15)  and  small-scale 

differences(See  APPENDIX:  FIGURES:  Fig.  16)  that  could  explain  the  origins  of 

disease, gene network development, or speciation events. 

Genome sequencing is a field of active research and technological development. Promising 

technologies include Illumina's 150-250 base pair insert sequence size library protocol[35], 

allowing even short reads to be more connective then the current 100 base pair size. Oxford 

Nanopore Technologies has also developed biosensors that may one day be used to provide 

even longer reads[36].

With the growing ambition to sequence new genomes and the accelerating ability to do so 

cost effectively, methods to assess the quality of reference-free genome assemblies will 

become increasingly important. In addition to the existing methods of EST and conserved 

sequence alignment, RAD marker alignment may contribute to this effort.
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APPENDIX:

FIGURES

Fig. 1. A sequence with 13 base pairs along with its 5-mers and 7-mers. Each of the 5-

mers and 7-mers appears only once in the source sequence.
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Fig. 2. A sequence of 13 base pairs along with its 5-mers and the frequencies of each 5-

mer. Some of the 5-mers appear only once in the source sequence but (4) and (5) each 

appear three times.
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Fig. 3. Plotting several k-mer distributions together may lead to insights about the 

information contained in a source sequence.

18



Fig. 4. Many k-mers are found with frequencies below 150,000.
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Fig.  5.  Every k-mer found in the source sequence appears at  least  three times.  Also,  

notice the distribution of 69-mers behaves differently from the other k-mer distributions 

plotted here. 
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Fig. 6. Color-coded contigs (top) in no particular order, representing the way they are 

output from a genome assembler. The sum of the lengths of these contigs is taken as N, 

and the contigs are ordered from longest to shortest (middle). By halving N (bottom), a 

position along the ordered contigs is selected, indicated here by a black line. The number 

of contigs encountered as this position is approached, from largest to shortest, is the N50. 

In this figure we see N50 = 2.
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Fig. 7. Similar to Fig. 6, above, an ordered list of contigs is required to calculate N50 

Length. Instead of counting the number of contigs encountered as the N/2 position is 

approached,  the  length  of  the  contig  containing  the  position  is  reported  as  the  N50 

Length.
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Fig. 8. Two RAD markers aligning to the genome assembly around a single cut site.

Fig. 9. Two cut sites near each other and two RAD markers aligning to the genome 

assembly.
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Fig. 10. One RAD marker aligning to the genome assembly around a single cut site.

Fig. 11. Two cut sites somewhat separated and two RAD markers aligning to the genome 

assembly around those cut sites.
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Fig. 12. By constructing a digraph using the (k-1)-mers as nodes, indicated here as blue 

circles, and the k-mers as directed edges, indicated here as orange arrows, it is possible to 

reconstruct the source sequence by finding an Eulerian path. Circular source sequences, 

such as bacterial chromosomes, are reconstructed using Eulerian cycles instead.
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Fig. 13. Sample execution records are shown here. Notice the wide variation in results  

given slight changes in parameters like min_k_freq and expected_cov.
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Fig. 14. This figure shows how two genome assemblies align to each other. Notice much 

of the sequence aligns well. Forward alignments are in red, reverse alignments are in 

blue.
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Fig. 15. This figure shows how two genomes assemblies' predicted protein products align 

to each other. Notice the interesting difference in concavity when comparing the forward 

alignments, in blue, and the reverse alignments, in red.
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Fig. 16. This figure shows contigs from a reference genome assembly, in blue, at top, and 

contigs  from  a  query  genome  assembly,  in  green,  at  bottom.  Notice  the  complex 

alignments some contigs from the query have with those from the reference.
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