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THESIS ABSTRACT

Igor Burago

Master of Science

Department of Computer and Information Science

June 2014

Title: Automated Attacks on Compression-Based Classifiers

Methods of compression-based text classification have proven their usefulness for

various applications. However, in some classification problems, such as spam filtering, a

classifier confronts one or many adversaries willing to induce errors in the classifier’s

judgment on certain kinds of input. In this thesis, we consider the problem of finding

thrifty strategies for character-based text modification that allow an adversary to revert

classifier’s verdict on a given family of input texts. We propose three statistical statements

of the problem that can be used by an attacker to obtain transformation models which

are optimal in some sense. Evaluating these three techniques on a realistic spam corpus,

we find that an adversary can transform a spam message (detectable as such by an

entropy-based text classifier) into a legitimate one by generating and appending, in

some cases, as few additional characters as 20% of the original length of the message.
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CHAPTER I

INTRODUCTION

Automatic text classification is a widespread problem occurring in different

applications. An important example of such application originates from the necessity of

filtering unsolicited or undesired messages in email or other messaging systems. One of

the effective methods for filtering messages is based on the observation that different

kinds of texts often have distinctive compression characteristics.

In this approach, messages are seen as finite chunks of characters originating from

streams that have probabilistic nature. More strictly, each kind of text, or class, is

assumed to be independently defined by a probability distribution that describes the

chances of a character to appear at each of the states of the stream producing texts of this

class. Then, if that class distributions are known or can be reconstructed with sufficient

accuracy from an available sample, any text is classified by comparing its compression

characteristics for each of the class distributions. One metric directly connected with

compressibility is the entropy which is usually calculated per character to make strings

of unequal lengths comparable. If, for the text in question, the entropy per character,

under the assumption that this text originated from one source, estimates to be lower

than the same entropy for another source, then it is assumed that this text is more likely

to belong to the former class rather than the latter.

This way, the objective of a compression-based classifier resolves into statistical

problem of learning unknown class models by observing messages coming on the input

of classifier. In the thesis, we make an attempt to look at the classifier problem from

the adversarial point of view. In abstract, the goal of an adversary consists in tricking

classifier into making decisions advantageous for a certain adversarial objective, e.g.
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finding a way to modify a spam message so that it would not be classified as such, and

would be label as legible. Unsurprisingly, the adversarial problem is, in some sense,

inverse to the classifier problem: While the goal of the classifier is to model class sources

by analyzing the input stream of texts, the goal of an adversary is to affect the input

stream of the classifier to skew the resulting class models. That is, what was the output

for the classifier becomes input for the adversary, and vice versa.

We approach the adversary problem as a statistical one. That is, for the example

of message filtering, we assume that the adversary does not have a goal of getting a

beneficial verdict of the classifier once for a single message, but rather wants to find a

whole family of messages that would be classified in a certain way (while, optionally,

satisfying some additional conditions aligned with adversary’s goals). In other words, the

adversary is interested in methodically changing statistical properties of the classifier’s

input stream.

To validate the methods discussed in this work, we concentrate on a typical

application of entropy-based text classification—the problem of spam filtering. It allows

us to evaluate our algorithms on a sufficient amount of real data, while remaining in

the smallest case of binary decisions. Considering potential interests of an adversary in

this problem, we introduce three different adversary problem settings that meaningfully

formalize objectives of a spammer. In doing so, we tried to keep the balance between

generality of a mathematically stated objective and feasibility of its analysis. We evaluate

effectiveness of each strategy on the SpamAssassin public corpus of legitimate and

spam email messages (Apache SpamAssassin Project, 2005) that is used widely for this

purpose.

The remainder of the thesis is structured as follows. Chapter II provides background

on the problem of entropy-based classification and related work on some of the

2



corresponding adversarial problems for this type of classifiers. Chapter III introduces

the formal definition of the adversary problem and describes our approach to solving it.

Chapter IV describes the experimental results obtained from evaluation of our method

on a public email corpus. Finally, Chapter V concludes.
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CHAPTER II

BACKGROUND AND RELATED WORK

The starting point of our research is the problem of compression-based text

classification. Fundamentally, it rests on the assumption that when a pair of texts

compress well together and, consequently, share some structural homogeneity, it is more

likely that they belong to the same category. This assumption forms the basis for the

whole class of methods using measures of compressibility from various compression

models as measures of text similarity. This approach has been studied in a number

of works targeting particular models, specific algorithms for building them, and their

efficiency for estimating similarity of different types of texts (Cormack & Horspool, 1987;

Frank, Chui, & Witten, 2000; Goodman, Heckerman, & Rounthwaite, 2005; Bratko,

Cormack, Filipič, Lynam, & Zupan, 2006; Bratko, Filipič, & Zupan, 2006).

The focus of our research is specifically on the entropy-based classifiers that define

similarity measure to be the cross entropy. At the same time, our approach is mostly

agnostic to particular choice of algorithm to be used for learning probability models

of classes. For the purposes of evaluation, to estimate class probability distributions,

we use the algorithm of prediction by partial matching (PPM) (Cleary & Witten, 1984;

Moffat, 1990; Cleary & Teahan, 1997; Teahan, 1995), which has been shown to suit

well the special case of text classification—spam filtering (Bratko, Cormack, et al., 2006;

Bratko, Filipič, & Zupan, 2006).

While a significant amount of effort has been applied to study the effectiveness

of compression models in selected applications of text classification, there is still

no complete understanding of how robust such algorithms are to different kinds of

adversarial noise.
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In (Lowd & Meek, 2005b), it has been shown that a word-based attack is effective

against a maximum entropy spam filter (and a naive Bayes one, as well). The authors

propose the attack of inserting and appending freestanding words to spam messages that

are detectable as such by the classifier. To guide the selection of words, they consider

two sets of heuristics depending on whether the adversary is able to determine that a

modified message has been filtered out (active attack) or not (passive attack). In the

former case, the knowledge of classifier’s decisions is used as a supervisory signal.

In principle, random words that, being included in a barely-spam message, make it

legitimate, are promoted for future additions; the ones that make a barely-legitimate

message spam, are impeded. In the case of passive attack, the authors use frequency-

based heuristics requiring the availability of training samples. According to this strategy,

the words with higher frequency of occurrence in legitimate messages, or, alternatively,

with higher ratio of frequencies in legitimate messages over spam messages, are assigned

with higher probability of being used for an attack. Although these strategies prove

the feasibility of attacking maximum entropy classifiers, they are too simplistic. In

both active and passive cases, the information about the message being modified is

unnecessary for approaching the optimal transformation procedure; it is global due to

the nature of the considered classifiers.

The work (Lowd & Meek, 2005a) expands the subject to devising an attack on

a binary linear classifiers in the case of incomplete or lacking information about the

parameters of probabilistic models of those classifiers. This time, however, the focus is

not on the ways of constructing an attack, but rather on methods of retrieving sufficient

knowledge about the classifier to make a construction possible. The authors consider the

cases of Boolean and continuous features for a few adversarial cost functions estimating

the cost, or penalty, for each instance sent by an adversary to the input of a classifier.
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For both types of features, they propose algorithms that for a linear cost function is able

to discover classifier’s weights in polynomial number of queries to the classifier.

In (Biggio, Nelson, & Laskov, 2011, 2012), the question of robustness of another

linear classifier, support vector machines, is researched. The authors propose a poisoning

algorithm iteratively improving the attack point in attempt to optimize the classification

error which, as they show in evaluation, can be made as large as about one third. The

problem considered in these works, however, is less relevant to the one we are working

with in this thesis. The key distinction consists in that the authors concentrate on a

different kind of adversarial position, where an attacker is supposed to be able to inject

prepared inputs into the classifier’s training data, thus poisoning them. In contrast, we

focus on the adversary’s task of disguising their activity in the input of the classifier

given a fixed training data which is assumed to be unchanged during the time of the

interaction. Additionally, the obtained results significantly depend on properties of

support vector machines, and cannot be directly applied to maximum entropy classifiers.
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CHAPTER III

METHOD

3.1. Classifier Problem

3.1.1. Preliminaries

Let X ⊆ A∗ be a space of arbitrary text strings over some finite alphabet A. On this

space, we consider sources or classes of strings that are defined by probability distributions

over the set X . In particular, from now on, whenever we discuss a classification problem,

we assume that there exists a single input source of strings from X that come on the

input of the classifier.

The input source is described by the probability g(x)≡ P(ξ = x) assigned to values

x ∈ X of the discrete random variable ξ standing for the input strings. The classifier

reconstructs the probability distributions f (κ)(x) corresponding to one or more classes

κ. Formally, we define probability f (κ)(x) ≡ P(ξ = x | C (κ)) for C (κ) being the event

{ξ belongs to class κ}. In this work we concentrate on the case of two classes of strings:

legitimate Ham messages and unsolicited Spam messages that are designated with κ = H

and κ= S, respectively.

3.1.2. Finite Memory Markov Model

The probability of a string x ∈ X originating from the class κ is equal to

f (κ)(x) =
|x |
∏

l=1

P(x l | x l−1
1 ,κ), (3.1)
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where x l denotes the l-th character of the string x , and x l
k the substring of x starting

from the k-th and ending with the l-th character (if k > l, x l
k is empty). For the sake

of brevity, P(x l | x l−1
1 ,κ) stands for the probability P(ξl = x l | ξl−1

1 = x l−1
1 , C (κ)) of

character x l following the context x l−1
1 .

Naturally, we can parametrize distributions f (κ)(x) using these probabilities:

f (κ)(x) = f (x ,θ (κ)) =
|x |
∏

l=1

θ
(κ)
i(x l−1

1 ), j(x l )
, (3.2)

where i(x l−1
1 ) and j(x l) denote the ordinal numbers of the context x l−1

1 = ci ∈ A∗ and

the character x l = a j ∈ A for some orderings on the sets A and A∗, and parameters θ (κ)i j

are the probabilities P(ξl = a j | ξl−1
1 = ci, C (κ)).

From this point on, we will also assume that each class κ can be modelled as a

stationary and ergodic Markov chain which memory is bounded by certain order K ≥ 1.

Under the assumption that limited memory K is sufficient for evaluating probability (3.2),

we can rewrite it for our convenience as

f (x ,θ ) =
|x |
∏

l=1

θi(x l−1
l−K ), j(x l ) =

∏

ci∈AK

a j∈A

θ
ni j(x)
i j (3.3)

for ni j(x) being the number of times character a j follows context ci in string x (or,

alternatively, substring cia j occurs in x), where

∑

a j∈A

θi j = 1, for all ci ∈ AK , (3.4)

∑

ci∈AK

a j∈A

ni j(x) = |x |. (3.5)
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This way, any string x is viewed as a set of overlapping (K + 1)-grams with frequencies

ni j(x), and parameters θi j characterize a class of strings as a whole.

Reasoning completely analogously for the probability g(x), we obtain the same

parametrized form:

g(x ,τ) =
∏

ci∈AK

a j∈A

τ
ni j(x)
i j . (3.6)

To avoid confusion, we use the letter τ to denote the vector of parameters of the input

source as distinguished from vectors of class parameters θ (κ).

3.1.3. Problem Statement

The above parametrization following from finite memory Markov models allows us

to view the mathematical problem of inferring a class model as an optimization problem

in the space of parameters:

R(θ ) = Eξ
�

r(ξ,θ )
�→min

θ
(3.7)

for some measure function r(ξ,θ) evaluating the “loss” or “penalty” of classifying

message ξ as belonging to the class described by the probability distribution with

parameters θ . In other words, the objective of the problem (3.7) for each class κ is

to find parameters θ (κ) giving the least losses on average according to r(ξ,θ (κ)). The

expectation is taken over the probability distribution g(x) of strings ξ from input source.

Generally, probability g(x) is supposed to be unknown for all classes. For this reason, a

version of the problem (3.7) for empirical averaging is considered:

bR(θ ) =
∑

xk∈T

r(xk,θ )→min
θ

, (3.8)
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where T stands for a training sample of messages corresponding to the class in question.

Hereinafter, for consistency, training samples of Ham and Spam classes are labeled as

T (H) and T (S) accordingly.

When the inference problem is solved and the vectors of parameters θ (H) and θ (S)

are estimated for each class, they can be used to make classifying decision based on the

same principle of least loss:

q(x ,θ ) = r(x ,θ (H))− r(x ,θ (S)), (3.9)

κ(x) =











H, if q(x ,θ )< α(H);

S, if q(x ,θ )≥ α(S).
(3.10)

In case of α(H) ≤ q(x ,θ) < α(S), additional measures are needed to decide the class

(for example, increasing the length of the message in question). Most commonly, both

parameters are set the same value, α(H) = α(S) = α. The choice of parameter α is guided

by its influence on the number of type I and type II errors.

3.1.4. Entropy Classification

Let us consider the measure function r(ξ,θ) = − 1
|ξ| log f (ξ,θ). As it is obvious

from the above definitions, the general criterial function (3.7) specializes to the cross

entropy

R(θ ) = H(θ )≡ −Eξ

�

1
|ξ| log f (ξ,θ )

�

= −
∑

x∈X

1
|x | g(x) log f (x ,θ )→min

θ
. (3.11)

We will refer to this specialization of the problem (3.7) as the classifier problem.

10



Similarly, the empiric version (3.8) becomes

bR(θ ) = ÒH(θ )≡ −
∑

xk∈T

1
|xk|

log f (xk,θ )→min
θ

, (3.12)

where T , of course, is assumed to be a sample of strings distributed according to g(x).

Decision rule (3.10) can be rewritten as follows.

q(x ,θ ) =
1
|x | log f (S)(x)− 1

|x | log f (H)(x) =
1
|x | log

f (S)(x)
f (H)(x)

, (3.13)

κ(x) =











H, if q(x ,θ )< α;

S, if q(x ,θ )≥ α.

(3.14)

In practice, parameter α is often set to zero.

It is well known that if the function g(x) is given and f (x ,θ) > 0 for all x such

that g(x)> 0, then

f (x ,θ )∝ g(x)
|x | (3.15)

is an exact solution of the problem (3.11). Because, as we have seen above, both f (x)

and g(x) can be parametrized identically, at least in the case when all texts x have the

same length (or the variation in lengths can be neglected), f (x ,θ ) can be constructed

from g(x ,τ) by letting θ = τ. The parameters τ, in turn, can be directly found by

estimating conditional probabilities P(x l | x l−1
l−K) on some training sample T .

This observation forms the basis of the technique called Prediction by Partial

Matching (PPM). Aside from differences in strategies of approximating probabilities for

character-context pairs that do not occur in a given sample, PPM algorithms work as

11



simple frequency estimators setting

θi j ≈
Ni j

Ni
, (3.16)

for

Ni j =
∑

x∈T

ni j(x), (3.17)

Ni =
∑

a j∈A

Ni j. (3.18)

For versions of PPM estimators and the details of their implementation, see (Cleary &

Witten, 1984; Teahan, 1995; Cleary & Teahan, 1997; Moffat, 1990).

3.2. Adversary Problem

As we just seen above, in the classifier problem (3.11) the goal was to find an

optimal statistical model f (x ,θ ) for messages of some class, given a fixed input source

defined by probabilities g(x) which manifest itself in a sample T . To put it more strictly,

the function g(x) was fixed (although unknown), while the probability distribution

f (x ,θ ) was known up to the vector θ which were the parameters in question.

It is also of interest to consider the inverse problem statement where given fixed

statistical model f (x ,θ ) of some class, it is required to find the source distribution g(x)

which is the most favourable for certain classification outcome. In this setting, g(x)

becomes the function in question, while f (x ,θ) is fixed through a known vector of

parameters θ .

One example of such inverse objective is the problem of determining g(x) generating

messages that are as close to Ham messages as possible in terms of probability of passing

the spam filter. Another version of the problem that also falls into this category is

the following adversary problem (or, in case of spam filtering, the spammer problem).

12



For a given string z from some set of base messages Z , find probability distribution for

generating strings x t such that the result of some transformation ψ(z, x t) combining

them complies with some statistical requirement, e.g. being classified as Ham on average.

This setting is especially practical for a spammer when z by itself has low chances of

passing the filter.

To state the spammer problem more formally, we assume the following. There is

a generator algorithm which plays the role of a source of strings x t(τ) for a specified

vector of parameters τ. Strings x t(τ) are considered to be generated randomly and

independently, and have the same distribution in the space of strings X . The generated

strings x t(τ) are then used to obtain new messages ut = ψ(z, x t(τ)) from a given

message z according to the predetermined transformation ψ. In general, the function

ψ(z, x) can associate a pair of strings with any string. One such transformation that

is simple but still keeps the problem non-trivial is string concatenation, ψ(z, x) = zx .

Even though our method does not sufficiently depend on a particular transformation,

for illustration purposes, when necessary, we will not be using other definitions of ψ

except for the concatenation.

The objective of the inverse problem itself remains the same:

G(τ)≡ −
∑

x∈X

1
|x | g(x ,τ) log f (x)→min

τ
, (3.19)

with the exception of that optimization is done for the parameters τ of the source

distribution g(x ,τ), not the class distribution f (x ,θ ) = f (x). The decision to search in

the parametrized space of distributions g(x ,τ) is justified by the necessity to obtain a

generative (rather than discriminative) model of the desired message source.

As in the case of the classifier problem (3.11), it is well known that, in non-

parametrical form, the inverse problem (3.19) also has an analytical solution. Any
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function g(x) such that

∑

x∈X fmax

g(x) = 1, (3.20)

g(x) = 0, for all x ∈ X \ X fmax
, (3.21)

where

X fmax
= argmax

x

f (x)
|x | , (3.22)

minimizes the cross entropy for a given f (x). These solutions for the non-parametric

problem, however, does not solve the spammer problem. None of the functions

g(x) satisfying the above properties is guaranteed to be represented in the space

of parametrized functions g(x ,τ) which makes them useless for generating x t(τ).

Moreover, even if this difficulty did not exist, the diversity of the generated messages

would be extremely low, because any of such g(x) leads to generating the same few

messages from X fmax
over and over again which makes spammer easily detectable.

Empirical analog of the criterion (3.19) is

bG(τ)≡
∑

xk∈T

1
|x | g(xk,τ)→min

τ
, (3.23)

where the sample T is obtained from a distribution P(ξ = x)∝ log 1
f (x) . Therefore,

in order to approach the inference problem in the form (3.23), it is necessary to have

an auxiliary instrumental sample which, unlike training samples for the classes or the

combined sample for the input source, cannot be observed in practice.

14



3.3. Instrumental Sampling Approach

Let us introduce new parameters wi j such that

τi j =
exp(wi j)

∑

a j∈A exp(wi j)
, (3.24)

where, as before, subscripts i and j correspond to some context ci ∈ AK and character a j ∈
A, respectively. For any values of wi j, the required conditions on τi j hold automatically:

0< τi j < 1 and
∑

a j∈A

τi j = 1 (3.25)

(0≤ τi j ≤ 1, if wi j = ±∞ are allowed).

For the new parameters, the probability

g(x ,τ) =
∏

ci∈AK

a j∈A

τ
ni j(x)
i j (3.26)

changes to

g(x ,τ(w)) =
∏

ci∈AK

a j∈A

�

exp(wi j)
∑

a j′∈A exp(wi j′)

�ni j(x)

=
∏

ci∈AK

1

Zni(x)
i

exp

�

∑

a j∈A

wi jni j(x)

�

=
∏

ci∈AK

�

1
Zi

exp

�

∑

a j∈A

wi j

ni j(x)

ni(x)

��ni(x)

, (3.27)
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where ni j(x) is, as usual, the number of occurrences of a substring cia j in x , and

ni(x) =
∑

a j∈A

ni j(x), (3.28)

Zi(w) =
∑

a j∈A

exp(wi j). (3.29)

Now, let us calculate the gradient of the function g(x ,τ(w)) using the equality

∂ g(x ,τ(w))
∂ wlk

= g(x ,τ(w))
∂

∂ wlk
log g(x ,τ(w)), (3.30)

where

log g(x ,τ(w)) =
∑

ci∈AK

a j∈A

ni j(x) log

�

exp(wi j)

Zi(w)

�

=
∑

ci∈AK

a j∈A

wi jni j(x)−
∑

ci∈AK

a j∈A

ni j(x) log Zi(w). (3.31)

Then,

∂ g(x ,τ(w))
∂ wlk

= g(x ,τ(w))
∂

∂ wlk

�

∑

ci∈AK

a j∈A

wi jni j(x)−
∑

ci∈AK

a j∈A

ni j(x) log Zi(w)
�

= g(x ,τ(w))
�

nlk(x)−
nl(x)

Zl
exp(wlk)

�

= g(x ,τ(w))nl(x)
�

bτlk(x)−τlk(w)
�

, (3.32)

where

bτlk(x) =
nlk(x)
nl(x)

. (3.33)
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Now, consider a problem of the form

Eξ
�

F(ξ, w)
�≈

∑

xk∈T

F(xk, w)→min
w

, (3.34)

where the random variable ξ(w) is distributed and strings xk from an instrumental

sample T are generated according to the probabilities g(x ,τ(w)). The problem (3.23)

that has motivated us to consider this approach is a special case for

F(ξ, w) = F(x) =
1
|x | log

1
f (x)

. (3.35)

Given that

∂

∂ wlk
Eξ
�

F(ξ, w)
�

=
∂

∂ wlk

�

∑

x∈X

F(x , w) g(x ,τ(w))
�

=
∑

x∈X

∂

∂ wlk

�

F(x , w) g(x ,τ(w))
�

=
∑

x∈X

�

∂

∂ wlk
F(x , w) g(x ,τ(w)) + F(x , w)

∂

∂ wlk
g(x ,τ(w))

�

=
∑

x∈X

�

∂

∂ wlk
F(x , w) + F(x , w)nl(x)

�

bτlk(x)−τlk(w)
�

�

g(x ,τ(w))

= Eξ

�

F(ξ, w)
�

∂

∂ wlk

�

log F(ξ, w)
�

+ nl(ξ)
�

bτlk(ξ)−τlk(w)
�

��

= Eξ

�

∂

∂ wlk
F(ξ, w) + F(ξ, w)nl(ξ)

�

bτlk(ξ)−τlk(w)
�

�

, (3.36)

from the necessary condition of extremum, we see that optimal w satisfies the equation

Eξ

�

∂

∂ wlk
F(ξ, w) + F(ξ, w)nl(ξ)

�

bτlk(ξ)−τlk(w)
�

�

= 0, (3.37)
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which, in the case when F(x , w) = F(x) is independent of parameters, simplifies to

Eξ
�

F(ξ)nl(ξ)
�

bτlk(ξ)−τlk(w)
�

�

= 0, (3.38)

for all cl ∈ AK , ak ∈ A. (Both nl(x) and nlk(x) are random variables and, consequently,

cannot be factored out of the expectation.)

Since ξ ∼ g(x ,τ(w)), as the size of instrumental sample T grows, frequencies

bτlk(x) converge to the current estimations τlk(w) that were used to generate the sample

in the first place. For this reason, any attempt of iterative optimization of (3.34) turns

into a random walk around initial values of wi j.

Moreover, for many practical generation procedures it is true that

Eξ
�

bτlk(ξ)
�

= τlk(w). (3.39)

In a simplified case of both F(x) and nl(x) being independent of parameters w, which

takes place when, for example, generation procedure stops after reaching the same

length of x chosen beforehand, the equation (3.38) simply degenerates, and the problem

becomes meaningless.

If the function F preserves some dependence on parameters—either in the general

form F(x , w), or in a weaker variant F(x(w))—the problem (3.38) is not strictly

meaningless. However, for sufficiently long samples, as the difference |bτlk(ξ)−τlk(w)|
approaches zero, the influence of the F(x , w)-multiplier becomes effectively eliminated

making the expectation (3.38) almost independent of F . For this reason, we consider

approaching problem (3.19) as (3.34) unpromising.
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3.4. Importance Sampling Approach

Formally, we consider a vector of parameters τ to be a solution to the inverse

problem, if

FD[q(u,θ )]≡F [q(u,θ ) | u=ψ(z, x), x ∈ D]→max
τ

, (3.40)

where D is a set of text strings, the domain, and F (·) is an ensemble operation defined

on D. For example, the domain D might be the set of all strings of some bounded length,

or some subset of that set. An empirical sample of strings produced by the generator

used by the adversary can also be taken as the domain Dτ = {x t(τ)}t .

The choice of ensemble operation depends on what criterion of success aligns best

with the goals of the spammer in a particular problem setting. Let us consider some of

them.

(a) For all x ∈ Dτ, messages u=ψ(z, x) are successfully pass the spam filter:

FDτ

�

q(u,θ )
�

=min
x∈Dτ

1(H)(u)→max
τ

, (3.41)

where

1(H)(u)≡ 1
�

q(u,θ )< α
�

= 1
�

log f (S)(u)− log f (H)(u)< α|u|�. (3.42)

(b) As many messages x ∈ Dτ,l = {x ∈ Dτ | |x | ≤ l} of a bounded length l are

successfully pass the spam filter:

FDτ,l

�

q(u,θ )
�

=
∑

x∈Dτ,l

1(H)(u)→max
τ

. (3.43)
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(c) Empirical frequency of passing the spam filter successfully estimated over a sample

Dτ is maximal:

FDτ

�

q(u,θ )
�

=
1
|Dτ|

∑

x∈Dτ

1(H)(u)→max
τ

. (3.44)

(d) The average logarithmic ratio of probabilities q(u,θ ) estimated over a sample Dτ

is as minimal as possible:

FDτ

�

q(u,θ )
�

= −
∑

x∈Dτ

q(u,θ )→max
τ

, (3.45)

or
∑

x∈Dτ

q(u,θ )→min
τ

. (3.46)

Criterion (a) is too optimistic and requires the acceptance of the implicit assumption

that there exists a vector τ which guarantees that all messages pass the filter. Solution

of the problem in the sense of this criterion, generally, is unlikely to exist (unless the

generator algorithm is complemented with constraints significantly restricting diversity

of generated strings).

Criterion (b) does not take probabilities of strings x into account, while it would

be worthwhile to ignore strings with zero or close to zero probabilities.

We consider criteria (c) and (d) to be more appropriate. Let us discuss the latter

objective before the former.

3.4.1. Entropy-Based Criterion

Empirical criterion (3.45) is equivalent to the optimization problem

F�q(u,θ )
�

=
∑

x∈X

q(u,θ ) g(x | z,τ) = Eξ
�

q(u,θ )
�→min

τ
, (3.47)
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where the expected value is taken over the probability distribution g(x | z,τ) of text x

being generated for the base string z and parameters τ.

Let us now rearrange the sum in (3.47) using the well known technique of

importance sampling:

R(τ | z) = Eξ
�

q(u,θ )
�

=
∑

x∈X

q(u,θ ) g(x | z,τ)

�

γ(H)
p(H) f (H)(x)
p(H) f (H)(x)

+ γ(S)
p(S) f (S)(x)
p(S) f (S)(x)

�

=
∑

κ∈{H,S}
p(κ) E(κ)

ξ

�

γ(κ) q(ξ | z,θ )
g(ξ | z,τ)
p(κ) f (κ)(ξ)

�

= Eξ,κ

�

q(ξ | z,θ )
g(ξ | z,τ)
p(κ) f (κ)(ξ)

�

= Eξ,κ

�

W (κ)(ξ | z,θ ) g(ξ | z,τ)
�

→min
τ

, (3.48)

for

W (κ)(x | z,θ ) =
γ(κ) q(x | z,θ )

p(κ) f (κ)(x)
, (3.49)

where for each class κ ∈ {H,S}, expected value E(κ)
ξ
[ · ] denotes conditional expectation

Eξ[ · | ξ ∼ f (κ)(x)], p(κ) stands for the a priori probability of the class κ, and γ(H), γ(S)

are arbitrary splitting weights such that γ(H) + γ(S) = 1 (for example, γ(H) = γ(S) = 1
2 or

γ(H) = p(H), γ(S) = p(S)).

In this problem setting, all statistical information that can be available to the

adversary—that is, both samples T (H) and T (S) of Ham and Spam messages—are used:

R(τ | z)≈ bR(τ | z) =
∑

(xk ,κk)∈T

W (κk)(xk | z, θ ) g(xk | z,τ)→min
τ

. (3.50)
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Here κk are true labellings of messages xk from the sample T which is the union of

samples T (H) and T (S) that are assumed to be drawn from distributions f (H)(x) and

f (S)(x), respectively.

Due to the necessary condition of extremum, we have the equation:

∂

∂ τi j
R(τ | z) = ∂

∂ τi j
Eξ,κ

�

W (κ)(ξ | z,θ ) g(ξ | z,τ)
�

= Eξ,κ

�

W (κ)(ξ | z,θ )
∂

∂ τi j
g(ξ | z,τ)

�

= 0. (3.51)

Since it has the form E[ · ] = 0, it is natural for us to apply the method of stochastic

optimization (Robbins & Monro, 1951). Switching to the parameters wi j that introduced

in (3.24), we obtain the stochastic algorithm

w(t+1)
i j = w(t)i j − γtW

(κk(t))(z, xk(t)) g(xk(t) | z,τ(w(t)))

· ni(xk(t) | z)
�

bτi j(xk(t) | z)−τi j(w
(t))
�

, (3.52)

where γt is a series satisfying the properties

γt ≥ 0, for all t ≥ 0, (3.53)
∞
∑

t=0

γt =∞, (3.54)

∞
∑

t=0

γ2
t <∞, (3.55)

and xk(t) and κk(t) run through the sample T (potentially repeatedly) in some order

defined by k(t).
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3.4.2. Probability-Based Criterion

Obviously, objective function (3.44) is the empirical version of the criterion

F�q(u,θ )
�

=
∑

x∈X

1(H)(u) g(x | z,τ) = Eξ
�

1(H)(u)
�→max

τ
, (3.56)

where ξ ∼ g(x | z,τ) and, as in the previous section, g(x | z,τ) is generational

probability distribution for base string z and parameters τ. This criterion, in turn,

makes the problem be equivalent to maximizing the probability of the transformed

message ψ(z,ξ) passing the spam filter:

R(τ) = Pr
�

1(H)(ψ(z,ξ)) | z,τ
�→max

τ
. (3.57)

Since we have only two classes, maximization of the criterion (3.56),

R(H)(τ) =
∑

x∈X

1(H)(ψ(z, x)) g(x | z,τ), (3.58)

is equivalent to minimization of the dual criterion

R(S)(τ) =
∑

x∈X

1(S)(ψ(z, x)) g(x | z,τ), (3.59)

where 1(S)(u) = 1− 1(H)(u). Let us combine both of them into a single problem

R(τ)≡ γ(H)R(H)(τ)− γ(S)R(S)(τ) (3.60)

=
∑

x∈X

�

γ(H)1(H)(ψ(z, x))− γ(S)1(S)(ψ(z, x))
�

g(x | z,τ)→max
τ

, (3.61)

where γ(H) and γ(S) are some splitting weights such that γ(H) + γ(S) = 1.
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3.4.2.1. Supervised Learning

Formally rearranging the criterion function (3.60) into two sums and applying the

importance sampling for the distribution of the pair (ξ,κ), we see that

R(τ) =
∑

x∈X

�

γ(H)1(H)(ψ(z, x))− γ(S)1(S)(ψ(z, x))
�

g(x | z,τ)

=
∑

κ∈{H,S}
p(κ)

∑

x∈X

W (κ)(z, x) f (κ)(x) g(x | z,τ)

= Eξ
�

W (κ)(z,ξ) g(ξ | z,τ)
�→max

τ
, (3.62)

for the random variable ξ distributed according to f (κ)(x) and

W (κ)(z, x) =
γ(H)1(H)(ψ(z, x))− γ(S)1(S)(ψ(z, x))

f (κ)(x)

=
1(H)(ψ(z, x))− γ(S)

f (κ)(x)
. (3.63)

Assuming that a sample of messages xk ∈ T is available together with true labeling of

classes κk = κ(xk), the criterion R(τ) can be estimated as

R(τ)≈ bR(τ)≡
∑

(xk ,κk)∈T

W (κk)(z, xk) g(xk | z,τ). (3.64)

For the parameters wi j that have been introduced earlier this chapter through the

equality

τi j =
exp(wi j)

∑

a j∈A exp(wi j)
, (3.65)
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we obtain that

∂ R(w)
∂ wi j

= Eξ

�

W (κ)(z,ξ) g(ξ | z,τ(w))

�

ni j(ξ | z)−
ni(ξ | z)exp(wi j)
∑

al∈A exp(wil)

��

= Eξ
�

W (κ)(z,ξ) g(ξ | z,τ(w))ni(ξ | z)
�

bτi j(ξ | z)−τi j(w)
�

�

, (3.66)

where, as in previous sections,

bτlk(x) =
nlk(x)
nl(x)

, (3.67)

and ni(x | z) and ni j(x | z) stand for the number of occurrences of the context ci ∈ AK

followed by any character and followed by the character a j ∈ A, respectively, in the text

x appended to the message z.

Thus, the stochastic approximation algorithm for the necessary condition of the

extremum,
∂ R(w)
∂ wi j

= 0, (3.68)

takes the form

w(t+1)
i j = w(t)i j + γtW

(κk(t))(z, xk(t)) g(xk(t) | z,τ(w(t)))

· ni(xk(t) | z)
�

bτi j(xk(t) | z)−τi j(w
(t))
�

. (3.69)

3.4.2.2. Unsupervised Learning

In case when true labeling κk of messages xk from sample T is unknown, we can

alternatively do the importance sampling for the distribution

f (x) = p(H) f (H)(x) + p(S) f (S)(x). (3.70)
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Then

R(τ) =
∑

x∈X

γ(H)1(H)(ψ(z, x))− γ(S)1(S)(ψ(z, x))
f (x)

f (x) g(x | z,τ)

= Eξ
�

W (z,ξ) g(ξ | z,τ)
�→max

τ
, (3.71)

where the random variable ξ is distributed in accordance with f (x), and

W (z, x) =
γ(H)1(H)(ψ(z, x))− γ(S)1(S)(ψ(z, x))

f (x)

=
1(H)(ψ(z, x))− γ(S)

p(H) f (H)(x) + p(S) f (S)(x)
. (3.72)

Since the criteria (3.71) and (3.62) differ only in definition of the weights W (z, x)

which are independent of wi j, the resulting stochastic optimization algorithm is exactly

the same as in (3.69) (again, up to differences between W (z, x) and W (κ)(z, x)).

3.5. Likelihood-Based Criterion

Let us again consider the transformation u =ψ(z, x) of a message z with an arbitrary

string x . Entropy per character of the resulting string u can be estimated empirically as

H(u | τ) = − 1
|u| log

� |u|
∏

l=1

g(ul | ul−1
l−K ,τ)

�

= − 1
|u|

∑

ci∈AK

a j∈A

ni j(u) logτi j. (3.73)

Averaged over random transformed messages u, it is equal to

H(τ) = Eu

�

H(u | τ)�= −
∑

ci∈AK

pi

∑

a j∈A

p j|i logτi j = −
∑

ci∈AK

pi Hi(τ), (3.74)
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where

Hi(τ) =
∑

a j∈A

p j|i logτi j, (3.75)

pi is the probability of the context ci occurring in a random transformed message u, and

p j|i is the conditional probability of character a j occurring in u after the context ci. The

function Hi(τ), in turn, can be estimated on a single message u as

Hi(τ)≈ ÒHi(u | τ) =
∑

a j∈A

ni j(u)

ni(u)
logτi j. (3.76)

Assuming that we have available a sample T of messages x out of the universal

space X , we can split T into auxiliary samples depending on to what class ψ(z, x) is

assigned by the classifier:

T (κ) = {xk ∈ T | 1(κ)(ψ(z, xk) | θ ) = 1}, (3.77)

where, as in previous sections,

1(H)(x | θ ) = 1[q(x ,θ )< α], (3.78)

1(S)(x | θ ) = 1[q(x ,θ )≥ α]. (3.79)

That is, T (H) and T (S) consist of messages xk ∈ T that make the base message z being

recognized as Ham and Spam, respectively.
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Considering these samples, we can generalize the estimate ÒH(u | τ) to the estimates

over samples T (H) and T (S):

R(H)(τ | z) = − 1
|T (H)|

∑

xk∈T (H)

∑

ci∈AK

pi
ÒHi(ψ(z, xk) | τ), (3.80)

R(S)(τ | z) = − 1
|T (S)|

∑

xk∈T (S)

∑

ci∈AK

pi
ÒHi(ψ(z, xk) | τ). (3.81)

Then, we can state our goal in a new way: Find parameters τ such that the entropy

estimate R(H)(τ | z) becomes low, while the estimate R(S)(τ | z) remains high. One way

to achieve these goals simultaneously is to formalize them as a problem of minimization

the difference of the above objective functions:

R(τ) = R(H)(τ | z)− R(S)(τ | z)→min
τ

, (3.82)

subject to usual normalization requirements

τi j ≥ 0 and
∑

a j∈A

τi j = 1, (3.83)

for all contexts ci ∈ AK and all characters a j ∈ A.
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Substituting the entropy estimation (3.76) definition into the criterion (3.82), we

have:

R(τ | z) = R(H)(τ | z)− R(S)(τ | z)

= − 1
|T (H)|

∑

uk∈U (H)

∑

ci∈AK

pi
ÒHi(u | τ) +

1
|T (S)|

∑

uk∈U (S)

∑

ci∈AK

pi
ÒHi(u | τ)

= −
∑

ci∈AK

pi

�

1
|T (H)|

∑

uk∈U (H)

ÒHi(u | τ)−
1
|T (S)|

∑

uk∈U (S)

ÒHi(u | τ)
�

= −
∑

ci∈AK

pi

∑

a j∈A

(ν(H)i j − ν(S)i j ) logτi j →min
τ

, (3.84)

for

U (κ) = {ψ(z, xk) | xk ∈ T (κ)}, (3.85)

ν
(κ)
i j =

1
|T (κ)|

∑

uk∈U (κ)

ni j(uk)

ni(uk)
. (3.86)

Since parameters τi j occur only in summands for the context ci, optimization (3.84)

naturally falls into |AK | smaller problems:

Ri(τ | z) = R(H)i (τ | z)− R(S)i (τ | z)→ min
{τi1,τi2,...,τi|A|}

, (3.87)

where

R(κ)i (τ | z) = −
∑

a j∈A

ν
(κ)
i j logτi j. (3.88)

Lemma 1. The objective function

Ri(τ) = −
∑

j∈J

νi j logτi j, (3.89)
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where weights νi j ≥ 0 for any j ∈ J, and parameters τi j are subject to constraints

τi j ≥ 0 and
∑

j∈J

τi j = s > 0, (3.90)

reaches its minimum value at

τ∗i j = s
νi j

νi
, (3.91)

where

νi =
∑

j∈J

νi j. (3.92)

Proof. Considering that logε≤ (ε− 1) for any ε > 0, we see that for an arbitrary vector

of parameters τ,

Ri(τ
∗)− Ri(τ) = −

∑

j∈J

νi j log
sνi j

νi
+
∑

j∈J

νi j logτi j

=
∑

j∈J

νi j log
τi jνi

sνi j

≤
∑

j∈J

νi j

�

τi jνi

sνi j
− 1

�

=
νi

s

∑

j∈J

τi j −
∑

j∈J

νi j = 0, (3.93)

by definition of νi and normalization requirements on τ. From the obtained relation it

immediately follows that Ri(τ∗)≤ Ri(τ) for any τ.

Lemma 2. The objective function

Ri(τ) = −
∑

j∈J

νi j log
1
τi j

, (3.94)
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where weights νi j ≥ 0 for any j ∈ J, and parameters τi j are subject to constraints

τi j ≥ 0 and
∑

j∈J

τi j = s > 0, (3.95)

reaches its minimum value at

τ∗i j =















s
|Jmin

i |
, if j ∈ Jmin

i ;

0, if j ∈ J \ Jmin
i ;

(3.96)

where

Jmin
i = { j ∈ J | νi j =min

j∈J
νi j}. (3.97)

Proof. Let us consider the following values of parameters under the temporary

assumption that τi j ≥ ε for some arbitrarily small ε > 0 and all j ∈ J .

τ∗i j(ε) =















s
1− (|J | − |Jmin

i |)ε
|Jmin

i |
, if j ∈ Jmin

i ;

sε, if j ∈ J \ Jmin
i .

(3.98)

We can assume that
∑

j∈J\Jmin
i
νi j > 0, which is always true unless Jmin

i = J .

It is clear that for smaller values of ε criterion function Ri(τ∗(ε)) also gets smaller

values.

Ri(τ
∗(ε)) = −

∑

j∈Jmin
i

νi j log
|Jmin

i |
s
�

1− (|J | − |Jmin
i |)ε

� −
∑

j 6∈Jmin
i

νi j log
1
sε

. (3.99)
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Therefore, passing to the limit, we can make the criterion arbitrarily small while

approaching the desired solution τ∗:

lim
ε→0

Ri(τ
∗(ε)) = −∞, (3.100)

lim
ε→0
τ∗(ε) = τ∗. (3.101)

Generally speaking, this solution is not unique: any distribution of the probability

mass across τ∗i j for j ∈ Jmin
i minimizes the criterion. However, one solution is sufficient

for our purposes.

Theorem 3. The criterion function

Ri(τ | z) = −
∑

a j∈A

(ν(H)i j − ν(S)i j ) logτi j (3.102)

subject to constraints

τi j ≥ 0 and
∑

a j∈A

τi j = 1, (3.103)

reaches its minimum value at

τ∗i j =
µi j

µi
, (3.104)

where

µi j =max{0,ν(H)i j − ν(S)i j }, (3.105)

µi =
∑

a j∈A

µi j. (3.106)

Proof. Let us divide the sum in the objective function Ri(τ | z) into the following three

sums over disjoint subsets of indices according to the sign of the difference δi j ≡
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ν
(H)
i j − ν(S)i j :

Ri(τ | z) = −
∑

a j∈A

δi j logτi j

= −
∑

j∈J+1
i

δi j logτi j −
∑

j∈J−1
i

δi j logτi j −
∑

j∈J0
i

δi j logτi j

= −
∑

j∈J+1
i

δi j logτi j −
∑

j∈J−1
i

(−δi j) log
1
τi j

, (3.107)

where

Jσi = { j | a j ∈ A∧ sgn(ν(H)i j − ν(S)i j ) = σ}. (3.108)

Similarly to Jσi , let

sσi =
∑

j∈Jσi

τi j, (3.109)

s+i + s−i + s0
i = 1. (3.110)

Clearly, the problem of finding optimal τi j can be solved separately for each of the

sums in (3.107).

– For the first sum

R+i (τ) = −
∑

j∈J+1
i

δi j logτi j, (3.111)

conditions of the Lemma 1 hold for J = J+1
i , νi j = δi j, and s = s+i . Consequently,

the function R+i (τ) is minimized for

τ∗i j =
s+i δi j

∑

l∈J+1
i
δil

, j ∈ J+1
i . (3.112)

Notice that the greater the sum s+i becomes, the lesser is the minimal value R+i (τ
∗).
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– For the second sum

R−i (τ) = −
∑

j∈J+1
i

(−δi j) log
1
τi j

, (3.113)

conditions of the Lemma 2 hold for J = J−1
i , νi j = −δi j, and s = s−i . As we have

shown in Lemma 2, when parameters are bounded below by some arbitrarily small

ε > 0, the function R−i (τ) is minimized for

τ∗i j(ε) =















s−i
1− (|A| − |Jmin

i |)ε
|Jmin

i |
, if j ∈ Jmin

i ;

s−i ε, if j ∈ J−1
i \ Jmin

i ;

(3.114)

Jmin
i = { j ∈ J−1

i | −δi j = min
l∈J−1

i

(−δil) = −max
l∈J−1

i

(δil)}. (3.115)

Notice that, since τi j occurs in R−i (τ) inversed, unlike in R+i (τ), the lesser the sum

s−i becomes, the lesser is the minimal value R−i (τ
∗).

– For the indices j ∈ J0
i , the choice of τi j is irrelevant and does not change the value

of Ri(τ | z) regardless of the magnitude of s0
i .

In order to combine the independent solutions (3.112) and (3.114) optimizing the

separate sums, it is necessary to determine in which proportion should the probability

mass be distributed between parameters belonging to J+1
i , J−1

i , and J0
i . As we have seen

above, for the minimal value (as a function of the bound ε) to be the smallest, s+i has

to be as large as possible, while both s−i and s0
i , to the contrary, have to be as small as
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possible. Therefore, the optimal proportion for the parameters bounded below by ε is

s0
i = |J0

i |ε, (3.116)

s−i = |J−1
i |ε, (3.117)

s+i = 1− s−i − s0
i . (3.118)

The corresponding parameters are then

τ∗i j(ε) =















δi j
∑

l∈J+1
i
δil

�

1− (|A| − |J+1
i |)ε

�

, if j ∈ J+1
i ;

ε, if j ∈ J−1
i ∪ J0

i .

(3.119)

Passing to the limit for ε→ 0, we finally obtain the parameters that deliver minimum to

the function Ri(τ | z):

τ∗i j = lim
ε→0
τ∗i j(ε) =















δi j
∑

l∈J+1
i
δil

, if j ∈ J+1
i ;

0, if j ∈ J−1
i ∪ J0

i ;

=
max{0,δi j}

∑

a j∈A max{0,δi j}
=
µi j

µi
. (3.120)

3.6. Generalization for Multiple Base Messages

Throughout this chapter we have considered the method for a single arbitrary base

message z that is chosen beforehand. However, with minor modifications, the presented

reasoning holds for the same criteria but averaged over multiple base messages zl ∈ Z .

Indeed, for both approaches described in section 3.4 resulting in stochastic optimization,
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the only change averaging over Z makes is that the variable z, as well as x , runs over a

sample on iterations:

w(t+1)
i j = w(t)i j + γtW

(κk(t))(zl(t), xk(t)) g(xk(t) | zl(t),τ(w
(t)))

· ni(xk(t) | zl(t))
�

bτi j(xk(t) | zl(t))−τi j(w
(t))
�

. (3.121)

The same is true for the likelihood-based approach discussed in section 3.5. If the

criterion (3.82) is averaged over a set of base messages Z , the order of summation can

be seamlessly changed so that the new outer sum over zl ∈ Z , together with the sum

over uk ∈ U , is taken before the sum over ci ∈ AK and a j ∈ A. Consequently, the resulting

objective function takes the same form (3.84) but for

ν
(κ)
i j =

1
|Z | |T (κ)|

∑

zl∈Z

∑

uk∈T (κ)

ni j(ψ(zl , xk))

ni(ψ(zl , xk))
. (3.122)

36



CHAPTER IV

EVALUATION

4.1. Methodology

In order to validate the method proposed in this research, first we implemented

the entropy classifier for the problem of spam filtering. Following the definition of the

problem given in section 3.1.4, our implementation uses the algorithm of prediction by

partial matching (PPM) to learn the finite memory Markov models for each of the two

classes, and then makes classifying decisions depending on for which class entropy per

character is the minimal. We also implemented all three of the algorithms proposed in

sections 3.4.1, 3.4.2, and 3.5.

Our numerical experiments were organized as follows. For each run of evaluation,

first, a combined sample T of both legitimate (T (H)) and spam (T (S)) messages was

drawn out of the SpamAssassin public corpus (Apache SpamAssassin Project, 2005).

Each message in xk ∈ T was accompanied with the true class labelling κk ∈ {H,S}.
The sample T was additionally temporarily split at random in proportion seven to

three into the training and testing samples, respectively. The former was used to train

the classifier, the latter was used to ensure that performance of the classifier is within

the expected boundaries (as compared, for example, to (Bratko, Cormack, et al., 2006)).

All of the spam messages in T that were recognized as such according to the obtained

class parameters θ (H) and θ (S), were remembered and declared to be the set of base

messages Z .

Then, our algorithms (3.52), (3.69), and (3.104) were run on the combined sample

T in order to obtain transformation parameters τ(E), τ(P), and τ(L), correspondingly. The
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first two algorithms based on the stochastic optimization were repeatedly run over

all pairs (zl , xk) ∈ Z × T , where the index k was incremented first. To control the

convergence, after each pass over T (i.e. every |T | iterations), the value of the criterion

function corresponding to the current algorithm was estimated using a ten percent

subsample of Z × T . This estimation together with the total number of iterations

performed by the moment were used to make a stopping decision.

Once in a several passes over T (between |T | and 10 |T | iterations, depending

on the size of the problem), the current parameters τ(t) = τ(w(t)) were supplied to

the Markov chain generator. For each base message z ∈ Z , the generator produced a

continuation stream of characters distributed according to the distributions g(x ,τ(t))

that were stopped when the string ex of characters produced so far was enough to get the

transformed message u =ψ(z, ex) = zex past the classifier’s spam filter. If the length of ex

exceeded 20 · |z|, the generator was forcefully stopped. This way, for each z, a thousand

of continuations ex were generated to estimate a secondary evaluation measure, the

average length of ex required to make z legitimate to the classifier.

The third algorithm (3.104) required less work since it provided the analytical

solution as long as the values µi j were calculated. To do so, a single pass of averaging

ni j(ψ(zl , xk)) over the samples Z × T (H) and Z × T (S) was done. After that, the same

generation procedure described above was done, so there was an auxiliary measure for

comparing this algorithm with the other two and the baseline strategy.

The role of a baseline strategy in our experiments was played by the same generation

procedure called for the vector of parameters τ(H) = θ (H) that were estimated during the

training of the classifier on the sample of legitimate messages T (H). That same vector

θ (H) also served as an initial estimate for the stochastic optimization.
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TABLE 4.1. Performance of the classifier on the full dataset.

True class
Classified as

Ham Spam

Ham 68.0% (1645) 0.5% (13)
Spam 1.5% (36) 30.0% (725)
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FIGURE 4.1. Histogram of lengths of all messages in the full dataset.

4.2. Results

Due to limited computational resources, during all evaluation runs, Markov models’

memory was fixed to be three characters for the classifier as well as the adversary.

In practice, entropy-based spam filters demonstrate the best performance for orders

of Markov models between six and eight characters (Bratko, Cormack, et al., 2006)).

However, even for K = 3 our implementation of the classifier based on the algorithm of

prediction by partial matching has error rate of approximately 2% on the SpamAssassin

dataset. Table 4.1 shows statistics of one such run when all 6046 bodies of email

messages were split into 3627 training and 2419 testing messages. The distribution of

lengths of the messages is shown in Figure 4.1.

For the order K = 3, the space of parameters τ, representing conditional

probabilities of a one-byte character given a context of at most K another one-byte
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characters, is bounded by

K
∑

k=0

|A|k+1 = 2561 + 2562 + 2563 + 2564 ≈ 232. (4.1)

The total number of character-context combinations for K = 3 that actually occur in all

messages from the SpamAssassin dataset is approximately 524 000.

To avoid memory pressure and achieve faster convergence, the algorithms (3.52)

and (3.69) requiring stochastic optimization, were run on a series of small subsets of

the original dataset. Each time, approximately one percent of messages were sampled

at random from the full dataset. Let us present evaluations for a typical such run on a

1% dataset done for the three algorithms, as it was described in the previous section.

The failure rate of the chosen concatenation-based transformation was zero for

all spam messages and parameters τ obtained from all three algorithms as well as the

Ham baseline τ(H). That is, it was possible to generate an appendix xk for each base

spam message zl such that their concatenation uk =ψ(zl , xk) = zl xk was classified as

legitimate. For this reason, to compare performance for different parameters, we used

a supplementary index of the ratio |uk|/|zl | between the lengths of each transformed

message. Note that none of the methods proposed in this work was constructed to

directly optimize this length ratio.

Figures 4.2, 4.3, and 4.4 depict distributions of length ratios averaged over

transformation appendices xk generated according to the parameters τ(E), τ(P), τ(L)

that were optimized for the entropy-based, probability-based, and likelihood-based

criteria, respectively. As it is easy to see from the cumulants provided to the right of

each histogram, the algorithms using probability-based and likelihood-based criteria are

more preferable to the one using entropy-based criterion in terms of the length ratio.

However, comparing these graphs with Figure 4.5, showing the histogram and cumulant
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FIGURE 4.2. (a) Histogram of the length ratio |ψ(zl , xk)|/|zl | averaged over appendices
xk generated using the parameters τ(E) optimized for the entropy-based criterion (3.48)
on a 1% dataset; (b) its cumulant.
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FIGURE 4.3. (a) Histogram of the length ratio |ψ(zl , xk)|/|zl | averaged over appendices
xk generated using the parameters τ(P) optimized for the probability-based criterion (3.60)
on a 1% dataset; (b) its cumulant.
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FIGURE 4.4. (a) Histogram of the length ratio |ψ(zl , xk)|/|zl | averaged over appendices
xk generated using the optimal parameters τ(L) (3.104) for the likelihood-based
criterion (3.84) on a 1% dataset; (b) its cumulant.
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FIGURE 4.5. (a) Histogram of the length ratio |ψ(zl , xk)|/|zl | averaged over appendices
xk generated using the baseline parameters τ(H) estimated from θ (H) on a 1% dataset;
(b) its cumulant.
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TABLE 4.2. Summary statistics for the performance of different generation parameters
on 1% datasets.

Index
Optimization based on Ham

baselineEntropy Probability Likelihood

Failure rate 0% 0% 0% 0%

Averaged length ratio

Minimum 1.21 1.15 1.16 1.32
5% quantile 1.29 1.26 1.26 1.52
Median 1.58 1.49 1.52 2.06
Mean 1.65 1.59 1.57 2.13
95% quantile 2.26 2.35 2.13 3.27
Maximum 2.89 3.14 2.61 4.27

for the parameters τ(H), all three techniques provide a noticeably better performance

compared to the baseline of generating Ham-like appendix. A short summary of the

statistics from these figures is given in Table 4.2.

Figure 4.6 shows several examples of generated transformation texts for a few short

spam messages from the dataset. Each of the original spam messages (typeset on white

background) is followed by strings produced by the generation procedure according

to optimal parameters (highlighted with gray background). Any of the presented

appendices is sufficient to make the corresponding spam message look as a legitimate

text, and cannot be shortened without changing the class of the transformed message

back to spam.

For the purpose of comparing the systems of probability distributions resulting from

the aforementioned attack techniques, we measured the the difference between two

probability distributions defined by parameters τ(1)i and τ(2)i for each context ci ∈ AK . To

do so, we used the distance function

d(τ(1)i ,τ(2)i ) =
∑

a j∈A

|τ(1)i j −τ(2)i j |. (4.2)
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Hi we are luke’s secret following we
,→ love luke fictitious!

We are also your long lost friend! Hi

This email has nothing to do with
,→ lukefictitious.com

We wil be putting up our very own fan
,→ site soon
and wanted to let you know in advance!

Have a beautifull day!

Joseph

Regard E

__________
Exm

Hey, I just wanted to tell you about a
,→ GREAT website.
,→ http://www.metrojokes.com Features
,→ lots of jokes! Extremly unique
,→ features and classified in categories.
,→ I appriciate your time.

Thank you

your loved one out of your typical diam

- No, the out their until your typi

from you’re decent? I

ass, but the
sun doesn’t

fat able to be and wonderful
>>

(suddenlysusan@Stoolmail.zzn.com) on
,→ Tuesday, July 30, 2002 at 17:07:56
: Why Spend upwards of $4000 on a DVD

,→ Burner when we will show you an
,→ alternative that will do the exact same
,→ thing for just a fraction of the cost?
,→ Copy your DVD’s NOW.

This?

I

It spamassin-dev

--
"If you."

This a multi-part, surround you’re du

This a must IM. Build
searcharself with think?

This a deady to be looking of some
,→ merge.net

DON’T MISS OUT ON AN AMAZING BUSINESS
,→ OPPORTUNITY AND WEIGHT LOSS PRODUCT!
PLEASE VISIT

,→ www.good4u.autodreamteam.com
THERE IS NO OBLIGATION
AND IT’S WORTH A LOOK!

Remore
> OK guys -- I r

md: rules.
>
> with smart_0088

[evel

Yet emailename="smime

> OK guys -- I reck_f

>
> BSMTP-support people
> OK guy

FIGURE 4.6. Examples of original spam messages zl (white background) and several
appendices xk corresponding to each zl that are generated using parameters τ(E)

optimized on a 1% dataset (gray background).

44



TABLE 4.3. Summary statistics for the performance of the generation parameters optimal
for the likelihood-based criterion on the full datasets.

Index
Likelihood

optimization
Ham

baseline

Failure rate 0% 0.16%

Averaged length ratio

Minimum 1.001 1.001
5% quantile 1.068 1.248
Median 1.184 1.704
Mean 1.232 1.976
95% quantile 1.594 4.101
Maximum 2.929 8.498

Figure 4.9 features distributions of distances d(τ(1)i ,τ(2)i ) for all pairs of parameters

τ
(1)
i ,τ(2)i ∈ {τ(E)i ,τ(P)i ,τ(L)i ,τ(H)i } that were fitted on a 1% dataset using all three

algorithms, as well as the baseline Ham parameters. The minimal distance of

d(τ(1)i ,τ(2)i ) = 0 indicates that distributions τ(1)i and τ(2)i are identical. The maximal

distance of d(τ(1)i ,τ(2)i ) = 1 corresponds to greatest difference between τ(1)i and τ(2)i .

Since the likelihood-based algorithm (3.104) does not have as high computational

requirements as the other two algorithms resorting to stochastic optimization, it was

possible for us to run it on the full dataset. Resulting distributions of the length ratio

for the parameters optimal for the likelihood-based criterion and the baseline Ham

parameters are presented in Figures 4.7 and 4.8 in a similar fashion to the case of a

1% dataset shown above. Table 4.3 lists the same five quantiles of the length ratio as

well as its mean values. Comparing these statistics with the ones in Table 4.2, we can

conclude that the breach between the Ham-like generation and the likelihood-based

algorithm is even greater (≈ 70% vs. ≈ 50%).
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FIGURE 4.7. (a) Histogram of the length ratio |ψ(zl , xk)|/|zl | averaged over appendices
xk generated using the optimal parameters τ(L) (3.104) for the likelihood-based
criterion (3.84) on the full dataset; (b) its cumulant.
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FIGURE 4.8. (a) Histogram of the length ratio |ψ(zl , xk)|/|zl | averaged over appendices
xk generated using the baseline parameters τ(H) estimated from θ (H) on the full dataset;
(b) its cumulant.
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FIGURE 4.9. Histograms of the distances between parameters obtained through different
adversary algorithms as well as the baseline parameters.
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

We introduced three formalizations of possible adversarial objectives for classifiers

using cross-entropy as the deciding criterion. Each of the three approaches has

proved its efficiency as compared to the baseline approach of using the probability

distributions estimated only on legitimate messages to define a transformation source.

The third technique showed itself as the most efficient of three, both in terms of

transformation and computational requirements. Although the first two techniques have

same implementation difficulties, after appropriate calibration, they showed comparable

performance. Together, all three methods have shown the feasibility of statistically

attacking compression-based classifiers using relatively limited extent of transformation

(for the SpamAssassin corpus, on average, approximately 20% of original message’s

length is to be generated and appended).

Future work includes three directions of possible extension of this research. To begin

with, it is of interest to explore how methods of parametrized optimization, examples of

which are considered in this work, compare with other algorithms allowing to optimize

the contents of transformation texts directly on a per character basis. This problem

setting can potentially increase the number of different criterion functions that can be

considered to formalized the adversary problem. The methods that might be applied in

that setting include Markov chain Monte Carlo methods, genetic algorithms, simulated

annealing, and others.

Another promising direction consists in analyzing the dynamics of classifier-

adversary system for the particular case of entropy-based classification considered in

this thesis. Although it is hard to attack this problem in general, it might be feasible to
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derive some useful properties for the specific algorithms that we have discussed in our

work.

Last but not least, it is important to research ways of improving performance of

compression-based classifiers that might be possible given the knowledge of potential

adversary attacks.
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