
COMPARISON OF FD EXTRACTION METHODS AND AN APPLICATION OF DFS

by

KANIKA SOOD

A DISSERTATION

Presented to the Department of Computer & Information Science
and the Graduate School of the University of Oregon

in partial fulfillment of the requirements
for the degree of
Master of Science

June 2014

DISSERTATION APPROVAL PAGE

Student: KANIKA SOOD

Title: Comparison of FD extraction methods and an application of DFS

This dissertation has been accepted and approved in partial fulfillment of the requirements for the
Master of Science degree in the Department of Computer & Information Science by:

Christopher Wilson Chair
Christopher Wilson Advisor
Boyana Norris

and

Kimberly Andrews Espy Vice President for Research & Innovation/ Dean of the
Graduate School

Original approval signatures are on file with the University of Oregon Graduate School.

Degree awarded June 2014

ii

DISSERTATION ABSTRACT

KANIKA SOOD

Master of Science

Department of Computer & Information Science

June 2014

Title: Comparison of FD extraction methods and an application of DFS

Extracting functional dependencies from existing databases is a useful technique in

relational theory, database design and data mining. Functional dependencies are a key property

of relational schema design. A functional dependency is a database constraint between two sets

of attributes. In this study we present a comparative study over TANE, FUN, FD Mine, FastFDs

and Dep Miner and we propose a new technique, KlipFind to extract dependencies from relations

efficiently. KlipFind employs a depth-first, heuristic driven approach as a solution. Our study

indicates that KlipFind is more space efficient than any of the existing solutions and highly

efficient in finding keys for relations.

iii

CURRICULUM VITAE

NAME OF AUTHOR: KANIKA SOOD

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:
University of Oregon, Eugene, OR
Mody Institute of Technology & Science, Rajasthan, India

DEGREES AWARDED:
Master of Science, Computer & Information Science, 2014, University of Oregon
Bachelor of Technology, Computer & Information Science, 2011, Mody Institute of
Technology & Science

AREAS OF SPECIAL INTEREST:
Databases, Automata Theory

PROFESSIONAL EXPERIENCE:

Associate Systems Engineer, IBM, India, 2011-2012

iv

TABLE OF CONTENTS

Chapter Page

I INTRODUCTION . 1

II MAIN TECHNIQUES/TOOLKIT . 4

III TANE . 8

Search strategy . 9

Pruning the search space . 9

Challenges . 9

Computing with partitions . 11

Algorithm . 13

Advantages and Disadvantages . 16

Time complexity . 16

IV FUN . 17

Embedded FDs . 17

Free sets . 17

Closure and quasi-closure . 18

Approach . 18

Algorithm . 19

Advantages . 21

Disadvantages . 21

V FD MINE . 22

Classification of FDs . 22

v

Chapter Page

Equivalences . 23

Approach . 23

Algorithm . 25

VI FASTFDS . 28

Canonical cover . 28

Agree sets . 28

Algorithm . 29

Advantages . 30

Disadvantages . 31

Time complexity . 31

VII CHAPTER 7: DEP MINER . 32

Armstrong relation . 32

Approach . 32

Algorithm . 34

Advantages . 34

Time complexity . 36

VIII CHAPTER 8: KLIPFIND . 37

Heuristic of KlipFind . 37

Conjecture . 39

Algorithm . 39

Time complexity . 42

Worst case scenarios . 42

Advantages and Disadvantages . 43

vi

Chapter Page

IX CHAPTER 9 : COMPARISON OF FD EXTRACTION METHODS 44

Categorization . 44

Differences among Candidate Generate-and-test Strategies 45

Illustration . 46

Result of the Bernoulli Example . 71

Time complexity . 71

X CONCLUSION AND FUTURE WORK . 73

REFERENCES CITED . 74

vii

LIST OF FIGURES

Figure Page

1 Bernoulli Example on TANE: Stage 1. Level 0 has only one element, the empty set and
level 1 has six candidates which are all the singleton attributes of the relation. The
numbers show the cardinality of the candidates. 47

2 Bernoulli Example on TANE: Stage 2. Level 2 candidates are generated by combining
all the possible sets of candidates at level 1. At each level the number of attributes
in a candidate increase by one in count. 47

3 Bernoulli Example on TANE: Stage 3 At every level the cardinality of each candidate
is compared with the cardinality of its parents in the previous level. If the cardinality
is the same for any of the cases this indicates that there is a functional dependency
existing there. 48

4 Bernoulli Example on TANE: Stage 4 The same step as in previous stage is followed to
get the complete lattice . 48

5 Bernoulli Example on TANE: Stage 5 At this stage keys are identified and this becomes
the final stage of the lattice. 49

6 Bernoulli Example on FUN: Stage 1 Here also in level 0 there is only the empty set and
level 1 has all the singleton elements of the relation. 50

7 Bernoulli Example on FUN Stage 2 At every level the candidates are generated by combining
candidates from the previous level and the cardinality is checked to look for non-free
sets and keys. 50

8 Bernoulli Example on FUN: Stage 3 If a key or a non-free set is obtained then it is not
included in the next level as a subset of any candidate. 51

9 Bernoulli Example on FUN: Stage 4 . 52

10 Bernoulli Example on FUN: Stage 4(Cleaner version) 53

11 FastFDs: Stage 1 The difference set shown in the upper portion of the figure above is
found by comparing each tuple with every other tuple in the the relation and combined
on the basis of the same value of the attributes, Then difference set for each of the
attributes(shown in the table in the above figure) is found by combining those values
that contain that attribute and remove that attribute from that set of candidates.
If there is a singleton attribute like C for example then the difference set of C would
contain an empty set. 54

12 FastFDs: Stage 2 This stage is obtained from the previous stage by reducing it to a set
of minimal candidates , by removing supersets of the candidates present in the respective
difference sets. 55

13 FastFDs: Stage 3 The table shows the minimum cover of the difference set of all the attributes,
which can be obtained from combining those attributes that alone can represent the
entire set of attributes shown in the previous figure. The minimal cover of each of
the attribute gives us the functional dependencies as shown in the figure above. 56

viii

Figure Page

14 FastFDs: Stage 4 The lattice for FastFDs follows the lexicographic order at every level.
57

15 Bernoulli Example on KlipFind: KlipFind also starts off the same way as FUN, just that
it follows a depth first approach.The above figure shows a stage where the leftmost
candidate at level 2 is been explored and it goes down until it comes to the leaf nodes
of the tree. After this stage pruning starts. 58

16 Bernoulli Example on KlipFind: This stage shows the lattice before the first prune i.e.
AB and its children: Stage 2 . 59

17 Bernoulli Example on KlipFind: Stage 3 Before pruning ABDF and ABD candidates
from the lattice. 60

18 Bernoulli Example on KlipFind: Stage 4 After pruning ABD from the lattice. 61

19 Bernoulli Example on KlipFind: Stage 5 After pruning ABEF and ABE and befor epruning
ABF and AB. 62

20 Bernoulli Example on KlipFind: Stage 6 After pruning ABF and AB and before pruning
ACD. 63

21 Bernoulli Example on KlipFind: Stage 7 After pruning ABF and AB and before pruning
ACEF , ACE, AC one by one. 64

22 Bernoulli Example on KlipFind: Stage 8 : The stage obtained after pruning AC. . . 65

23 KlipFind In a similar fashion it is done for all the singleton attributes with the expansion
as given in Figure 19. Not all the nodes shown in this figure are in the memory all
the time.It is just showing the full expansion of the tree. The algorithm halts once
all the attributes are done. 66

24 KlipFind Example 2: Stage 1 . 68

25 KlipFind Example 2: Stage 2 . 69

26 KlipFind Example 2: Stage 3 . 70

ix

LIST OF TABLES

Table Page

1 Student database . 2

2 Test for checking if a FD(B → A) holds or not . 9

3 Stripped partitions . 12

4 Categorization table . 45

5 Bernoulli Example . 57

6 Random Example . 67

x

CHAPTER I

INTRODUCTION

In today’s era with huge data inflow it is necessary to have large databases. In building

large databases and maintaining them efficiently, a good relational schema design plays an

important role.The problem addressed in this paper is to suggest an efficient algorithm for

extracting functional dependencies from a relation. Functional dependency is a key property

of the relational schema design. It is a constraint of a database between two sets of attributes.

Having crisply dened functional dependencies will make querying on a database system efficient.

Given any random database, it is important to nd out the functional dependencies among the

data to know how efficient the database is. It is also a key technique in database design, database

analysis and in normalization of databases.

The discovery of functional dependencies from the relationships present in the database

has been an active topic of research for the past few years and efficient solutions for finding

dependencies have been provided by researchers which has proved to be relevant in the past. An

important use of this could be for instance, we have a dataset for the people in US who have been

detected with cancer. The dataset tries to capture as many factors responsible for the disease as

possible. Some examples could be hereditary within the family, smoking or drinking. In this case,

based on millions of records of the patients who have been struck by the disease, there can be

some factors identified that are present in most of the cases, or whenever they were present their

effect had been adverse. Let us say the dataset has one million records out of which it seems like

95 % of the people detected with lung cancer used to smoke. Acquiring such knowledge from the

relation depending on the relationship of set of attributes among themselves can be very helpful in

this field. This research topic is not just confined to this area but can have contributions in almost

any field.

Another example could be in a student database as shown in Table 1 .From the student id

attribute we can get other relevant details of the students like their names, year of admission

etc. Initial work in the eld involved comparing tuples and conrming whether the functional

dependency is satised or not.They did not make use of the dependencies discovered in the earlier

stages to obtain new knowledge. But it makes this approach non-scalable and impractical for large

1

databases with more number of attributes and data. Later work has taken into consideration this

drawback and developed more scalable approaches which keeps track of information collected in

the previous stages to gather further information in the later stages.

Student id First Name Last Name Date of birth Year of enrolment Department name
916768 Jessica Kidman 09-09-1988 2011 Psychology
928999 Crystal Brown 19-12-1980 2014 CIS
91111 Himani Sood 15-05-1988 2012 English Literature
967800 Isma Hamid 24-06-1983 2013 Chemistry
912345 Minoo DeRaj 21-01-1991 2013 CIS
923455 Akash Agnihotri 09-09-1988 2013 CIS
919191 Shashank Rao 21-09-1989 2013 CIS
919992 Neeraj Chaudhary 11-08-1983 2012 CIS

TABLE 1. Student database

Based on the strategy that these algorithms identify functional dependencies we can

broadly classify them into two categories: Breadth first search and depth first search. The

first of these approaches is to traverse through the attributes and their supersets in a breadth

first fashion. Few of these algorithms discussed in the paper are : TANE Huhtala et al. [1999],

FUNNovelli and Cicchetti [2001], FD Mine Yao et al. [2002] and Dep-MinerLopes et al. [2000].

The other classication based on the approach is a depth first traversal over the attributes. One

such algorithm is FastFDsWyss et al. [2001]. Although there are other algorithms as well that fall

in this class but we shall cover in detail FastFDs alone.

In this study we do an in-depth study of the above stated ve algorithms and consider the

various aspects which each algorithm revolves around.These aspects have been the grounds for

the next upcoming algorithm in the chronological order. The contribution of this study also

involves a new algorithm suggestion that we call KlipFind 1. One of the algorithms FastFDs is a

depth first search version of the other algorithm Dep-Miner. Chapter 2 lists the main techniques/

toolkit used in the study. We covered in detail the TANE algorithm in chapter 3 followed by FUN

algorithm in the next chapter. In chapter 5, FD Mine is discussed.Fast FD is explored in the

following chapter. Chapter 7 has the description of Dep-Miner algorithm.

The following talks about the suggested new algorithm which is more space efficient than

the algorithms given so far. While FUN uses a breadth first search strategy on the other hand our

1The word ”klip” means ”deep” in Chinook jargon language

2

algorithm suggests a depth first search approach on the FUN algorithm. The next chapter makes

a comparison of above mentioned algorithms and explains by illustrating the algorithm over an

example. The final chapter concludes as to what is the goal of this study and its contribution.

We did not include an implementation of the algorithm given the time constraint and

have restricted the paper to mention the algorithm and cover the worst cases and worst time

complexity.

3

CHAPTER II

MAIN TECHNIQUES/TOOLKIT

1. Functional Dependency(FD): In a relation R, a functional dependency X → A where X ⊆ R,

A ∈ R holds if each X value is related to only one value of Y.

We say a FD X → Y holds on a relation r if it is supported by the tuples of r. Sometimes

this is expressed as |= X → Y.

2. Minimal FD: A functional dependency X → A is said to be minimal if A is not functionally

dependant on any proper subset of X, i.e. if Y → A does not hold in R for any Y ⊂ X.

3. Trivial FD: A functional dependency X → A is said to be trivial if A ∈ X

4. Approximate FD: A functional dependency that almost holds on all the tuples in a relation.

This involves removing those tuples from the relation which do not satisfy.

5. Approximateness of a FD: Minimum no. of tuples that need to be removed from relation r

for X → A to hold in r.

6. Embedded FD: Dependencies that hold over a subset of the attribute set initially considered.

Novelli and Cicchetti [2001]

7. Minimal cover: A minimal cover of F is a set of dependencies such that F logically implies

all dependencies in the canonical cover of F and the canonical cover of F logically implies all

dependencies in F.

8. Canonical cover:The canonical cover can be found by following the steps below:

(a) Start with the closure of all the attributes.

(b) Rewrite with a single attribute on right hand side.

(c) Cross out trivial dependencies.

(d) There are dependencies in the list that can be implied by other dependencies in the list.

Strike such dependencies out.

(e) Eliminate redundant dependencies.

4

(f) Combine dependencies with same left hand sides.

9. Free Set: Let X ⊆ R be a set of attributes. X is a free set in r, an instance of relation

over R, if and only if: ∃ X ∈ X, |π′X | = |πX | where |πX | stands for the cardinality of the

projection of r over X. Every single attribute is a free set. The left hand side of any minimal

dependency is also a free set.

10. Closure: The set of all values that can be determined from X using FD X → A

11. Quasi-Closure: The grouping of the closure of X and all its maximal subsets.

12. Partition: A set of tuples that agree on an attribute value.

13. Rank of a partition : The rank of a partition is the number of equivalence classes in that

partition. It is denoted by : |π|

For example: πA = {{1, 2, 4}, {3, 5, 7}, {6}} Here πA = 3

14. Stripped Partition: A partition with equivalence classes of size one removed.

15. Agree sets:Every pair of tuple , the attributes for which they have the same value. Agree

sets are the complement of difference sets.

16. Disagree sets: If t1 and t2 do not appear together in some stripped partition , then t1 and

t2 disagree on every attribute.Such tuples that disagree form a set and such sets are said to

be disagree sets.

17. Equivalences: A relation is said to be equivalent if and only if it is reflexive, symmetric and

transitive.

18. Partition Refinement: A partition π refines another partition π if every equivalence class in

π is a subset of some equivalence class of π

19. Armstrongs Axioms: Below are the 3 axioms given by Armstrong.

(a) 1. Reflexivity : If Y ⊆ X , then X → Y

(b) 2. Augmentation: If X → Y then XZ → YZ for any Z

(c) 3. Transitivity: If X → Y and Y → Z then X → Z

5

20. Trivial dependencies: Dependencies of the form X → X or XY → X or XY → Y

where right hand side of the dependency is a part of the input(or left hand side of the

dependency). Such dependencies are said to be trivial dependencies.

21. Proper subset : All dependencies of the form X → Y except the ones given below form the

proper subset:

(a) ∅ → Y

(b) X → Y

22. Key : A set of attributes whose value uniquely defines each row in the relation.

23. Superkey: Set of attributes for a relation which has a key(s) as its subset.

24. Search space: In a relation, for a dependency X → Y, the possible values of X can be any

attribute or set of attributes of the relation. The possible values of X form the search space

of the functional dependency.It reduces the search space using pruning.

25. Closure: Let F be a set of functional dependencies. The closure of a functional dependency

is the set of all the functional dependencies that can be deduced from F including F itself. It

is denoted by F+.

26. Cardinality of a partition: The number of groups in a partition is called its cardinality. It is

denoted by |πX |

27. Embedded dependencies: Given a set of functional dependencies that hold in the relation,

embedded dependencies are the dependencies that are valid in the projection of the relation

over a subset of its attributes. The set of embedded functional dependencies id given as

below:

F [X] = {Y → Z/F |= Y → Z ∧ Y Z ⊆ X}

28. Projection of Functional Dependency: The functional dependencies that hold for an

attribute subset X of a relation R.It is another term used for Embedded functional

dependencies. The set of embedded functional dependencies id given as below:

F [X] = {Y → Z/F |= Y → Z ∧ Y Z ⊆ X}

6

29. Armstrong relation: An Armstrong relation for a set of functional dependencies (FDs) is a

relation that satisfies each FD implied by the set but no FD that is not implied by it.

30. Maximal set: The largest possible set of attributes for an attribute X which does not

determine X.

31. Level wise approach: Level wise in this study refers to the level by level exploration of the

lattice/tree. It can also be defined as the level-wise view of the lattice of the candidates.

7

CHAPTER III

TANE

TANE algorithm was presented in 1999. It was the first efficient algorithm for discovering

functional,non-trivial dependencies in a relation.It gives a new way of finding if a functional

dependency holds in a relation or not. This new approach mainly involves the representation of

the attribute sets by equivalence class partitions.TANE also gives a way of searching the space of

functional dependencies efficiently. It partitions the rows with respect to its attribute values.This

scheme has an advantage that it makes the validity of functional dependency fast.Also discovery

of approximate functional dependencies becomes faster. TANE is favourable for relations with a

large number of tuples.

It represents attribute sets by equivalence class partitions. Functional dependencies

are discovered by taking into consideration those tuples that agree for some set of attributes.

Whenever they have the same value on the left hand side of a dependency then its checked if they

have the same value on the right hand side too.

The algorithms for finding functional dependencies can be classified into two categories:

1. Candidate generate and test approach

2. Minimal cover approach

TANE is a candidate-generate-and-test approach which uses level wise search to explore the search

space.It reduces the search space using pruning. TANE starts with a small left hand side and

prunes the search space as and when possible.For this it uses partitioning the tuples based on the

attribute values.

TANE provides two tests for checking if a functional dependency holds or not.

1. A dependency holds if πX refines πA

A partition B refines another partition A if and only if every equivalence class in B is a

subset of some equivalence class in A. For example if we have the below case :

Here πA = {{1, 2, 4}, {3, 5, 7}, {6}} and πB = {{1, 2, 4}, {3, 5}, {7}, {6}}

Every equivalence class in B , i.e. {1, 2, 4}, {3, 5}, {7}and{6} is a subset of either

({1, 2, 4}, or{3, 5, 7}or{6}}) in A.

8

Row A B
1 2 4
2 2 4
3 3 5
4 2 4
5 3 5
6 4 6
7 3 3

TABLE 2. Test for checking if a FD(B → A) holds or not

2. A dependency holds if |πX | = |πX∪A|

It is a simpler test to check if a functional dependency holds or not. If case (1). If the LHS

and RHS of case (2) are not equal then for sure the dependency involved does not hold.

Search strategy

TANE looks for functional dependencies starting from a single element and increments one

attribute at each level. When TANE tests for a dependency, it looks for dependencies of the form

X \{A} → A where A ∈ X. That way TANE guarantees that it only considers non-

trivial dependencies as trivial dependencies are not relevant. The small-to-large direction of the

algorithm makes sure that only minimal dependencies are generated by the algorithm.

Pruning the search space

TANE forms a lattice of candidates formed by the attributes of the relation. At every level

it keeps moving down by adding one more attribute to the candidate for that level. It keeps going

down the lattice until there are no more candidates that can be generated for the next level and it

finds all the minimal dependencies.

Challenges

One of the biggest challenge in finding functional dependencies is to confirm that the

functional dependencies that the algorithm outputs are minimal. If not then there could be many

extra dependencies that could be generated which cannot be counted since there exists another

functional dependency with a smaller left hand side for the same functional dependency.

9

In order to test the minimality of a functional dependency X → A what really needs to be

done is to check the existence of a functional dependency of the form Y → A where Y ⊆ X. TANE

stores this information in C(Y) of right hand side candidate of Y. In other words, C(Y) stores the

initial right hand side candidates of Y.

In order to check if the dependencies are minimal, below are the steps taken by TANE. Let

the dependency to be checked for minimality be X → Z. The steps taken are:

1. Rhs candidate pruning

For simplicity sake, let the relation in consideration be {A,B,C,D,Z} . Let the left hand

side of the dependency, X be AB. The first check should be if there exists a Y such that Y ⊆

X and Y → Z. If such a dependency exists, then X → Z is not minimal. TANE takes care of

this by storing a set C(Y) such that it has all those attributes that can be derived from Y.

For example, if there exists Y → Z exists then C(Y) should contain Z.

So for a dependency X → Z to be minimal, ∀ Y ∈ X, C(Y) = ∅

TANE takes into consideration only proper subsets.

Also, if X ⊃ Y and C(X) = ∅ then ∀ Y , C(Y) = ∅

2. Rhs+ candidates C(X) has the initial set of right hand side candidates. TANE provides an

improved version which is given as C+(X).

C+(X) = {A ∈ R | ∀ B ∈ X : X \{A,B} → {B} does not hold }

It is important to have a check that the left hand side of the dependency should not

have any internal functional dependencies. For example : for AB → C should not have a

dependency like A → B or B → A or else AB → C would not be minimal.

The Lemmas given by authors of TANE make sure that they remove internal functional

dependencies from each functional dependency that they find out. Huhtala et al. [1999]

Let A ∈ X and let X \{A} → A be a valid dependency. The dependency X \{A} → A is

minimal if and only if, ∀B ∈ X,A ∈ C+(X\{B}).

For the dependency ABC → D, the above lemma gets rid of the functional dependencies of

the form AB → B , AB → C , B → C and others of the same form.

10

The below lemma removes additional attributes from C(X). Let B ∈ X and let X \{B} be a

valid dependency. If X → A holds, then X \{B} → A holds.

¯C ′(X) =

 R \ X if ∃ B ∈ X : X \ {B} → B holds (3.1)

∅ otherwise. (3.2)

Now if X has a proper subset Y such that Y \{B} → B holds for some B ∈ Y then further

we can remove from C(X) all A ∈ X \ Y. The set removed from the above stated rule is :

¯C ′′(X) = {A ∈ X | ∃ B ∈ X \ {A} : X \ {A,B} → B holds}

3. Key pruning

”An attribute is a superkey if no two tuples agree on X i.e. partition πX consists of

singleton equivalence classes only.The set X is a key if it is a super-key and no proper subset

of it is a superkey.” Huhtala et al. [1999]

This rule makes sure than anything that has the super key in it does not go to the next

level.

Computing with partitions

TANE gives 2 ways to reduce time and space requirement :

1. Replace partitions with stripped partitions

Instead of considering all the partitions, TANE uses stripped partitions. The reason being

singleton equivalent classes do not contribute in checking the validity of a dependency since

single values never break any dependency.

2. Approximate the error

The error e(X) is the minimum fraction of tuples that should be removed from the relation

to make a dependency valid. This property can also be extended to other parameters, for

example a set to be a super-key can be decided using the error. The minimum fraction of

tuples that should be removed from a relation to make X a super-key will be the error.This

is given as e(X). If the error is small then X can be said as an approximate super-key. The

error can be calculated by the following formula:

11

Row A B
1 2 4
2 2 4
3 3 5
4 2 4
5 3 5
6 4 6
7 3 3

TABLE 3. Stripped partitions

e(X) = 1 - |πX | / |r|

Since TANE replaces partitions with stripped partitions, the error can be given as:

e(X) = ˆ||πX || - |π̂X | / |r|

In the above equation, ˆ||πX || is the sum of the size of all the equivalence classes in π̂X

Below are the operations on the partitions followed in TANE.

1. Stripping the partitions

For every partition the equivalence classes with a single element in them are removed. A

partition for an attribute X is denoted by πX and a stripped partition is denoted by π̂X .

For instance for the attribute A,B in Table 2

πA = {{1, 2, 4}, {3, 5, 7}, {6}} and πB = {{1, 2, 4}, {3, 5}, {7}, {6}}

and π̂A = {{1, 2, 4}, {3, 5, 7}} and π̂B = {{1, 2, 4}, {3, 5}}

2. Computing partitions

The partitions are calculated for each attribute set. Staring from level 0 in the lattice, it

begins with finding partitions for single attributes of the relation. ∀A ∈ R, πA is calculated

from the database. As it goes further in the lattice,for the attribute set with size > 2, πX

it calculates the partitions using the two partitions computed in the previous level i.e. the

from the subsets of X.

The lemma in Huhtala et al. [1999] states that the partitions can be calculated as follows:

∀X,Y ⊆ R, πX .πY = πX∪Y

In order to find all the non-trivial minimal dependencies, TANE searches the lattice in a

level-wise fashion.Starting from an empty set at level zero, it advances the lattice. Each level Ll

12

is a collection of attribute sets of size l. These attribute sets are used to get the dependencies in

Ll+1. L1 uses L0, L2 uses L1 and so on and so forth.

Algorithm

Algorithm 1 TANE

1: L0 := {∅}
2: C+(∅) :=R
3: L1 := {{A}}|A ∈ R}
4: l := 1
5: while Ll 6= ∅ do
6: COMPUTE DEPENDENCIES(Ll)
7: PRUNE(Ll)
8: Ll+1 := GENERATE NEXT LEV EL(Ll)
9: l := l+ 1

Below are the methods implemented by TANE .

Algorithm 2 TANE

GENERATE NEXT LEV EL(Ll)
COMPUTE DEPENDENCIES(Ll)
PRUNE(Ll)
STRIPPED PRODUCT
e

GENERATE NEXT LEV EL method computes the level Ll+1 using the previous level

Ll. At each level only one attribute is added and hence the size increases by only one.Only those

sets are generated which has all its subsets in the previous level. The PREFIX BLOCKS(Ll)

method partitions the level Ll into blocks such that they do not have anything in common.They

follow the lexicographic order. All the elements which have the same attributes except the last

one belong to the same prefix block. They have only one attribute different in the attribute set.

Algorithm 3 Generates the next level

1: procedure GENERATE NEXT LEV EL(Ll)
2: Ll+1 := ∅
3: for all K ∈ PREFIX BLOCKS(Ll) do
4: for all {Y,Z} ⊆ K,Y, Y 6= Z do
5: X := Y ∪ Z
6: if for all A ∈ X,X {A} ∈ Ll then
7: Ll+1 := Ll+1 ∪ {X}

return Ll+1

13

In the algorithm COMPUTE DEPENDENCIES, C+(X) is calculated.Pruning takes

place here. The difference between the initial set of right hand side candidates C+(X) and

C(X) is calculated and removed from the set. This procedure ensures that minimal functional

dependencies are output by the algorithm.

Algorithm 4 Generates the functional dependencies for the next level

procedure COMPUTE DEPENDENCIES(set Ll)
for all X ∈ Ll do

C+(X) := ∩A∈XC+(X {A})
for all X ∈ Ll do

for all A ∈ X ∩ C+(X) do
if X\{A} → A is valid then

output X \ {A} → A
remove A from C+(X)
remove all B in R \ X from C+(X)

TANE implements pruning rules that are applied in this method PRUNE.Line 4 check

for a key and removes it. Also, if C+(X) is empty it removes it from Ll. Step 7 outputs the

dependencies found by this method.

Algorithm 5 Pruning the lattice

procedure Prune(Ll)
for all X ∈ Ll do

if C+(X) = ∅ then
delete X from Ll

if X is a (super)key then
for all A ∈ C+(X)\ X do

if A ∈ ∩B∈XC+(X ∪ {A}\{B}) then
output X → A

delete X from Ll

Initially stripped partitions for singleton attributes are calculated from the relation

directly. A hash table or trie data structure is used for doing this. Then the partitions with

single values are stripped off to get stripped partitions. While generating next level candidates in

Generate Next Level when an attribute is added to the attribute set, that is when the partition

is computed for the new attribute set. The table needs to be set to 0 initially.

Compute Dependencies finds minimal approximate dependencies using the error bounds

mentioned in the section before. If that fails then the exact error is calculated using the e method.

The entire table here is initialised to 0 but does not need a re-initialization.

14

Algorithm 6 Stripped Product

procedure STRIPPED PRODUCT(inoutLk, inLk−1)
Input : Stripped partitions π̂ := {c′1,, c′|π′|}andπ̂′′ = {c′′1 ,, c”|π̂′′|}
Output: Stripped partition π̂ = ˆπ′.π′′

π̂′ := ∅
for i:= 1 to π̂′ do

for all t ∈ c′i do T[t] := i

S[i] := ∅
for i:= 1 to π̂′′ do

for all t ∈ c′′i do
if T[t] neq NULL then S[T[t]] := S[T[t]] ∪{t}

for all t ∈ c′′i do
if |S[T [t]]| ≥ 2 then π̂ := π̂ ∪ {S[T [t]]}
S[T[t]] := ∅

for i := 1 to π̂′ do
for all t ∈ c′i do T[t] := NULL

return π̂

Algorithm 7 Exact error

procedure e
Input : Stripped partitions π̂Xand ˆπX∪A
Output: e(X → A)
e := 0
for all c ∈ ˆπX∪{A} do

choose ()arbitrary t ∈ c
T[t] := |c|

for all c ∈ π̂X do
m := 1
for all c ∈ π̂X do

m := 1
for all t ∈ c do m := max {m,T [t]}
e := e + |c| −m
for all c ∈ ˆπX∪{A} do

choose t ∈ c (same t as on line 3)
T[t]= 0
return e/ |r|

15

Advantages and Disadvantages

Advantages

1. Applicable on large databases

2. The method is at its best when the dependencies are relatively small.

Disadvantages

1. TANE does repeatedly sorting and comparing of tuples to determine FDs which increases

time complexity .

2. Heavy manipulation of attribute sets and numerous tests that are performed

Time complexity

Worst case: Exponential with respect to the number of attributes but this is inevitable

since the number of minimal dependencies can be exponential in the number of attributes. If the

set of dependencies do not change with increase in the number of tuples, then time complexity is

linear.

16

CHAPTER IV

FUN

FUN is a level-wise algorithm that explores the attribute set lattice of a relation level wise.

It is proved to be more efficient than TANE which was the best solution then. It also extracts

embedded functional dependencies without adding to the execution time, which none of the

previous algorithms does. They identify keys at an earlier stage than the other solutions. One

more thing that FUN does differently than others is handling the partitions over a relation. The

general approach is to store all the partitions, however FUN stores only the number of partitions

Novelli and Cicchetti [2001] .

Embedded FDs

FUN introduces the concept of embedded functional dependencies. Given a set of

functional dependencies that hold in the relation, embedded dependencies are the dependencies

that are valid in the projection of the relation over a subset of its attributes. The set of embedded

functional dependencies is given as below:

F [X] = {Y → Z/F |= Y → Z ∧ Y Z ⊆ X}

The aim of FUN like other approaches is finding a solution to problem of discovering the

set of minimal functional dependencies. Novelli and Cicchetti [2001] refers to this set as canonical

cover of functional dependencies. FUN introduced a new concept of Free set which can be defined

as:

Let X ⊆ R be a set of attributes. X is a free set in r, an instance of relation over R, if and

only if: ∃ X ∈ X, |π′X | = |πX | where |πX | stands for the cardinality.

Free sets

Free sets are represented as FSr. The source of any minimal functional dependency is

necessarily a free set. The concept of free sets says that free sets do not have any functional

dependency within the set. Due to this a free set cannot capture any sort of functional

dependency at all. On the other hand, non-free sets at least have one dependency or else they

would have been in the free set as well.The combination of attributes not belonging to free set

17

is called as a non-free set. If the cardinality of any one subset for any set is also equal to the

cardinality of the set then it is not a free set.

The lemmas given in FUN state that :

1. Any subset of a free set is a free set itself : ∀ X ∈ FSr , ∀ X’ ⊂ X , X’ ∈ FSr

2. Any superset of a non-free set is non-free : : ∀ X /∈ FSr , ∀ X ⊂ Y , Y /∈ FSr

Closure and quasi-closure

FUN also maintains closure and quasi-closure of attributes for relations. The closure of a

set of attributes includes all the other attributes that can be obtained from the attributes in the

set and all the attributes with in the set itself. The closure is given as X+
r which is given as :

X+
r = X ∪{A ∈ R−X / |X|r = |X ∪A|r}

Here X is a set of attributes of the relation, X ⊆ R

The quasi-closure of a set of attributes is denoted by X◦r and is given as:

X◦r= X ∪ ∪A∈X (X −A)+r

As per the monotonicity and extensibility properties , the relation between closure and

quasi closure of an attribute set can be given as:

X ⊆ X◦r ⊆ X+
r

Approach

FUN is a level-wise approach. Starting from level zero each level k is provided as input a

set of possible free sets of length k. These are called candidates. At level k+1 two free sets are

combined to obtain the candidates for this level.

At each level there is a managed set maintained for each candidate.This set is described as

a quadruple; candidates, count, quasi-closure and closure.The quadruple can be given as:

Lk = (candidate,count,quasi-closure,closure)

Candidates are the candidates at each level which is a set of attributes of the relation.All

candidates should be free sets only.In order to make sure that candidates at each level are

free sets, the cardinality of the candidate is compared with the cardinality of all its maximal

subsets. If the cardinality is the same then it is not free as there is a dependency that exist.If it is

proved to be a free set by this comparison check method then it can be a potential functional

18

dependency. Closure and quasi-closure are for the attribute set at that level. Count is the

cardinality of the candidate that is counted by the count function. If for any attribute X, |X|

= 1 then it can be thrown away as it has the same value for all the tuples which means ∅ → holds

true.Also, if the count of X is equal to the number of tuples in the relation then it is identified as

a key. Initially for level zero candidate = ∅, count =1, quasi-closure = ∅, closure = ∅.

The result after each level is the dependencies identified in that level. In the FUN

algorithm mentioned below , DisplayFD procedure yields the minimal functional dependencies

at each level. The algorithm gets over when there can be no further candidates that can be

generated for the next level.

Algorithm

The functions and procedures in FUN are described below:

Algorithm 8 FUN

L0 := <∅,1,∅,∅ >
L1 := {<A,Count(A),A,A >| A ∈ R }
R′ := R - {A | A is a key }

for (dok := 1; Lk 6= ∅; k:= k+1)
ComputeClosure(Lk−1, Lk)
ComputeQuasiClosure(Lk, Lk−1)
DisplayFD(Lk−1)
PurePrune(Lk, Lk−1)
Lk+1 := GenerateCandidate(Lk)
DisplayFD(Lk−1)

Algorithm 9 FUN

GenerateCandidate(Lk)
ComputeClosure(Lk−1, Lk)
ComputeQuasiClosure(Lk, Lk−1)
PurePrune(Lk, Lk−1)
FastCount(inoutLk−1, inLk)

The function GenerateCandidate generates candidates from the set of free sets for the next

level,k+1 from the candidates at level k.

The function below computes the closure of the free sets obtained from the previous

level.Initially it is set to the quasi-closure of l in the below function and later updated for non-

keys. For keys the closure in updated in the ComputeQuasiClosure procedure. The procedure

19

Algorithm 10 Generate the candidate for the next level

procedure GenerateCandidate(set Y)
Lk+1 := l | ∀ l’ l, | l | = | l’ | + 1, l’ ∈ Lk, and | l’ |r 6= | r |
for all l ∈ Lk + 1 do

l.count := Count(l.candidate)

return Lk+1

checks if l → A holds or not by checking the cardinality of l and l ∪ A. The comparison is done by

calling another procedure FastCount which is mentioned later in the chapter. The attributes that

can be reached from l are added to the closure here in this procedure.

Algorithm 11 Compute the closure

procedure ComputeClosure(inoutLk−1, inLk)
for all l ∈ Lk − 1 do

If l is not a key then
l.closure := l.quasiclosure

for all A ∈ R′ - l.quasiclosure do
if FastCount(Lk−1, Lk, l.candidate ∪ A = l.count) then

then l.closure := l.closure ∪ A

The procedure ComputeQuasiClosure computes the quasi-closure of all the candidates for

that level. It is initialized with the candidate and later updated by computing the union of its

maximal subsets closures. This procedure also computes the closure of keys.

Algorithm 12 Compute the quasi-closure

procedure ComputeQuasiClosure(inoutLk, inLk−1)
for all l ∈ Lk do

l.quasiclosure := l.candidate
for all s ⊂ l.candidate and s ∈ Lk−1 do

l.quasiclosure := l.quasiclosure ∪ s.closure

if l is a key then l.closure := R

This method looks for internal functional dependencies and removes the non-free sets from

Lk. This check is done by comparing the cardinalities of the candidate and its maximal subsets

which are free sets.

This function gives the cardinality of a candidate. Count function does the same thing

but it is used in case of generating the candidates. Whereas FastCount is faster than the Count

method and does the count for even those which are not yet generated but their count is required.

20

Algorithm 13 Pruning

procedure PurePrune(inoutLk, inLk−1)
for all l ∈ Lk do

for all s do ∈ l.candidate and s ∈ Lk − 1
if l.count = s.count then delete l from Lk

Algorithm 14 Fast count

procedure FastCount(inout Lk−1 , in Lk,in l.candidate)
if l.candidate ∈ Lk return l.count then

return Max(l′.count|l′.candidate ∪ l.candidate, l′.candidate ∈ Lk−1)

Advantages

1. It give embedded dependencies which is innovative as none of the previous algorithms do

that. It is more efficient than the best available solution then (TANE).

2. For data that is high correlated FUN is very efficient. (Better than TANE)

3. Search space explored by FUN is smaller than TANE

Disadvantages

1. In case of equivalences in relations, it has more candidates which makes this solution poor.

2. Instead of storing the partitions it just stores the number of partitions, which may not be so

good as the algorithm has to keep going back because of this approach.

21

CHAPTER V

FD MINE

FD Mine is another rule discovery algorithm that was given in the year 2002. FD Mine

identifies equivalences in the dataset. It applies Armstrong’s axioms to generate equivalences.

This is something that had not been done in any of the past work.

Pruning is the process of removing unwanted data and the result of pruning is a reduced,

relevant dataset. FD Mine suggests 4 pruning rules in the algorithm and gives an implementation

of the same. These rules help in reducing the search space. No data is lost in the process of

pruning.

Classification of FDs

The algorithm discusses about two types of rules: Implication and functional dependency.

”An implication describes a relationship between one and specific combination of attribute-value

pairs.” Yao et al. [2002] An implication X ⇒ Y means that whenever X is true, Y is also true.

The other rule mentioned in the paper Yao et al. [2002] is functional dependency.Also, it discusses

functional dependencies to have mainly two classifications: One set of functional dependencies are

those that can be obtained from the pre-discovered functional dependencies. These are redundant

dependencies and hence are not taken into consideration in the algorithm. For example, we have

a dependency . Now the new dependency XY → AY is redundant because according to Axiom of

Augmentation for a given dependency,the same attribute(s) can be added to both the sides of the

dependency.

The other set of classification includes those dependencies that cannot be inferred from

the already discovered dependencies. Such dependencies are to be found in the dataset using

this algorithm. This is where the pruning rules kick in as this process is costly to check for

dependencies against the dataset. The pruning procedure reduces the number of dependencies

to be checked by skipping the redundant dependencies.

22

Equivalences

With an increase in the number of attributes the number of candidates also increase

exponentially.Fd Mine identifies equivalences in the dataset which help in reducing the attributes

in the candidates. When an equivalence is seen the attribute which appears later in the

lexicographic order is not included in the further candidates.For any two attributes, X,Y if X

→ Y and Y → X then we can say that X and Y are equivalent and are represented as X ↔ A

Approach

A lattice of attributes is formed. If there are n attributes and there are 2n possible subsets

of attributes out of which 2n - 2 are non-empty and proper subsets of the candidates. ∅ and the

set of all attributes of the relation are excluded from here. The number of edges = n 2n−1. The

lattice starts from level 1 because it does not include ∅. The size of the search space is exponential

to the number of variables in the relation in a database.

The algorithms for finding functional dependencies can be classified into two categories:

1. Generate and test approach

TANE is a candidate-generate-and-test approach which uses level wise search to explore the

search space.It reduces the search space using pruning as and when possible.For this it uses

partitioning the tuples based on the attribute values. FD Mine also falls in the candidate-

generate-and-test approach.

TANE differs from others in this category by the pruning rules it uses. These rules are more

effective and this makes it a faster and more efficient algorithm that the rest.

2. Minimal cover approach

This approach discovers the minimal cover of the set of dependencies. From the original

relation, a stripped partition database is extracted. Then using these partitions agree sets

(pairs of tuples) are calculated and maximal sets are generated. Then a minimum FD cover

is found.

For a dependency X → Y FD Mine refers to X as the antecedent and Y as the consequent.

The authors of FD Mine state that Armstrong’s axioms are sound and complete. Soundness

indicates that given a set of functional dependencies satisfied by a relation, any functional

23

dependency inferred from the Armstrong’s axioms is valid for that relation as well. Completeness

states that all the implied functional dependencies can be inferred from Armstrong’s axioms.

Finding functional dependencies

For a dependency X → Y to hold,the algorithm states that the cardinality of X and XY

should be the same. Otherwise the dependency does not hold true.

Closure and Non-trivial closure

Let X be an attribute or set of attributes of a relation of a database. The closure of X is

the set of all the attributes that can be derived from X including X as well. It is denoted by X+.

The non-trivial closure of X is denoted by X∗. It is given as the closure of X without X in

it.

X∗ = X+ - {X}

Equivalent attributes

For two attributes X and Y they are said to be equivalent by comparing the closures of X

and Y. Theorem in Yao et al. [2002] states that :

X,Y ⊆ U, if Y ⊆ X+ and X ⊆ Y +, then it can be safely said X ↔ Y

Here X+ and Y + are the closures of X and Y respectively.

Pruning rules

The possible candidates for the antecedent are suggested and then checked for consequent

s. At each level in the lattice candidates are generated by adding one attribute. The number

of candidates are given by the formula n2n−1 where n is the number of attributes. In big-sized

database where relations have large number of attributes, this number can be very large. Pruning

rules help to reduce the number of dependencies that we need to check.FD Mine gives 4 pruning

rules given below and is valid when Y 6= ∅ and X 6= ∅. These pruning rules are applied to remove

the candidates on a particular level before this information is used by the next level.

1. If X → Y,Y → X then candidate Y can be deleted.

The below rule removes the redundant candidates.

24

2. Y + ⊆ X then candidate X can be deleted provided Y ∗ 6= ∅

If X is a key, then any superset XY of X does not need to be checked.

3. Given X∗ and Y ∗, then when attempting to determine whether or not the set of functional

dependencies XY → vi, where vi ∈ U −X+Y +, needs to be checked in r(U).

Because X∗ and Y ∗ are the non-trivial closures of attributes X and Y, respectively, then XY

Closure(X) U Closure(Y) does not need to be checked.

4. If ∀vi ∈ U −X,X → vi is → satisfied by r(U), the candidate X can be deleted

Fd Mine is similar to TANE algorithm but TANE only uses 2 of the above 4 rules (pruning

rule 2 and 4) used by FD Mine.

FD Mine does a level-wise search along with the application of the four pruning rules

mentioned above.

Algorithm

Algorithm 15 FD Mine

To discover all functional dependencies in a dataset.
Input: Dataset D and its attributes X1, X2, X3, ..., Xm

Output: FD SET, EQ SET and KEY SET
1. Initialization Step
set R = X1, X2, ..., Xm, set FD SET = F
set set EQ-SET = F, set KEY SET = F
set CANDIDATE SET = X1, X2, ... , Xm

for all Xi ∈ CANDIDATE SET do
setClosure’[Xi] = F

2. Iteration Step
while CANDIDATE SET 6= F do

for all Xi ∈ CANDIDATE SET do
ComputeNonTrivialClosure(Xi)
ObtainFDandKey(Xi)

ObtainEQSet(CANDIDATE SET)
PruneCandidates(CANDIDATE SET)
GenerateCandidates(CANDIDATE SET)

3. Display(FD SET,EQ SET,KEY SET)

FD Mine has the below methods that it uses to find out the dependencies for the relations

in the database.

25

Algorithm 16 FD-Mine

ComputeNonTrivialClosure(Xi)
ObtainEQSet(Candidate set)
PruneCandidates(Candidate set)
GenerateCandidates(Candidate Set)
PurePrune(Lk)
FastCount(Lk)

Algorithm 17 Compute the non-trivial closure

procedure ComputeNonTrivialClosure(Xi)
for all Y ⊂ R−Xi − Closure′[Xi] do

if |
∏
Xi
|=|

∏
XiY
| ,add Y to Closure’[Xi]

Algorithm 18 Obtain FD and keys

procedure ObtainFDandKey(set Xi)
add Xi → Closure’[Xi] to FD SET
if R = Xi ∪ Closure’[Xi] then add Xi to KEY SET

Algorithm 19 Obtain the Equivalent Set

procedure ObtainEQSet(CANDIDATE SET)
for all Xi ∈ CANDIDATE SET do

for all X → Closure’(X) ∈ FD SET do
set Z = X ∩ Xi

if (Closure’(X) ⊇ Xi - Z and Closure’[Xi] ⊇ X - Z) then
add X ↔ Xi to EQ SET

Algorithm 20 Prune the candidates

procedure PruneCandidates(CANDIDATE SET)
for all Xi ∈ CANDIDATE SET do

if ∃ Xj ∈ CANDIDATE SET and Xj ↔ Xi ∈ EQ SET then
delete Xi from CANDIDATE SET

if ∃ Xi ∈ KEY SET then
delete Xi from CANDIDATE SET

Algorithm 21 Pruning

procedure GenerateCandidates(CANDIDATE SET)
for all Xi ∈ CANDIDATE SET do

for all Xj ∈ CANDIDATE SET and i < j do
if (Xi[1] = Xj [1]), ..., Xi[k-2]= Xj [k-2], Xi[i-1] < Xj [k-1] then

set Xij = Xi join Xj

if (∃Xi → Xj [k − 1] /∈ FD SET) then
compute the partition

∏
Xij

ofXij

setClosure’(Xij) = Closure’(Xi) ∪ Closure’(Xj)
if (R = Xi ∪ Closure′[Xij]) then add Xij to KEY SET
else add Xij to CANDIDATE SET

Delete Xi from CANDIDATE SET

26

Advantages

1. Identifies equivalences in dataset.

2. It reduces the size of the search space.

3. It reduces the number of functional dependencies to be checked.

4. More effective pruning rules.

Time Complexity

For m attributes, O(n.2m) is the theoretical complexity where n is the number of tuples.

27

CHAPTER VI

FASTFDS

FastFDs is a depth-first, heuristic-driven search strategy which determines the functional

dependencies that hold over an instance r of the relation R. It finds a canonical cover of the set of

functional dependencies. Dep Miner algorithm views the functional dependency discovery problem

as finding minimal covers for hypergraphs. Once the minimal covers are found it applies a level-

wise search strategy to determine these minimal covers. Experiments show that level-wise strategy

that is a typical approach for all the functional dependency discovery algorithms, is outweighed by

the depth-first,heuristic-driven strategy.

FastFDs is based on a result showing that finding the canonical cover of the set of FDs is

equivalent to finding the minimal covers of each of a set of hypergraphs (one for each attribute)

constructed from the difference sets of the relation instance. Wyss et al. [2001]

Canonical cover

A canonical cover F ′ for a set of functional dependencies F is a set of dependencies such

that F logically implies all dependencies in F ′ , and F ′ logically implies all dependencies in F. It

can be given as :

Fr = {X → A|X ⊆ R,A ∈ R, r |= X → A,A /∈ X, andX → A is minimal. } Wyss et al.

[2001]

For t1 and t2 ∈ r. The difference sets of t1 and t2 is : D(t1, t2) = {B ∈ R | t1[B] 6= t2[B]}

The difference sets of r are Dr = {D(t1, t2) | t1, t2 ∈ r,D(t1, t2) 6= ∅}

DA
r = {D − {A} |D ∈ Dr and A ∈ D}

Agree sets

Like the previous algorithms, this one considers stripped partitions.Agree sets are generated

from stripped partitions instead of tuples from the relation directly. Agree sets are the natural

dual of difference sets. The agree sets are given as:

A(t1, t2) = {B ∈ R|t1[B] = t2[B]}

The agree sets of R are: Ar = {A(t1, t2)|t1, t2 ∈ r}

28

X → A is a minimal functional dependency if and only if X is a minimal cover of DA
r .

The elements of DA
r form edges in a hypergraph. So if we calculate the minimal covers,

that gives the functional dependencies.

FastFD is good for :

1. random integer valued instances of varying correlation factors,

2. random Bernoulli instances

3. real-life ML repository relation instances

FastFD is space efficient in all the above 3 cases.

Algorithm

Algorithm 22 FASTFDs

procedure FastFd(inoutLk−1, inLk)
input: relation instance r wth schema R
output : canonical cover of minimal FDs over r , Fr
Dr := genDiffSets(R,r);
for A ∈ R do

compute DA
r from Dr ;

if DA
r = ∅ then

output ∅ -> A;
else if ∅ /∈ DA

r then
>init is the total ordering of R - { A } according to DA

r ;
findCovers(A, DA

r , DA
r , ∅,>init);

The below algorithm generates the difference set of functional functional dependencies of

the instance of the database.

Algorithm 23 generate difference sets

genDiffSets(∅)
findCovers(Lk)

The method findCovers uses a search method to find the covers. So for finding the cover of

an attribute A, it considers every subset of R which does not contain A in it is a likely candidate

for the minimal cover of DA
r . The below algorithm finds minimal covers of the difference sets in a

depth-first, left-to-right manner. Each node in the tree is a subset of R which does not have A in

them. The heuristic chosen includes ordering the subsets lexicographically according to which B >

29

Algorithm 24 Calculate the cardinality of candidates

procedure genDiffSets(R,r)
input: schema R and r a relation instance over R
output : difference sets for r, Dr

//Initialize :
resDS := ∅ ;
strips := ∅ ;
tmpAS := ∅ ;
//Compute stripped partitions for all attributes
for A ∈ R do

compute stripped partitions for all attributes

//Compute agree sets from stripped partitions:
for

∏
∈ strips do

for ti ∈
∏

do
for tj ∈

∏
,j >i do

add A(ti,tj) to tmpAS
//Complement agree sets to get difference sets
for X ∈ tmpAS do

add R - X to resDS;

C > D > E ... The heurisitic is greedy in nature as it picks the one with the most difference sets

at each node. This is the heuristic that is chosen by KlipFind as well.

The optimized search method below constructs a search tree which has an attribute

ordering which changes as they keep going down the search. This ordering is done on the basis

of how many difference sets they cover i.e. those which have not been covered at a node above

this level. If there exists a tie then the lexicographic ordering is used to deal with the tie cases.

Two of the situations can arise:

1. If we are at a node and no more attributes but difference sets are still there: then it can

be said there are no functional dependencies down this branch. It is marked as fail.

2. If we are at a node and there are no difference sets left then either the dependency may

not be minimal, so mark it as fail case; or output the subset that this node and the path to it

represents.

Advantages

It is space efficient because of the depth-first search approach which is not there in the

levelwise search approach algorithms.

30

Algorithm 25 Generate the candidate for the next level

procedure findCovers(Lk)
input: attribute A ∈ R(RHS)
original dfference sets, DA

r

difference sets not thus far covered, Dcurr

the current path in the search tree , X ⊆ R
the current partial ordering of the attributes >curr
output : minimal FDs of the form Y -> A
Base Cases:
if >curr = ∅ but Dcurr 6= ∅ then

return; // no FDs here

if Dcurr = ∅ then
if no subset of size | X | - 1 of X covers Dr then

output X -> A and return;

elsereturn; // wasted effort, non-minimal result

Recursive case:
for attributes in >curr in order do

Dnext := difference sets of Dcurr not covered by B;
>next is the total ordering of B̂ ∈ R | B̂ >curr B according to Dnext;
findCovers(A, DA

r , Dnext, X ∪ B, >next)

Disadvantages

Although the heuristic used is greedy in nature yet it can be doing extra work. The

dependency has to be checked for minimality by checking the left hand side of the dependency.

Time complexity

Calculating the difference sets Dr takes O(nm2).

To compute DA
r from Dr the minimization of X ∈ Dr takes O(d log(d)) where d = |Dr|. It

is given as O(nm2 log(n m2))

|Fr| = K, the complexity of findCovers is O((1+w(n))K), where w(n) is a function

representing the wasted work due to the imperfect search heuristic.

As findCovers is called for each attribute A ∈ R, FastFDs takes time O(n(1 + w(n))K).

The worst time complexity can be given as : O(nm2 + nm2 log(nm2) + n(1 + w(n))K)

where w(n) is the wasted work due to imperfect search heuristic. Wyss et al. [2001]

31

CHAPTER VII

CHAPTER 7: DEP MINER

This is a level-wise algorithm that discovers the functional dependencies and constructs

the real world Armstrong relations. The execution times is the same as far as comparison with

other algorithms is concerned though this algorithm also finds out the the Armstrong relations

in addition. This algorithm characterizes the left hand sides of the dependencies as the traversal

of a simple hypergraph. A hypergraph is a graph in which an edge can connect to any number of

vertices.

Armstrong relation

Armstrong relation is a relation that is separate from the original relation such that all

the functional dependencies that are implied by the set of dependencies in a relation are also

satisfied by this relation. The dependencies that the original relation are not satisfied by this

relation either. This relation might be smaller in size that conveys the same information as the

original relation. Due to this it is preferred over the original relation. An Armstrong relation can

be thought of as a subset of original relation or a cleaner version of the original relation.

Approach

This paper uses the concept of agree sets. From agree sets maximal sets are arrived and

from maximal sets minimal functional dependencies are generated. This can be done by finding

the complement of the maximal sets and this complement is used to derive the left hand side of

the dependencies.

dep(r) represents the set of all functional dependencies that exist for the relation r. Trivial

dependencies are not included in this set. Trivial dependencies are the dependencies of the form X

→ A where A ∈ X. The algorithm can be seen as the below steps:

1. Finding agree sets

The tuples ti and tj are said to agree on an attribute X if ti[X] = tj [X]. It is given as:

ag(r) = {ag(ti, tj) = A ∈ R | ti[A] = tj [A]}

32

For a relation R, ag(r) = {ag(ti, tj) | ti, tj ∈ r, ti 6= tj}

2. Finding maximal sets

A maximal set being the largest attribute set for an attribute which does not determine that

attribute. It is represented in the algorithm as max(dep(r),A) where A is the attribute in

consideration. It can be given as:

max(dep(r),A) = {X ⊆ R/r 6|= X → A and ∀Y ⊆ R,X ⊂ Y, r |= Y → A} and

MAX(dep(r)) = ∪A∈R max(dep(r),A)

max(dep(r),A) represents Maximal sets for A w.r.t dep(r)

3. Finding left hand sides of the functional dependencies From the maximal sets functional

dependencies can be generated

The left hand side of the functional dependencies can be generated from maximal sets using

hypergraphs. The hypergraph is represented as H. Elements of the hypergraph are called as

edges of the hypergraph and elements of R are the vertices of the hypergraph.

We find the complement of the maximal set and it is represented as cmax(dep(r),A). A

traversal T is a subset of R intersecting all the edges of H i.e. T ∩E 6= ∅,∀E ∈ H.

A minimal traversal is a traversal T such that there does not exist a transversal T’, T’ ⊂ T

4. Generating real world Armstrong relations

Some functional dependencies could hold just coincidently on the relation. There is no

guarantee of these dependencies with a relation extension. Lopes et al. [2000]

Functional dependencies may also just represent an integrity constraint which is not of

interest to us.

A real-world Armstrong is identified as :

(a) r̄ is a real-world Armstrong relation satisfying dep(r):

(b) |r̄| = |MAX(dep(r))|+ 1 ;

(c) ∀A ∈ Rti ∈ r̄, ti[A] ∈ πA (r) is the projection of r on A.

33

Algorithm 26 Dep Miner

Discovering minimal functional dependencies and real-world Armstrong relations
Input: a relation r
Output: minimal functional dependencies and real-world Armstrong relation for r
1. AGREE SET: computes agree sets from r
2: CMAX SET: derives complements of maximal sets from agree sets
3: LEFT HAND SIDE: computes lhs of functional dependencies from complements of maximal
sets
4: FD OUTPUT: outputs functional dependencies
5. ARMSTRONG RELATION: builds real-world Armstrong relation from maximal sets and r

Algorithm 27 Dep Miner

agree set
agree set 2
cmax set
left hand side

Algorithm

The below algorithm computes the maximal equivalence classes from a stripped partition

database followed by the computation of agree sets.

In a naive algorithm when the number of couples reach a threshold value, then the

corresponding agree sets are computed for those couples. Then this set is deleted and for the rest

of the couples the agree sets are computed. This computation can take a lot of time and make the

algorithm inefficient. Dep Miner gives another characterization of agree sets which can avoid this.

This characterization is to preserve the identifiers of equivalence classes for each tuple in which

the tuple appears.

In order to find the agree sets the below algorithm is given.It gives the relationship between

tuples and equivalence classes and then computes the agree sets after that. Agree Set and

Agree Set2 are doing the same thing but there is Agree Set2 because Agree Set takes more time in

case of more tuples. Hence there came Agree Set2.

Advantages

1. It is faster than TANE

2. It is the only solution that give Armstrong’s relation along with functional dependencies.

34

Algorithm 28 Computes agree sets from stripped partition databases

procedure Agree Set
Input: the stripped partition database r̂ of a relation r
Output :the agree sets of r : ag(r)
MC: = Max ⊂ {c ∈ π̂A/π̂A ∈ r̂}
ag(r) = ∅
couples: = ∅
for all maximal equivalence classes c ∈MC do

for all (do)couple(t,t’) ∈ c
couples : = couples ∪ (t,t’)
ag(t,t’) := ∅

for all π̂A ∈ r̂ do
for all equivalence classes c ∈ π̂A do

for all (t,t’) ∈ couples do
if t ∈ c and t’ ∈ c then

ag(t,t’) := ag(t,t’) ∪ A

for all couple (t,t’) ∈ couples do
ag(r) := ∪ ag(t,t’)

. node X compares count with parent Y

Algorithm 29 Computes agree sets from stripped partition databases

procedure Agree Set 2
Input: the stripped partition database r̂ of a relation r
Output: the agree sets of r: ag(r)
ag(r) := ∅
for all π̂A ∈ r̂ do

for all equivalence class ˆπA,i ∈ π̂A do
for all tuple t ∈ ˆπA,i do

ec(t) := ec(t) ∪ (A,i)
MC:= Max ⊆ {c ∈ π̂A/π̂A ∈ r̂}
for all maximal equivalence classes c ∈MC do

for all couple (t,t’) ∈ c do
ag(r) := ag(r) ∪{A ∈ R/∃j s.t. (A,j) ∈ ec(t) ∩ ec(t′)}

Algorithm 30 Computes complement of maximal sets

procedure CMAX SET()
Input: the agree sets over r: ag(r)
Output: complements of maximal sets: CMAX(dep(r))
for all attributes A ∈ R do

max(dep(r), A) := Max ⊆ {X ∈ ag(r)/A /∈ X}
for all attributes A ∈ R do

cmax(dep(r), A) := ∅
for all X ∈ max(dep(r), A) do

cmax(dep(r), A) := cmax(dep(r),A)∪(R\X)

35

Algorithm 31 Computes lhs of minimal functional dependencies

procedure Left Hand Side()
Input: complements of maximal sets: CMAX(dep(r))
Output: the lhs of minimal functional dependencies: lhs(dep(r))
for all attributes A ∈ R do

i := 1
Li := {B/B ∈ X,X ∈ cmax(dep(r), A)}
while Li 6= ∅ do

LHSi[A] := {l ∈ Li/l ∩X 6= ∅,∀X ∈ cmax(dep(r), A)}
Li := Li\LHSi[A]
Li+1 := {l′/|l′| = i+ 1 and ∀l ⊂ l′/|l| = i, l ∈ Li}
i := i + 1

lhs(dep(r), A) := ∪iLHSi[A]

Algorithm 32 Pruning

procedure PurePrune(inoutLk, inLk−1)
for all l ∈ Lk do

for all s do ∈ l.candidate and s ∈ Lk − 1
if l.count = s.count then Delete l from Lk

Time complexity

The time complexity of a naive algorithm is O(Rr2) where r is the number of tuples and R

is the number of attributes. Lopes et al. [2000] With the number of attributes is large, algorithms

usually becomes impractical because of number of couples and the overhead because of the cost

ag(ti, tj). This algorithm proposes an approach to decrease the number of candidate and this

can be achieved by making use of stripped partitions. Stripped partitions reduce the number of

couples.

Algorithm 33 Fast count

procedure FastCount(inoutLk−1, inLk)
if l.candidate ∈ Lk return l.count then

return Max(l′.count|l′.candidate ∪ l.candidate, l′.candidate ∈ Lk−1)

36

CHAPTER VIII

CHAPTER 8: KLIPFIND

FastFD which is a depth-first search is much more space efficient than Dep Miner which is

a breadth-first search. We propose to apply a depth-first search to candidate-generate techniques

such as FUN (TANE, FDMine). So our algorithm combines the pruning rules of FUN and

heuristic of FastFDs.

In this chapter we suggest a depth-first, heuristic-driven search strategy KlipFind which

determines the functional dependencies that hold over an instance r of the relation R. FUN does

the search in a breadth-first manner.Experiments show that space savings can be achieved if level-

wise strategy that is a typical approach for all the functional dependency discovery algorithms,

is replaced by the depth-first,heuristic-driven strategy. We also saw FastFDs is a depth-first,

heuristic-driven search strategy. This gave us the motivation for KlipFind.

Heuristic of KlipFind

Our algorithm suggests that the lattice of attributes be generated and explored in a depth

first fashion. The attributes are sorted in decreasing order of the cardinality of the candidates

at each level.They are then searched in this order.FastFD has a similar heuristic. Due to this

strategy the nodes are usually heavier on the left hand side. The idea behind this is that the

shortest branch is visited first. Once that branch is pruned there is a substantial saving in space

that can be done.

for all candidate X , for each attribute a ∈ R - X do

count(X ∪{a})

sort R - X according to these counts in decreasing order, ≺

search supersets of X according to new order, ≺

Starting from level zero, candidates are generated at each level. Level zero has only one

node which is ∅. The level zero ensures that the dependencies of the form ∅ → X are checked,

where X is a set of attributes of the relation R. This node has further children which are singleton

attributes of the relation.Next, a functional dependency is found by comparing the cardinality

of the candidates at each level with their maximal subsets. If the cardinality is the same then

37

it is considered as a dependency. It is yet to be identified whether the dependency found is

minimal or not because the search is depth first search. In order to do this, there is another

new concept introduced in our algorithm which of FD list. FD list is a list that contains all the

functional dependencies that have been found so far. This list for the later nodes has dependencies

been transferred from the previous nodes that are to the left of that node in the tree.Once a

dependency is found, it is not issued right away because we only want minimal dependencies to

be generated by our algorithm. Hence, it is transferred to the next node according to the current

order which is the next possible minimal left hand side of the current functional dependency.

Since the nodes are arranged based on a weighted lexicographic order, the placement of a node in

a tree in respect to other nodes in the tree is relevant.

Each node in the tree has a set which contains a quadruple. The quadruple can be given as:

(closure, quasi-closure,FD list, free marker)

1. The closure can be given as below:

X+
r = X ∪{A ∈ R−X / |X|r = |X ∪A|r}

In our algorithm we represent it as cl(X).

2. The quasi-closure can be given as: X◦r= X ∪ ∪A∈X (X −A)+r

The quasi-closure is represented as qcl(X) in this algorithm.

3. FD list: FD list has all the dependencies that have been either discovered on that node

or have been passed on this node from other nodes which are to its left in the tree. These

dependencies have not yet been issued and might be passed from here to other nodes to its

right. Here, it is represented as fdlist(W).

4. Free marker :free marker keeps a record if the present candidate is free or not. If a

dependency is found to have the same cardinality as its subset then it is marked as not

free. As a result, there are no further descendant nodes generated from this node.

In order to check a dependency X → A .There are three possible cases:

1. We will count |X ∪A| and |X ∪A| = |X|

In this case A is added to the closure of X and is also added to visited(X).

38

2. We will count |X ∪A| and |X ∪A| > |X|

In this case A is not added to the closure of X but is added to visited(X).

3. |X∪A| may have to be counted later on demand as it might be the child of a key or non-free

set but is required later to check a functional dependency.

According to lemma 2 given in Novelli and Cicchetti [2001] we have:

(a) Any subset of a free set is a free set itself : ∀ X ∈ FSr , ∀ X’ ⊂ X , X’ ∈ FSr

(b) Any superset of a non-free set is non-free : : ∀ X /∈ FSr , ∀ X ⊂ Y , Y /∈ FSr

Based on this we can say that if the candidate is a superset of a non-free node or it is a

superset of a key then it that case |X ∪A| is not processed.

Conjecture

There are three possible values for the total number of functional dependencies to be

examined :

1. 2F : Functional dependencies that were examined but were thrown because they were not

minimal.

2. F + o(F) : The actual minimal dependencies and extremely small fraction of other

dependencies.

3. O(F) : There is a non-minimal functional dependency for each functional dependency so F

times R. Hand simulations say that this is the worst case.

Algorithm

Algorithm 34 KlipFind

Create(∅)
Explore(∅)
Check-In(X,Y)
Generate-Children(node X)
Process-FD-List(node W)
Issue-FDs(node X)

39

Algorithm 35 Explore a node

1: procedure Explore(node X)
2: for all parents Y ⊂ X do
3: if Y does not exist as a node, Create(Y)
4: Check-In(X,Y) . node X compares count with parent Y

5: if X is not free then
6: delete node X and exit . sets not free will have internal dependencies

7: if X is a key then
8: add R to the closure of X
9: issue key X . X is free

10: skip ahead to FD issuance . a key will have empty fdlist

11: Generate-Children(X) . this calls Explore recursively on children
12: Process-FD-List(X)
13: Issue-FDs(X)
14: delete node X

Algorithm 36 Initialize a node

1: procedure Create(set Y)
2: create node with attributes Y
3: perform count of Y and set count . scan the whole relation!
4: initialize closure, visited, quasi-closure, fdlist to null
5: mark Y as free

Algorithm 37 Look at all subsets Y , compare counts, determine freeness

1: assume: X ⊃ Y
2: procedure Check-In(node X, node Y)
3: if Y not-free then
4: mark X as not-free and exit
5: if count(X) = count(Y) then
6: mark X as not-free
7: add X − Y to closure(Y)
8: exit
9: add X − Y to visited(Y)

10: add closure(Y) to quasiclosure(X)

40

Algorithm 38 Create and explore children of X, sort and explore in decreasing order, heaviest
first

Require: X is free and not a key
1: procedure Generate-Children(node X)
2: let Y be parent of X, denote its lex order as ≺Y
3: for all supsets X ′ ⊃ X with X ≺Y X ′ do
4: if X ′ not a node then
5: Create(X ′)

6: if count(X ′) = count(X) then
7: mark X ′ as not-free
8: add X ′ −X to closure(X)

9: sort all children X ′ by count(X ′) in decreasing order
10: create lex order ≺X on X ′ −X determined by the sort . THE heuristic
11: for all children X ′ ⊃ X in order ≺X do
12: Explore(X ′)

Algorithm 39 Look at all FDs in list of current node W

1: procedure Process-FD-List(node W)
2: for all (X,A, k) ∈ fdlist(W) do . X ⊃W
3: if A ∈ cl(W) ∪ qcl(W) then . W → A
4: discard X → A . so X → A not minimal
5: let Y be node k levels above W
6: if Y = ∅ then
7: issue fd X → A . now known to be minimal
8: let Z be the parent of Y
9: assign (X,A, k + 1) to fdlist of (X − Y) ∪ Z ≡ X − (Y − Z)

Algorithm 40 Create potential minimal FDs

1: procedure Issue-FDs(node X)
2: let node Y be parent of X
3: if Y = ∅ then
4: issue fd X → A . minimal FD
5: let node Z be parent of Y . grandparent of X
6: let W = (X − Y) ∪ Z ≡ X − (Y − Z) . next node in lex-tree order
7: for all A ∈ cl(X)− qcl(X) do . as with min-dep from Fun
8: assign (X,A, 1) to fdlist(W) except here qcl is approximate

9: if there is an A ∈ R− (X ∪ visited(X)) then
10: then X ∪ {A} needs to be handled separately . X ∪ {A} not generated as node
11: compute count(X ∪ {A}) so its count unknown
12: compare to count(X)
13: if new FD assign to approriate fdlist

41

Below are the procedures and functions that will be used by the algorithm are mentioned

below:

Comments:

– A node Y will have a lexicographic ordering on some attributes of R. This ordering ≺Y can

naturally be generalized to its supersets: if A ≺Y B then Y ≺Y Y ∪ {A} ≺Y Y ∪ {B}.

– In all proper subset inclusions of the form Y ⊂ X or X ⊃ Y above, the sets differ on a single

attribute. That is, |X| = |Y |+ 1 so there is a single A ∈ X − Y .

– The count of node ∅ should be 1, supporting the FD ∅ → A in the case that A is single-

valued. Note that if A were constant, then |πA| = 1.

– Trying to justify the heuristic: for any V,W ⊆ R, max(|πV |, |πW |) ≤ |πV ∪W | ≤ |πV | · |πW |

– For line 2.9, we need to justify that X is a minimal key. The Check-In procedure will

ensure that X is free. A possible worry is that there may be a Y ′ ⊂ X which is not free, but

it may not yet be known that Y ′ is not free since its branch may not have been explored.

Lemma 2 of Fun ensures that this cannot happen.

Time complexity

For our algorithm, the time complexity can be given as N (r + R + R · log(R) + FR)

where R is the number of attributes in the relation, r is the number of rows. N is the total

number of nodes throughout the system. r is for each node and because each parent and each

child has to be checked we get R in the time complexity . The R.log(R) part comes from the

sorting given by the heuristic that we have. For transferring each dependency to other node it will

take FR of time unit. In most of the cases N is small but in worst case, this value is large, F is the

number of functional dependencies, F = (2R/
√
R) · (R/2)

Worst case scenarios

1. Only keys and no functional dependencies : If there is only one key of size R in the entire

relation then there are no functional dependencies that means. In this case, F = 0

So, N (r + R + R · log(R) + FR) = N (r + R + R · log(R) + 0)

42

2. Keys are all subsets of R/2 size of attributes. In other words, if there are X attributes, then

the left hand side of the dependency has X/2 attributes and the right hand side has the

other X/2 attributes. Here in this case the tree goes till R/2 levels and we have RCR/2 keys

and RC·R/2. R functional dependencies.

Advantages and Disadvantages

Advantages

1. More space efficient than any of the other solutions.

2. Less number of nodes have to maintained at any point of time.

3. Keys are found faster.

Disadvantages

1. Time taken may be more but it cannot be commented for sure as of now

2. Delay in issuing of the dependencies.

43

CHAPTER IX

CHAPTER 9 : COMPARISON OF FD EXTRACTION METHODS

The comparison of various algorithms under study for this paper can be categorised on 2

grounds:

1. Based on the extraction method

2. Based on the search method

Categorization

Category 1: Based on method of extraction

Both the methods are based on partitioning the set of tuples with according to their

attribute values.

1. Candidate generate-and-test approach: The algorithms that fall in this category are :

TANE, FUN and FD-Mine. This approach uses level-wise search to explore the search

space.These are pruning based algorithms, i.e. it reduces the search space by eliminating

candidates using pruning rules. They begin by testing FDs with small left-hand sides and

prune the search space as soon as possible. Using partitions,they can test the validity of FDs

efciently even for large numbers of tuples. TANE, FastFDs and FUN both search the set

containment lattice in a level-wise manner. By computing closure of candidates in level k,

the FDs in this level are discovered and results from level k are used to generate candidates

in level k + 1. The difference between TANE and FUN algorithms is that they use different

pruning rules to eliminate candidates.

The major difference between TANE,FastFD and FUN is the slightly different pruning rules

each of these use.

2. Minimal cover approach: The algorithms that fall in this category are: dep miner and

FastFDs

The minimal cover approach discovers FDs by considering pairs of tuples(agree sets). From

the relation, a stripped partition database is extracted. Then, using such partitions, agree

44

Search strategy Candidate generate test Minimal cover
Breadth first TANE,FUN,FD Mine dep miner
Depth first KlipFind FastFDs

TABLE 4. Categorization table

sets are computed and maximal sets are generated. That is how a minimum FD cover is

found according to these maximal sets is found.

Category 2: Based on the search method

In a tree, starting from the root node and traversing through the tree to intermediate

nodes and leaf nodes can be done through two ways mainly, either in a breadth first manner or

a depth-first manner. In DFS, a single path is followed until one cannot go any further from that

node.(For example in KlipFind, we proceed until a non-free set is explored) and then backtrack to

the previous path and then try the next branch in the tree. In BFS, the graph is traversed level

by level, for any node all its neighbours are approached and then move further. Out of the two

approaches depth first search seems to be better.The reason being the space complexity of DFS is

less than that of BFS. The time taken is the same for both, O (|V + E|) where V is the number of

vertices(attributes) and E is the number of edges.

On the basis of this , the algorithms covered in this study can be represented as in Table 1.

Differences among Candidate Generate-and-test Strategies

TANE,FUN,FD Mine

The main difference among these algorithms are the pruning rules that they use and when

these rules are applied. In addition to this, FD Mine proves based on equivalences.

KlipFind

KlipFind is most similar to FUN as it has the same pruning rules as FUN and same

approach for candidate generation. However the search strategy and heuristic is very much like

FastFDs

45

Partition versus counting

TANE maintains partitions whereas FUN has the counts of partition sizes. FD Mine seem

to use both. In some sense it does not matter (may affect speed).KlipFind uses count but could

maintain partitions.

Minimum cover strategy

Minimum cover does partitioning to set difference sets but not after that.

Time complexity

This section of the chapter provides the list of the time complexity of the algorithms:

For TANE, its exponential with respect to the number of attributes. If with addition of

data, the set of dependencies remains the same then its linear.

For FDMine, for m attributes, O(n.2m) is the theoretical complexity where n is the number

of tuples.

FastFDs takes O(n(1 + w(n))K) amount of time in average case as mentioned by the

authors of FastFDs.

For our algorithm, it should be N (r + R + R · log(R) + FR).

Illustration

In order to clearly describe the difference in each of these algorithms,the following section

covers an illustration of the Bernoulli example over the algorithms covered in the study, i.e.

TANE, FUN, Dep-Miner, FastFDs and KlipFind. (Since FD Mine is similar to TANE it is not

illustrated separately.) Figure 1 shows the tree for the Bernoulli example on our algorithm,

KlipFind and figure 2 shows the relation with six attributes: A,B,C,D,E and F and 6 tuples.

46

TANE

FIGURE 1. Bernoulli Example on TANE: Stage 1. Level 0 has only one element, the empty set
and level 1 has six candidates which are all the singleton attributes of the relation. The numbers
show the cardinality of the candidates.

 A B C D E F
2 2 2 2 2 2

AB AC AD AE AF BC BD BE BF CD CE CF DE DF EF
3 3 3 3 3 4 4 3 3 4 3 3 3 3 3

FIGURE 2. Bernoulli Example on TANE: Stage 2. Level 2 candidates are generated by combining
all the possible sets of candidates at level 1. At each level the number of attributes in a candidate
increase by one in count.

47

FIGURE 3. Bernoulli Example on TANE: Stage 3 At every level the cardinality of each candidate
is compared with the cardinality of its parents in the previous level. If the cardinality is the same
for any of the cases this indicates that there is a functional dependency existing there.

FIGURE 4. Bernoulli Example on TANE: Stage 4 The same step as in previous stage is followed
to get the complete lattice

48

FIGURE 5. Bernoulli Example on TANE: Stage 5 At this stage keys are identified and this
becomes the final stage of the lattice.

49

FIGURE 6. Bernoulli Example on FUN: Stage 1 Here also in level 0 there is only the empty set
and level 1 has all the singleton elements of the relation.

FUN

FIGURE 7. Bernoulli Example on FUN Stage 2 At every level the candidates are generated by
combining candidates from the previous level and the cardinality is checked to look for non-free
sets and keys.

50

FIGURE 8. Bernoulli Example on FUN: Stage 3 If a key or a non-free set is obtained then it is
not included in the next level as a subset of any candidate.

51

FIGURE 9. Bernoulli Example on FUN: Stage 4

52

FIGURE 10. Bernoulli Example on FUN: Stage 4(Cleaner version)

53

FastFDs

 = { CD,BF,BCDE,D,BCDF,BE,C,CDEF,BDF,BCE,ABC,ABD,ACF,ADE,ABCD }

CF
DE
BD
BCD
BC

F
CDE
CDF
E
DF
CE
AD
AC
ACD

D
BDE
BDF
DEF
BE
AB
ABD

C
BCE
BCF
CEF
BF
AB
AE
ABC

BCD
D
CDF
BC
AD

B
BCD
CDE
BD
AC

B C D E F

FIGURE 11. FastFDs: Stage 1 The difference set shown in the upper portion of the figure above
is found by comparing each tuple with every other tuple in the the relation and combined on the
basis of the same value of the attributes, Then difference set for each of the attributes(shown
in the table in the above figure) is found by combining those values that contain that attribute
and remove that attribute from that set of candidates. If there is a singleton attribute like C for
example then the difference set of C would contain an empty set.

54

FIGURE 12. FastFDs: Stage 2 This stage is obtained from the previous stage by reducing it to
a set of minimal candidates , by removing supersets of the candidates present in the respective
difference sets.

55

FastFDs and Dep Miner is the same till stage 2 of FastFDs. After this stage FastFDs

applies DFS and Dep Miner applies BFS.

min cover
of

min cover
of

min cover
of

min cover
of

min cover
of

min cover
of

BDF
BEF
CD
BCE

AEF
CDEF

NONE NONE BD
CD

AC
ABD
ABE
BC

B C D E F

BDF -> A , BEF -> A, CD -> A,
BCE -> A, AEF -> B, CDEF -> B,BD-> E,
CD-> E, AC-> F, ABD -> F, ABE -> F, BC -> F

FIGURE 13. FastFDs: Stage 3 The table shows the minimum cover of the difference set of all the
attributes, which can be obtained from combining those attributes that alone can represent the
entire set of attributes shown in the previous figure. The minimal cover of each of the attribute
gives us the functional dependencies as shown in the figure above.

KlipFind

Example 1: Bernoulli Example

56

FIGURE 14. FastFDs: Stage 4 The lattice for FastFDs follows the lexicographic order at every
level.

A B C D E F
t0 1 1 1 1 1 1
t1 0 0 0 1 1 1
t2 0 0 1 0 1 1
t3 0 1 0 1 1 0
t4 0 1 1 0 0 1
t5 0 0 0 0 1 1

TABLE 5. Bernoulli Example

57

FIGURE 15. Bernoulli Example on KlipFind: KlipFind also starts off the same way as FUN, just
that it follows a depth first approach.The above figure shows a stage where the leftmost candidate
at level 2 is been explored and it goes down until it comes to the leaf nodes of the tree. After this
stage pruning starts.

58

FIGURE 16. Bernoulli Example on KlipFind: This stage shows the lattice before the first prune
i.e. AB and its children: Stage 2

59

FIGURE 17. Bernoulli Example on KlipFind: Stage 3 Before pruning ABDF and ABD candidates
from the lattice.

60

FIGURE 18. Bernoulli Example on KlipFind: Stage 4 After pruning ABD from the lattice.

61

FIGURE 19. Bernoulli Example on KlipFind: Stage 5 After pruning ABEF and ABE and befor
epruning ABF and AB.

62

FIGURE 20. Bernoulli Example on KlipFind: Stage 6 After pruning ABF and AB and before
pruning ACD.

63

FIGURE 21. Bernoulli Example on KlipFind: Stage 7 After pruning ABF and AB and before
pruning ACEF , ACE, AC one by one.

64

FIGURE 22. Bernoulli Example on KlipFind: Stage 8 : The stage obtained after pruning AC.

65

Φ

Bernoulli Example on Klip_Finder

ABCDEF

A B C D E F
BCDEF

2 2 2 2 2
2
b

AB AC AD AE AF

3
c

3
b

4
ab

3

bc

3

b

BC BD BE BF
CD CE CF DE

4
a
F

222
222

ABC ABD ABE ABF ACD ACE ACF ADE ADF AEF BCD BCE BCF BDE BDF BEF CDE CDF C
DEF

2

 DEF

ABCD ABCE ABDE ABDF ABEF ACDE ACEF ACDF ADEF

5
d
EF

3

b

5
e

5

A

5

b

4
ad
A

5
e
A

4
af

4
a

5

AF

6

A

4
cd
B

5
c
EF

4
cd
F

4
cd
E

4
b

4
b
D

4
c

4
c

4
bce

6 5 5 4 5 5 5
BCDE BCEF BDEF CDEF

2

DF EF

2

5 5 5 65 5

FIGURE 23. KlipFind In a similar fashion it is done for all the singleton attributes with the
expansion as given in Figure 19. Not all the nodes shown in this figure are in the memory all the
time.It is just showing the full expansion of the tree. The algorithm halts once all the attributes
are done.

66

A B C D
t1 1 a X 8
t2 1 b Y 8
t3 1 a X 9
t4 2 b Y 10
t5 2 a Z 10
t6 2 b Y 11
t7 3 a W 8
t8 3 a W 9

TABLE 6. Random Example

Example 2: Random Example

67

FIGURE 24. KlipFind Example 2: Stage 1

68

FIGURE 25. KlipFind Example 2: Stage 2

69

FIGURE 26. KlipFind Example 2: Stage 3

70

Result of the Bernoulli Example

All the algorithms mentioned in this study give the same set of functional dependencies and

keys as a result.

The functional dependencies found are:

1. BDF → A

2. AEF → B

3. BEF → A

4. BCE → A

5. CDEF → B

6. CD → A

7. BC → F

8. ABC → E

9. BD → E

10. ABD → F

11. ABE → F

12. ABF → E

The keys found are:

1. BCD

2. CDEF

Time complexity

TANE

Worst case: Exponential with respect to the number of attributes but this is inevitable

since the number of minimal dependencies can be exponential in the number of attributes. If the

71

set of dependencies do not change with increase in the number of tuples, then time complexity is

linear.

FD Mine

For m attributes, O(n.2m) is the theoretical complexity where n is the number of tuples.

FastFDs

FastFDs takes time O(n(1 + w(n))K).

KlipFind

For our algorithm, the time complexity can be given as N (r + R + R · log(R) + FR)

where R is the number of attributes in the relation, r is the number of rows. N is the total

number of nodes throughout the system.

72

CHAPTER X

CONCLUSION AND FUTURE WORK

In this study we surveyed the current techniques for extracting the minimal functional

dependencies from relations.We also focussed on what are a few problems related with some of

these algorithms.In the later part of this study we also did a comparison between these algorithms

and provided an illustration of how they work by running the same example over some of these

algorithms. We tried to compare the run times in a conservative manner.

We also introduced a new algorithm KlipFind which is more or similar to FUN, uses the

same pruning rules, just that it combines this with a heuristic as that in FastFDs.In other words,

we tried to combine the best features of different techniques to save space at the trade-off of time

slightly being increased.

Future work includes two directions of possible extension of this research.To begin with,

it is of interest to code and test the suggested algorithm and check its efficiency against the

previous approaches. To imply random database results to measure average-case time and space

complexity.

Another promising direction consists of simplifying the algorithm. The approach we follow

includes passing the dependencies over to other nodes in the tree, travelling from left to right

direction.This makes it a little complex. Although it is hard to find an alternative for that to

achieve minimal dependencies, it might be feasible to achieve the same.

73

REFERENCES CITED

Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. Tane: An efficient algorithm
for discovering functional and approximate dependencies. The computer journal, 42(2):
100–111, 1999.

Noel Novelli and Rosine Cicchetti. Fun: An efficient algorithm for mining functional and
embedded dependencies. In Database TheoryICDT 2001, pages 189–203. Springer, 2001.

Hong Yao, Howard J Hamilton, and Cory J Butz. Fd mine: discovering functional dependencies in
a database using equivalences. In Data Mining, 2002. ICDM 2003. Proceedings. 2002 IEEE
International Conference on, pages 729–732. IEEE, 2002.

Stéphane Lopes, Jean-Marc Petit, and Lotfi Lakhal. Efficient discovery of functional dependencies
and armstrong relations. In Advances in Database TechnologyEDBT 2000, pages 350–364.
Springer, 2000.

Catharine Wyss, Chris Giannella, and Edward Robertson. Fastfds: A heuristic-driven, depth-first
algorithm for mining functional dependencies from relation instances extended abstract. In
Data Warehousing and Knowledge Discovery, pages 101–110. Springer, 2001.

74

